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Direct detection strategies are proposed for dark matter particles with MeV to GeV mass. In
this largely unexplored mass range, dark matter scattering with electrons can cause single-electron
ionization signals, which are detectable with current technology. Ultraviolet photons, individual
ions, and heat are interesting alternative signals. Focusing on ionization, we calculate the expected
dark matter scattering rates and estimate the sensitivity of possible experiments. Backgrounds that
may be relevant are discussed. Theoretically interesting models may be within reach using existing
data and ongoing direct detection experiments. Significant improvements in sensitivity should be
possible with dedicated experiments, opening up a window to new regions in dark matter parameter

space.

I. INTRODUCTION

The identity of Dark Matter (DM) is unknown. The
well studied paradigm of DM consisting of Weakly Inter-
acting Massive Particles (WIMPs) with masses around
the Weak scale is attractive: a WIMP naturally has the
correct thermal relic abundance and appears in many
new physics models that explain the hierarchy problem.
A WIMP is also an ideal experimental target, with many
direct and indirect DM and collider experiments cur-
rently searching for it. It is possible, however, that this
theoretical prejudice has been misleading. In particular,
despite significant experimental effort, no unambiguous
direct or indirect evidence for WIMPs has been obtained
to date. It is important therefore to explore other theo-
retically motivated scenarios.

An interesting possibility is light DM (LDM), with
masses in the keV to GeV range. Such LDM is theo-
retically motivated and may naturally occur if DM does
not, couple strongly to the visible sector. In particular,
the mass of a particle residing in a hidden sector may
originate from Weak scale dynamics but be suppressed
by small couplings between the hidden and visible sec-
tors (see e.g. [1-5] and references therein). While consid-
erable study is still in order, many existing models can
accommodate LDM, including WIMPless [6], “MeV” [7—
12], asymmetric [13-16], bosonic super-WIMP [17], Ax-
ino [18-20], gravitino [21], and sterile neutrino DM (see
review in [22]).

In this letter, we focus on the MeV to GeV mass range.
We argue that simple experimental setups can allow for
the direct detection of LDM and can probe a wide class of
models. The ability to detect the signals of LDM scatter-
ing could already be within reach with existing technolo-
gies, and might also be possible with current direct detec-
tion experiments such as XENON100 [23], LUX [24], and
CDMS [25]. Dedicated experiments may significantly im-
prove the sensitivity for LDM. This letter aims in part at
initiating the effort towards probing this mass range with
direct detection experiments. A more comprehensive dis-

cussion of possible direct detection avenues is postponed
to future work.

II. BASIC PROPOSAL

Current direct detection experiments search for nu-
clear recoils caused by DM scattering. For LDM, the
average energy transferred in an elastic nuclear recoil is
Enr = ¢?/2my~1 eV x (mpym/100 MeV)2(10 GeV /my),
where mp is the mass of the nucleus, ¢ ~ mpyv is the
momentum transferred, and v ~ 1072 is the DM veloc-
ity. This nuclear recoil energy is well below the lowest
thresholds achieved in existing direct detection experi-
ments. Consequently, vanilla elastic scattering with the
nucleus does not allow for the detection of DM much
below the GeV mass scale.

In contrast, the total energy available in the scatter-
ing is significantly larger, Eiox ~ mpyv?/2 =~ 50eV x
(mpum /100 MeV), and may easily suffice to trigger inelas-
tic atomic processes that could lead to visible signals. We
identify three leading possibilities:

e FElectron ionization (DM—electron scattering).
e Electronic excitation (DM-electron scattering).
e Molecular dissociation (DM-nuclear scattering).

These processes typically require energies of 1-10 eV, and
so may be caused by scattering of DM particles with mass
as small as O(MeV), through interaction with electrons,
nuclei, or the electromagnetic field (e.g. via higher dimen-
sion operators). The resulting signals are small, but the
technology to detect them is feasible, and in some cases
already established. Three types of signals that may be
particularly promising are [74]:

Individual electrons. An electron may be ionized (or, in
semiconductors, excited to a conduction band) by
DM-electron scattering. Signal amplification can
be achieved in certain materials by drifting the elec-
tron in an applied electric field, causing it to scatter



and produce an observable secondary signal. The
primary recoiling electron can also ionize other elec-
trons.

Individual photons. Following an inelastic process such
as atomic excitation, de-excitation may produce
photons, which could escape the target and be de-
tected if they are not efficiently reabsorbed. This
may require a two (or more) step de-excitation, in
which at least one photon does not sit on a res-
onance for reabsorbtion and can propagate over
long distances [26]. Such multi-step de-excitations
are natural in atoms and molecules. The main ex-
perimental challenge for detecting individual pho-
tons lies in reducing the noise and dark count lev-
els. Current capabilities seem to imply a somewhat
higher (but still potentially interesting) experimen-
tal threshold, as only signals with more than one
photon would be resolved above noise.

Individual ions. Ions could be produced either by ion-
izing electrons, or as the result of molecular disso-
ciation. The latter probes primarily nuclear rather
than electronic interactions, and so may be an in-
teresting complimentary direction to pursue. The
technology, however, for using molecular targets
and detecting individual ions still needs to be es-
tablished.

Heat/phonons. Much of the energy deposited by LDM
scattering may emerge as phonons or heat, es-
pecially if any charge carriers produced are not
drifted away from the interaction site by an elec-
tic field. This may be detectable with ultra-low
threshold bolometers, such as the one recently pro-
posed in [27].

A discovery of DM may be possible by searching for
one or more of the above signals. Since the backgrounds
to these signals are currently not well understood (see be-
low), it remains to be seen whether the background dis-
crimination capabilities found in current WIMP searches
can be achieved. In any case, a discovery is possible
through the observation of the annual modulation of the
signal [28]. To illustrate the principle of LDM direct
detection, we focus for the remainder of this letter on
the detection of individual electrons produced by DM-
electron scattering. We postpone further study of the
prospects for LDM searches using photons, phonons, and
ions to future work.

The capability to measure single electrons was demon-
strated in both the ZEPLIN-II [29] and XENON10 [30, 31]
experiments. This depends in both cases on the physical
amplification achieved by drifting the electrons through
gas-phase xenon, which produces detectable scintillation
photons. The same principle works in semiconductor tar-
gets, where drifting electrons induce observable phonons.
Low threshold detectors may be achieved by maximally
exploiting this effect [32], including the “CDMS Light”
mode of operation [33] of CDMS ZIP detectors. We

note that, while lacking single electron detection capa-
bility, CDMS Light may be able to probe LDM, calling
for a careful study. A further possibility is to apply a
large drift field where a single electron can trigger an
avalanche, leading to a potentially observable current.
This has been demonstrated in gas based detectors [34],
and proposed in semiconductor detectors [35]. In sum-
mary, a variety of detection principles sensitive to LDM
scattering seem realistic.

III. DIRECT DETECTION RATES

We now present formulae for the rates of LDM scat-
tering in a target material to produce observable elec-
trons [75]. For atomic or molecular materials this means
ionizing an electron, while for semiconductors (and in-
sulators) it means exciting a valence electron to a con-
duction band. The cross sections for these processes
involve atomic form-factors and may significantly differ
from scattering with a free electron. Indeed, the pres-
ence of the binding potential introduces two competing
effects, one which acts to enhance the scattering cross
section and the other to suppress it.

The enhancement occurs due to the attractive poten-
tial around the nucleus. Semiclassically, energy conser-
vation implies that an electron that escapes with mo-
mentum p far from the atom must have initially scat-
tered with some larger momentum py. The volume of
phase space available is then p2dpg, rather than the
smaller p?dp, and the scattering rate is increased cor-
respondingly. More formally, the effect is due to the
distortion of the escaping electron wavefunction in the
vicinity of the atom. It is familiar from beta decays,
where the differential rate is enhanced by the Fermi-
factor F(p, Zeg) = |wexact(0)/wﬁee(0)|2. In the non-
relativistic limit it takes the form
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where Z.g is the effecive charge felt by the escaping elec-
tron. F(p, Zeg) grows as 1/p, as a slowly-escaping elec-
tron is more affected by the potential well. This is noth-
ing other than the Sommerfeld enhancement (for a con-
cise review see [1]), but occurring to an outgoing rather
than an incoming state. For the case at hand the in-
teraction is delocalized across the atom, whereas in beta
decay it is confined to the origin. However the effect is
qualitatively the same, and in both cases the low-p be-
haviour is straightforward to derive from the phase space
argument.

Due to the uncertainty in its initial momentum, a
bound electron may escape with a given momentum p af-
ter recieving any momentum transfer q. However, there
is a significant penalty on those regions of phase space
where ¢ deviates too far from the typical size, g, asso-
ciated with the atomic process. This can come into con-
flict with the kinematic requirement on the DM velocity



needed to overcome the electron’s binding energy,

AEp+FE
V > Umin = B i + 1 5 (2)
q 2m,,

where AFEp + Er is the total energy transferred to
the electron (binding + recoil). Given that the typi-
cal size of the DM velocity is 10~3¢, transitions in which
AEgp 2 10~3qy receive a suppression relative to free elec-
tron scattering. It follows that one way to maximize rates
is to use elements with high Z, which exhibit a deep po-
tential, while another is to minimize AF, by using semi-
conductors targets. Since electrons then only need to
be excited across the band gap, the energy required is
significantly smaller.

We now assume DM interacts directly with electrons,
and parametrize its coupling in a model-independent way
with a reference cross section &., and a dark-matter form-
factor Fpm(q):
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T is equal to the non-relativistic dark-matter—electron
elastic scattering cross section, but with the 3-momentum
transfer ¢ fixed to the reference value am, (appropri-

ate for atomic processes). Here |M,.(¢)|? is the squared
matrix element for dark-matter—electron scattering, av-
eraged over initial and summed over final spin states.
We assume the DM form-factor has no directional de-
pendence.

Ionization in Atoms. Dark matter may scatter with
an electron bound in energy level 4, ionizing it to an
unbounded state with positive energy, Er = 2%2@ (see
also [36, 37]). At large distances the unbound wavefunc-
tion Yy prms (x) is that of a free spherical wave, but near
the origin it is modified by the presence of the ion from
which it escaped. Taking into account the density of un-
bound states, the thermally averaged differential cross
section is given by:
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where 7(vmin) has its usual meaning <%9(U—vmin)> and
¢ (K q) is the form-factor for ionization:
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Here the sum is over all final state angular variables

I and m’, and over all degenerate, occupied initial

states. The unbound wavefunctions are normalized to
<7/}k’l’m’|wk'lm> = (27T)36l/l5m/mk%6(k/ - k)

In practice, since the correct unbounded wavefunctions

are tedious to compute, it is useful to approximate the

outgoing electron as a free plane wave. In this case, for
a spherically symmetric atom with full shells, the form-
factor reduces to (20 + 1)k /(4n3q) [ kdk |xn (k)| with
integration limits |k’ & ¢|. Here y,,; is the radial part of
the momentum-space wavefunction for the bound elec-
tron in the nl shell, normalized to [ k2dk |x.(k)|> =
(27)3. The rate computed can then be corrected by the
Fermi-factor, Eq. (1), using an appropriate Z.g. We use
the tabulated numerical RHF wavefunctions from [38],
and take Zeg = 1, which is a slightly conservative choice
since within the atom the true potential is somewhat
larger.

As a cross-check, we also solved the radial Schrodinger
equation for the exact unbound wavefunctions, using the
effective potential extracted from the bounded wavefunc-
tions directly, and computed the event rates according to
Eq. (6). The rates calculated using the previous method
agree with this more exact calculation to within O(30%)
for outer-shell electrons, while for inner-shells, agreement
requires somewhat larger Zeg. Since the outer-shell elec-
trons dominate the total rate, this justifies our use of
Zog = 1 in the Fermi-factor.

The above leads to a differential event rate,
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where Nt is the number of target nuclei per unit mass,
A is the mass-number of the target material, and p, is
the local density of .

Ionizations in Crystals. Due to their band struc-
ture, crystals have a great potential for significantly low-
ering the interaction threshold. Upon scattering, an elec-
tron is excited from a valence band to a conduction band,
where it may be drifted and detected. The scattering rate
is derived in a similar manner to that for excitations and
ionizations. The main difference lies in that the electrons
reside in energy bands and are described via Bloch wave
functions, ¥; k(x),

’(/Ji)k(X) = % Z ’(/J,L (k + G)@i(k+G)X A (8)
G

Here i is the band index, k is the electron momentum in
the first Brillouin Zone (BZ), G are the vectors in the
reciprocal lattice and V is the lattice volume.

Since the crystal axis defines a preferred direction, the
scattering rate depends in principle on the orientation of
the crystal. For an interaction that excites the electron
from a valence energy band i to a conduction band ¢,



one finds the velocity averaged cross section,
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Here, fup is the Maxwell-Boltzmann velocity distribu-
tion, and ¢, is defined on the plane perpendicular to
the direction of the incoming DM velocity, v. The form-

factor, c’;’fst(q, k), is given by,
1—)2
G
The energy gap is given by AEp = FEy(k+ q) — E;(k)

and hence the integrals over k, v, and ¢, all convolve
the form-factor with the velocity distribution and encode
the directional dependence of the rate. The study of
directionality is postponed to future work. For simplicity,
below we average over the form-factor, and take

ds)
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We compute the crystal band structure and sin-
gle electron wave functions wusing the QUANTUM
ESPRESSO [39] package which employs a local den-
sity approximation (LDA) within the density-functional
theory. The computation is done on a mesh of k-
vectors [40] and a regular grid of G-vectors with a cutoff,
|k + G|?/2m. < Eey, taken to be 50 Ry. We use a BHS
pseudopotential [41, 42], found in [39]. The total cross
section is obtained by summing over all occupied energy
bands, ¢ and all conducting bands, i’ in Eq. (9). Hence
a large number of unoccupied states should, in principle,
be included. In practice, however, we find that including
24 energy bands is sufficient, and corrections from higher
bands are negligible.

IV. BACKGROUNDS

Control over backgrounds is crucial for a successful
LDM search. However, the backgrounds to very low en-
ergy signals, such as individual ionized electrons, are nei-
ther well measured nor well understood [27, 29-31], and
current direct detection experiments have not attempted
to mitigate them. Although current technology is not
able to distinguish individual LDM signal events from in-
dividual background events, one would expect that ded-
icated detector designs would allow significant improve-
ments. Moreover, the annual modulation of the signal
rate provides an additional handle to distinguish signal
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FIG. 1: Background solar neutrino rates per kg-year. Solid
lines show nuclear recoil spectra for neutrinos scattering with
xenon (blue), germanium (brown), argon (red), and helium
(green). These are not expected to significantly contribute
to the ionized electron signal from LDM-electron scattering.
Dotted lines, with same color coding as above, show rates for
neutrino scattering off electrons. These rates are small and
peak at higher energies than LDM-electron scattering.

from background. Here we provide a brief qualitative
discussion of several possible backgrounds, paying more
attention to the well-understood and irreducible neutrino
background.

Radioactive impurities. Radioactive decays typically
deposit energy well above a keV, and so should be eas-
ily distinguished from the much lower energy DM signal.
However, occasional low-energy events will occur, such
as gamma rays escaping the detector after only a sin-
gle, small-angle scatter, or electrons from the low-energy
tail of beta-decay spectra. These events are phase-space
suppressed by orders of magnitude relative to the total
radioactive decay rate.

Surface events. As in conventional direct detection ex-
periments, higher-energy surface events may appear to
have spuriously low energies due to partial signal collec-
tion. The position reconstruction required to reject this
background may require new experimental designs, since
existing detectors cannot reconstruct the z-position of
very low energy events.

Secondary events. The primary signal of a higher-
energy background may be accompanied by a num-
ber of very low energy events. This effect was ob-
served for single-electron events in ZEPLIN-II [29] and
XENON10 [30, 31]. One possible explanation is the sec-
ondary ionization of impurities (e.g. oxygen) or of xenon
atoms by primary scintillation photons. Such a back-
ground could be reduced by vetoing events occurring too
close in time to a large event. Another possible explana-
tion is that electrons captured by impurities may eventu-
ally be released and detected a significant time after the
primary event that produced them. The long lifetime of
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FIG. 2: The cross section exclusion reach (left axis) at 95% confidence level for 1 kg-year of exposure, assuming only the
irreducible neutrino background (note that additional unknown backgrounds are likely to exist, which would weaken the
sensitivity — see Fig. 4). This corresponds to the cross section for which 3.6 events are expected after 1 kg-year. The right axis
shows the event rate assuming a cross section of . = 10737 cm?. Results are shown for xenon (blue), argon (red), germanium
(brown), and helium (green) targets. Left: Models with no DM form-factor. The green shaded area indicates the allowed
region for U(1)p (hidden photon) models with ma, 2 10 MeV. The orange shaded area is the region in which a particular
model of “MeV” DM can explain the INTEGRAL 511 keV y-rays from the galactic bulge [9]. Right: Models with a very
light scalar or vector mediator, for which Fpy = o®m?2/q¢®. The blue region indicates the allowed parameter space for a hidden
U(1)p model with a very light (< keV) hidden photon. The darker blue band corresponds to the “Freeze-In” region. For
illustration, constant gp contours are shown with dashed lines, assuming ma, = 8 MeV and € = 2 x 107 (left plot) and
map =1 meV and € =3 X 10~¢ (right plot). For more details see the text and the Appendix.

ionized impurities (e.g. an O, ion takes several seconds
to drift to the anode in ZEPLIN-II) may limit the effec-
tiveness of a timing veto, and in this case improvements
in purification would be important.

Neutrons. Current direct detection experiments are ef-
fective at shielding against neutron backgrounds. Modi-
fication of existing designs to minimize the very low en-
ergy neutron scattering relevant for LDM detection could
yield further improvements.

Neutrinos. Neutrino scattering with electrons and nu-
clei generates a small but irreducible background. As
with WIMP searches, this may set the ultimate limit to
the reach of LDM direct detection experiments. The neu-
trino background is overwhelmingly dominated by solar
neutrinos, which are theoretically well understood but
only partially measured. Solar neutrinos have typical en-
ergies between 100 keV and 20 MeV and scatter with a
rate given by:

dR o
—= dE
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where EM" ~ L(Ep + \/E% +2Egm) is the minimal
neutrino energy required to recoil a particle of mass m
with energy Egr, do/dER is the scattering cross section,
and d®, /dE, is the solar neutrino flux [43-45]. We cal-
culate the differential rate for different materials in Fig. 1
(see also e.g. [46—48]). Electron recoils have energies well
above the expected DM signal and should be easily dis-
tinguished. Recoiling nuclei, on the other hand, have
energies typically below a keV. The efficiency in convert-
ing this energy into ionized electrons is unknown at these
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low energies, but it is expected to be very small [27, 31].
Therefore the neutrino-induced background, for events
in which only one or a few electrons are seen, is at most
O(1) per kg-year and probably much lower.

V. RESULTS

We now present expected rates of ionization by DM-
electron scattering in LDM direct detection experiments.
A systematic study of possible target materials is beyond
the scope of this letter, but we present illustrative results
for xenon, argon, helium, and germanium. Noble gases
and semiconductors, particularly xenon and germanium,
respectively, are well established detector materials al-
lowing internal amplification of ionized electrons by scin-
tillation or phonon emission. As discussed, single elec-
tron sensitivity has already been achieved using xenon,
while semiconductor targets benefit from low ionization
thresholds (e.g., the bandgap in germanium is 0.7 eV).

Fig. 2 shows the expected 95% exclusion reach after
one kg-year exposure for an experiment with only ir-
reducible neutrino backgrounds (taken to be negligible
with this exposure, as discussed). This corresponds to
the cross section required to obtain 3.6 signal events [49].
Equivalently, the right axes give the event rate assum-
ing a cross section of 7, = 10737 ¢cm?. The lines corre-
spond to xenon (blue), argon (red), helium (green), and
germanium (brown) targets, and the left and right plots
are for models with a DM form-factor Fpp = 1 and
Fpu = (ame/q)?, respectively (cf. Eq. (4)). For small
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FIG. 3: The differential rates of LDM-induced ionization
versus electron recoil energy, for a cross section of . =
107%" cm?®. Results are shown for xenon (blue), argon (red),
and helium (green) targets, and a DM mass of 10 MeV (solid
lines) and 1 GeV (dashed lines). The two plots show re-
sults for scattering with no DM form-factor (top) and with
Foum = oz%ni/q2 (bottom). The dotted lines in the bottom
right corner show the irreducible solar-neutrino—electron scat-
tering backgrounds. We emphasize that other backgrounds of
an unknown size can be expected at all energies, and will
require a dedicated study to be measured and understood.

DM masses, the reach falls as the energy available ap-
proaches the ionization threshold. For larger DM masses,
the cross section saturates, and the reach falls linearly
with decreasing number density. It is clear that germa-
nium’s low ionization threshold gives it a significant ad-
vantage at low masses. It also allows it to probe smaller
momentum transfer, which is beneficial for DM models
with a (am./q)? form-factor. Here we take the DM halo
to have a local density of ppm = 0.4 GeV/cm?, and a
Maxwell-Boltzmann velocity distribution with mean ve-
locity vg = 220 km/s and a hard cut-off at vese = 650
km/s. We parametrize the Earth’s velocity in the galac-
tic frame as in [50]. Finally, we note that the results are
shown assuming DM-electron interactions only. When
the DM is heavier than a few 100’s of MeV, DM-nuclear
interactions, if present, may also ionize electrons. The
small probability to do so may then be compensated by
typically larger cross-sections.

Our discussion so far has been model independent, but
for concreteness we now discuss a simple and natural class
of models, which could be probed by a LDM direct de-
tection experiment. Consider a fermonic DM particle, Yy,
charged under a new Abelian gauge group U(1)p with

gauge coupling gp. The U(1)p gauge boson Ap can ob-
tain a small coupling ee to ordinary charged particles
through kinetic mixing with the photon [51, 52], mediat-
ing DM-electron scattering. We parameterize the direct
detection cross section as in Eqs (3) and (4):
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where ap = g% /4m. Depending on the Ap mass, the DM
form-factor Fpy is either constant or behaves as 1/ q°.

In Fig. 2, we show interesting regions for this class
of models in the m,—o. plane. The light green and
blue regions in the left and right plots are the regions
spanned by models satisfying all existing constraints,
with ma, > am. and ma, < am., respectively. The
darker blue band in the right plot indicates the value of
e for which the DM abundance is achieved by “Freeze-
In” [53]. For illustration, we also show constant gp
contours with dashed lines, assuming m4, = 8 MeV
and ¢ = 2 x 1072 (left plot) and m4, = 1 meV and
e = 7x 1077 (right plot). The appendix below contains a
brief discussion of how these regions are derived. Finally,
we also show in Fig. 2 another viable LDM model. The
orange region corresponds to a particular “MeV” DM
model (a Majorana fermion interacting with a U-boson
from [9]), which could explain the INTEGRAL 511 keV
~-rays from the galactic bulge [54] and remain consistent
with Cosmic Microwave Background bounds [55, 56].

Although we do not attempt to calculate it here, it is
important to consider how many electrons will be pro-
duced in a LDM scattering event. For example, in xenon
a 30 MeV DM particle will typically ionize a 5p outer-
shell electron (with binding energy Fp = 12.4 eV), giving
it insufficient recoil energy to ionize a second electron.
However, for larger DM masses, the recoiling electron is
increasingly likely to have enough energy to cause sec-
ondary ionizations. Heavier DM is also more likely to
ionize a 5s (Ep = 25.7 €V) or 4d (Ep = 75.6 €V) shell
electron, followed by the emission of a de-excitation pho-
ton which itself causes photoionization. In Fig. 3, we plot
the differential ionization rate against electron recoil en-
ergy for xenon (blue), argon (red) and helium (green), for
a DM mass of 10 MeV (solid lines) and 1 GeV (dashed
lines). In germanium (not shown) the situation is com-
plicated by the band structure but is qualitatively the
same. Signal events in which more than one electron
is collected could be crucial, firstly for experiments in
which a single-electron threshold cannot be reached, and
secondly since backgrounds to few-electron events may
prove to be much smaller than for single-electron events.
For further details, see [57].

Besides neutrinos, the backgrounds to LDM scatter-
ing are currently largely unknown. An important handle
to distinguish signal from background is therefore the
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FIG. 4: The discovery reach using annual modulation, as a
function of the background event rate, for mpym = 30 MeV
and 1 kg-year exposure. Results are shown for xenon (blue),
argon (red), germanium (brown) and helium (green) targets,
assuming either no DM interaction form-factor (solid lines)
or Fpm = o¢2m,23/q2 (dashed lines). The annual modulation
is O(10%) in all cases. The reach scales as ,/exposure (expo-
sure) for large (small) background rates.

annual modulation [28] of the DM scattering rate. Us-
ing the halo parameters given above, we find a modula-
tion fraction fuoq of O(10%) for all cases considered,
where fmod is defined as the ratio of the modulating
signal amplitude to the mean signal rate. A DM dis-
covery would be possible by observing such a modula-
tion over an unmodulated background. In Fig. 4, we
show the modulation discovery reach as a function of
the background event rate, for a DM mass of 30 MeV
and for both constant (solid lines) and (am./q)? (dashed
lines) DM form-factors. Specifically, we calculate the
cross section for which the modulated signal AS satis-
fies AS = 5v/Siot + B, where Sy is the total number of
signal events, B is the number of background events, and
AS = fmodStot-

As is clear from Figs. 2 and 3, the rates can be very
large for theoretically viable models. This illustrates that
there is a large discovery potential for the first experi-
ments that attempt to explore this region. We encour-
age ongoing experiments such as XENON100, LUX, and
CDMS, to actively pursue the required experimental sen-
sitivity.
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Appendix A: APPENDIX: MODEL
CONSTRAINTS

In the results section, we mentioned a simple class of
models that can be probed by LDM direct detection ex-
periments. We here briefly discuss the two interesting
parameter regions that satisfy all existing constraints,
leaving a more detailed discussion of the constraints and
other LDM models to future work.

We assume DM is charged under a new Abelian gauge
group, U(1)p, with gauge boson Ap and coupling gp.
Ap couples with strength ee to ordinary electrically
charged particles via kinetic mixing with the hypercharge
gauge boson [51, 52], and mediates DM—electron scatter-
ing. Theories with “hidden” sectors are natural and have
recently received a lot of attention in other contexts, see
e.g. [1,9, 10, 58, 59]. Constraints on the Ap-€¢ parameter
space are reviewed in [60]. Constrains on LDM coupling
to an Ap have not been explored in detail, but can come
from limits on, for example, DM annihilation-induced
distortions of the Cosmic Microwave Background (CMB)
signal and DM self-interaction induced distortions of DM
halo shapes and the “Bullet-Cluster” dynamics.

Considering these constraints, two interesting param-
eter regions appear. The first is m4, & 10 MeV, where
there is a range of € in which the Ap is safe from beam-
dump, collider, and muon- and electron-anomalous mag-
netic moment ((g —2),,.) constraints [61], and may even
resolve the discrepancy between the calculated and mea-
sured (g — 2), [59]. We note that the beam-dump and
collider constraints are easily evaded if the Ap decays
to hidden sector rather than ordinary particles. Since
ma, > ame, Fpy = 1, see Eq. (15). If gp is not too
small, the visible and hidden sectors are thermalized in
the early universe and x for m, > m,, efficiently annihi-
lates to Ap, making it natural to imagine an asymmetric
DM abundance of x, with the asymmetry produced by
new high-scale physics (see e.g. [16]). DM with m, <
m4, can instead annihilate to electrons through an off-
shell A’ or to other hidden sector particles. Ap exchange
generates DM self-interactions with cross-section o =
g4Dm§C /4wm’ , which evades bounds from galaxy halo

ellipticity [62] for gp < 0.1 (71?&[;\/) (7100”11\’;[6\[)_1/4 (for
other similar or weaker self-interaction bounds see [63—
65]). Since DM is asymmetric, annihilation bounds from

the CMB [55, 56], which could otherwise be significant,



do not apply. For m, > 1 GeV, these models are con-
strained by the conventional direct detection limits of
CRESST-I [66]. The allowed region in the m, — .
plane is shown in green in Fig. 2; 7. is maximized for
ma, ~8 MeV and £ ~ 2 x 1073,

A second interesting region has a very light (< keV)
or massless Ap. Here DM-electron scattering has a
form-factor Fpyr = (ame/q)?. For sufficiently small
gp, such models can then evade DM self-interaction
bounds [62, 67], numerous bounds on Ap kinetic mix-
ing [60], BBN bounds [16, 68], and (for m4, = 0) CMB
bounds on millicharged DM [69]. The x abundance can
receive an irreducible “Freeze-In” [53] contribution from
rare scattering processes in the early Universe thermal
bath. Production of a hidden-photon population is highly
suppressed by thermal effects [70, 71], but xx production
occurs through 2—2 s-channel annihilation of charged
particles, and through decays of Z-bosons via the kinetic-

mixing-induced coupling egp tan 0w Xxy*xZ,. Our calcu-
lation of the former contribution agrees with [72], but
we also include the Z-decay contribution, which we find
dominates for masses above O(GeV). In the dark blue
band in Fig. 2, the DM abundance is entirely set by
Freeze-In, an intriguing possibility consistent with the
above bounds. This fixes o, for a given m,; e.g. at
my =10 MeV, egp ~ 6 x 107'? and 7, ~ 4 x 10737 cm?.
Of course, other production mechanisms or annihilation
to hidden-sector states may control the final DM abun-
dance, and so a much larger range of parameters is pos-
sible. The light blue region in Fig. 2 shows models
satisfying both ¢ < 3 x 1075, allowing O(meV) hid-
den photons to evade various cosmological and labora-
tory bounds [70], and the constraint from halo ellipticity,
gp S 3 x 107 (1555=)/* (there is a small logarithmic
dependence on m 4, which we set to 1 meV) [62].
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