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Abstract

Recent results from Higgs boson and supersymmetry searches at the Large Hadron Collider pro-

vide strong new motivations for supersymmetric theories with heavy superpartners. We reconsider

focus point supersymmetry (FP SUSY), in which all squarks and sleptons may have multi-TeV

masses without introducing fine-tuning in the weak scale with respect to variations in the funda-

mental SUSY-breaking parameters. We examine both FP SUSY and its familiar special case, the

FP region of mSUGRA/CMSSM, and show that they are beautifully consistent with all particle,

astroparticle, and cosmological data, including Higgs boson mass limits, null results from SUSY

searches, electric dipole moments, b → sγ, Bs → µ+µ−, the thermal relic density of neutralinos,

and dark matter searches. The observed deviation of the muon’s anomalous magnetic moment

from its standard model value may also be explained in FP SUSY, although not in the FP region

of mSUGRA/CMSSM. In light of recent data, we advocate refined searches for FP SUSY and

related scenarios with heavy squarks and sleptons, and we present a simplified parameter space to

aid such analyses.

PACS numbers: 12.60.Jv, 11.30.Pb, 95.35.+d
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I. INTRODUCTION

Since its discovery decades ago, supersymmetry (SUSY) has attracted more attention

than any other principle for physics beyond the standard model (SM). Of particular interest

is weak-scale SUSY, which holds the promise of providing natural resolutions to the gauge

hierarchy and dark matter problems. For the last year, the Large Hadron Collier has been

colliding protons with protons at a center-of-mass energy of 7 TeV. The ATLAS and CMS

experiments have each analyzed over 1 fb−1 of data and collected over 5 fb−1, but have not

reported evidence for new physics [1–6]. These null results have excluded generic SUSY

models with light superpartners and large missing ET signatures.

Although these LHC results have disappointed the most optimistic SUSY enthusiasts,

they do not remove the possibility that weak-scale SUSY is realized in nature. Rather, they

shift attention to supersymmetric models that have heavier superpartners or less distinc-

tive signatures. The former possibility is particularly natural to consider, since stringent

constraints on flavor- and CP-violation have long motivated heavy squarks and sleptons

of the first two generations, and experimental bounds on the Higgs boson mass have long

motivated heavy third generation squarks to raise the Higgs boson mass through large ra-

diative corrections. This possibility has now received even greater motivation from recent

results from the ATLAS and CMS experiments, which combined confine the possibility of

a light Higgs boson to the mass window 115.5 GeV < mh < 127 GeV, and indicate excess

events consistent with the production of Higgs bosons with masses of 126 GeV and 124

GeV, respectively [7, 8]. Of course, the possibility of multi-TeV third generation squarks is

generically in tension with the requirement that SUSY resolve the gauge hierarchy problem.

In this study, we consider focus point (FP) SUSY [9–12] in light of recent results. We

are motivated to consider FP SUSY for several reasons. First, in FP SUSY, all squarks and

sleptons may be multi-TeV without increasing the fine-tuning in the weak scale with respect

to variations in the fundamental SUSY-breaking parameters. Naturalness is a notoriously

brittle and subjective criterion, but in this sense, FP SUSY is the unique framework that

naturally accommodates multi-TeV top and bottom squarks. Second, many observables,

including those at colliders, in low-energy probes, and those related to dark matter, are

insensitive to the details of the heavy scalar spectrum, since the scalars decouple. For these

observables, FP SUSY may be viewed as an effective theory that captures the essential fea-
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tures of a large class of models with heavy superpartners. And last, a special case of FP

SUSY is realized in the FP region of minimal supergravity (mSUGRA) or the constrained

minimal supersymmetric standard model (CMSSM), heretofore referred to as the “FP re-

gion.” Given the amount of work devoted to this model, FP SUSY is a practical and natural

starting place for considering SUSY models with heavy superpartners that are newly mo-

tivated by LHC data. For other recent work on FP SUSY and the related framework of

hyperbolic branch SUSY [13] motivated by recent results, see Refs. [14, 15].

We begin in Sec. II by reviewing the general framework of FP SUSY and its well-

known special case, the FP region. In Sec. III, we show Higgs mass predictions in

mSUGRA/CMSSM, determine the parameter space favored by Higgs mass bounds, and

find that current limits favor the FP region. In Sec. IV we show that constraints on the

electron and neutron electric dipole moments (EDMs) are naturally satisfied in FP SUSY.

In Sec. V, we then focus on the part of the FP region that has the correct neutralino thermal

relic density Ωχ. This is typically presented as a thin strip in the (m0,M1/2) plane with fixed

tan β. To allow a more comprehensive presentation of FP results, we instead fix m0 to give

the correct Ωχ, and present results in the (tan β,M1/2) plane, with every point satisfying

Ωχ ' 0.23. In Sec. VI we present results for b → sγ and Bs → µ+µ− in the (tan β,M1/2)

plane, and in Sec. VII we analyze implications for dark matter direct detection and show

that FP SUSY remains consistent with current null results. Finally, in Sec. VIII we show

that the observed deviations of (g−2)µ from SM expectations may be easily explained in FP

SUSY (but not in the FP region). Our findings are summarized in Sec. IX. The robustness

of our numerical analyses is discussed in the Appendix.

II. FOCUS POINT SUPERSYMMETRY

In SUSY, the Z boson mass is determined at tree-level by the relation

1

2
m2
Z = −µ2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1

∣∣∣∣
mweak

, (1)

where µ is the Higgsino mass parameter, m2
Hd,u

are the soft SUSY-breaking Higgs mass

parameters, tan β ≡ 〈H0
u〉/〈H0

d〉 is the ratio of Higgs boson vacuum expectation values, and

all of these are evaluated at a renomalization group scale near mweak ∼ 100 GeV − 1 TeV.

For the moderate and large values of tan β required by current Higgs mass bounds, this may
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be simplified to
1

2
m2
Z ≈ −µ2 −m2

Hu

∣∣
mweak

. (2)

The weak-scale parameter m2
Hu

depends on a set of fundamental parameters {ai}, typically

taken to be grand unifed theory (GUT)-scale soft SUSY-breaking parameters, such as scalar

masses mf̃ , gaugino masses Mi, and trilinear scalar couplings Ai. Naturalness requires that

mZ not be unusually sensitive to variations in the fundamental parameters ai. This does

not necessarily imply ai ∼ mZ for every i, however, because terms involving some ai in the

expression for m2
Z may be suppressed by small numerical coefficients.

In the class of FP SUSY models studied in Refs. [9–12], the fundamental GUT-scale

parameters satisfy

(
m2
Hu ,m

2
TR
,m2

(T,B)L

)
= m2

0 (1, 1 + x, 1− x) (3)

all other scalar masses <∼ O(10 TeV) (4)

Mi, Ai <∼ 1 TeV (5)

for moderate tan β, or

(
m2
Hu ,m

2
TR
,m2

(T,B)L
,m2

BR
,m2

Hd

)
= m2

0 (1, 1 + x, 1− x, 1 + x− x′, 1 + x′) (6)

all other scalar masses <∼ O(10 TeV) (7)

Mi, Ai <∼ 1 TeV (8)

for high tan β, where the top and bottom Yukawa couplings are comparable. In Eqs. (3)

and (6), x and x′ are arbitrary constants, but for any values of x and x′, the weak-scale is

insensitive to variations in m0, even for multi-TeV m0. In other words, with these GUT-

scale boundary conditions, renormalization group evolution takes m2
Hu

to values around m2
Z

at the weak scale, almost independent of its initial GUT-scale value. This “focusing” of

renormalization group trajectories does not apply to the top and bottom squark masses or,

of course, to any other squark and slepton masses. As a result, in FP SUSY, all squarks

and sleptons may have multi-TeV masses without introducing fine-tuning in the electroweak

scale with respect to variations in the fundamental soft SUSY-break parameters. For an

extended discussion of naturalness in FP SUSY, see Ref. [11].

As evident from Eqs. (3) and (6), the framework of FP SUSY is quite general. If one

assumes that x = x′ = 0, that all other sfermion masses are also unified to the same
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m0, that all gaugino masses are unified, and that all A-parameters are unified, FP SUSY

parameter space intersects the mSUGRA/CMSSM parameter space in what is known as the

FP region. In general, however, FP SUSY requires neither gaugino mass nor A-parameter

unification, and also does not constrain scalar masses that are only weakly coupled to the

Higgs sector, such as the first and second generation squark and slepton masses. In much of

the analysis below, we will consider the FP region, as in many cases, it serves as an adequate

representative of general FP SUSY. The distinction between FP SUSY and the FP region

will be relevant, however, when we discuss FP SUSY predictions for (g − 2)µ in Sec. VIII.

III. HIGGS BOSON MASS

As is well-known, current bounds from LEP2 require the Higgs boson mass to be mh >

114.4 GeV [16]. In SUSY, where the limit mh ≤ mZ applies at tree-level, large radiative cor-

rections from heavy top and bottom squarks are required to satisfy this bound. A significant

phenomenological advantage of the FP SUSY framework is that it naturally accommodates

heavy third generation squarks, and with them, relatively heavy Higgs bosons consistent

with the LEP2 bound. Given recent Higgs boson results from the LHC [7, 8], it is, of

course, also interesting to investigate whether Higgs boson masses in the allowed window

115.5 GeV < mh < 127 GeV are possible, and whether masses as large as ∼ 125 GeV may

be naturally accommodated.

In Fig. 1, we plot contours of constant Higgs boson mass mh in the (m0,M1/2) plane

of mSUGRA/CMSSM. Also shown is the contour on which the neutralino relic density

satisfies Ωχ ' 0.23. Here and throughout we use SOFTSUSY 3.1.7 [17] to generate the

SUSY spectrum, and MicrOMEGAs 2.4 [18] to calculate the relic density and several other

observables. In each case, we use a top quark mass of mt = 173.1 GeV and strong coupling

constant αs(MZ) = 0.1172.

Restricting attention to the cosmologically favored contour with Ωχ ' 0.23, we see that

the Higgs mass bound mh > 114.4 GeV requires either m0
>∼ 2 TeV (the FP region), or

very low m0 and M1/2
>∼ 500 GeV (the co-annihilation region). For the parameters plotted,

then, the LEP2 Higgs mass bound has already eliminated much of the parameter space now

excluded by null results from LHC SUSY searches. In the FP region, the Higgs boson mass

satisfies mh
>∼ 114 GeV, and extends up to 122 GeV (124 GeV) for M1/2 ∼ 1 TeV (2 TeV).
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(b) mh and mχ in GeV for tanβ = 50

FIG. 1. Contours of the light Higgs boson mass mh in black (dotted) and lightest neutralino mass

mχ in red (dashed) in the (m0,M1/2) plane for tanβ = 10 (left) and 50 (right), A0 = 0, and µ > 0.

On the blue (solid) lines, the neutralino relic density is Ωχ ' 0.23.

Given an estimated 2-3 GeV uncertainty in the Higgs boson mass calculation [17, 19, 20], the

FP region beautifully predicts Higgs boson masses in the currently allowed range from 115.5

GeV to 127 GeV, and also naturally accommodates the 124-126 GeV mass range tentatively

indicated by LHC search results. Varying A0 within the range |A0| <∼ TeV can also raise the

Higgs boson mass slightly by ∼ 1 GeV.

Contours of constant dark matter mass mχ are also shown. Note that mχ ∼ O(100 GeV),

even for multi-TeV m0 in the cosmologically-favored regions. The viable FP region contains

heavy sleptons and squarks, but potentially sub-TeV gluinos, electroweak gauginos and

Higgsinos as light as 200 GeV, and neutralino dark matter as light as 100 GeV, even under

the restrictive assumption of gaugino mass unification. We will return to the cosmological

implications of FP SUSY in Sec. VII.

IV. ELECTRIC DIPOLE MOMENTS

FP SUSY is also motivated by constraints from EDMs. Generic SUSY theories with weak-

scale superpartners violate low-energy flavor- and CP-violation constraints. Although there
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are well-known mechanisms to suppress flavor violation, these do not typically suppress

CP violation. In general, all gaugino masses, A-terms, and the µ parameter can possess

phases that give rise to CP violation. The most limiting CP-violating, but flavor-conserving,

observables are the EDMs of the electron and neutron, which can arise from loop diagrams

with either left-right sfermion mixing or a gaugino-Higgsino flip within the loop. Even with

A 6= 0, left-right mixing for first generation sfermions is typically negligible, but an EDM

contribution can still arise if there is a mismatch between the phases of the gaugino masses

and the phase of µ.

To examine these effects, we consider a simple extension of mSUGRA/CMSSM where the

gaugino masses and µ have general CP-violating phases and the mismatch is parameterized

as φCP. The dominant diagrams involve left-handed sfermions and charginos with a Wino-

Higgsino mixture, leading to contributions [21]

df =
1

2
emf g

2
2 |M2µ| tan β sinφCPKC(m2

f̃L
, |µ|2, |M2|2) , (9)

whereKC is a kinematic function [22]. Diagrams involving sfermions and neutralinos produce

sub-dominant contributions.

The current bounds on the electron and neutron EDMs are de < 1.6 × 10−27 e cm [23]

and dn < 2.9 × 10−26 e cm [24]. Assuming mu = 3 MeV, md = 5 MeV, the naive quark

model relation dn = (4dd − du)/3, and neglecting cancellations between different diagrams,

we may derive bounds on the phase mismatch φCP.

Figure 2 shows the upper limits on sinφCP in the (m0,M1/2) plane from electron and

neutron EDM constraints. In mSUGRA, mẽL < mũL ' md̃L
, and so the electron EDM

provides the stronger bound, but the neutron EDM bound is also stringent. From Fig. 2(a),

for example, we see that for tan β = 10, the constraints Ωχ ' 0.23 and sinφCP
>∼ 0.01 can

only be satisfied in the FP region, and at the same time, the FP region with M1/2
<∼ 1 TeV

can accommodate natural values of sinφCP ∼ 0.3. The EDM bounds become even stronger

for large tan β, but may be satisfied in the FP region for M1/2 ∼ 2 TeV for sinφCP ∼ 0.1.

Absent a compelling mechanism for suppressing flavor-conserving CP violation, bounds from

electron and neutron EDMs have long ago restricted mSUGRA/CMSSM parameter space

to the FP region, irrespective of recent LHC results from SUSY and Higgs boson searches.
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FIG. 2. Upper limits on sinφCP from neutron EDM constraints in black (dotted) and electron

EDM constraints in green (dashed) for tanβ = 10 (left) and 50 (right), A = 0, and µ > 0. On the

blue (solid) line, the neutralino relic density is Ωχ ' 0.23.

V. FP SUSY WITH FIXED RELIC DENSITY

Results for the mSUGRA/CMSSM framework are conventionally presented as in Figs. 1

and 2. In these figures, the cosmologically desirable region with Ωχ ' 0.23 is just a thin

strip running through the plane, and the cosmologically desirable FP region is just a small

part of that. Given that much of the rest of the cosmologically favored mSUGRA parameter

space is now excluded, however, as well as our focus on FP SUSY in this study, it is more

appropriate to consider a parameter space in which every point is in the cosmologically

favored part of the FP region.

For a neutralino LSP in the FP region, a significant Bino-Higgsino mixture is required

to produce a sufficiently low relic density, with the Higgsino component increasing with

m0. Thus the value of m0 satisfying Ωχ ' 0.23 for a particular set of other parameters

represents a lower bound. If the neutralino composes only a fraction of the relic density,

Ωχ < 0.23, scalar masses are increased somewhat and the primary effect on our conclusion

is a weakening of direct detection limits. It is also possible to disconnect the FP effect on

fine-tuning from cosmological considerations by introducing a gravitino LSP which allows
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FIG. 3. Contours of (a) m0 (in TeV) and (b) µ (in GeV) in the (tanβ,M1/2) plane. Every point

in the parameter space is in the FP region and satisfies Ωχ ' 0.23, A0 = 0, and µ > 0.

a larger neutralino relic density to be considered; we restrict our intention to the case of a

neutralino LSP.

To satisfy the relic density constraint, we continue to consider fixed values of A0 and

sign(µ), but require the neutralino to be a thermal relic with Ωχ = 0.23. This implies a

constraint on the remaining parameters m0, M1/2, and tan β. We choose M1/2 and tan β as

the free parameters, and use Ωχ to determine m0.
1 In general there are several values of m0

satisfying this condition for a particular (M1/2, tan β) pair, arising from the co-annihilation

region at low m0, the FP region at large m0, and the A-funnel region for moderate m0 and

large tan β. We focus on the FP region by always choosing the largest value of m0 for a

given point in the (M1/2, tan β) plane.

In Fig. 3, we show contours of constant m0 and µ in the (tan β,M1/2) parameter space

defined above, where every point has Ωχ ' 0.23, A0 = 0 and µ > 0. In Fig. 3(a), we see

that m0 increases as M1/2 increases and decrease as tan β increases. In the FP region the

large mass of the sfermions makes them nearly decoupled for the relic density calculation.

The correct value of m0 is instead solely determined by its impact on the Higgs potential,

which sets |µ|, and which in turn determines the correct Higgsino-Bino mixture to produce

1 Alternatively, one could choose M1/2 and m0 as the input parameters, and predict tanβ [25].
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FIG. 4. Contours of mh (left) and mχ (right) in the (tanβ,M1/2) plane. Every point in the

parameter space is in the FP region and satisfies Ωχ ' 0.23, A0 = 0, and µ > 0.

Ωχ = 0.23.2 In Fig. 3(b), we see that µ grows with increasing M1/2, but is nearly independent

of tan β, given the subdominance of terms involving tan β in the neutralino mass matrix.

In Fig. 4, we plot contours of mh and mχ in the same (tan β,M1/2) parameter space.

The large value of mt̃ in the FP region raises the Higgs mass well above the LEP2 bound of

114.4 GeV, and is confined to the currently allowed range of 115.5 GeV < mh < 127 GeV. As

one moves to smaller values of tan β, mh increases even though its tree-level value drops, be-

cause of the enhancement of the loop-level contribution from increasing m0. The neutralino

mass contours satisfy mχ ≈ M1 ' 0.4M1/2, since the neutralino is primarily Bino-like, al-

though there is an increasingly significant Higgsino component as M1/2 increases. As with

the M1 and µ contours, the mχ contours are also nearly independent of tan β.

2 The determination of m0 in Fig. 3(a) is sensitive to the value of the top mass (see, e.g., Ref. [26]), and

varies somewhat for different MSSM spectrum generation programs. The determination of µ shown in

Fig. 3(b), however, is preformed directly from a fit to the measured relic density and is thus robust and

independent of the value for the top mass or the spectrum generator used [27]. For more details, see the

Appendix.
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FIG. 5. Contours of ∆B(b → sγ) in units of 10−4 (left) and ∆B(Bs → µ+µ−) in units of 10−8

(right) due to SUSY in the (tanβ,M1/2) plane. Every point in the parameter space is in the FP

region and satisfies Ωχ ' 0.23, A0 = 0, and µ > 0.

VI. RARE B PROCESSES

Rare decays are often used to constrain new physics scenarios, and in particular, the

decays B̄ → Xsγ and Bs → µ+µ− are well-known probes of new physics. The measured

value of B(B̄ → Xsγ) is (3.55 ± 0.33) × 10−4 [28], consistent with the SM value of (3.15 ±

0.23) × 10−4 [29, 30]. The value of B(Bs → µ+µ−) has been the subject of recent interest,

with a CDF analysis reporting a value of 1.8+1.1
−0.9× 10−8, and claiming 4.6× 10−9 < B(Bs →

µ+µ−) < 3.9 × 10−8 at 90% C.L. [31, 32]. Meanwhile, CMS and LHCb analyses produced

only upper limits at 90% C.L. of 1.9 × 10−8 [33] and 5.6 × 10−8 [34], respectively, and

1.08 × 10−8 [35] from a combined analysis using 2010 LHCb data [36]. The SM value is

(3.19 ± 0.19) × 10−9 [37, 38], consistent with the LHC bounds and marginally inconsistent

with the CDF analysis.

Figure 5 shows the contributions to B̄ → Xsγ and Bs → µ+µ− from supersymmetric

particles. For both observables, the primary supersymmetric contributions arise from loop

diagrams involving either charginos or charged Higgs bosons. For B̄ → Xsγ the former

produces a suppression in the decay for µ > 0 and an enhancement for µ < 0 and the latter
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an enhancement for either sign of µ. For Bs → µ+µ− the chargino contribution is negative

and charged Higgs contribution positive for either sign of µ. Within the FP region the

chargino diagram dominates. For B̄ → Xsγ, this puts the supersymmetric result in greater

tension with experiment than the SM result for µ > 0, though only significantly so at low

M1/2 and large tan β — the 2σ discrepancy line is plotted in Figure 5(a). For µ < 0 the

contribution is positive and within 2σ of the observed result for the entire (M1/2, tan β) plane.

For Bs → µ+µ−, the supersymmetric contribution in the FP region does not significantly

alter the SM prediction, at least relative to current experimental uncertainties.

VII. DIRECT DETECTION OF DARK MATTER

In the cosmologically-favored region of the FP region, neutralinos make up the dark

matter. These regions of parameter space are then constrained by null results from dark

matter searches. In particular, null results from direct detection searches that constrain the

spin-independent χ-nucleon cross section σp have been advanced as significant constraints

on FP SUSY [39–41].

In the absence of large left-right mixing, the dominant contributions to both neutralino

annihilation and spin-independent scattering are dependent on the “Higgsino-ness” of the

lightest neutralino, defined as

aH̃ ≡
√
|aH̃u|2 + |aH̃d |2 , (10)

where the neutralino eigenstate is

χ = aB̃B̃ + aW̃ W̃ + aH̃uH̃u + aH̃dH̃d . (11)

Figure 6(a) shows the dependence of aH̃ on mχ in the FP region. The Higgsino-ness

generically increases with mχ to offset the suppression in annihilation from the lowered

cross section. However, it decreases when new annihilation channels open at mχ ∼ mW ,mZ

and mχ ∼ mt. Figure 6(a) also shows curves in which the neutralino makes up only a fraction

of the relic density — for lower relic densities, aH̃ increases to enhance the annihilation rate.

The curves are generated by varying M1/2 up to 1 TeV, for fixed tan β = 10, A0 = 0, and

µ > 0.

To determine the spin-independent χ-nucleon cross section σp, the contributions of the

couplings to each individual quark must be considered. The individual couplings must be
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(a) Higgsino content (10) for various relic densities (b) Dependence of σp on the strange quark form

factor fs

FIG. 6. Left : Higgsino-ness aH̃ for neutralinos in the FP region consistent with various relic

densities. The right-most point on each curve corresponds to M1/2 = 1 TeV. Right : The spin-

independent χ-nucleon cross section σSIp as a function of fs for a model in the FP region with

(m0,M1/2) = (3 TeV, 550 GeV). The shaded regions indicate the 1σ uncertainties on the various

fs determinations. In both plots, tanβ = 10, A0 = 0, and µ > 0.

weighted according to the scalar quark form factors fNq , typically parameterized as

〈
N
∣∣mqψ̄qψq

∣∣N〉 = fNq MN . (12)

The parameters fNu,d are reasonably well known, and the heavy quark contributions are set

by loop contributions using the gluon form factor. However, the value of fNs is less certain,

given discrepancies between current experimental and lattice results, and this is a well-

known source of uncertainty for direct detection predictions [40, 42, 43]. The experimental

determination combines a derivation of the pion-nucleon sigma term from meson scattering

data [44] combined with a number of chiral perturbation theory results [45–47], giving

fs = fns = fps ∼ 0.36 . (13)

More recent calculations support older determinations of the pion-nucleon sigma term [48].

For this value of fs, the other form factors are all much smaller, fNq 6=s
<∼ 0.05, and so the
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strange quark contribution dominates the direct detection cross section [42]. However, two

recent lattice studies have found much smaller values for fs [49, 50], with an average of

fs ≈ 0.05. For this value of fs, the strange quark contribution is much closer to that of the

other quark flavors [43, 51].

Figure 6(b) shows the dependence of σp on fs for both positive and negative µ in the

FP region. The value of σp varies by a factor of ∼ 3 between the experimental and lattice

determinations of fs, which has significant implications for direct detections bounds. The

scattering cross section may also be suppressed if µ < 0. This possibility is often ignored

in studies that assume µ > 0 to reduce the discrepancy in (g − 2)µ between the SM and

experimental data.

Figure 7 shows contours of σp for positive and negative µ and fs consistent with exper-

imental and lattice results. The general factor of ∼ 3 due to different values of fs is once

again apparent. The cross section σp for µ < 0 also shows a general suppression relative to

that for µ > 0, though the suppression varies significantly with both mass scale and tan β.

For µ > 0 there is a general enhancement in σp at low tan β due to the coupling to the light

Higgs, and at high tan β due to a reduction in the masses of the heavy Higgs bosons. These

effects are also present for µ < 0, but instead produce a suppression.

Figure 7 also shows the regions of parameter space excluded by XENON100 [52]. For

µ > 0, fs = 0.05 in Fig. 7(a), M1/2 < 300 GeV is excluded for all tan β, with stronger

exclusion at low and high tan β. The case of fs = 0.36 in Fig. 7(b) is markedly different,

with exclusion up to M1/2 ≈ 500 GeV for all tan β and larger M1/2 for low and high tan β.

The same trend carries over to µ < 0 — in Fig. 7(c) the exclusion is limited to a small region

at high tan β where scattering is dominated by the heavy-Higgs boson mediated process. The

exclusion in Fig. 7(d) is greater due to larger fs but still reduced compared to the µ > 0

case.

In summary, we find that FP SUSY is far from excluded by current direct detection

bounds. For large fs and µ > 0, significant portions of the parameter space are excluded,

but even for these parameters, regions with M1/2
>∼ 500 GeV survive, and for smaller fs or

µ < 0, much of the parameter space is viable. At the same time, it is, of course, interesting

that the direct detection bounds are within factors of a few from probing all of FP SUSY. To

the extent that LHC SUSY and Higgs boson results motivate SUSY with heavy squarks and

sleptons, they also motivate direct detection experiments that are approaching sensitivities
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FIG. 7. Contours of σp in zeptobarns for µ > 0 (top) and µ < 0 (bottom), with fs = 0.05 (left)

and fs = 0.36 (right). In each panel, the shaded region is excluded by XENON100 [52].

to zeptobarn spin-independent cross sections in the near future.
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FIG. 8. Contours of the supersymmetric contribution to (g − 2)µ in units of 10−9. Every point in

the parameter space is in the FP region and satisfies Ωχ ' 0.23, A0 = 0, and µ > 0.

VIII. THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

The well-known ∼ 3σ discrepancy between the experimental and SM values in the anoma-

lous magnetic moment of the muon [53–55] is currently among the most compelling pieces of

evidence for new physics. The supersymmetric contribution is given by µ̃− χ0 and ν̃µ − χ±

loop diagrams. The (g − 2)µ discrepancy has two robust implications for SUSY — it is the

primary result motivating relatively light superpartners, and it favors µ > 0.

The large sfermion masses in the FP region produce too small a value for ∆(g − 2)SUSY
µ

to explain the observed discrepancy of (2.9 ± 0.9) × 10−9 [54]. Figure 8 shows the value of

∆(g−2)SUSY
µ in the FP region parameter space. The largest value attained is ∆(g−2)SUSY

µ ≈

0.5× 10−9, insufficient to produce even 2σ agreement with the experimental result.

As noted in Sec. II, however, FP SUSY is far more general than the FP region. In

particular, in FP SUSY, the smuon and muon sneutrino need not have masses unified with

the other scalars, and so may be much lighter than the third generation squarks. To explore

this possibility and its implications for (g − 2)µ, we consider the slight modification of

mSUGRA/CMSSM in which all scalars have GUT-scale mass m0, except for the smuons

and muon sneutrino. This modification is intended to be schematic, demonstrating the

behavior of (g− 2)µ with lowered smuon masses without bias toward a particular approach.
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A fully consistent approach must consider flavor and GUT unification issues. For simplicity,

we take the smuon masses to be degenerate at the weak-scale, with physical masses

Mµ̃ ≡ mµ̃L = mµ̃R = mν̃µ . (14)

At each point in the (M1/2, tan β) plane, we determine the value of Mµ̃ that gives ∆(g −

2)SUSY
µ that either brings the theoretical prediction into complete agreement with the central

experimental value or reduces the discrepancy to 2σ. Note that the dominant factor in the

determination of the relic density is the Higgs soft mass, with the sfermion masses providing

subleading effects, as long as mq̃
>∼ 500 GeV and m˜̀

>∼ 200 GeV [56]. The smuons can

therefore be quite light without affecting the relic density constraint.

The results are given in Fig. 9. As M1/2 increases, the required smuon mass decreases

to maintain a constant SUSY contribution to (g − 2)µ, and at some point, the required Mµ̃

becomes too low, as it implies a µ̃ LSP.3 The supersymmetric contribution ∆(g − 2)SUSY
µ

also has a linear dependence on tan β, and so at large tan β, there are allowed solutions for

larger values of M1/2 and Mµ̃.

It is important to check that the scenarios for resolving the (g−2)µ discrepancy are viable

in light of null results from LHC new physics searches. The model-independent bounds on

slepton masses are, of course, far weaker than those on squark masses. The best limits on

slepton masses are still those from LEP2, which require mµ̃
>∼ 100 GeV [57]. In the future,

with 30 fb−1 of data at 14 TeV, the LHC will be able to discover sleptons through Drell-

Yan production for mµ̃L
<∼ 300 GeV and mµ̃R

<∼ 200 GeV [58]. Greater sensitivity may be

available in scenarios where the sleptons are produced in cascades [59]. However, in the FP

region where all other scalars are heavy and gluino production dominates, if the sleptons are

heavier than all charginos and neutralinos, they will not be produced in gluino cascades, and

so the Drell-Yan limits apply. This is the case for regions of the (tan β,M1/2) plane shown in

Fig. 9, and so there are viable FP SUSY scenarios that resolve the (g − 2)µ discrepancy. It

would, however, be interesting to investigate scenarios motivated by the (g−2)µ discrepancy

in which sleptons are produced in gluino cascades.

3 Mµ̃ is cut off at 1.1×mχ numerically to avoid recalculating the relic density due to µ̃−χ0 coannihilation.
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FIG. 9. Contours of Mµ̃ required to eliminate the discrepancy between the theoretical and experi-

mental values for (g−2)µ (left) and to reduce the discrepancy to 2σ (right). This model framework

is a slight modification of mSUGRA/CMSSM in which all scalars have GUT-scale mass m0, except

for the smuons and muon sneutrino, which have physical mass Mµ̃. In the shaded regions, the

µ̃ becomes the LSP. To specify all parameters aside from the smuon and muon sneutrino masses,

every point in the parameter space is in the FP region and satisfies Ωχ ' 0.23, A0 = 0, and µ > 0.

IX. CONCLUSIONS

SUSY models with heavy squarks and sleptons have long been motivated by constraints

on flavor- and CP-violation, the LEP2 constraint on the Higgs boson mass, and other con-

straints, such as proton decay bounds. Recent null results from LHC SUSY searches have

further focused attention on this possibility, and the interest in such scenarios is especially

heightened by the currently allowed Higgs boson mass window 115.5 GeV < mh < 127 GeV,

and tentative indications from the ATLAS and CMS experiments for a Higgs boson with

mass near 125 GeV.

Generic SUSY scenarios with heavy sfermions, and particularly heavy top and bottom

squarks, imply fine-tuning of the weak scale, subverting the basic motivation for weak-scale

SUSY. In FP SUSY, however, this is not the case. The mass parameter m2
Hu

evolves to
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values around m2
Z at the weak scale, almost independent of its GUT-scale starting value.

This focusing of RG trajectories implies that the weak scale in FP SUSY theories is not

fine-tuned with respect to variations in the fundamental SUSY-breaking parameters. Note

that the fact that m2
Hu

evolves to values around m2
Z at the weak scale for a particular choice

of GUT-scale parameters is necessary to remove fine-tuning with respect to variations in µ,

and is possible for other choices of GUT-scale parameters (see, for example, Ref. [60, 61]).

However, naturalness with respect to variations in all SUSY-breaking parameters requires

that m2
Hu

evolve to a weak-scale value irrespective of its starting value, and so the focus

point behavior of renormalization group trajectories is an essential feature of any natural

theory with multi-TeV top and bottom squarks motivated by the currently allowed Higgs

boson mass range.

In this study, we have focused for the most part on models of FP SUSY that are also

part of the mSUGRA/CMSSM framework. These FP region models naturally produce Higgs

boson masses above the LEP2 bound of 114.4 GeV, and suppress electron and neutron EDMs

sufficiently, even for O(1) phases. To more globally display the predictions of FP SUSY,

we have required Ωχ ' 0.23 and plotted results in the (tan β,M1/2) plane. We find that

FP SUSY naturally accommodates Higgs boson masses up to 120-124 GeV, which, given

an estimated 2 GeV uncertainty in the theoretical calculation, is consistent with current

Higgs boson mass indications. In addition, we have shown that FP SUSY is naturally

consistent with constraints from b → sγ, Bs → µ+µ−, and null results from dark matter

direct detection experiments. Finally, in general FP SUSY with a non-unified smuon mass,

we have found that FP SUSY may resolve the discrepancy in (g − 2)µ consistent with all

current constraints.

Given these successes, it is natural to ask what evidence for FP SUSY should accumulate

in the near future if FP SUSY is realized in nature. Certainly the Higgs boson should be

discovered with a mass in the currently allowed mass window, and searches for SUSY from

gluino pair production, followed by gluinos cascading through charginos and neutralinos are

promising for some of the parameter space [62–66]. Equally exciting would be the discovery

of dark matter with a spin-independent χ-nucleon cross section near the zeptobarn scale,

which is a robust prediction of mixed Higgsino-Bino dark matter with heavy squarks and

sleptons. Finally, most signals of indirect dark matter detection are also generically enhanced

in the FP SUSY scenario [67].
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APPENDIX

It is well known that different spectrum calculators do not give identical results for the

SUSY mass spectrum, even for the same set of input parameters [68, 69]. The reasons for

this apparent discrepancy are well understood; see Ref. [27] for a nice summary. Above all,

one should keep in mind that the SUSY spectrum is always calculated at a fixed order in

perturbation theory, and there is an intrinsic uncertainty due to neglecting the higher order

terms in perturbation theory. The main differences between the various programs arise

mostly because they choose to neglect different sets of higher-order terms. For example, one

may choose to use either tree-level or 1-loop-corrected masses in the radiative corrections,

or choose a slightly different value for the matching scale between the SM and the MSSM.

In each case, the difference between the two options is a higher-order effect. In this paper,

we chose to work with the SOFTSUSY program, but we expect qualitatively similar results

from other spectrum generators as well.

On a related topic, each spectrum calculator needs to solve a two-sided boundary value

problem, since the boundary conditions for the gauge and Yukawa couplings are specified

at the weak scale, while the soft SUSY-breaking parameters are given at the (yet to be

determined) GUT scale. The standard approach used by all programs is to apply iterations

until converging on a solution. Unfortunately, on occasion one may encounter poor conver-

gence as a sign of a chaotic behavior [70]. This is illustrated in Fig. 10, which takes a slice

through the (m0,M1/2) plane of Fig. 2(a) in 5 GeV increments along m0, for a fixed value

of M1/2 = 850 GeV. The figure shows the chargino mass Mχ̃+
1

calculated by SOFTSUSY

(right axis) and the relic abundance calculated by MicrOMEGAs (left axis). We see that

at low m0, SOFTSUSY is able to converge, and both quantities follow a well-defined trend.
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SOFTSUSYMicrOMEGAs

FIG. 10. A slice through the mSUGRA parameter space from Fig. 2(a) for a fixed M1/2 =

850 GeV, showing results for the chargino mass Mχ̃+
1

from SOFTSUSY (blue dots) and for Ωχh
2

from MicrOMEGAs (red crosses). The cyan shaded region is excluded by chargino searches at

LEP, and the horizontal dotted lines mark the 3σ preferred region for Ωχh
2.

However, at sufficiently large values of m0, SOFTSUSY is not able to achieve the desired

level of convergence, and the obtained results (upon exiting after a fixed number of itera-

tions) visibly deviate from the expected trend. As seen in Fig. 10, in principle this presents

a problem for the correct mapping of the boundary of the region allowed by LEP chargino

searches (Mχ̃+
1
> 103 GeV). Fortunately, however, the parameter space points with the

desired value of the relic density (Ωχh
2 ≈ 0.1) are relatively safe, since they are still well

within the region with good convergence, and the maps shown in Figs. 3 and 4 are robust.
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