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We complete a program of study of SU(N) gauge theories coupled to two flavors of fermions in
the two-index symmetric representation by performing numerical simulations in SU(4). The beta
function, defined and calculated via the Schrödinger functional, runs more slowly than the two-loop
perturbative result. The mass anomalous dimension levels off in strong coupling at a value of about
0.45, rendering this theory unsuitable for walking technicolor. A large-N comparison of these data
with results from SU(2) and SU(3) reveals striking regularities.
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I. INTRODUCTION

In the last few years there has been an explosion of in-
terest in lattice simulations of theories with gauge fields
coupled to a large number of fermionic degrees of free-
dom, either many flavors of fermions in the fundamen-
tal representation or a few flavors of fermions in higher-
dimensional representations of the gauge group [1]. The
primary motivation to study these models is their po-
tential use as technicolor theories—extensions to elec-
troweak theory with no fundamental Higgs field [2]. To
be a viable candidate, a theory must exhibit spontaneous
symmetry breaking, providing Goldstone bosons to be
eaten by the electroweak gauge bosons. It must also have
a slowly running gauge coupling and a mass anomalous
dimension γm near unity, in order to give realistic masses
to Standard Model fermions while correctly suppressing
flavor-changing neutral currents.

Expectations for candidate theories, based on the two-
loop beta function, are easily stated [3, 4]. Too many
fermionic degrees of freedom render the Gaussian fixed
point infrared stable. With a smaller number of fermionic
fields, asymptotic freedom returns but the beta function
possesses a zero, signaling the presence of an infrared-
attractive fixed point (IRFP). Theories with IRFP’s
are said to reside within a “conformal window” in the
(Nc, Nf) plane, wherein the IR physics displays confor-
mal invariance and no particle spectrum. The fermion
mass is then a relevant parameter whose presence in-
duces a mass gap. Further decreasing the number of
fermion fields takes us out of the conformal window to
the QCD-like domain of confinement and chiral symme-
try breaking. Just outside the conformal window, there
may be a borderland where the beta function approaches
zero without actually crossing it; this gives candidates for
“walking technicolor,” where the running coupling comes
to a near-standstill for many decades in the energy scale,
until chiral symmetry breaking eventually sets in.

This paper presents a study of the running gauge cou-
pling and mass anomalous dimension for SU(4) gauge
fields coupled to two flavors of decuplet fermions, that

is, fermions in the two-index symmetric representation.
It is a continuation of our previous work on SU(2) and
SU(3) gauge theories with fermions in the corresponding
representations [5–11]. Recent interest in these models
dates from the proposal by the authors of Refs. [12, 13]
that they might make good technicolor candidates. All
three theories possess two-loop IRFP’s, raising the pos-
sibility that they might become walking theories when
studied nonperturbatively. In addition, the small num-
ber of flavors was seen as favorable from the point of view
of evading precision electroweak constraints.
Using the Schrödinger functional (SF) method [14–22],

we were able to confirm an IRFP in the SU(2) theory,
placing it within the conformal window [9]; our most re-
cent result for the SU(3) theory was the same, but at a
lower level of statistical confidence [11]. Our calculations
of γm allowed a strong claim, in both cases, that γm lev-
els off at strong coupling so that it never exceeds 0.45;
thus neither theory can be used for walking technicolor,
regardless of the existence of the IRFP. In an effort to
find a phenomenologically viable theory with γm ≃ 1, we
turn to the SU(4) theory. Our motivation for this lies in
the one-loop expression for γm,

γm =
6C2(R)

16π2
g2, (1)

which is proportional to the quadratic Casimir operator
C2(R) of the fermion representation; in going from the
sextet SU(3) theory to decuplet SU(4), C2(R) increases
from 10/3 to 9/2, or 35%. If the non-perturbative result
were to follow this pattern then a value near 1 would be
within reach.
As in our earlier work, we apply the SF method to cal-

culate the nonperturbative beta function. The original
method yields a discrete analogue of the beta function
that gives the change in the running coupling when the
length scale changes by a fixed ratio. We have noted [9]
that when the coupling runs slowly, as it does in the the-
ories at hand, an approximate result for the usual beta
function can be obtained directly. SF techniques also al-
low one to measure γm from the volume dependence of
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ZP , the renormalization factor of the pseudoscalar den-
sity ψ̄τaγ5ψ.
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Analyzing these theories via numerical simulations
presents a different set of problems than is seen in
QCD [31]. The major new feature is the slow running
of the coupling. As we have noted, the slow running
simplifies much of the analysis, both of the beta func-
tion and of γm. On the other hand, it is difficult to tell
a slowly running coupling from one that does not run
at all, so that the location of any IRFP may be poorly
determined. The main problem with slow running, how-
ever, is that if the bare coupling is tuned to be strongly
interacting at long distance, then it will be strongly in-
teracting at short distance. This raises the possibility of
strong lattice artifacts, in particular the appearance of
unphysical phase transitions.

Such a transition is present in all our candidate theo-
ries. Our lattice simulations use fermions with a Wilson-
type discretization, which breaks chiral symmetry. Simu-
lations are done at zero quark mass, but the quark mass
is a derived quantity, determined from the axial Ward
identity. Reaching zero fermion mass involves tuning the
hopping parameter at fixed bare coupling. At strong
coupling a lattice transition occurs, and when it does,
nowhere does the fermion mass vanish. Instead, it jumps
discontinuously from positive to negative value. The ab-
sence of a massless theory in strong coupling makes it
impossible to apply the SF method there. To evade this
problem, we change the lattice discretization to push the
transition away from the region of bare parameter space
where we wish to run.

Our result for the beta function is similar to what we
found in the triplet SU(2) and sextet SU(3) theories. The
nonperturbative result is consistently smaller in magni-
tude than the two-loop estimate, but in this case, as in
SU(3), we cannot state definitely that it crosses zero.
The result for γm follows closely the pattern of the other
two theories: It follows the perturbative line, Eq. (1),
for weak coupling but departs from it and saturates at
γm ≃ 0.45 (see below for error estimates).

The outline of the paper is as follows. In the next
section we describe our generalized lattice action, formu-
lated to suppress lattice artifacts in the strong-coupling
region. In Sec. III we present our results for the beta
function and in Sec. IV the mass anomalous dimension.
Since we now hold results for the SU(N) theories with
N = 2, 3, and 4, we can discuss them in the language of
large-N gauge theories; we show in Sec. V that the consis-
tency of the three theories is remarkable. The appendices
present our method of smearing gauge links in SU(4),
perturbative and nonperturbative tests of our gauge ac-
tion, and a tabulation of our simulation ensembles.

1 For other applications of the SF method to technicolor candi-
dates, see [23–30].

II. GENERALIZING THE LATTICE ACTION

We study the SU(4) gauge theory coupled to two fla-
vors of dynamical fermions in the symmetric representa-
tion (the decuplet) of the color gauge group. Our tech-
niques are mostly identical to our previous work with the
SU(2) and SU(3) theories [9, 11]. We have already used
a generalized gauge action for the SU(3) theory; here we
give a more thorough discussion.
We use the Wilson fermion action with added clover

term [32]. The gauge connections in the fermion ac-
tion are defined with a differentiable hypercubic (nHYP)
smearing [33, 34] of the fundamental links, from which
the decuplet gauge connection for the fermion operator
is constructed.2 We began this project with the usual
single-plaquette Wilson gauge action. The parameters
that are inputs to the simulations are the gauge coupling
β = 8/g20 and the fermion hopping parameter κ, related
to the bare mass m0 by κ = (8 + 2m0)

−1. The clover
coefficient is set to its tree-level value of unity.
The Schrödinger-functional study of the running cou-

pling is carried out at zero fermion mass, which defines
the critical hopping parameter κc(β). We define the
fermion mass mq and its related critical hopping param-
eter κc through the axial Ward identity (AWI),

∂t
∑

x

〈Aa
0(x, t)Oa〉 = 2mq

∑

x

〈P a(x, t)Oa〉 , (2)

where the axial current Aa
µ = ψ̄γµγ5(τ

a/2)ψ, the pseu-

doscalar density P a = ψ̄γ5(τ
a/2)ψ, and Oa is a gauge-

invariant wall source at t = a. (See [8] for more details.)
With the simplest lattice action—the single-plaquette
gauge action and thin-link Wilson fermions—it turns out
to be impossible to set the fermion mass to zero when
the gauge coupling is strong. In that regime there is a
first-order phase boundary at which the AWI mass jumps
across zero as κ is adjusted, never taking the value zero.
Thus there is no place where the fermions are massless
in strong coupling: The κc line simply terminates. This
has been observed in theories with many Wilson-type
fermions—many fundamental flavors [35–37], or a few fla-
vors of higher-representation fermions [8, 38, 39]. For our
purposes, this phase transition prevents the extension of
the SF calculation to strong coupling.
The transition is a lattice artifact. Its location can be

shifted by changing the lattice action. For triplet SU(2)
with Nf = 2, SF calculations with thin-link fermions [25,
26] were hampered by this transition; with nHYP clover
fermions we pushed the transition back and exposed the
IRFP [9]. For SU(3) and SU(4) this change of action
turns out to be insufficient and the first order transition
remains at fairly weak coupling.

2 The extension of this smearing to the gauge group SU(4) is de-
scribed in Appendix A.
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FIG. 1: Inverse SF coupling versus gauge coupling β for sev-
eral choices of β10, measured with short runs on a 64 lattice.
The connected data sets are for (right to left) β10 = −0.5,
0, 0.5, 1.0, 1.5. For the first three values of β10, the vertical
lines mark the appearance of the first-order transition that
makes κc disappear for smaller β. The horizontal dashed line
near the bottom of the graph marks the location of the Banks–
Zaks (two-loop) fixed point. The horizontal dotted line marks
where the one-loop γm(g2) is equal to unity.

We find that a modification of the gauge action can
move the transition away and allow the study of stronger
couplings. We supplement the original plaquette term
with an additional plaquette term, constructed with the
same link as is used in the fermion action—a fat link in
the higher representation. The action is

SG =
β

8

∑
ReTrUµ(x)Uν(x+ µ̂)U †

µ(x + ν̂)U †
ν (x)

+
β10
20

∑
ReTrVµ(x)Vν (x+ µ̂)V †

µ (x+ ν̂)V †
ν (x),

(3)

where Uµ(x) is the thin link and Vµ(x) the fat link in the
decuplet representation. We will refer to this action as
a “soft gauge action.”3 We note that the fat plaquette
term would appear in a hopping-parameter expansion in
O(κ4); such an induced term has been blamed for the
first-order phase boundary [38], so it makes sense to try
to adjust its strength.

3 We offer a perturbative analysis of soft gauge actions in Ap-
pendix B, as well as evidence that they do not negate the advan-
tages of fattening the links in the fermion action.
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FIG. 2: Inverse SF coupling versus inverse bare coupling 1/g20
as defined in Eq. (4). Plotting symbols are as in Fig. 1, plus
additional single points for β10 = 2.0 (star), β10 = 3.0 (×),
and β10 = 3.5 (triangle at the top). The diagonal line has
unit slope.

The advantages of the soft gauge action can be seen in
Fig. 1, a plot of the inverse SF coupling 1/g2 versus β
for various values of β10, measured on a fixed lattice size.
Our goal is to investigate small values of 1/g2, in partic-
ular the neighborhood of the Banks–Zaks fixed point and
of the coupling where the one-loop anomalous dimension
γm(g2) is equal to unity. These are marked by the hor-
izontal lines in the figure. The circles denote results for
β10 = 0, meaning the original thin-link plaquette action.
The vertical line just to the left of the leftmost circle
marks the bare coupling where the first-order boundary
appears and there is no κc. Thus one cannot investigate
the region 1/g2 <∼ 0.25 with the plaquette action. In-
creasing β10 pushes the phase transition to smaller β; as
it turns out, this allows us to reach smaller values of 1/g2

before encountering the transition. For β10 >∼ 1 we can
no longer find the transition in the coupling region we
studied.

Having data from many lattice actions allows us to test
universality, with the results shown in Fig. 2. We plot
all the lattice data against the perturbative bare lattice
coupling,

1

g20
=

1

8

(
β +

12

5
β10

)
(4)

[cf. Eq. (B3)]. The points indeed collapse to a com-
mon curve, especially in weak coupling. In perturba-
tion theory, the bare and SF couplings are related by
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TABLE I: Running coupling, Eq. (6), evaluated at the bare
couplings (β, β10, κc) on lattices of size L. The omission of
the result for L = 16 at β = 5.0 is explained in Appendix C.

β β10 1/g2

L = 6a L = 8a L = 12a L = 16a
10.0 0 0.5778(19) 0.5440(40) 0.5241(64) –
9.0 0 0.4095(19) 0.3915(37) 0.3610(42) 0.3334(72)
8.5 0 0.3199(19) 0.2979(32) 0.2780(69) –
7.0 1 0.4377(11) 0.4217(26) 0.4024(52) –
6.0 1 0.3101(27) 0.3019(32) 0.2844(64) –
5.0 1 0.2157(27) 0.2103(40) 0.2002(53) *
4.5 1 0.1714(27) 0.1722(32) 0.1721(47) 0.1631(67)
4.0 1 0.1443(24) 0.1389(26) 0.1332(35) 0.1413(46)
3.5 1 0.1070(18) 0.1106(29) 0.1087(42) –

g2 = g20 + Cg40 + · · · , or

1/g2 = 1/g20 − C + · · · . (5)

The solid diagonal line is plotted to show that the slope
of the data indeed approaches 1 in weak coupling.

III. BETA FUNCTION

The computation of the running coupling proceeds as
described in Ref. [8], with adaptations to the SU(4) case.
We set boundary conditions on the gauge fields as de-
scribed in [22], while the fermions obey the usual homo-
geneous boundary conditions at t = 0, L. The coupling
emerges from a measurement of the derivative of the ac-
tion with respect to a parameter η in the boundary gauge
field,

K

g2(L)
=

〈
∂SG

∂η
− tr

(
1

D†
F

∂(D†
FDF )

∂η

1

DF

)〉∣∣∣∣∣
η=0

.

(6)
The constant K can be calculated from the derivative of
the classical continuum action with respect to η, giving
K = −12π. For details of the ensembles generated see
Appendix C.
Our results for the running coupling are listed in Ta-

ble I and plotted in Fig. 3. It is convenient to define the
beta function β̃(u) for u ≡ 1/g2 as

β̃(1/g2) ≡ d(1/g2)

d logL
=

2β(g2)

g4
= 2u2β(1/u) (7)

in terms of the conventional beta function β(g2). As
discussed in Ref. [9], the slow running of the coupling
justifies extracting the beta function at each (β, κc) from
a linear fit of the inverse coupling

u(L/a) = c0 + c1 log
L

8a
. (8)
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FIG. 3: Running coupling 1/g2 calculated on lattices of size
L (see Table I). The crosses are from simulations with β10 =
0: top to bottom, β = 10.0, 9.0, 8.5. The circles are from
simulations with β10 = 1: top to bottom, β = 7.0, 6.0, 5.0,
4.5, 4.0, 3.5. The straight lines are linear fits [Eq. (8)] to
each set of points at given (β, β10); the slope gives the beta
function. The dotted line shows the expected slope from one-
loop running.
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FIG. 4: Beta function β̃(u) as extracted from the linear
fits (8), plotted as a function of u(L = 8a). The squares
are from the β10 = 0 data while the circles are from β10 = 1.
Plotted curves are the one-loop (dotted line) and two-loop
(dashed line) beta functions.
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FIG. 5: Comparison of different fit types. Empty symbols as in Fig. 4. Left panel: full symbols derive from linear fits in which
the L = 6a points are omitted. Right panel: full symbols derive from fits to Eq. (10), in which a log2 term has been added.
Results are plotted against u(L = 8a). The filled symbols have been slightly displaced to the right.

c1 is an estimate for the beta function β̃ at this coupling.
These fits are shown in Fig. 3. Each fit was done using
all the available volumes at the given bare parameters.
Values of the beta function β̃(u) obtained from these fits
are plotted as a function of u(L = 8a) in Fig. 4. There
is some discrepancy between the results for β10 = 0 and
those for β10 = 1; as we shall see, this discrepancy is
not robust under changes of the fitting procedure. Also
shown are the one- and two-loop approximations from
the expansion

β̃(u) = − 2b1
16π2

− 2b2
(16π2)2

1

u
+ · · · , (9)

where b1 = 20/3 and b2 = −260/3.

The assumption behind the linear fits is that β̃ is small
so that u(L/a) changes very slowly with the volume; this
behavior is apparent in Fig. 3. Indeed the fits have good
χ2, which justifies our hypothesis. Corrections to the
simple model (8) come from discretization errors, as well
as from the slight deviation from constancy of the con-
tinuum beta function over the range of volumes. Dis-
cretization errors have the form of powers of a/L. We
have found that such corrections are only loosely con-
strained in a generalized fit; thus we prefer to estimate
the uncertainty due to these corrections by redoing the
linear fits while omitting the smallest lattice, L = 6a.
The results are shown in the left-hand panel of Fig. 5.
While the error bars have increased, on the whole the

results are stable.4

Deviations from constancy of the (continuum) beta
function give rise to higher powers of logL/a. Adding
the next-to-leading term, at each bare coupling we fit

u(L/a) = c0 + c1 logL/8a+ c2(logL/8a)
2. (10)

From the definition of the beta function it follows that c1
continues to provide an estimate for the beta function at
u = 1/g2(L = 8a). The results of these fits are shown in
the right-hand panel of Fig. 5. This time there is hardly
any change compared to the linear fits of Eq. (8).5

While the data trend towards a zero crossing, meaning
an IRFP, we cannot confirm the existence of this crossing.
It is possible that the beta function turns away from zero,
resulting in a walking scenario. If the function does cross
zero, we can offer an estimate of the crossing point. For
each fit type, we determine the zero of the beta function
from a linear fit of β̃ vs. u, using the β10 = 1 points.
In fitting to any of Figs. 4–5, we find little difference
whether we fit to 4, 5, or 6 points starting at the lowest
u. Moreover, the three figures give nearly equal central
values for the crossing, and comparable error bars. The
largest 1σ interval covers all the others. Taking it as our

4 Note that dropping L = 6a for the cases where there are only
three volumes leaves no degrees of freedom for the linear fit.

5 Here, too, fitting the cases with only three volumes leaves no
degrees of freedom for the fit.
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TABLE II: Pseudoscalar renormalization factor ZP evaluated
at the couplings (β, β10, κc) for lattice sizes L.

β β10 ZP

L = 6a L = 8a L = 12a L = 16a
10.0 0 0.2210(3) 0.2011(6) 0.1754(7) –
9.0 0 0.1852(4) 0.1618(4) 0.1324(4) 0.1168(6)
8.5 0 0.1565(4) 0.1331(5) 0.1066(7) –
7.0 1 0.1869(2) 0.1682(3) 0.1473(4) –
6.0 1 0.1652(5) 0.14617(35) 0.1243(7) –
5.0 1 0.1452(4) 0.1283(5) 0.1066(7) 0.0955(5)
4.5 1 0.1357(4) 0.1187(4) 0.1006(6) 0.0895(10)
4.0 1 0.1266(4) 0.1095(5) 0.0921(7) 0.0813(4)
3.5 1 0.1150(4) 0.1019(4) 0.0835(6) –

final uncertainty, we arrive at

6.5 ≤ g2∗ ≤ 12 (11)

for the location of the supposed IRFP.

IV. MASS ANOMALOUS DIMENSION

We derive the mass anomalous dimension from the
scaling with L of the pseudoscalar renormalization factor
ZP [8, 19–21, 26]. The latter is calculated by taking the
ratio

ZP =
c
√
f1

fP (L/2)
. (12)

fP is the propagator from the a wall source at the t = 0
boundary to a point pseudoscalar operator at time L/2.
The normalization of the wall source is removed by the
f1 factor, which is a boundary-to-boundary correlator.
The constant c, which is an arbitrary normalization, is
1/

√
2 in our convention.

We present the calculated values ZP in Table II and
plot them in Fig. 6. Again [9], the slow running suggests
that we may attempt to extract γm from the approximate
scaling formula

ZP (L) = ZP (L0)

(
L0

L

)γ

, (13)

that is, from the slopes of the lines drawn in Fig. 6. These
linear fits are analogous to Eq. (8):

logZP (L/a) = c0 + c1 log
L

8a
. (14)

The results are shown in Fig. 7. Similarly, we have also
applied the linear fit with the smallest volume L = 6a
removed, and we considered a fit function analogous to
Eq. (10),

logZP (L/a) = c0 + c1 logL/8a+ c2(logL/8a)
2. (15)

6 8 10 12 16
L/a

0.1

0.2

Z
P

β
10

 = 0

β
10

 = 1

FIG. 6: The pseudoscalar renormalization constant ZP

vs. L/a (Table II). The crosses are from simulations with
β10 = 0, β = 10.0 to 8.5. The circles are from simulations
with β10 = 1: top to bottom, β = 7.0 to 3.5. The straight
lines are fits to each set of points at given (β, β10); the slope
gives γm.
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FIG. 7: Mass anomalous dimension γ(g2) from the linear fits
shown in Fig. 6, plotted against g2(L = 8a). The squares are
from the β10 = 0 data while the circles are from β10 = 1. The
line is the one-loop result.
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FIG. 8: Comparison of different fit types. Empty symbols as in Fig. 7. Left panel: full symbols derive from linear fits in which
the L = 6a points are omitted. Right panel: full symbols derive from fits to Eq. (15), in which a log2 term has been added.
Results are plotted against g2(L = 8a). The filled symbols have been slightly displaced to the right.

In all cases the mass anomalous dimension at g2(L = 8a)
is given by −c1. We show a comparison of the different
fit types in Fig. 8, plotted against the running coupling
g2(L = 8a). It is apparent that the result for γm(g2)
is quite robust under variations in the fitting procedure.
While some of the linear fits to all volumes give high χ2,
dropping the L = 6a points brings χ2 under control.6

A comparison of β10 = 0 to β10 = 1 shows that there
is some disagreement. Of the points obtained with β10 =
1, only the weakest-coupling point is in agreement with
the results of β10 = 0 simulations. The two strongest-
coupling points obtained with β10 = 0 lie far above the
line connecting the β10 = 1 points. The former originate
from simulations near the strong-coupling transition of
the β10 = 0 theory. This is a lattice artifact, pushed
off to stronger couplings by the introduction of β10 > 0.
Thus the disagreement between the two sets of points
should be settled in favor of the β10 = 1 points.

All our fits show that γm departs from the one-loop
line and levels off at γm ≃ 0.45 at strong coupling. The
highest point in Fig. 8 gives us the bound γm < 0.51.

6 There are two β10 = 1 points with high χ2 where dropping L =
6a leaves no degrees of freedom to the fit. One is the weakest-
coupling point; it sits near the one-loop curve and agrees with
the corresponding β10 = 0 point, so we do not concern ourselves
with it further. The other is the point at the strongest coupling,
where χ2/dof = 5/1 before dropping L = 6a.

V. COMPARISON OF SU(2), SU(3), AND SU(4)
THEORIES

The present paper describes one of a set of three related
theories, which differ only in their color content. The
obvious way to compare these systems uses the language
of large N . The ’t Hooft coupling is λ = g2N and in
large N we expect to see collapse of data for different
values of N onto a common function of λ, up to O(1/N)
corrections.

For theories with Nf = 2 fermions in the two-index
symmetric representation, the renormalization group
equation takes the form

dλ

d logµ
= − b1

N
λ2 − b2

N2
λ3 + · · · (16)

where each of the terms on the right hand side is O(N0),

b1
N

=
1

16π2

(
7

3
− 8

3N

)
, (17)

b2
N2

=

(
1

16π2

)2 [
2

3
+O

(
1

N

)]
. (18)

The large-N limit of these systems has no IRFP in two-
loop order, since b2 > 0. The one-loop mass anomalous
dimension at N = ∞ is

γm =
6

16π2
λ. (19)
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FIG. 9: γm for the SU(2), SU(3), and SU(4) theories dis-
played as a function of λ = g2N where g2 is the Schrödinger
functional coupling. The line is the lowest order large-N pre-
diction, Eq. (19). For SU(3), we have dropped two strong-
coupling points calculated with β6 = 0, since they are super-
seded by β6 = 0.5 data; likewise for SU(4), where two β10 = 0
points have been dropped (cf. Fig. 7).

We collect our data fromN = 2, 3, and 4 and plot them
against λ, taking g2 to be the Schrödinger functional cou-
pling. For clarity, we use only the results of the linear
fits, Eqs. (8) and (14), that do not drop L = 6a.
We begin this time with γm, plotted in Fig. 9. We

have already noted that all three theories give results for
γm that follow the one-loop line in weak coupling. Since
the rescaled Casimir operators C2(R)/N for the three
theories are similar (1, 10/9, 9/8) and close to the large-
N value [1 +O(1/N)], the ascending parts of the curves
indeed almost coincide. What is remarkable is that all
three theories fall off the one-loop line and level off in
the neighborhood of γm = 0.4. This is a new regime of
large-N scaling behavior.
The beta function, displayed in Fig. 10, shows similar

trends. In analogy with Eq. (7), we define

b̃(1/λ) =
d(1/λ)

d logL
=

1

N
β̃(1/g2) (20)

= −2b1
N

− 2b2
N2

λ+ · · · , (21)

and we plot it against u = 1/λ. For our small values of
N , the leading correction to b1 is large, and so the weak
coupling limits of the beta functions for different values
of N do not coincide. We have shown the limiting behav-
ior for each N on the right edge of Fig. 10, along with the

0 0.1 0.2 0.3

u = 1/(g
2
N)

-2

-1

0

1

2

8π
2 

b~ (u
)

N = 2
N = 3
N = 4
N = ∞

FIG. 10: Beta functions for the SU(2), SU(3), and SU(4) the-
ories displayed à la large N [Eq. (20)]. The dashed lines at the
right edge of the picture mark the weak-coupling limit as pre-
dicted by the one-loop coefficient, Eq. (17). The points with
horizontal error bars mark each beta function’s estimated zero
(if it exists).

limiting value −7/(24π2) [Eq. (17)]. Our results, along
with their (possible) fixed points, march leftwards as N
increases. The N = 2 IRFP lies at 1/λ = 0.100(35).
The existence of transitions for N = 3 and 4 is more
uncertain, but our fits put them at 1/λ in the range
0.044–0.067 and 0.021–0.038, respectively. It is certainly
plausible to imagine that all three theories have IRFP’s,
and their location moves to ever stronger coupling as
N increases. The two-loop beta function predicts that
the IRFP has to disappear for N sufficiently large (at
N ≃ 37). We cannot rule out that by N = 3 this has
already happened.

VI. CONCLUSIONS

We began our study of these related models hoping to
answer two questions:

1. Do the systems exhibit walking, or do they possess
an IRFP?

2. How large does the mass anomalous dimension get?

We were able to answer the first question cleanly for N =
2: there is an IRFP. For larger N , the situation remains
less clear: if there is an IRFP, it moves to ever stronger
coupling as N increases, where simulations become ever
more difficult.
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Qualitatively, the dynamics of all three models are
dominated by their slow running. (This could have been
anticipated simply by examining the two-loop beta func-
tion.) This makes the models quite different from con-
ventional QCD with small Nf . Slow running was the key
that allowed us to measure the mass anomalous dimen-
sion. In all cases, γm remained less than about 0.45 over
the observed range. This observation alone, independent
of the existence of an IRFP, renders the theories unsuit-
able as candidates for phenomenologically viable walking
technicolor models.
We are struck by the fact that, for all three theories,

the two-loop beta function, expressed in terms of the
Schrödinger functional coupling, does an excellent job of
reproducing our observed beta functions. At the same
time, the behavior of the mass anomalous dimension is
quite different from the perturbative prediction, and is
universal—for all three theories γm falls off the one loop
formula and becomes (nearly) constant, independent of
the value of the renormalized gauge coupling.
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Appendix A: nHYP smearing for SU(4)

1. Smearing and normalization

The formulas of nHYP smearing, introduced in
Ref. [33], are given in detail in Ref. [34] for the SU(2)
and SU(3) gauge groups. The smeared links Vnµ are
constructed from the bare links Unµ in three consecutive

smearing steps via intermediate fields Ṽ and V according
to

Vnµ = ProjU(N)



(1 − α1)Unµ +
α1

6

∑

±ν 6=µ

Ṽnν;µṼn+ν̂,µ;ν Ṽ
†
n+µ̂,ν;µ



 , (A1a)

Ṽnµ;ν = ProjU(N)



(1 − α2)Unµ +
α2

4

∑

±ρ6=ν,µ

V nρ;ν µV n+ρ̂,µ;ρ νV
†

n+µ̂,ρ;ν µ



 , (A1b)

V nµ;ν ρ = ProjU(N)



(1 − α3)Unµ +
α3

2

∑

±η 6=ρ,ν,µ

UnηUn+η̂,µU
†
n+µ̂,η



 . (A1c)

Here the restricted sums ensure that only links that share
a hypercube with Unµ enter the smearing. The parame-
ters αi offer an arena for optimization but we retained the
choice (0.75, 0.6, 0.3) of Refs. [33, 34], reasoning that the
coefficients are geometric in nature and hence shouldn’t
change much when the gauge group is changed. The pro-
jection to U(N) indicated in Eqs. (A1) is of course de-
pendent on the gauge group. This is the normalization,
the “n” in nHYP.

We accomplish the projection by an extension of the
method of Ref. [34] to SU(4). Use of the Cayley–
Hamilton theorem gives a formula that can be differenti-
ated later to obtain the force for the molecular-dynamics

evolution. Given a general 4× 4 matrix Ω, the projected
matrix V is given by

V = Ω(Ω†Ω)−1/2. (A2)

This requires calculation of the inverse square root ofQ ≡
Ω†Ω, which is a positive Hermitian matrix. Presuming Q
to be non-singular, the Cayley–Hamilton theorem allows
us to write Q−1/2 as a polynomial in Q,

Q−1/2 = f0 + f1Q+ f2Q
2 + f3Q

3. (A3)

We use a Jacobi algorithm to solve for the eigenvalues gi
of Q. (We will not need derivatives of gi so they need
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not be found analytically.) By writing Eq. (A3) in the
eigenbasis of Q we obtain a linear system for fi,




1 g0 g20 g30
1 g1 g21 g31
1 g2 g22 g32
1 g3 g23 g33







f0
f1
f2
f3


 =




g
−1/2
0

g
−1/2
1

g
−1/2
2

g
−1/2
3


 . (A4)

This system can also be solved numerically; since, how-
ever, we will need to differentiate the result, we solve it
analytically by inverting the Vandermonde matrix. The
solutions fi are rational functions of ri ≡

√
gi or, more

conveniently, of the symmetric polynomials

u = r0 + r1 + r2 + r3 (A5a)

v = r0r1 + r0r2 + r0r3 + r1r2 + r1r3

+r2r3 (A5b)

w = r0r1r2 + r0r1r3 + r0r2r3 + r1r2r3 (A5c)

x = r0r1r2r3. (A5d)

Denoting a common denominator by

∆ = x
(
u2x− uvw + w2

)
, (A6)

we have fi = Ni/∆, where

N0 = u2wx− u
(
−v2x+ vw2 + x2

)
− vwx

+w3 (A7a)

N1 = u3x− 2u2vw + u
(
v3 + 2w2

)

−w
(
v2 + x

)
(A7b)

N2 = −u3v + u2w − u
(
x− 2v2

)
− 2vw (A7c)

N3 = uv − w. (A7d)

This completes the calculation of the quantities needed
to normalize Ω.

2. Force in molecular dynamics

We follow still the derivation in Sec. 3 of Ref. [34],
which is based on Morningstar and Peardon [42].
The force is the derivative of the effective action with

respect to simulation time τ . The first step is to note
that the fermionic part of the action includes only the
fat links Vnµ, so

d

dτ
Seff = Re tr

δSeff

δVµ

dV µ

dτ
≡ Re tr (ΣnµV̇nµ). (A8)

One proceeds to apply the chain rule repeatedly to V̇nµ
via Eqs. (A1) until one arrives at derivatives U̇nµ of
the thin links.7 The only factor in the chain rule that

7 In fact the chain rule is first applied to the change of representa-
tion from decuplet to fundamental; this is followed by the fat-link
chain rule.

depends on the group comes from the U(N) projec-
tion (A2), which appears at every level of smearing in

Eqs. (A1). In order to write a derivative V̇ in terms of Ω̇,
we use the Cayley–Hamilton formula (A3) [cf. Eq. (3.10)
of Ref. [34]],

Re trΣV̇ = Re tr
[
Σ
d

dτ
(ΩQ−1/2)

]

= Re tr (Q−1/2ΣΩ̇) + tr (ΣΩ)ḟ0 + tr (QΣΩ)ḟ1

+tr (Q2ΣΩ)ḟ2 + tr (Q3ΣΩ)ḟ3 + f1 tr (ΣΩQ̇)

+f2 tr [(ΣΩQ +QΣΩ)Q̇] + f3 tr [(ΣΩQ
2

+QΣΩQ+Q2ΣΩ)Q̇].

(A9)

Upon defining the traces

cn =
1

n+ 1
trQn+1, (A10)

one can write

ḟi =

3∑

n=0

bintr
(
QnQ̇

)
. (A11)

where bin = ∂fi/∂cn. Then

Re tr ΣV̇ = Re tr (Q−1/2ΣΩ̇) + Re trAQ̇, (A12)

where

A =

3∑

n=0

tr (BnΣΩ)Q
n + f1ΣΩ + f2(ΣΩQ +QΣΩ)

+f3(ΣΩQ
2 +QΣΩQ+Q2ΣΩ), (A13)

with Bn = b0n + b1nQ + b2nQ
2 + b3nQ

3. Now we differ-
entiate Q = Ω†Ω to obtain finally

Re tr ΣV̇ = Re tr
[
(Q−1/2Σ +AΩ† +A†Ω†)Ω̇

]
. (A14)

The derivatives bij are calculated via the eigenvalues
gk through the chain rule,

bij =
∂fi
∂cj

=
∑

k

∂fi
∂gk

∂gk
∂cj

. (A15)

The matrix ∂gk/∂cj is the inverse of the Vandermonde
matrix ∂ck/∂gj = (gj)

k, so that we still don’t need an
analytical expression for the eigenvalues. The derivatives
∂fi/∂gk can be calculated directly from the above ex-
pressions for fi. The final result for bij can, like the fi,
be written as rational functions of the symmetric poly-
nomials u, v, w, x. The expressions are lengthy and not
particularly illuminating [43].
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Appendix B: Tests of soft gauge actions

In lowest order, the action of Eq. (3) is just a quadratic
form in the vector potentials of the thin and fat links.
In momentum space the fat link’s gauge field Bµ(q) is
related to the thin link’s gauge field Aµ(q) through a

form factor h̃µν(q) whose specific form depends on the
particular definition of the fat link,

Bµ(q) =
∑

ν

h̃µν(q)Aν(q). (B1)

In general, h̃µν(q) ∼ 1 +O(a2q2) +O(a4q4) + · · · .
Let us generalize to N colors, with an ordinary pla-

quette term made of thin link plus a closed loop made of
fat links in representation R of the gauge group. We can
write the quadratic gauge action as

SG
0 = − 1

2g20

∫

pp′

(2π)4δ4(p+ p′)

×
[
(1 − s)Aµ(p

′)Dthin
µν (p)Aν(p)

+sBµ(p
′)Dfat

µν (p)Bν(p)
]
, (B2)

where Dthin is the thin link kernel and Dfat is the fat link
kernel. (We have suppressed color indices.) In practice,
we will use a plaquette fat link term, so Dfat = Dthin.
The bare coupling is

1

g20
=

β

N
T (f) +

βR
dR

T (R), (B3)

where T (f) = 1/2 is the trace normalization of the fun-
damental representation while T (R) is that of the repre-
sentation R; d(R) is the dimension of the latter. We also
define s = x/(1 + x) where

x =
βRT (R)/dR
βT (f)/N

. (B4)

In SU(4) with decuplet fat links, x = 12
5 βR/β.

Upon using Eq. (B1), we find the free gauge boson
action to be

SG
0 = − 1

2g20

∫

pp′

(2π)4δ4(p+ p′) [Aµ(p
′)Dµν(p)Aν(p)] ,

(B5)
where

Dµν = (1− s)Dthin
µν + sh̃ρµD

fat
ρσ h̃σν . (B6)

After adding a gauge fixing term,

Sgf = − 1

2g20

∑

µν

∫

k

Tr
1

ξ
k̂µk̂νAµ(−k)Aν(k), (B7)

where k̂µ = (2/a) sin(akµ/2), the gauge boson propaga-
tor is found by inverting the field equation,

∑

ν

[
1

ξ
k̂µk̂ν +Dµν(k)

]
Gντ (k) = δµτ . (B8)

The case of a Wilson action and APE smearing can
be treated analytically. In that case both the action and
smearing are built out of projectors,

PT
µν = δµν − k̂µk̂ν

k̂2
, PL

µν =
k̂µk̂ν

k̂2
. (B9)

The Wilson gauge action is

Dµν(k) = k̂2PT
µν , (B10)

and the APE smearing term is [44]

h̃µν(q) = f(q)PT
µν + PL

µν , (B11)

with f(q) = 1 − (α/6)q̂2; α is the smearing parameter.
This means that the soft APE-smeared Wilson action is

Dµν(k) = (1− s+ sf2)k̂2PT
µν (B12)

and thus the propagator is

Gµν(k) =
1

k̂2

[
1

1− s+ sf2
PT
µν + ξPL

µν

]
. (B13)

More complicated actions and smearing do not have this
projector form, and the final result for Gµν(k) is not il-
luminating.
So much for the gluon propagator. The second ingredi-

ent needed for perturbative calculations is the fermion–
gauge boson vertex. In a fat action with unitary links
it is simply the smearing form factor multiplied by the
unsmeared vertex Γν ,

Γ̃µ = Γν h̃νµ. (B14)

All Feynman graphs with an internal gluon line are built
of the combination of terms

G̃µν(k) = Γ̃µGµν(k)Γ̃ν = Γν [h̃νµGµρh̃σρ]Γσ (B15)

and so for all practical purposes, the gluon propagator
Gµν(k) is just replaced by the combination h̃νµGµρh̃σρ.
For APE smearing on top of the Wilson gauge action,
this replacement can be performed analytically, and the
transverse part of the propagator times form factors is
just the usual Wilson propagator, rescaled by the factor

f2(q)

1− s+ sf2(q)
. (B16)

Let us recall some features of perturbation theory with
fat links. Consider first the usual smeared fermion action
with unsmeared gauge action, s = 0. The good features
of this action arise because the form factor in Eq. (B16)
suppresses the large-q part of loop integrals. This shrinks
the size of tadpole graphs and lowers the size of one loop
matching factors. A positive weight s increases the form
factor at large q, and a negative s effectively amounts to
increased smearing.
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FIG. 11: Additive mass renormalization [see Eq. (B17)] for
nHYP clover fermions with cSW = 1 as a function of the
relative weight s of thin- and fat- link terms.

The case s = 1 is peculiar in that the effects of smear-
ing are completely undone. What is happening in this
case is that the transformation A → B is just a field re-
definition: we are doing Monte Carlo with the fat link
everywhere as the fundamental gauge field. Only if the
gauge action is smeared differently from the vertex can
smearing achieve its goal.
One way to reduce the value of the effective gauge bo-

son propagator at large q is to make s negative. Then
the fat term amounts to a further smearing of the effec-
tive quark–gluon vertex. This might be a feature worth
exploring in low-Nf situations.
As described in the main body of the paper, we have

chosen s > 0 for a nonperturbative reason, and so we
should check if this choice is benign from the point of
view of perturbation theory. We show the results for two
observables to check this point.
Fig. 11 shows the additive mass renormalization for

nHYP clover fermions with cSW = 1, parametrized as

δm =
g20
4π

2T (R)S0. (B17)

(The choice of factors is taken to make the case of funda-
mental representation fermions most transparent.) The
s = 1 case reduces to the thin link value. The undoing
of smearing is quite abrupt, and nearly any value away
from s = 1 produces a large suppression of δm.
In perturbation theory, the tree level static potential

between point sources is Coulombic, up to lattice arti-

FIG. 12: 4πrV (r), the tree-level static potential due to a soft
Wilson action and seen by nHYP-smeared sources, at four s
values: (a) s = 0.7, (b) s = 0.2, (c) s = 0, (d) s = −0.5.

facts:

V̂ (r) = g2CFV (r) ∼ g2CF
1

4πr
. (B18)

When the sources are themselves nHYP-smeared, the
short distance part of the potential is softened. This
is a usual consequence of smearing [45]. Fig. 12 shows
4πrV (r) for soft actions with several choices of s. It
appears that from the point of view of perturbation the-
ory, the soft gauge action does not obviously harm useful
properties of the lattice action.
Finally, the simulations we are performing with the

soft action are done at rather strong coupling. In this
regime, perturbation theory does not reliably predict the
observed additive mass renormalization. This is shown
indirectly in Fig. 13, a plot of κc against the bare cou-
pling 8/g20 = β + 12

5 β10. Different plotting symbols show
different values of β10. In weak coupling the observed
additive mass renormalization qualitatively agrees with
what is shown in Fig. 11: larger β10/β produces larger
additive mass renormalization. However, in strong cou-
pling the effect reverses. One cannot help speculating
that there is a connection between a large value of κc
and a nearby first order transition, and that when κc
falls, the transition has moved away.

Appendix C: Ensembles

Our algorithm is the hybrid Monte Carlo (HMC) al-
gorithm of Duane and Kogut [46–48]. We accelerate the
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FIG. 13: Dependence of κc on bare coupling 8/g20 = β+ 12

5
β10,

for various values of β10.

molecular dynamics integration with an additional heavy
pseudo-fermion field as suggested by Hasenbusch [49],
with multiple time scales [50], and with a second-order
Omelyan integrator [51]. Lattice sizes range from 64 to
164 sites.
We list in Table III the values of (β, β10, κc) and the

number of trajectories run at each volume, along with
the length of the trajectories and the acceptance. Poor
acceptance forced us to shorten the trajectory length in
many cases from the usual value of 1.
The observables we measure are the (inverse)

Schrödinger-functional running coupling, 1/g2, and the
pseudoscalar renormalization factor, ZP . (We measure
ZP on the same configurations used to determine 1/g2.)
Both of them turn out to have long autocorrelations. We
monitored and controlled this problem by running 4 or
8 streams in parallel at each (β, β10) and L. After an-
alyzing each stream separately, we fit the results of the
streams together to a constant. We demanded that the
χ2/dof of the constant fit not exceed 6/3 for 4 streams,
or 10/7 for 8 streams. For the largest volume L = 16a
at (β, β10) = (5, 1), we were not able to overcome the
autocorrelations in 1/g2. We therefore omit this point
from the analysis of the running coupling. The autocor-
relations in ZP , on the other hand, did allow a consistent
determination, and thus we keep this point in the analysis
of the mass anomalous dimension.

TABLE III: Ensembles generated at the bare couplings
(β, β10, κc) for the lattice sizes L used in this study. Listed
are the total number of trajectories for all streams at given
(β, β10) and L, the trajectory length, and the HMC accep-
tance.

β β10 κc L/a trajectories trajectory acceptance
(thousands) length

10.0 0 0.1293 6 19.6 1.0 0.97
8 6.9 1.0 0.95

12 4.8 1.0 0.94

9.0 0 0.13206 6 20.2 1.0 0.96
8 8.1 1.0 0.95

12 12.0 1.0 0.85
16 5.4 1.0 0.78

8.5 0 0.1349 6 20.2 1.0 0.89
8 13.6 1.0 0.78

12 6.1 0.75 0.66

7.0 1 0.13361 6 48.8 1.0 0.95
8 16.4 1.0 0.93

12 10.3 1.0 0.68

6.0 1 0.13634 6 10.0 1.0 0.82
8 20.0 0.5 0.88

12 9.6 0.5 0.61

5.0 1 0.13912 6 8.6 1.0 0.55
8 6.0 1.0 0.62

12 12.5 0.5 0.48
16 10.7 0.5 0.63

4.5 1 0.14055 6 8.6 1.0 0.52
8 13.0 0.5 0.84

12 10.6 0.5 0.56
16 9.7 0.5 0.45

4.0 1 0.14193 6 9.4 1.0 0.58
8 12.0 0.5 0.72

12 16.2 0.5 0.43
16 20.2 0.4 0.37

3.5 1 0.14318 6 14.6 1.0 0.53
8 9.4 0.5 0.66

12 19.2 0.25 0.64
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[15] M. Lüscher, R. Sommer, P. Weisz and U. Wolff, Nucl.

Phys. B 413, 481 (1994).
[16] S. Sint and R. Sommer, Nucl. Phys. B 465, 71 (1996).
[17] K. Jansen and R. Sommer [ALPHA collaboration], Nucl.

Phys. B 530, 185 (1998) [Erratum-ibid. B 643, 517
(2002)].

[18] M. Della Morte et al. [ALPHA Collaboration], Nucl.
Phys. B 713, 378 (2005).

[19] S. Sint and P. Weisz [ALPHA collaboration], Nucl. Phys.
B 545, 529 (1999).

[20] S. Capitani, M. Lüscher, R. Sommer and H. Wittig [AL-
PHA Collaboration], Nucl. Phys. B 544, 669 (1999).

[21] M. Della Morte et al. [ALPHA Collaboration], Nucl.
Phys. B 729, 117 (2005).

[22] B. Lucini and G. Moraitis, Phys. Lett. B 668, 226 (2008).
[23] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev.

Lett. 100, 171607 (2008) [Erratum-ibid. 102, 149902
(2009)].

[24] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev.
D 79, 076010 (2009).

[25] A. J. Hietanen, K. Rummukainen and K. Tuominen,
Phys. Rev. D 80, 094504 (2009).

[26] F. Bursa, L. Del Debbio, L. Keegan, C. Pica and
T. Pickup, Phys. Rev. D 81, 014505 (2010).

[27] F. Bursa, L. Del Debbio, L. Keegan, C. Pica and
T. Pickup, Phys. Lett. B 696, 374 (2011).

[28] M. Hayakawa, K. -I. Ishikawa, Y. Osaki, S. Takeda,
S. Uno and N. Yamada, Phys. Rev. D 83, 074509 (2011).

[29] T. Karavirta, J. Rantaharju, K. Rummukainen and
K. Tuominen, arXiv:1111.4104 [hep-lat]; arXiv:1201.2037
[hep-lat].

[30] T. Karavirta, K. Rummukainen and K. Tuominen,
arXiv:1201.1883 [hep-lat].

[31] T. DeGrand and A. Hasenfratz, Phys. Rev. D 80, 034506
(2009).

[32] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259,
572 (1985).

[33] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[34] A. Hasenfratz, R. Hoffmann and S. Schaefer, JHEP
0705, 029 (2007).

[35] Y. Iwasaki, K. Kanaya, S. Sakai and T. Yoshié, Phys.
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