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Abstract

We present a calculation of the leading order hadronic contribution to the anoma-
lous magnetic moment of the muon for a dynamical simulation of 2+1 flavour QCD
using domain wall fermions. The electromagnetic 2-point function is evaluated on the
lattice gauge configurations and this is fitted to a continuous form motivated by models
of vector dominance. We find broad agreement with previous lattice results for this
quantity, while improvements in simulation and theory are clearly needed in order to
produce satisfactorily precise results.

1 Introduction

The anomalous magnetic moment a of a lepton, is half the discrepancy from 2 (a = g−2
2

)

of g, the gyromagnetic ratio or Landé g-factor, which relates the spin ~S of the lepton to its
magnetic moment ~µ as

~µ = g
e

2m
~S. (1.1)

It is given the name “anomalous” because it is a purely quantum effect and so is zero in a
classical theory.

The one-loop computation of the electron anomalous magnetic moment ae by
Schwinger [1] was one of the first such calculations, and provided strong evidence in support
of the young theory of quantum electrodynamics (QED) by explaining observed hyper-fine
phenomena which were not well understood. Since then ae has become possibly the most
accurately determined quantity in science, being known to a precision better than one part
per billion [2]. The corresponding theoretical calculation has achieved similar accuracy [3].
Because of the relatively light mass of the electron, the calculation is strongly dominated
by QED contributions with virtual electrons, which are known to a good accuracy to four-
loops. Using an independent determination of the fine-structure constant α from atomic
interferometry results in a value of ae which agrees with the experimental result, with an
uncertainty over 30 times greater. Combining the experimental and theoretical results for ae
in terms of the fine structure constant α provides the most accurate available determination
of α [2].
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Because of its heavier mass,
m2
µ

m2
e
' 40000, the muon anomalous magnetic moment aµ is far

more sensitive to contributions from other sectors of the standard model, as well as to any
potential new-physics contributions. This makes it a far more robust test of the standard
model, and a much more interesting searching-ground for signals of new physics. The current
experimental result, while not nearly as accurate as that for ae is still remarkably precise [4]:

aµ = 11659208.0(6.3)× 10−10, (1.2)

which remains a precision of better than one part per million.
Obtaining a theoretical result for aµ of comparable precision has proved a more difficult

task than in the case of ae [5]. This is because, as stated above, the contributions from
other sectors of the standard model are more significant. However the calculation has been
brought to a point where the uncertainty is of the same order as the experimental uncertainty.
Interestingly however, there is a discrepancy between the two values which exceeds the
current uncertainty. This has attracted a huge amount of interest to aµ and lead to significant
efforts to calculate contributions from potential new-physics sectors.

The current uncertainty in aµ is strongly dominated by hadronic contributions, specifi-
cally the leading order hadronic, and hadronic light-by-light contributions. The light-by-light
contribution has attracted significant theoretical interest, and has recently become the focus
of considerable work using lattice simulations [6, 7].

This work involves the leading order hadronic contribution, which we denote as a
(2)had
µ ,

the best estimate of which is currently obtained by relating the hadronic vacuum polarisation
of the photon to the cross section for e+e− decay into hadrons, allowing a dispersive integral
over experimental data for the cross section [8].

Despite the apparent accuracy of the results obtained from this procedure, there remain
discrepancies between results from different data sets. As a result, it is not clear if this
method of obtaining the vacuum polarisation is under good control [5, 8]. Attempts have also
been made to estimate this quantity using models of low energy QCD [9]. It would, however,
be preferable to obtain the hadronic contribution to aµ from a first principles approach. For
this the only valid candidate is lattice QCD which alone is capable of producing quantitative
results from fully non-perturbative QCD.

This quantity was first tackled through lattice computation in quenched simulations first
with domain wall fermions [10] , followed by a calculation with improved Wilson fermions
[11]. The first dynamical simulation followed [12, 13] using 2+1 flavour staggered quarks,
and several studies of this quantity are ongoing, using 2 flavours of improved Wilson fermions
[14] and twisted mass fermions [15]. We present a calculation of a

(2)had
µ from a dynamical

simulation of 2+1 flavour QCD with domain wall fermions.

2 Background

The Landé g-factor of a fermion can be expressed in terms of the electromagnetic form factors
F1 and F2 as

g = 2 [F1(0) + F2(0)] . (2.1)
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These form factors are defined in the effective electromagnetic scattering vertex whereby
the expression for the tree-level graph

�
q, µ

p p′

= −ieγµ (2.2)

is replaced by its equivalent including all quantum corrections

�
q, µ

p p′

= −ieΓµ(p′, p) ≡ −ie
[
γµF1(q

2) +
iσµνqν

2m
F2(q

2)

]
. (2.3)

From the Born approximation it can be seen that F1(0) = 1 to all orders, and so

a =
g − 2

2
= F2(0). (2.4)

We seek to compute the effect of hadronic vacuum polarisation contributions to aµ which
are obtained by calculating contributions to the graph in (2.3) of the form

�
q, µ

p p′
had

. (2.5)

As described in [10] the contribution to aµ from the one-loop diagram equivalent to the graph
(2.5) with the hadronic blob removed can be expressed as

� −→ a(1)µ =
α

π

∫ ∞
0

dQ2 f(Q2) (2.6)

where the kernel function f(Q2) is divergent as Q2 → 0 and can be expressed

f(Q2) =
m2
µQ

2Z(Q2)3(1−Q2Z(Q2))

1 +m2
µQ

2Z(Q2)2
Z(Q2) = −

Q2 −
√
Q4 + 4m2

µQ
2

2m2
µQ

2
. (2.7)

From this, the expression for the hadronic vacuum polarisation contribution can be obtained
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with the insertions:

�had
−→ a(2)hadµ =

(α
π

)2 ∫ ∞
0

dQ2 f(Q2)× Π̂(Q2) (2.8)

where Π̂(Q2) is the infra-red subtracted transverse part of the hadronic vacuum polarisation

Π̂(Q2) = Π(Q2)− Π(0) Πµν(q) = (q2gµν − qµqν)Π(q2) (2.9)

�

q, µ q, νhad ≡ iΠµν(q) (2.10)

at Euclidean momentum Q2 = −q2. The hadronic vacuum polarisation function Πµν(q) can
be computed as the Fourier-transformed two-point correlator

Πµν(q) =

∫
d4x eiq·(x−y)〈Jµ(x)Jν(y)〉 (2.11)

involving the electromagnetic current

Jµ(x) =
∑
i

Qiψ̄
iγµψ

i (2.12)

where ψi is the quark field of flavour i and Qi is its charge. The path-integral used in the
expectation value in (2.11) will involve only hadronic fields, i.e. quarks and gluons.

2.1 Simulation

Our computation is performed using configurations generated by the RBC & UKQCD collab-
orations as part of their program of investigation using 2+1 flavours of domain-wall fermions.
We investigate three lattice volumes, each with several ensembles at different values of the
light quark mass mu. The parameters of these ensembles are given in Table 1. The ensembles
at β = 1.75 have been generated using a dislocation suppressing determinant ratio (DSDR)
in conjunction with the Iwasaki gauge action, with a fifth dimension whose extent is L5=32
[16, 17]. The lighter of these ensembles is very near to the physical point with a pion mass
of mπ ' 180 MeV. The other ensembles used only the Iwasaki action and L5 = 16 [18, 19].

The meson masses quoted in Table 2 might suggest that the vector meson is unstable on
a number of these lattices, as its mass is over twice that of the pseudoscalar meson in some
cases. However, due to the conservation of angular momentum, the decay cannot occur at
zero-momentum, and so the energy of the final state is increased. On the lattice momentum
is discrete, and the minimum non-zero momentum that can be assigned to the pseudoscalar
mesons forbids the decay of a static vector meson, although on the β = 1.75 lattices, the
truth of this statement is inconclusive given the accuraccy of the masses quoted.
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V β a−1 GeV q̂2min GeV2 amh amu

243 × 64 2.13 1.73(2) 0.028 0.04 0.02
243 × 64 2.13 1.73(2) 0.028 0.04 0.01
243 × 64 2.13 1.73(2) 0.028 0.04 0.005
323 × 64 2.25 2.28(3) 0.05 0.03 0.008
323 × 64 2.25 2.28(3) 0.05 0.03 0.006
323 × 64 2.25 2.28(3) 0.05 0.03 0.004
323 × 64 1.75 1.375(9) 0.018 0.045 0.0042
323 × 64 1.75 1.375(9) 0.018 0.045 0.001

Table 1: Parameters of the lattice ensembles used in our study.

β amu ZV amV amPS afV

2.13 0.02 0.696(2) 0.579(6) 0.3227(7)
2.13 0.01 0.700(2) 0.529(5) 0.2422(5)
2.13 0.005 0.699(2) 0.505(6) 0.1904(6)
2.25 0.008 0.7380(5) 0.388(6) 0.1727(4) 0.078(6)
2.25 0.006 0.7385(6) 0.366(5) 0.1512(3) 0.076(5)
2.25 0.004 0.7387(7) 0.356(6) 0.1269(4) 0.070(11)
1.75 0.0042 0.664(5) 0.570(25) 0.1809(3) 0.102(6)
1.75 0.001 0.669(8) 0.558(44) 0.1249(3) 0.105(15)

Table 2: Relevant observables measured on our lattices. Results on the β = 1.75 lattices are
preliminary and will be outlined in a forthcoming publication [17], results for fV on the 64 × 243

lattices are currently unavailable.

2.2 Vacuum polarisation

We compute the lattice vacuum polarisation as

Π̃µν(x) = ZV
∑
i

Q2
i a

6〈V iµ(x)V i
ν (0)〉, (2.13)

where we have omitted the flavour-nondiagonal terms as they contain only “disconnected”
contributions which are expected to be sub-dominant, as will be discussed further below.

At the sink we use the DWF conserved vector current [20]

V iµ(x) =

L5∑
s=1

1

2

[
ψ̄i(x+ µ̂, s)(1 + γµ)U †µ(x)ψi(x, s)− ψ̄i(x, s)(1− γµ)Uµ(x)ψi(x+ µ̂, s)

]
(2.14)

while at the source we have the local vector current V i
ν (x) = q̄i(x)γνq

i(x) where qi(x) =
P+ψ

i(x, L5 − 1) + P−ψ
i(x, 0), and P± = 1

2
(1 ± γ5). Because of the use of the local vector

current, a factor of the vector current renormalisation constant, ZV , is included in our
definition of the vacuum polarisation. The values of ZV used on each ensemble are given in
Table 2, as measured in [19].
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These correlators were generated for, and used in, the measurement of the QCD contri-
bution to the electro-weak S-parameter [21]. However, they will prove perfectly sufficient for
our purposes, as long as we are mindful of Ward Identity violations, which will be discussed
in Sec. 2.3.

Of the two Wick-contractions arising from this correlator, we compute only the connected
one. We leave the evaluation of the disconnected contribution for future work, but note that
it is expected to be suppressed relative to the connected contribution [22]. This argument
is also the motivation for neglecting the flavour-nondiagonal terms, and we will make an
estimate of the systematic uncertainty that results in our conclusions.

We Fourier transform into momentum space:

Π̃µν(q̂) ≡ ZV
∑
i

Q2
i

∑
x

eiqxa6〈V iµ(x)V i
ν (0)〉 (2.15)

using the discrete momenta qµ = 2πnµ
Lµ

where nµ is a 4-tuple of integers, and Lµ is the length

of the lattice in the µ direction. From here, we will use the lattice momentum

q̂µ =
2

a
sin

(
πnµ
Lµ

)
. (2.16)

We associate the quantity q̂2 =
∑

µ q̂
2
µ with the continuum momentum Q2.

2.3 Ward identities

In order to ensure that this reproduces a vacuum polarisation of the form (2.9) we must
verify that this lattice correlator satisfies the Ward identity qµΠµν = 0 which in general is
not the case, as although both operators V i and V i have the correct continuum limit

V iµ, V i
µ
a→0−→ J i = ψ̄iγµψ

i (2.17)

the additional irrelevant operators introduced into the lattice action modify the Ward identity
for Π̃µν . In coordinate space, the Schwinger Dyson equation for Π̃µν reads

〈(∆µV iµ(x))V i
ν (0)〉+

〈(
V i
ν (0)
←−
∂

∂ψi(x)
ψi(x)

)
−

(
ψ̄i(x)

~∂V i
ν (0)

∂ψ̄i(x)

)〉
= 0 (2.18)

where ∆µ is the backward lattice derivative. Because the local current used is not point-split,

the second term in (2.18) vanishes and we have as a result that e
iaqµ
2 q̂µΠ̃µν = 0.

This is illustrated in Fig. 1 where we see that it is necessary to include the factor ei
aqµ
2

in the Ward identity for the first index of Π̃µν , while there is no fulfilled Ward identity for
the second index.
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Figure 1: Illustration of Ward identity violations in Πµν on 323 × 64 lattice at β = 2.25 and
amu = 0.004.

2.4 Decomposing the vacuum polarisation

We must extract from Π̃µν(q̂) the scalar vacuum polarisation Π̃(q̂2) which, corresponding to
the continuum (2.9), are related by

Π̃µν(q̂) = (q̂2δµν − q̂µq̂ν)Π̃(q̂2) (2.19)

In practice, in order to avoid any longitudinal contribution which might arise due to the
non-conservation of Ward identities, for each momentum orientation we choose directions µ
such that q̂µ = 0 and compute

Π̃(q̂2) =
Π̃µµ(q̂)

q̂2
(2.20)

where in the above there is no sum over µ.
In Fig. 2 we show an example of the resulting vacuum polarisation function, and compare

this to the three-loop continuum perturbation theory result from [23], using two massless
flavours of quarks and one massive flavour which we associate with the strange quark. This
result is quoted in the MS scheme and as such we require the strange quark mass in our
simulations expressed in MS. For this we use the non-perturbative renormalization factor
ZMS
mh = 0.1533(6)(33) determined in [19]. The factor is quoted in the limit of vanishing light

quark mass, but it is also illustrated that the mass dependence is extremely slight, and so
we see this as satisfactory.
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Figure 2: Vacuum polarisation function Π(Q2) as measured on 64 × 323 lattice at β = 2.25 and
amu = 0.004.

3 Deducing a
(2)had
µ

In order to infer the value of a
(2)had
µ from our data we must carry out the integral (2.8) which

we split into high and low momentum regions at some momentum cut Q2
C

a(2)hadµ = 4α2

[∫ Q2
C

0

dQ2f(Q2)× Π̂(Q2) +

∫ ∞
Q2
C

dQ2f(Q2)× Π̂(Q2)

]
. (3.1)

A continuous description of Π(Q2) at low momenta is obtained by performing a fit to our
lattice data, which allows us to perform the low Q2 integral. The value of Π(0) from this fit
combined with a high-momentum description of Π(Q2) from perturbation theory allows us
to perform the high momentum integral. As we shall see, the integral is strongly dominated
by the low momentum contribution.
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3.1 Fitting the low Q2 region

We have attempted to fit a continuous form to our lattice data for the vacuum polarisation
using a number of different fit forms. The effect that the choice of fit function can have on
the result for a

(2)had
µ has been highlighted in previous studies [13], and this behoves us to

ensure that the systematics with regard to this choice are under control.
The suitability of a given fit-form should be judged on two main criteria:

• Firstly, the chosen expression must describe the data closely, and must do so regardless
of the range of data included in the fit. As such we require the reduced χ2 of the fit to
be consistently low as a function of Q2

C which defines the range of data in the fit.

• Secondly, in order to deduce that the fit-form results in an integral over momentum
which is relatively stable, we desire that the result for a

(2)had
µ is again relatively stable

as a function of Q2
C .

Ref. [13] also illustrated the use of a fit form originating in the expression for the vac-
uum polarisation calculated in chiral perturbation theory. The dominant component of this
expression is due to the vector meson contribution, which at tree-level is

Πtree
V (Q2) =

2

3

f 2
V

Q2 +m2
V

(3.2)

where the vector decay constant fV is defined

〈Ω|Jµ|V, p, ε〉 = mV fV εµ(p). (3.3)

Motivated by this expression the fit-form we use is closely related, differing only in the
inclusion of the contribution of an additional vector resonance,

Π(Q2) = A− F 2
1

Q2 +m2
1

− F 2
2

Q2 +m2
2

. (3.4)

The one-loop contribution from the pseudoscalar sector, shown in [13] to have small mo-
mentum dependence, will not strongly affect our results and so, in our effort to make a
continuous description of the lattice data, it will be omitted from our fit ansatz.

We fit the lattice vacuum-polarisation data in two ways:

• Firstly using A, F1,2 and m1,2 as free parameters.

• Also, fixing the parameter m1 to the mass of the vector meson mV as measured in [19].
This we do by constraining m1 to lie in the one-sigma band defined by the estimate
of mV and its variance. This method was found to maintain the stability of the fit
routine, while incorporating the extra information provided by mV. In this fit A, F1,2

and m2 remain as true free parameters.
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Figure 3: Properties of fits to the lattice vacuum polarisation using the ansatz (3.4) on the β = 2.25
lattice at amu = 0.004. Only points for which the fitting procedure was reasonably stable are shown.

The behaviour of such fits are shown in Fig. 3. Clearly such a form is a very good represen-
tation of the data, over practically the whole range of Q2

C . In addition the results for a
(2)had
µ

using such fits are very stable as the fit range is varied, allowing far greater confidence in the
reliability of the result. In particular we conclude that using a fit form (3.4) with the mass
of the first pole fixed to the ground-state vector meson mass to be the optimal method of
describing the lattice data for the hadronic vacuum polarisation.

In Fig. 4 we see the value of the fit parameter m1 from (3.4) as determined from fits to
the lattice vacuum polarisation. The value of mV obtained in [19] is shown in green, and this
defines the band in which m1 was constrained to reside in the fixed version of this fit. We
have not attempted to model O(4) breaking effects present in our data. Though such effects
do appear to be present to a moderate degree on certain ensembles, they do not prevent the
extraction of a reasonable signal from our data at this point. These effects could also be
alleviated by the use of twisted boundary conditions [24].

3.2 Evaluation of (3.1)

Illustrations of the integrand can be seen in Fig. 5. Because the integrand is dominated
by contributions in the low momentum region, we change our integration measure to better
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Figure 4: Value of the fit parameter am1 in fits using the ansatz (3.4) on the β = 2.25 lattice at
amu = 0.004. The vector mass amV as determined on this lattice is shown in green. Note in the fit
where m1 was fixed, it was only constrained to lie within the green band. It is clear that for a high
Q2
C , m1 will emerge at the upper limit of the band, indicating some tension between the fit-form

and the data, but as can be seen in Fig. 3, this has very little impact on the goodness of the fit.

sample the region of interest. To do this, we make the change of variables

t =
1

1 + log
Q2
C

Q2

(3.5)

and so the integral over the low-momentum region becomes∫ Q2
C

0

dQ2f(Q2)× Π̂(Q2) −→
∫ 1

0

dt f(Q2)× Π̂(Q2)× Q2

t2
. (3.6)

Overlaid on the depiction of the integrand in Fig. 5 is the appropriately subtracted
and rescaled vacuum polarisation data. We see from this that, while a large portion of
the constraint on the fit is consistently derived from data at higher momentum, the fit is
always consistent with the data at low momentum, the region where the integral receives
the dominant contribution.

In particular in Fig. 5b we see that on the larger lattices at β = 1.75 using the
Iwasaki+DSDR action, the data point at the lowest momentum sits exactly where the in-
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tegrand reaches a maximum, and there are numerous data points in the dominant region,
constraining the fit. Clearly using lattices of such size will help in obtaining a precise result
for this quantity, and this must be combined with the use of twisted boundary conditions
[14] in order to access data at lower values of the lattice momentum.
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(b) β = 1.75 amu = 0.0042
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Figure 5: Examples of the integrand in the rescaled integral (3.6).

4 Results

We extract our final results from the fit using (3.4) with the first mass fixed to that of the
vector meson as measured on each ensemble. Observing the behaviour of the reduced χ2 as
the fit range is varied, we choose a suitable value for Q2

C for each ensemble which provides the
most reliable result. We attempt to choose a cut which provides a low reduced χ2 preferably
where the parameter m1 agrees without tension with mV. This produces the results shown
in Table 3, where we also quote the reduced χ2 of the fit, and the resulting values of the
remaining associated free parameters.

These results are also shown as a function of m2
π in Fig. 6, where we compare them to

previous 2+1 flavour results from [13]. Also shown is an extrapolation to the physical point,
using a quadratic chiral ansatz. This produces a final result for the leading order hadronic
vacuum polarisation contribution the anomalous magnetic moment of the muon

a(2)hadµ = 641(33)× 10−10. (4.1)

In [15] the integral (2.8) was performed in a slightly different manner. Here the kernel
function in the integrand was altered by replacing the momentum argument Q2 of f(Q2)

was changed to Q2 → Q2 ×
(
Hphys

H

)2
for some sensible choice of a hadronic observable

H, where Hphys denotes the value of the physical value of the chosen observable, and H
denotes the value of the observable measured on the lattice in question. The result of this
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Figure 6: Integrated result for a
(2)had
µ as a function of the pseudoscalar mass squared.

integral is a new quantity a
(2)had
µ which has the same physical limit as a

(2)had
µ . The goal of

this modification is to moderate the chiral variation of the integral’s result by cacnelling
the effects of changing hadronic physics as the chiral limit is approached. It was found
that setting H = mV produced a quantity with the correct physical limit with much more
moderate chiral variation, allowing for a more powerful chiral interpolation.

We have investigated the use of this method with our data. We show the results of
such a calculation in Fig. 7a, along with an accompanying chiral extrapolation. The chiral
variation in this redefined quantity is such that it allows for a linear extrapolation in quark
mass. For the lightest point in our simulation we include the unmodified result outlined in
Table 3 since for this ensemble the measured vector mass mV is consistent with the physical
value. This method does indeed moderate the chiral behaviour of the result, however it has
little effect on our data at light quark masses, primarily because the lattice vector meson
masses are very near that of the physical ρ meson, and, as of now, are not determined to
any great precision on these lattices. As such this technique does not improve our chiral fit
at this time, producing a compatible result with a similar uncertainty:

a(2)hadµ = 605(24)× 10−10 (4.2)

In Fig. 7b we compare both chiral extrapolations, with H = 1 denoting the standard method,
and H = mV indicating the modified prescription of [15] using the vector mass mV .
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(a) Results using modified prescription H = mV .
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Figure 7: Analysis of results for modified prescription using H = mV .

In Fig. 8, our result (4.1) is compared to recent 2+1 flavour lattice results [13] along with
a recent result arising from a dispersion integral over experimental data from e+e− scattering
data. We note that our result appears to be slightly lower than expected, however this could
be explained by our omission of the disconnected contribution.

In Table 4 we attempt a comparison of the value of F1 (defined in (3.4) ) resulting from
our fit, to the vector decay constant as measured on each lattice, according to the relation
expressed in (3.2). Note, we do not have a result for fV on the 64× 243 lattices at this time,
although the ratio of the vector coupling to the vector and tensor currents was studied in
[26]. We also make the comparison suggested by the one-loop correction to (3.2) as computed
in [13] whereby the relation F 2

1 ∼ 2
3
f 2
V is replaced by F 2

1 ∼ 2
3
f 2
V × C2 where

C2 = 1− 6

(4πfπ)2

[
m2
π log

(
m2
π

µ2

)
+m2

K log

(
m2
K

µ2

)]
(4.3)

with mπ and mK the pion and kaon meson masses, fπ the pion decay constant, and µ the
chiral scale, taken as 1 GeV. In this comparison, we are neglecting the one-loop contribution
from the pseudoscalar sector, and so, while neither of these comparisons emerges particu-
larly convincingly, this indicates that the vacuum polarisation is reflective of the analytic
approximation.
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Figure 8: Comparison of recent results for a
(h)
µ

5 Conclusions

We present a fully dynamical calculation of the leading-order hadronic vacuum polarisation
contribution to the anomalous magnetic moment of the muon, using a 2+1 flavour simulation
lattice QCD using domain wall fermions. Although we have an expensive fermion discreti-
sation, we improve the accuracy of our result by convolving an accurate determination of
the ground-state vector meson mass with our determination of the lattice hadronic vacuum
polarisation in order to suppress the systematic uncertainty associated with the choice of
fit ansatz. Our chiral extrapolation involves lattices at different bare couplings, and thus
different lattice spacings, however at this level of precision we do not detect any significant
discretisation, or finite volume errors in our result. Our final result we take to be

a(2)hadµ = 641(33)(32)× 10−10 (5.1)

where the first error is statistical and the second is an estimate of the systematic error arising
from the extrapolation to the chiral limit, taken as 5%, motivated by the variation between
the results (4.1) and (4.2). Our largest systematic uncertainty arises from the omission of
the disconnected contributions and is of the order of 10% [27]. In order to obtain a more
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comprehensive and accurate result, we must include the disconnected contributions in our
calculation. Furthermore, this being a first effort at deducing this quantity from our lattices,
we have plans to improve it in a number of ways. In addition to the enhancement of our
statistics, we would like to obtain a higher momentum resolution through the use of twisted
boundary conditions, and also to explore the use of stochastic sources to further enhance
our signal.

β amu Q2
C GeV2 χ2

n.d.f
a
(h)
µ × 1010 aF1 am2 aF2

2.13 0.02 4 0.38(17) 345(16) 0.114(4) 1.48(19) 0.31(5)
2.13 0.01 3.5 0.07(6) 430(22) 0.110(4) 1.50(23) 0.32(7)
2.13 0.005 3.5 0.14(5) 436(50) 0.097(14) 1.16(18) 0.24(3)
2.25 0.008 6 0.18(11) 452(23) 0.079(2) 1.14(4) 0.26(1)
2.25 0.006 6 0.10(6) 484(33) 0.075(3) 1.07(7) 0.24(2)
2.25 0.004 9 0.06(3) 568(29) 0.079(2) 1.23(3) 0.28(6)
1.75 0.0042 2.5 0.16(9) 536(36) 0.108(20) 1.27(20) 0.26(3)
1.75 0.001 2.5 0.27(13) 646(55) 1.06(11) 1.58(61) 0.37(27)

Table 3: Results for the hadronic contribution to the muon anomalous magnetic moment.

β amu fV MeV
√

3
2
F1 MeV

√
3
2
F1

C
MeV

2.13 0.02 242(10) 179(7)
2.13 0.01 234(8) 166(6)
2.13 0.005 205(30) 144(20)
2.25 0.008 178(13) 221(6) 155(5)
2.25 0.006 174(11) 211(10) 147(7)
2.25 0.004 160(26) 222(5) 155(4)
1.75 0.0042 140(9) 192(27) 129(19)
1.75 0.001 144(20) 179(18) 127(12)

Table 4: Comparison of the vector decay constant as measured on our lattices, to the amplitude
of the lowest resonance contribution emerging from our fit to the lattice vacuum polarisation.
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The leading hadronic vacuum polarisation on the lattice. 2010, 1011.5793.

[15] Xu Feng, Karl Jansen, Marcus Petschlies, and Dru B. Renner. Two-flavor QCD cor-
rection to lepton magnetic moments at leading-order in the electromagnetic coupling.
2011, 1103.4818.

[16] Shigemi Ohta. Nucleon structure from 2+1 flavor domain wall QCD at nearly physical
pion mass. 2011, 1102.0551.

[17] RBC/UKQCD. Continuum Limit Physics from 2+1 Flavor Domain Wall QCD II.

[18] C. Allton et al. Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral
Perturbation Theory. Phys. Rev., D78:114509, 2008, 0804.0473.

[19] Y. Aoki et al. Continuum Limit Physics from 2+1 Flavor Domain Wall QCD. 2010,
1011.0892.

[20] Vadim Furman and Yigal Shamir. Axial symmetries in lattice QCD with Kaplan
fermions. Nucl. Phys., B439:54–78, 1995, hep-lat/9405004.

[21] Peter A. Boyle, Luigi Del Debbio, Jan Wennekers, and James M. Zanotti. The S
Parameter in QCD from Domain Wall Fermions. 2009, 0909.4931.
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