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Abstract

A new method of employing an isospin chemical potential for QCD-like theories with different

number of colors, number of fermion flavors, and in different fermion representations is proposed.

The isospin chemical potential, which can be simulated on the lattice due to its positive definite

determinant gives a means to probe both confining theories and IR conformal theories without

adjusting the lattice spacing and size. As the quark mass is reduced, the isospin chemical potential

provides an avenue to extract the chiral condensate in confining theories through the resulting pseu-

doscalar condensate. For IR conformal theories, the mass anomalous dimension can be extracted

in the conformal window through “finite density” scaling since the isospin chemical potential is

coupled to a conserved current. In both of these approaches, the isospin chemical potential can

be continuously varied for each ensemble at comparable costs while maintaining the hierarchy be-

tween the lattice size and lattice spacing. In addition to exploring these methods, finite volume

and lattice spacing effects are investigated.
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I. INTRODUCTION

The study of strongly coupled beyond the Standard Model (BSM) theories through lattice

gauge theory has seen a surge of activity within the last few years as a result of advancements

in computational technology and the advent of the LHC. In order to truly understand

the non-perturbative dynamics that would lead to electroweak symmetry breaking in these

technicolor theories [1, 2] (for reviews, see Ref. [3, 4]), numerical lattice calculations are

necessary. While not completely ruled out, scaled up theories of QCD with two flavors and

three colors have been disfavored due to a larger than observed S-parameter [5, 6], and a

chiral condensate too small to account for the flavor hierarchy when extended technicolor

and flavor changing neutral current bounds are considered [7, 8]. However, the dynamics

of strongly coupled gauge theories with different number of flavors, colors, and fermion

representations are still largely unknown. One proposed resolution for these experimental

discrepancies is walking technicolor [9–15], which is thought to both yield an enhanced

condensate and parity doubling. For fixed representation and colors, these scenarios are

believed to set in for number of flavors just below the onset of the conformal window,

after which spontaneous symmetry breaking no longer occurs. The majority of the lattice

calculations to date focus on addressing these situations non-perturbatively.

There have been a multitude of lattice studies involving asymptotically free QCD-like

theories. The majority of calculations have explored three-color theories with fermions in

the fundamental representation at various number of flavors [16–27]. However, there have

also been multiple studies of two color fundamental [28], two color adjoint [29–35], and three

color sextet [36–40]. While great progress has been made in each of these theories, much

debate still remains largely due to the systematic uncertainties that result from discretization

choices, non-zero quark masses, and finite volume effects. Also, unlike QCD, there is little

phenomenology to guide these calculations. Thus, these calculations are heavily reliant on

effective field theory (EFT) extrapolations or techniques for critical phenomena to attain

information in the chiral limit. For these techniques to be valid, however, small fermion

masses are required.

In this work we explore the effect of introducing a new dimensionful parameter to the

action, namely an isospin chemical potential, and how this parameter can help extract the

chiral condensate in the chiral limit for confining theories and the mass anomalous dimension
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in the conformal window. The isospin chemical potential, which couples to the conserved

isospin current, has been studied extensively in QCD [41, 42] and has been simulated on the

lattice [43–46]. Isospin chemical potentials have also been explored as a probe for low-energy

scattering parameters in meson-baryon systems [47] and two-point functions for mesons [48].

In addition to not having a sign problem, it has several other beneficial properties. First,

for a confining theory with chiral symmetry breaking, an isospin chemical potential leads to

a pseudoscalar condensate, provided the chemical potential is larger than its critical value.

The scale of this condensate is set by the confinement scale and can be related to the chiral

condensate in certain limits. Second, unlike the fermion mass term, the isospin chemical

potential is coupled to a conserved current, which results in the chemical potential not

receiving any renormalization. This fact, along with a modest value for the mass, allows

for one to extract the mass anomalous dimension via “finite density scaling” similar to the

extraction of critical exponents from finite size scaling. A similar approach of exploiting

the non-renormalization of the chemical potential to extract a critical index was performed

in Ref. [49]. Additionally, studies have been performed on both chemical potentials and

conformal phase transitions, along with free energy [50, 51].

The organization of this paper is as follows. In Sec. II, the isospin chemical potential is

reviewed for both continuum QCD and lattice QCD. In Sec III, these results are generalized

to confining theories and two methods are presented for extracting the chiral condensate

in the chiral limit, namely, the pion mass and the pseudoscalar condensate. In Sec. IV,

universal finite density scaling functions, similar to the finite size scaling functions examined

in Ref. [52–54] are derived for theories with an IR fixed point and methods for obtaining the

mass anomalous dimension via finite density scaling are presented. In Sec. V, an estimate of

the lattice artifacts due small quark masses in the presence of an isospin chemical potential

is given.

II. ISOSPIN CHEMICAL POTENTIAL

For each global symmetry/conserved quantity that a system possesses, one can add a term

to the Lagrangian which consists of a chemical potential coupled to the resulting conserved

current. This term, which corresponds to the energy required to add an additional particle

that carries one unit of the associated conserved charge, ultimately allows for exploration of
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the system at finite density. Physically, the system of the greatest interest is finite baryon

density where a baryon chemical potential is coupled to the current of the conserved baryon

number. However, due to to a complex fermion determinant in Euclidean space, the usual

Monte Carlo lattice techniques cannot be applied to complex representation fermions1. In

this work, we will explore a chemical potential coupled to a different conserved current,

namely an isospin chemical potential. As long as the theory possesses an SU(2) subgroup

of the flavor symmetry, this approach is applicable.

A. Continuum QCD

The Lagrangian for a two flavor QCD with an isospin chemical potential coupled to the

third isospin matrix is given by

L = ψ

[
i
(
D/+ iµIγ0

τ 3

2

)
−M

]
ψ, (1)

where D/ is the SU(Nc) covariant derivative, M = diag(mq,mq), µI is the isospin chemical

potential, and the fermion fields ψ represent a pair of quarks in an isospin doublet. When

µI = mq = 0, the action has an SU(2)L ⊗ SU(2)R chiral symmetry which breaks sponta-

neously to the vector subgroup, SU(2)V . Turning on the chemical potential term, which

behaves like the time component of a uniform gauge field, leads to the action being invariant

under U(1)L⊗U(1)R which spontaneously breaks to U(1)V (turning on the mass term gives

an explicit breaking to this symmetry). This U(1)V symmetry can be best understood as a

circle in the τ 1-τ 2 plane perpendicular to the τ3 term in the Lagrangian.

One of the interesting outcomes to having an isospin chemical potential is the possibility

of forming a pseudoscalar condensate [41, 42]. This condensate comes about when the

the chemical potential is larger than a certain critical value and the U(1)V symmetry is

spontaneously broken in the direction of the condensate. To understand this process, it is

best to work with a small quark mass and small chemical potential in the chiral regime

1 Baryon chemical potentials are applicable to a host of theories that are in the real or pseudoreal represen-

tation, such as two color theories, adjoint representation calculations, or SO(Nc) gauge theories [55, 56],

due to a positive definite fermion determinant. While this could be a very interesting approach to many

BSM calculations, we do not cover this scenario here.
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(namely, mq ∼ µI � Λχ, where Λχ is the chiral symmetry breaking scale). The leading

order (LO) Lagrangian in chiral perturbation theory (χPT ) is given by [57, 58]

L =
F 2

8

[
tr(DµΣDµΣ†) + 2B tr(M †Σ + Σ†M)

]
, (2)

where the normalization F ∼ 130 MeV and M = diag(mq,mq). Σ is the matrix of the

Nambu-Goldstone fields which can be parameterized as Σ = exp(iα n·τ ) = cosα+in·τ sinα

and B is related to the chiral condensate as the quark mass goes to zero,

B = lim
mq→0

|〈q̄q〉|
F 2

. (3)

The isospin chemical potential enters in the covariant “gauge” derivative, DνΣ = ∂νΣ +

i[µI
τ3

2
δν0,Σ]. Expanding Eq. (2), one arrives at the potential

V (Σ) =
F 2

8

[µ2
I

4
tr(
[
τ 3,Σ][τ 3,Σ†]

)
− 2Bmqtr(Σ + Σ†)

]
. (4)

When µI < 2Bmq, the potential increases from its value at α = 0 and vacuum remains

unchanged. When µI > 2Bmq, the potential forms a new minimum and a condensed phase

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-10

-5

0

5

Α

8V
�H2

F
2
B

m
q

L

FIG. 1: Chiral potential vs. α for values of µI below (blue), equal (red), and above (yellow) 2Bmq.

When above the critical value, the potential develops a minimum at a non-zero value of α, which

defines the vacuum expectation value in the condensed phase.
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is favored. In terms of the parameter α, the minimum of the potential is given by2

cosα =
2Bmq

µ2
I

. (5)

As a result, the vacuum expectation value of the Nambu-Goldstone fields is given by

Σ0 =

1, |µI | < 2Bmq,

exp[iαn · τ ], |µI | > 2Bmq

, (6)

where n is the direction of the spontaneously symmetry. This new alignment will alter the

chiral effective field theory and will consequently affect observables. This is accounted for in

the χPT Lagrangian by expanding Σ about this new minimum, Σ = ξ0Σ̃ξ0, where ξ20 = Σ0.

This feature can be used to pick off low-energy coefficients, as proposed in Ref. [47], and is

explored for confining theories in Sec. III.

B. Lattice QCD

When extending the continuum formulation of a field theory to a discretized simulation,

there are often several subtleties that need to be understood. The first aspect is how the finite

isospin density system maintains a positive definite determinant while the baryon chemical

potential does not. One condition that can ensure this property for a theory with an even

number of flavors is that the determinant of the action is real (multiplying an even number

of real determinants is greater than or equal to zero). One relation that ensures a lattice

action maintains a real determinant is if the discretized action, M , obeys the γ5-hermiticity

condition

M † = γ5Mγ5 −→ detM = detM †. (7)

Consequently, the determinant of the product detM †M = detM † detM = | detM |2 is pos-

itive definite. The inclusion of any chemical potential term of the form ψγ0ψ will invalidate

this relation. However, this is not the only condition to lead to a real determinant. One can

include a flavor matrix and arrive at the relation

M † = τiγ
5Mτiγ

5 −→ detM = detM †, i ∈ 1, 2. (8)

2 In order to reduce confusion throughout this work, we leave the leading order vacuum pion mass as 2Bmq

(Gell-Mann-Oakes-Renner relation). The quantity mπ will be reserved for the pion mass measured in the

presence of the pion condensate.
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This relation is satisfied by isospin chemical potential term, ψτ 3γ0ψ, ensuring that the

determinant of the action is real. Note, that the baryon chemical potential coupled to ψγ0ψ

will not satisfy this relation.

Second, in a finite volume, spontaneous symmetry breaking without an explicit symmetry

breaking source cannot occur, unless there are infinitely many degrees of freedom. The way

to explore spontaneous symmetry breaking phases on the lattice is to include a small source

of explicit symmetry breaking and extrapolate to when the source is zero. This is the case

when exploring the chiral condensate since simulations often have an explicit chiral breaking

mass term along with any chiral breaking discretization effects. While the source for chiral

symmetry breaking is inherent to the system, the same cannot be said for a pseudoscalar

condensate. Thus, in order to measure the condensate, a small breaking term is required

to “tip” the condensate in a specific direction the the τ 1-τ 2 plane. The pseudoscalar source

term added to the Lagrangian is of the form [47]

∆L = iεψxγ
5 τ

2

2
ψx, (9)

which resembles a twisted mass term with a τ 2 flavor coupling. In addition to dictating the

direction of the pseudoscalar condensate, this term also is necessary to ensure the Dirac inver-

sion does not become singular [44, 45]. If one accounts for this term in the χPT Lagrangian,

the minimum of the potential in Eq. (4) [41, 42]

cosα =
2Bmq

µ2
I

− Bε

µ2
I

cotα. (10)

As long as ε is small (taken to zero before mq or µ), the continuum, infinite volume result

is recovered. However, it is worth noting that if ε is not sufficiently small, the cotα term

diverges as the critical limit is approached from above, rendering the expansion invalid. The

resulting vacuum expectation value (talking ε→ 0 first) leads to an altered chiral condensate

and a pseudoscalar condensate given by

〈ψψ〉 = F 2B cosα,

i〈ψτ
2

2
γ5ψ〉 = F 2B sinα. (11)

Third, while discretization effects are less pronounced for the isospin chemical potential

case than chiral symmetry breaking, care needs to be taken when performing tunings or

interpreting residual mass terms (especially when taking mq to zero). The system now has a
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pseudoscalar condensate and a chemical potential which lead to several of the alterations of

the usual tuning methods (such as ensuring the pion mass vanish in the chiral limit) as will

be described in Sec. III. Additionally, the isospin chemical potential term should correspond

to the time component of the conserved vector current. Thus, in certain formulations, such

as Domain Wall fermions, the used of the local vector current may not yield the desired

results. However, this concern appears to be insignificant in lattice studies of small baryon

chemical potentials [59].

III. CONFINING THEORIES

Confining theories in the context of this paper are theories where dynamical symmetry

breaking occurs and a confinement scale emerges. One class of theories similar to QCD,

has scales that follow the hierarchy (including the isospin chemical potential in the range of

interest)
1

L
. mq . µI � ΛQCD .

1

a
, (12)

where L is the spacial extent of the lattice and a is the lattice spacing. In this particular

scenario, the scale ΛQCD sets both the IR confinement scale that observables, such as nucle-

ons and rho mass, are proportional to and the UV scale when the asymptotically free theory

becomes perturbative. As a result, these theories are thought to be phenomenologically

similar to QCD.

Another possible class of confining theories for a different set of parameter (often with a

greater number of flavors), usually referred to as walking theories, follow a different hierarchy

1

L
. mq . µI � ΛIR � ΛUV .

1

a
. (13)

Most notably, the primary difference is the separation of the IR confinement scale and the

UV perturbative scale. For a given renormalization scheme, the running of the coupling

slows between the two scales, and this slow running is believed to give an enhancement to

the chiral condensate proportional to (ΛUV /ΛIR)ν , where ν is a power determined by the

dynamics and renormalization scheme [11]. For this reason, extracting the chiral condensate

in the chiral limit (or, in terms of the χPT parameters, B/F ) is the main priority for theories

in the confining regime.
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For both classes of confining theories, χPT extrapolations are valid provided both mq and

µI are small enough. However, how small they have to be for a valid chiral extrapolation

is expected to be significantly different between the two theories. There are two primary

reasons for this. First, walking theories usually require a large number of flavors. Powers

of the factor Nf appear in the coefficients of the higher order chiral logarithms and these

coefficients can lead the higher order terms to be competitive with lower order terms if

the pion mass is not small enough. This would result in a breakdown of the chiral EFT.

Second, the pion mass itself is enhanced in these theories, so an even smaller quark mass is

required to make a pion mass in the chiral regime. As a result, multiple lattice calculations

of “confining” theories have found that chiral extrapolations do not hold for their current

quark masses [60] (if running slow enough, such theories may resemble an IR conformal

theory where anomalous dimension is fixed, γ(µ) ≈ γ∗, and the scaling analyses in Sec. IV

may prove informative). It should be emphasized that a small isospin chemical potential

(compared to the chiral breaking scale) is required for the following relations to hold.

The study of the effects of isospin chemical potentials for QCD has been studied exten-

sively for masses and condensates [42, 61, 62] and the Dirac spectrum [63]. This section

will reflect a small subset of these effects as it pertains to extracting useful information for

QCD-like theories.

A. Pion mass

The effect of the isospin chemical potential on the pion mass is separated in two regions,

when the isospin chemcial potential is too small to form a pseudoscalar condensate (µ2
I <

2Bmq) and when it is large enough that a pseudoscalar condensate is formed (µ2
I > 2Bmq).

Both cases have been studied extensively [42, 61, 62] and the relevant tree-level results for

extracting information about the condensate are presented here. Again, it should be noted

that 2Bmq, µ
2
I � Λ2

χ is required for the following analysis to be valid.

In the first phase, µ2
I < 2Bmq, no pseudoscalar condensate is formed and the chiral

Lagrangian follows the form of Eq. (2). Here, much like zero density, the propagator matrix

is has no cross terms (only terms proportional to π2
0 or π+π−) and the particle masses are

given by the zero values of its determinant

detD−1 = [p2 − 2Bmq][(p− µI)2 − 2Bmq][(p+ µI)
2 − 2Bmq] = 0, (14)
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FIG. 2: Pion masses measured vs. (negative) isospin chemical potential. All axis are normalized to

the LO vacuum pion mass value
√

2Bmq. The top curve (mπ−), middle curve (mπ0), and bottom

curve (mπ+) are defined in Eq. (15) and Eq. (17). The curvature of mπ− after the pseudoscalar

condensate forms (µ2I > 2Bmq) can give additional information useful for extracting the chiral

condensate.

and the resulting pion masses are (assuming the sign of µI is defined by µI = −|µI |)

mπ+ =
√

2Bmq − |µI | , mπ0 =
√

2Bmq , mπ− =
√

2Bmq + |µI |. (15)

In effect, at zero temperature, this phase only results in a shift in energy of the charged

pions [64]. While information about the condensate can be extracted from this phase, it is

the same information that can be extracted from zero density simulations.

In the second phase, µ2
I > 2Bmq, a pseudoscalar condensate is formed and the chiral

Lagrangian is now expanded about a new vacuum under the transformation Σ → ξ0Σ̃ξ0

where Σ0 = ξ20 = cosα + in · τ sinα. This leads to a propagator matrix that has no

cross terms for the neutral particle and cross terms (proportional to π+π+ or π−π−) for the

charged particles due to the flavor mixing of the pseudoscalar condensate. The zeros of the

determinant (with three-momenta set to zero) are given by

detD−1 = [p20 − µ2
I ][p

2
0 − µ2

I(1 + 3(2Bmq/µ
2
I)

2]p20 = 0, (16)
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and the resulting pion masses are given by

mπ+ = 0 , mπ0 = |µI | , mπ− = |µI |

√
1 + 3

(
2Bmq

µ2
I

)2

. (17)

The first two masses do not contain any information about the chiral condensate, but the

mass of the third pion is dynamically altered (as compared to the zero density case) as

a function of the condensate and the isospin chemical potential. In Fig. 2, this can be

interpreted as the curvature in mπ− when µ2
I > 2Bmq. The usual Gell-Mann-Oakes-Renner

(GOR) relation (m2
πf

2
π = 2mq〈ψψ〉) no longer holds in the presence of the pion condensate,

and the mass of mπ− leads to a modified GOR-like relation given by

B

F
=

√
µ4
I

12m2
qF

2

(
m2
π−

µ2
I

− 1

)
. (18)

The primary advantage gained from this calculation (as pointed out in Ref.[47]) is the

addition of another “knob” besides mq to extract chiral behavior. Thus, for each mq within

the chiral regime, multiple µI also within the chiral regime can be calculated (whose costs

are determined by the symmetry breaking term ε), and this information can lead to more

control of chiral extrapolations.

B. Pseudoscalar condensate

In addition to extracting B/F from the pion mass, another approach would be to focus

on measuring the pseudoscalar density directly. This has been performed stochastically

in both quenched [43] and dynamical [44–46] QCD at finite isospin density. In stochastic

calculations of the chiral condensate, one nuisance is the presence of a large divergent piece

on the order of the cut off scale, which masks the finite physics of interest. This can be seen

in the naively discretized free propagator loop

tr

∫ π
a

−π
a

d4p

(2π)4
1

i
a
γµ sin apµ −mq

= 2mq

∫ π
a

−π
a

d4p

(2π)4
1

1
a2

sin2 apµ −m2
q

→ 2mq

a2
, (19)

where the momentum dependence in the numerator is zero due to the trace over the γ-matrix.

For the pseudoscalar condensate, a similar lattice artifact given by

tr

∫ π
a

−π
a

d4p

(2π)4
γ5τ 2

i
a
γµ sin apµ +mq + iεγ5τ 2

= 2ε

∫ π
a

−π
a

d4p

(2π)4
1

1
a2

sin2 apµ +m2
q + ε2

→ 2ε

a2
. (20)
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FIG. 3: Pseudoscalar condensate (p.s.c) vs. isospin chemical potential (both normalized to a fixed

small mq) for theories with B/mq values of 1 (green), 3 (orange), 9 (magenta) and 27 (blue). As

the chiral condensate increases, higher µI values are required to form a pseudoscalar condensate.

This divergent contribution will be smaller than its chiral condensate counterpart as long

as ε < mq. Neither divergence should depend on µI and consequently, taking differences at

different µI may prove valuable.

Following up Eq. (11), the pseudoscalar condensate at LO in the chiral expansion

(m,µI � Λχ) is given by

i〈ψτ
2

2
γ5ψ〉 = F 2B sinα = F 2B

√√√√1−

(
2Bmq

µ2
I

)2

. (21)

Ultimately, we will want to take mq to zero (more specifically, take 2Bmq/µ
2
I to zero). Upon

doing this, the pseudoscalar condensate reduces to the quantities of interest, namely

lim
mq→0

i〈ψτ
2

2
γ5ψ〉 = F 2B. (22)

It should be noted that this particular result does rely on the fact that µI � Λχ, and

corrections on the order of µ2
I are to be expected. However, as long as µI is well within the

chiral regime, this particular method gives a clear method of extracting B from multiflavor

lattice calculations with the large lattice artifact contributions potentially reduced. Also,

getting at the chiral value for the pseudoscalar decay constant can be just as hard (if not
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harder) than extracting the chiral condensate. Thus, by combining this analysis with the

pion mass analysis from the previous sections, B and F can be determined separately.

IV. IR CONFORMAL THEORIES

Upon reaching a certain critical value for the number of flavors in a theory with a given

number of colors and fermions in a given representations, the theory is believed to be IR

conformal due to the presence of an IR fixed point. While the theory still remains asymp-

totically free for large energies, the fixed value for the coupling prevents any IR confinement

scale from emerging. As a result, the theory does not have any spontaneous symmetry break-

ing, and in the absence of any explicit massive scale, all observables have zero mass. For

this reason, low-energy effective field theories that depend on spontaneous chiral symmetry

breaking, such as χPT , are no longer valid. In the case of a mass deformed IR conformal

theory, where a small quark mass is added (mq � ΛUV ), all hadronic masses follow the

relation [21, 52–54]

MO ∼ m
1

1+γ∗ , (23)

where γ∗ is the scheme-independent mass anomalous dimension. Many phenomenological

arguments for understanding the quark flavor hierarchy from technicolor models that are

“nearly” IR conformal (γ(µ) ≈ γ∗) are based on the magnitude of γ∗ [65] and for this reason,

it is the primary quantity of interest for IR conformal theories. However, many intricacies

occur when extending this to the lattice. The first is that the relation only holds for small

quark masses such that higher order terms are negligibly small. Another related concern is

that in addition to the mass deformation, the inverse of the finite spacial extent, L−1, acts as

an IR cutoff to the theory and the hierarchy L−1 � a−1 should be maintained to minimize

the contributions from unphysical UV artifacts.

Upon including the isospin chemical potential, the relevant hierarchy of scales in the

conformal window are given by

1

L
. mq . µI � ΛUV .

1

a
. (24)

As will be shown in the subsequent sections, the implementation of the isospin chemical

potential does not receive any renormalization due to the fact that it is coupled to a conserved

current (the operator it is coupled to has engineering dimension as shown in Ref. [53]). This
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feature allows for both varying the fermion mass near zero and allows for one to define finite

density scaling relations akin to the finite size scaling.

A. Universal scaling function

The use of finite size scaling relations remains the best method for defining the universal

scaling behavior and extracting the critical exponents for theories with an IR fixed point.

This fact has not escaped the lattice community and the scaling behavior has been worked

out for multiple classes of observables and operators [52–54]. While finite size scaling has

been explored on the lattice [37, 38, 53, 66], it ultimately proves to be quite demanding

numerically since it requires multiple ensembles of different parameters while keeping mq

small and L−1 � a−1.

A similar set of universal scaling curves can be derived for the isospin chemical potential

since the isospin chemical potential does not change under renormalization group (RG)

transformations as a result of chemical potentials being coupled to conserved currents in the

Lagrangian. The analysis for this “finite density” scaling (assuming the volume is large and

fixed) is essentially the same as the analysis performed for finite size scaling in Ref. [53], with

the key difference being the spacial extent L is replaced with the isospin chemical potential

µ−1I . Nevertheless, the key elements to this analysis will be repeated here.

The correlation function calculated on the lattice is given by

CO(t;mq, µI , L, µ) = 〈O†(t)O(0)〉 → Ae−MOt, (25)

where O is an artibrary interpolating operator and µ is the renormalization scale (not to be

confused with the isospin chemical potential, µI) and the r.h.s represents the long Euclidean

time behavior of the correlation function. Assuming a fixed value for L with L−1 � mq, µI

and defining m̂q = mq/µ, one arrives at the correlation function CO(t; m̂q, µI , µ). Under the

RG transformation µ→ µ′, where µ = bµ′, the correlation function becomes

CO(t; m̂q, µI , µ) = b−2γOCO(t; b1+γ
∗
m̂q, µI , µ

′). (26)

where γO is the anomalous dimension of the field operatorO. Performing a näıve dimensional

scaling by b to this result,

CO(t; m̂q, µI , µ) = b−2(γO+dO)CO(b−1t; b1+γ
∗
m̂q, bµI , µ). (27)
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Now choosing b such that bµI = U0 where U0 is a dimensionless constant. This leads to the

correlation function

CO(t; m̂q, µI , µ) =

(
U0

µI

)−2(γO+dO)
CO

(
µI
U0

t;x
U1+γ∗

0

µ
, U0, µ

)
, (28)

where x = mq/µ
1+γ∗

I and from the asymptotic behavior of the correlation function at long

Euclidean time, the corresponding mass is given by a function of x,

MO ∼ µIF (x). (29)

In the same way varying the box size is used in finite size scaling techniques, the relevant

information of the mass anomalous dimension can be extracted by varying µI as the fermion

mass approaches zero. In particular, when plotting MO/µI vs. mq/µ
1+γ∗

I at different µI

values, the anomalous dimension can be determined by varying γ∗ and observing when all

data points fall on the same curve. While this is akin to finite size scaling, the isospin

chemical potential has more resolution at a comparable cost (can be adjusted ala quark

mass without critical slow down) than the volume, which usually requires additional lattice

sites (expensive, discrete) or tuning the lattice spacing (additional lattice artifacts).

Using similar techniques, volume scaling can be incorporated into Eq. (29). Following

the same procedure as above, any mass will now be a universal function of two variables,

MO ∼ µIF (x, y), where x = mq/µ
1+γ∗

I and y = µIL.

B. Condensates

As in confining scenarios, condensates can give important information regarding IR con-

formal theories. In particular, the study of condensates in the presence of a chemical poten-

tial in a given theory can provide another test as to whether or not a theory is conformal

or confining. In an IR conformal theory with µI = 0 and mq = 0, all observables with

mass dimension, including chiral and pseudoscalar condensates will be zero (technically, all

observables should scale with L−1 since the finite spacial extent is a relevant operator in

an IR conformal theory). The interesting question is the behavior of these observables at

non-zero (but small) values of µI and mq, and, in particular, how they compare to their

confining counterparts.
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While spontaneous symmetry breaking does not occur in IR conformal theories, sponta-

neous symmetry breaking also does not occur without a small source for confining theories

at finite volume. Thus, as explained in Sec. II, a small explicit symmetry breaking param-

eter (which we called ε) must be introduced to the system for the pseudoscalar condensate

at µI > 2Bmq to be measured in both confining and IR conformal theories. However, the

phenomena between these two theories should behave differently when the limit ε → 0 is

taken first. From Eq. (21), it is evident that as mq → 0, the pseudoscalar condensate is

proportional to the confinement scale (in particular, the chiral condense). This is to be ex-

pected, since spontaneous flavor symmetry breaking is expected to occur in infinite volume

for theories with a large enough isospin chemical potential. However, the more interesting

aspect stems from the fact that as mq → 0, the pseudoscalar condensate has a diminishing

dependence on µI .

Within the conformal window, the pseudoscalar condensate takes a significantly differ-

ent form when mq and µI are small, but non-zero, where m
1/(1+γ∗)
q plays the role of the

confinement scale. Comparing the condensates in the chiral limit,

lim
mq→0

i〈ψτ
2

2
γ5ψ〉 →

f
2B, Confining Theory,

D µ3
I , IR Conformal Theory,

. (30)

where D is a dimensionless constant that could be zero. While this quantity is not an

order parameter (unless D = 0), there is a difference in the behavior of the condensate as

the isospin chemical potential is varied. By reducing the fermion mass to small values, the

analysis of the pseudoscalar condensate is expected to display different behavior at several

different (but small) isospin chemical potential values. Once again, it should be made clear

how much this process depends on orders of limits. First, the explicit pseudoscalar breaking

parameter ε needs to be taken to zero, followed by mq, while keeping µI small enough such

that these results will not be contaminated from higher order effects.

V. ESTIMATES OF LATTICE ARTIFACTS

In addition to the increased computational cost of inversions from reducing the quark

mass, one always needs to be aware of the lattice artifacts that can arise. For example,

simply decreasing the quark mass leads to mπL decreasing as well, which can introduce
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significant lattice artifacts, especially if mπL < 4. It should be noted that while this is

a limitation for confining theories, large volume effects can act as a feature for finite-size

scaling in IR conformal theories (more defined volume behavior). In addition to large IR

effects, significant UV effects can become important, such as the emergence of non-physical

phases such as the Aoki phase [67, 68]. In this section we will address both of these examples

when the quark mass is dropped in the presence of a small isospin chemical potential. The

following two sections will address these lattice artifacts for the confining scenario only.

A. Finite Volume

The dominant volume effects in a lattice system with periodic boundary conditions are

set by the mass of the lightest particle mass times the finite spatial extent of the system

(for most theories, this is set by the product mπL). In a confining QCD-like system, for

small enough quark masses, χPT can be used to estimate the volume effects due to the finite

spacial extent [69]. These effects emerge in the calculation of quantum corrections and loop

diagrams, which the continuous momenta integrals are replaced by sums. In particular, for

a periodic box, ∫
d3p

(2π)3
→ 1

L3

∑
2πn
L

. (31)

The resulting finite volume effects for the pion propagator are often exponentially suppresses,

as in the one loop correction term that appears in the calculation of the pion mass and chiral

condensate [57, 58, 69, 70]∫
dp0
2π

[
1

L3

∑
n

−
∫

d3p

(2π)3

]
i

p2 −m2
π

=
mπ

4π2L

∑
n6=0

1

|n|
K1(|n|mπL)

→ mπ

4π2L

∑
n6=0

1

|n|3/2
e−|n|mπL, (32)

where the asymptotic form of the Bessel function K1(x) ' e−x/
√
x. As the number of

flavors is increased, the coefficient of this exponential is also enhanced. In the presence of

an isospin chemical potential, the volume effects are subtle. In particular, when µI � mq,

two of the modes have mπ ∼ µI , leading to heavier particles. However, the more noteworthy

case is that in the condensed phase, one of the pseudoscalar particles becomes a massless

Goldstone mode, whose correlation length is infinite and will always have volume effects. In
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practice, the mass of this Goldstone mode is cut off by the explicit flavor breaking term ε

that is defined in Eq. (9) leading to mπ ∼ ε. The corresponding volume effects depend upon

the quantity εL, where there are two separate limits. The limit εL → ∞ represents taking

the box to infinity before taking the explicit flavor breaking to zero. This limit is likely too

computationally expensive to ensure. The second limit εL → 0 while all other mass scales

times the box goes to infinity will always be sensitive to the size of the system. However,

if the box size is large enough, the system should be in the “epsilon regime” where the

zero-mode volume effects are enhanced. Thus, epsilon regime chiral perturbation theory or

random matrix theory can accurately account for these volume effects [71–74]. Additionally,

mesonic two-point functions in the presence of an isospin chemical potential were previously

calculated in the epsilon expansion [48].

B. Lattice spacing and Aoki regime

The other well known lattice phenomena that occurs when reducing the mass while

keeping all other parameters fixed is the emergence of the Aoki regime [67, 68], where flavor

and parity are spontaneously broken. This unphysical phase has been shown to depend on

regions of the m0-g
2 phase diagram and can be explained via a χPT argument based on

estimates of the lattice spacing effects [68]. This phase can play a significant role when the

LO χPT effect (given by the leading order pion mass) becomes on the same order as the NLO

O(a2) effect assuming the O(a2) effect comes in with the opposite sign. These competing

effects, as worked out in Ref. [68], are most apparent when minimizing the potential of the

χPT Lagrangian with the parameterization, Σ = A+ iB · σ

V (A) = −c1A+ c2A
2. (33)

where c1 ∼ m2
π and c2 ∼ a2. In most lattice calculations with unphysical large pion masses

and reasonably small lattice spacings, c1 � c2 and these two effects never compete. However,

as the pion mass is dropped while the lattice spacings are fixed, scenarios when c1 ∼ c2 can

occur and new unphysical minima can emerge in the potential. However, just because

c1 ∼ c2 does not mean that one is guaranteed to be in the Aoki regime when the actual

lattice simulations are performed.

When an isospin chemical potential is included, as mq is dropped, mπ ∼ µI or mπ ∼ ε.
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Before, we needed to ensure that our lattice spacing was chosen such that m2
π � a2Λ4.

Now, µ2
I � a2Λ4 and Λε � a2Λ4 is needed to ensure no Aoki phase emerges. It might

appear that only µ2
I � a2Λ4 is needed to have c1 � c2, and while this may end up being

be the case, the determination of the sign and magnitude of c1 and c2 is a subtle non-

perturbative question (i.e. large strange quark in lattice QCD does not necessarily prevent

Aoki regime). It should also be noted that the Aoki regime and the condensed finite isospin

density phase are quite similar in appearance, as they both produce a flavor and parity

violating pseudoscalar condensate. Thus, lattice simulations in the Aoki regime may be

incorrectly interpreted as an isospin condensed phase.

Another aspect involving lattice spacing effects is the fact that irrelevant operators can

lead to new mass-like terms in the Lagrangian proportional to aW where W ∼ Λ3. Thus,

since the LO combination in χPT is given by Bmq + aW , simply taking mq to zero is not

enough to remove the “lattice mass”. However, this lattice spacing effect should be reduced

for improved actions, chiral lattice actions, or smaller lattice spacings. Nevertheless, negative

values of mq may need to be used to acquire the “mq → 0” behavior discussed throughout

this paper.

VI. CONCLUSION

In this work, we have presented a new scenario for extracting information from strongly

coupled gauge theories by implementing an isospin chemical potential. Due to its positive

definite determinant, this isospin chemical potential can be included in lattice calculations

and has multiple properties that can be used to help extract desired lattice quantities. First,

when the isospin chemical potential is larger than its critical value, a pion condensate is

formed. This pion condensate has multiple properties in the chiral regime that are beneficial

for extracting the chiral condensate. Second, the isospin chemical potential couples to a

conserved current and consequently, does not receive renormalization. To that end, a finite

isospin density scaling analysis can be employed to extract the mass anomalous dimensions

using similar techniques to finite size scaling. This scaling relation should hold for IR

conformal and could also be applicable to slow running theories near conformality where the

anomalous dimension is roughly constant, γ(µ) ≈ γ∗. Additionally, multiple ensembles with

different chemical potentials can be simulated at comparable costs (in contrast to increasing
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volume), which gives improved resolution to both chiral or scaling analyses. These properties

make a convincing case that this scenario should be pursued on the lattice.

While the benefits of employing an isospin chemical potential are plentiful, there are still

multiple caveats that must be understood. The first, and most significant, caveat is the fact

that much of the analysis in this work depends greatly on the fact that isospin chemical

potential is in the chiral regime (µI � ΛIR,ΛUV ). On the other end, for confining theories,

volume effects are now governed by the combination µIL and εL, and analytical techniques

in the εL→ 0 limit might be needed. Also, contributions from Aoki phases are also possible

and should be taken into account.

One could make the observation that the inclusion of an isospin chemical potential while

taking mq and ε to zero is simply moving the previous issues with the quark mass to the

chemical potential. In many ways, this astute point is indeed correct and for that reason,

this method should be viewed as another tool for probing lattice phenomena. However, the

two other key features of the isospin chemical potential, namely the formation of a pion

condensate and coupling to a conserved current, make this system inherently different from

the usual lattice system with just a quark mass. The majority of the interesting physics for

these systems not only occur in the chiral limit, but greatly depend on how the theory varies

near the chiral limit. With the presence of the isospin chemical potential, these systems can

be explored in exactly this way.
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