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I. INTRODUCTION

The Bardeen-Cooper-Schrieffer theory of fermionic superfluids (see [1] for a review on its
application to conventional superconductors) has provided not only an explanation for con-
ventional superconductors and other fermionic superfluids but also a paradigm for studying
macroscopic quantum coherence due to interactions. Soon after its discovery, the challenge
of how to cast its formalism in a gauge invariant form when a charged system is interacting
with an electromagnetic (EM) field has drawn broad interest. At the linear-response-theory
level, there have been two major approaches. Nambu in his seminal paper [2] formulated
this challenge in terms of generalized Ward identities (GWIs) and proposed an approach
based on a set of integral equations for finding a gauge-invariant EM vertex which governs
the kernels of response functions. This approach has been reviewed in Schrieffer’s book on
superconductivity [1] and also finds applications in other branches of physics such as nuclear
matter interacting with neutrinos [3].

There is another approach based on consistent fluctuations of the order parameter
(CFOP), which is the main theme of this paper. In this approach, the effects of gauge trans-
formation from the gauge field are balanced by the fluctuations of the order parameter in a
consistent fashion. This is made possible by treating the terms induced by the gauge field
as well as the fluctuations of the order parameter equally in the perturbative Hamiltonian.
Although the kernels of response functions from this approach are not a solution of Nambu’s
integral equations, the CFOP formalism is manifestly gauge invariant and we will show that
GWIs are satisfied. This is because being a solution of Nambu’s integral equations is only
a sufficient condition for satisfying the GWIs, but not a necessary condition. Importantly,
this approach reproduces the compressibility correctly as that from the equations of state
and this demonstrates self-consistency of the CFOP approach.

The theory of CFOP has an interesting history. Kadanoff and Martin [4] first proposed
this approach in a less complete form by considering only the phase fluctuations of the
order parameter. Their idea is to decompose the three-particle Green’s function in a way
that can respect gauge invariance. Betbeder Matibet and Nozieres [5] and Kulik et al.
[6] independently formulated this approach in more complete forms with both phase and
amplitude fluctuations later on. This approach has also been formulated by the Keldysh
formalism with time-ordered Green’s functions in Ref. [7]. After its successful application to
conventional superconductors, a generalization of this approach to nonrelativistic fermionic
superfluids satisfies important sum rules and has been applied to ultra-cold atomic systems
[8–10]. It has also been discussed in the physics of neutron stars [11]. Here we base on our
formalism of a relativistic version of the BCS theory [12] with Kulik’s approach to CFOP and
develop a gauge-invariant linear response theory of relativistic fermionic BCS superfluids. To
demonstrate the versatility of this approach, we will address the collective mode associated
with the massless Goldstone boson in the symmetry-broken phase, the density susceptibility
which governs the compressibility, and the superfluid density.

To further contrast these two approaches, we also present the relativistic version of
Nambu’s integral equations for the EM vertex. There have been attempts to find an it-
erated solution based on the random phase approximation (RPA) [3]. In nonrelativistic
BCS superfluids it is possible to argue that the RPA-based theory satisfies the correspond-
ing GWI. To our knowledge, neither a relativistic version of Nambu’s integral equations nor
a complete proof of the gauge invariance of the RPA-based linear response theory for rela-
tivistic BCS superfluids have been explicitly presented. Since a major goal of this paper is
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to advocate the CFOP theory of relativistic Fermi superfluids, we will limit our discussions
on Nambu’s integral-equation approach.

This paper is organized as the following. Sec. II briefly reviews a microscopic theory for
relativistic BCS superfluids that will be the foundation of this work. Sec. III presents the
CFOP formalism and we explain in more detail how our theory respects gauge invariance
in Sec. IV. Sec. V gives the explicit expressions of the response functions from our CFOP
approach. Sec. VI, Sec. VII, and Sec. VIII show some applications of the CFOP theory to
the collective modes, compressibility, and the Meissner effect for a relativistic BCS super-
fluid. We briefly discuss a relativistic version of Nambu’s integral-equation approach and its
associated GWIs in Sec. IX. Sec. X concludes our work. Some details and conventions are
given in the Appendix.

II. MICROSCOPIC THEORY OF RELATIVISTIC FERMI SUPERFLUIDS

Several relativistic models of a two-component BCS superfluids have been formulated in
Refs. [12–17] and we briefly review the model following the BCS-Leggett mean field theory
[12, 15] without any external gauge field here. The Lagrangian density is

L(x) =
∑

σ=↑,↓

ψ̄σ(iγ
µ∂µ −m+ µγ0)ψσ + LI(x), (1)

where ψ, ψ̄ are Dirac spinors which denote the fermion fields with mass m and chemical
potential µ. The representation of the γ−matrix and some useful properties are given in
Appendix A. Throughout this paper, we take the convention e = c = ~ = 1 and use σ to
denote the pseudo-spin ↑ and ↓ with ↑= − ↓ and σ̄ = −σ. The pseudo-spin may refer to
some internal degrees of freedom such as the color indices in quantum chromodynamics. LI

describes the attractive pairing interactions between particles with different pseudo-spins
and it takes the form [13]

LI(x) = g(ψT
↑ Ciγ5ψ↓)(ψ̄↓iγ5Cψ̄

T
↑ ), (2)

where g is the attractive coupling constant, and the charge conjugation matrix C is defined
as C = iγ0γ2. The gap function that is also the order parameter is given by ∆(x) =
g〈ψT

↑ Ciγ5ψ↓〉. The standard BCS approximation then gives

LBCS(x) =
∑

σ=↑,↓

ψ̄σ(iγ
µ∂µ −m+ µγ0)ψσ +∆∗(ψT

↑ Ciγ5ψ↓) + ∆(ψ̄↓iγ5Cψ̄
T
↑ ). (3)

The corresponding form of the Hamiltonian density is then given by

HBCS(x) =
∑

σ=↑,↓

ψ̄σ(−i~γ · ∇+m− µγ0)ψσ −∆∗(ψT
↑ Ciγ5ψ↓)−∆(ψ̄↓iγ5Cψ̄

T
↑ ). (4)

In the broken-symmetry phase the order parameter may be chosen to be real. Here we
present our theory in Matsubara formalism, which is applicable to both zero and finite
temperature T . We will focus on T = 0 results and a generalization to finite T within the
BCS approximation is straightforward. To simplify the notation, we group the imaginary
time τ = it and x as a four-vector x = (τ,x) and define

O(x) = eHBCSτO(x)e−HBCSτ (5)
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where HBCS =
∫
d3xHBCS(x). The single particle Green’s function and anomalous Green’s

function are given by

G(x, x′) = −〈Tτ [ψ↑(x)ψ̄↑(x
′)]〉, F (x, x′) = −〈Tτ [ψ↑(x)ψ

T
↓ (x

′)C]〉, (6)

where Tτ denotes the τ -order of operators. When HBCS is time-independent, G and F
depend only on the difference τ − τ ′. Let x+ = (τ + 0+,x). The gap function can be
expressed as

∆(x) = gTr
[
iγ5F (x, x

+)
]
. (7)

The number density for each species is defined by nσ(x) = 〈ψ̄σ(x)γ
0ψσ(x)〉 = 〈ψ†

σ(x)ψσ(x)〉.
It can be also calculated from the single particle Green’s function nσ(x) = Tr

[
γ0G(x, x+)

]
.

Therefore, the total fermion number is given by

n =

∫
d3x(n↑(x) + n↓(x)) = 2

∫
d3xTr

[
γ0G(x, x+)

]
. (8)

It can be shown that the Green’s function and anomalous Green’s function satisfy the
following equations of motion

[−γ0∂τ + i~γ · ∇ − (m− µγ0)]G(x, x′) + i∆γ5F̃ (x, x
′) = δ(x− x′)14×4, (9)

[−γ0∂τ + i~γ · ∇ − (m− µγ0)]F (x, x′) + i∆γ5G̃(x, x
′) = 0, (10)

where G̃(x, x′) = CGT (x′, x)C, F̃ (x, x′) = γ0F †(x′, x)γ0, 14×4 is the four-dimensional iden-
tity matrix, and δ(x− x′) = δ(τ − τ ′)δ(x− x′). Here we define the fermion four-momentum
at finite temperature as P = (iωn,p), where ωn is the fermionic Matsubara frequency given
by ωn = (2n + 1)πkBT , where kB is the Boltzmann constant. The quasi-particle energies

are given by E±
p =

√
ξ±2
p +∆2 with ξ±p = ǫp ± µ and ǫp =

√
p2 +m2. With the help of the

energy projectors

Λ±(p) =
1

2
[1±

γ0(~γ · p+m)

ǫp
], (11)

the solution of G and F in momentum space are

G(P, µ) =
[u−2

p Λ+(p)

iωn − E−
p

+
v−2
p Λ+(p)

iωn + E−
p

+
u+2
p Λ−(p)

iωn + E+
p

+
v+2
p Λ−(p)

iωn − E+
p

]
γ0, (12)

F (P, µ) =
[u−pv−pΛ+(p)

iωn − E−
p

−
u−pv

−
pΛ+(p)

iωn + E−
p

+
u+pv

+
pΛ−(p)

iωn − E+
p

−
u+pv

+
pΛ−(p)

iωn + E+
p

]
iγ5, (13)

where u±2
p = 1

2
(1+

ξ±p

E±
p

) and v±2
p = 1

2
(1−

ξ±p

E±
p

). The energy projectors Λ+(p) and Λ−(p) project

out the contributions from the fermion and anti-fermion respectively. In the nonrelativistic
limit where |p| ≪ m, |µ − m| ≪ m and ∆ ≪ m, one gets Λ+(p) ≃ 1 and Λ−(p) ≃ 0
so our expressions reduce to the well-known nonrelativistic results. By taking the Fourier
transform of Eq.(8), the fermion number is given by n = 2

∑
P Tr[γ0G(P, µ)], which is the

number difference between the fermions and anti-fermions

n = n+ − n− = 4
∑

p

[
u−2
p f(E−

p ) + v−2
p f(−E−

p )
]
− 4

∑

p

[
(u+2

p f(E+
p ) + v+2

p f(−E+
p ))

]
, (14)



5

where n± denote the density of fermion and anti-fermion. The Fermi momentum kF is
defined by n = 2k3F/(3π

2), and the Fermi energy is ǫF =
√
k2F +m2. The Fourier transform

of Eq. (7) gives ∆ = g
∑

P Tr[iγ5F (P, µ)], which leads to the gap equation

1

g
=

∑

p

(1− 2f(E−
p )

E−
p

+
1− 2f(E+

p )

E+
p

)
. (15)

In the nonrelativistic limit, the number equation (14) and gap equation (15) reduce to the
well-known nonrelativistic results except a factor of 2 on both right-hand sides. This factor
of 2 comes from the fact that we have introduced the pseudo-spin, which brings two times
more degrees of freedom.

Since the model is not renormalizable in 3 + 1 dimensions, a regularization or a momen-
tum cutoff Λ is needed. The relativistic limit of the BCS state depends on the Compton
wavelength λc = m−1 [15]. If kF ≫ 1/λc = m, the system evolves into the relativistic regime.
It has been shown that this model can be generalized to describe the BCS - Bose-Einstein
condensation (BEC)- relativistic BEC crossover [15] of Fermi gases.

To further compactify our expressions, we reformulate the relativistic BCS theory in the
Nambu formalism [1, 2]. This is more convenient for the discussions on the linear response
to an external electromagnetic field. We introduce the Nambu-Gorkov spinors

Ψ(x) =

(
ψ↑(x)
Cψ̄T

↓ (x)

)
, Ψ̄(x) = (ψ̄↑(x), ψ

T
↓ (x)C).

Moreover, we define

σ+ =
1

2
(σ1 + iσ2), σ− =

1

2
(σ1 − iσ2), σ̄+ =

1

2
(σ0 + σ3), σ̄− =

1

2
(σ0 − σ3). (16)

in Nambu space. One can show that ∆ = g〈Ψ̄iγ5σ−Ψ〉 and its Fourier transform is ∆q =
g
∑

p
〈Ψ̄piγ5σ−Ψp+q〉. Similarly one can show that

LBCS = Ψ̄
(
iγµ∂µ −m+ µγ0σ3

)
Ψ+ Ψ̄

(
∆iγ5σ+ +∆∗iγ5σ−

)
Ψ (17)

The Lagrangian density can be written as LBCS = Ψ̄Ĝ−1Ψ, where the inverse propagator in
momentum space is given by

Ĝ−1(P, µ) = −〈Tτ [ΨpΨ̄p]〉 = (iωn + µσ3)γ
0 − ~γ · p−m+∆iγ5σ1. (18)

After evaluating the inverse of the right-hand-side, one gets the expression of the propa-
gator (see Appendix B)

Ĝ(P, µ) =

=
[( u−2

p

iωn −E−
p

+
v−2
p

iωn + E−
p

)
Λ+(p) +

( u+2
p

iωn + E+
p

+
v+2
p

iωn − E+
p

)
Λ−(p)

]
γ0σ̄+

+
[( u+2

p

iωn −E+
p

+
v+2
p

iωn + E+
p

)
Λ+(p) +

( u−2
p

iωn + E−
p

+
v−2
p

iωn − E−
p

)
Λ−(p)

]
γ0σ̄−

+
[ Λ+(p)∆

(iωn)2 − E−2
p

+
Λ−(p)∆

(iωn)2 − E+2
p

]
iγ5σ+ +

[ Λ+(p)∆

(iωn)2 − E+2
p

+
Λ−(p)∆

(iωn)2 −E−2
p

]
iγ5σ−. (19)
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From Eqs. (12) and (13), one finds that

Ĝ(P, µ) =

(
G(P, µ) F (P, µ)
F (P,−µ) G(P,−µ)

)
. (20)

Moreover, the number equation (14) and gap equation (7) can also be rewritten in Nambu
space as

n =
∑

P

Tr
[
σ3γ

0Ĝ(P, µ)
]
, ∆ =

g

2

∑

P

Tr
[
σ1iγ5Ĝ(P, µ)

]
. (21)

The expression (19) of the propagator in Nambu space can be further simplified to a more

instructive form. We define the operator Êp = γ0(~γ · p +m) − µσ3 −∆γ0iγ5σ1 in Nambu
space and also introduce the projectors

Λ̂+(p) ≡

[
Λ+(p) 0

0 Λ−(p)

]
, Λ̂−(p) ≡ 1− Λ̂+(p) =

[
Λ−(p) 0

0 Λ+(p)

]
. (22)

Then the propagator becomes (see Appendix.C)

Ĝ(P, µ) =
[ û−2

p

iωn − E−
p

+
v̂−2
p

iωn + E−
p

+
û+2
p

iωn + E+
p

+
v̂+2
p

iωn − E+
p

]
γ0, (23)

where the coefficients are given by

û±p =
(E±

p ∓ Êp)Λ̂∓(p)

2E±
p

, v̂±p =
(E±

p ± Êp)Λ̂∓(p)

2E±
p

. (24)

Those coefficients are the counterparts (in Nambu space) of the coefficients u±p and v±p .

III. GAUGE-INVARIANT LINEAR RESPONSE THEORY

We consider fermions and anti-fermions coupled to a weak external EM field Aµ(x). The
derivative ∂µ in the Lagrangian density (1) should be replaced by the covariant derivative
Dµ = ∂µ + iAµ(x), which results in the interacting term LA(x) = −

∑
σ=↑,↓ ψ̄σγ

µψσAµ =

−JµAµ. In Nambu space, one can show that LA = −Ψ̄γµσ3ΨAµ.
The corresponding Hamiltonian density is HA(x) = −LA(x). Gauge invariance of a

microscopic linear response theory with respect to an external EM field is made possible by
considering the perturbations due to the fluctuations of the order parameter in a consistent
fashion. The nonrelativistic version of the CFOP method has been extensively studied
[6, 18, 19] and here we will develop a relativistic version of this method.

In equilibrium, the order parameter is given by ∆. We assume that the deviation of the
order parameter from its equilibrium is small and denote the small perturbation by ∆′(x).
Therefore, ∆ in Eq.(17) is replaced by ∆ → ∆ + ∆′. Then the Hamiltonian density splits
into two parts: the equilibrium expression and the part containing the deviation. Explicitly,
HBCS = HBCS0 +H′ where

HBCS0 = Ψ̄
(
− i~γ · ∇ +m− µγ0σ3 −∆iγ5σ1

)
Ψ (25)



7

and

H′ = Ψ̄
(
∆1iγ5σ1 +∆2iγ5σ2 + /Aσ3

)
Ψ. (26)

Here ∆′ = −(∆1 − i∆2) and ∆′∗ = −(∆1 + i∆2). ∆1 and ∆2 are the negative real and
imaginary parts of the fluctuations of the order parameter. The Hamiltonian HBCS becomes

HBCS = HBCS0 +H ′ (27)

=
∑

p

Ψ̄p

(
~γ · p+m− µγ0σ3 −∆iγ5σ1

)
Ψp +

∑

pq

Ψ̄p+q

(
∆1qiγ5σ1 +∆2qiγ5σ2 + /Aqσ3

)
Ψp

The interaction term may be considered as a scalar product Φ̂T
q · Σ̂, where

Φ̂q = (∆1q,∆2q, Aµq)
T , Σ̂ = (σ1iγ5, σ2iγ5, σ3γ

µ)T , (28)

are the generalized external potential and the generalized vertex function. To calculate the
linear response of a relativistic Fermi superfluid to the perturbation H ′, we introduce the
response-function vector ~η:

~η(τ,q) =
∑

p

〈Ψ̄p(τ)Σ̂Ψp+q(τ)〉, (29)

where ηµ3 ≡ Jµ corresponds to the current due to the external field and η1,2 denote the
perturbations due to the fluctuations of the gap function. The covariant index µ should not
be confused with the chemical potential. The linear response theory is then written in a
matrix form

~η(τ,q) =
↔
Q(τ,q) · Φ̂q

=




Q11(τ,q) Q12(τ,q) Qν

13(τ,q)
Q21(τ,q) Q22(τ,q) Qν

23(τ,q)
Qµ

31(τ,q) Q
µ
32(τ,q) Q

µν
33 (τ,q)








∆1q

∆2q

Aνq



 . (30)

The response functions Qij are

Qij(τ − τ ′,q) = −
∑

pp′

〈Tτ [Ψ̄p(τ)Σ̂iΨp+q(τ)Ψ̄p′+q(τ
′)Σ̂jΨp′(τ ′)]〉. (31)

Using a Fourier transform and making use of Wick’s theorem, we obtain

Qij(iΩl,q) = TrT
∑

iωn

∑

pp′

Σ̂iĜp+q,p′+q(iωn + iΩl)Σ̂jĜp,p′(iωn)

= TrT
∑

iωn

∑

p

Σ̂iĜ(P +Q, µ)Σ̂jĜ(P, µ), (32)

where Q = (iΩl,q), Ωl is the boson Matsubara frequency, Ĝp,p′(iωn) = Ĝp(iωn)δp,p′ , and

Ĝp(iωn) ≡ Ĝ(P, µ) = 1
iωn−Êp

γ0. Inserting the above relations into Eq. (32), the linear

response matrix is given by

Qij(iΩl,q) = T
∑

iωn

∑

p

Tr
(
Σ̂i

1

iωn + iΩl − Êp+q

γ0Σ̂j

1

iωn − Êp

γ0
)
. (33)
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Next we show that if the fluctuations of the order parameter are formulated as shown in
Eq. (26), our microscopic linear response theory is explicitly gauge invariant. Applying the
condition η1,2 = −2

g
∆1,2 consistent with the gap equation to Eqs. (30), we find

∆1 = −
Qν

13Q̃22 −Qν
23Q12

Q̃11Q̃22 −Q12Q21

Aν ,

∆2 = −
Qν

23Q̃11 −Qν
13Q21

Q̃11Q̃22 −Q12Q21

Aν . (34)

where Q̃11 ≡
2
g
+Q11 and Q̃22 ≡

2
g
+Q22. After substituting the results into

Jµ ≡ η3 = Qµ
31∆1 +Qµ

32∆2 +Qµν
33Aν , (35)

we get Jµ = KµνAν = (Kµν
0 + δKµν)Aν . Here K

µν
0 = Qµν

33 and

δKµν = −
Q̃11Q

µ
32Q

ν
23 + Q̃22Q

µ
31Q

ν
13 −Q12Q

µ
31Q

ν
23 −Q21Q

µ
32Q

ν
13

Q̃11Q̃22 −Q12Q21

. (36)

The gauge invariance condition qµJ
µ = 0 leads to qµK

µν(Q) = 0, where qµ ≡ Q = (iΩl,q)
is the covariant form of the four-momentum. This condition is explicitly satisfied if the
response functions satisfy the generalized Ward identities

qµQ
µ
31 = −2i∆Q21,

qµQ
µ
32 = −2i∆Q̃22,

qµQ
µν
33 = −2i∆Qν

23. (37)

The derivations of these GWIs will be given in a moment. Firstly we show that the response
functions indeed satisfy those GWIs. We observe that

qµK
µν = −2i∆Qν

23 + 2i∆
Q̃11Q̃22Q

ν
23 + Q̃22Q21Q

ν
13 −Q12Q21Q

ν
23 −Q21Q̃22Q

ν
13

Q̃11Q̃22 −Q12Q21

= −2i∆Qν
23 + 2i∆Qν

23 = 0. (38)

The proof of the GWIs (37) is sketched here. Our starting point is the expression (32).
In what follows we will use the covariant form of the four-momentum pµ ≡ P = (iωn,p) and
P interchangeably. Moreover,

∑
P ≡ T

∑
iωn

∑
p
. If we apply the analytical continuation

iωn → ω + iδ, then
∑

P =
∫

d4P
(2π)4

. By using the notation /p = γ0iωn − ~γ · p we can express

the bare and full propagators in Nambu space as

Ĝ−1
0 (P, µ) = /p−m+ σ3µγ

0,

Ĝ−1(P, µ) = Ĝ−1
0 (P, µ)− Σ̂, (39)

where the self-energy in Nambu space is Σ̂ = −∆σ1iγ5 and should not be confused with the
effective vertex function Σ̂. Those expressions give

σ3Ĝ
−1(P +Q, µ)− Ĝ−1(P, µ)σ3 = /qσ3 + 2i∆σ2iγ5. (40)

Eq. (40) will lead to the GWI (37). One can show that

qµQ
µ
31 + 2i∆Q21
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= Tr
∑

P

[(
σ3(Ĝ

−1(P +Q, µ)− Ĝ−1(P, µ)σ3
)
Ĝ(P +Q, µ)σ1iγ5Ĝ(P, µ)

]

= −2Tr
∑

P

[
σ2γ5Ĝ(P, µ)

]

= 0, (41)

where Eqs. (E1) has been used. Similarly, for the second GWI we can show that

qµQ
µ
32 + 2i∆Q22

= Tr
∑

P

[
σ3σ2iγ5Ĝ(P, µ)

]
− Tr

∑

P

[
Ĝ(P +Q, µ)iγ5σ2σ3

]

= −2iTr
∑

P

[
σ1iγ5Ĝ(P, µ)

]

= −
4i

g
∆, (42)

where in the last line we have used Eq. (21). Therefore we get the second GWI qµQ
µ
32 =

−2i∆(Q22 +
2
g
∆) = −2i∆Q̃22. For the last GWI of Eq. (37), we have

qµQ
µν
33 + 2i∆Qν

23

= Tr
∑

P

[
γνĜ(P, µ)

]
− Tr

∑

P

[
Ĝ(P +Q, µ)γν

]

= 0. (43)

This completes the proof.

IV. MORE ABOUT GAUGE INVARIANCE

We have seen how the gauge invariance condition is satisfied by our response functions.
Here we will clarify some subtleties from a generalized interaction picture. In our linear
response theory, the Lagrangian density after the BCS approximation is given by

LBCS = LBCS0 + L′

= Ψ̄
(
iγµ∂µ −m+ µγ0σ3 +∆iγ5σ1

)
Ψ− Ψ̄

(
∆1iγ5σ1 +∆2iγ5σ2 + /Aσ3

)
Ψ. (44)

One can show that it is invariant under the generalized infinitesimal gauge transformation

Ψ → (1 + iσ3χ)Ψ,

Ψ̄ → Ψ̄(1− iσ3χ),

∆ → ∆,

Aµ → Aµ − ∂µχ,

∆1 → ∆1,

∆2 → ∆2 + 2∆χ. (45)

Under this transformation the two parts of the Lagrangian density transform as

LBCS0 → LBCS0 − Ψ̄σ3/∂χΨ + iχΨ̄∆iγ5[σ1, σ3]Ψ
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= LBCS0 − Ψ̄σ3/∂χΨ + 2χΨ̄∆iγ5σ2Ψ,

L′ → L′ − 2χΨ̄∆iγ5σ2Ψ+ Ψ̄σ3/∂χΨ. (46)

Therefore LBCS is invariant under the generalized infinitesimal gauge transformation (45).
Here we emphasize that the transformation (45) only keeps terms linear in χ in the linear
response theory.

The original mean-field Lagrangian density (17) with a real ∆ is not gauge invariant if
the order parameter ∆ is not perturbed by the gauge transformation. To circumvent this we
assume that the effects are absorbed into the fluctuations of the order parameter ∆′ while
the equilibrium value of ∆ is unchanged. From ∆(x) = g〈ψT

↑ Ciγ5ψ↓〉 and ∆2 = Im∆′ we see
that only the imaginary part of the order parameter is perturbed by ψ↑↓ → (1+ iχ)ψ↑↓ while
the (negative) real part is not, Therefore the perturbations from the gauge transformation
are δ∆1 = 0 and δ∆2 = 2iχ∆. It is the gauge transformation of ∆2 that cancels the term
associated with ∆ in the generalized gauge transformation and leads to the gauge invariance
of the Lagrangian density.

As shown in Section.III, the perturbative Lagrangian density can be written as Ψ̄Φ̂T
q ·Σ̂Ψ,

where Φ̂ and Σ̂ are defined by Eq. (28). In fact Φ̂ may be viewed as the generalized external

gauge field and Σ̂ may be viewed as the generalized vertex function. In our theory, there
are three different spaces: (i) the two-dimensional Nambu space where the Pauli matri-
ces live, (ii) the four-dimensional representation space of the Clifford Algebra in which the
γ−matrices live, and (iii) a three-dimensional space which we will define as the generalized

gauge space, where the generalized external potential Φ̂ and generalized vertex function Σ̂

are defined. Thus the transformation (45) is the corresponding generalized gauge transfor-
mation of the generalized external gauge field. Explicitly,

Φ̂ → Φ̂+




0
2∆χ
−∂µχ


 . (47)

In momentum space −∂µχ becomes −iqµχ. We define the generalized external momentum as
q̂ ≡ (0, 2i∆, qµ)

T in the generalized gauge space. Then the generalized gauge transformation
(47) can be written as

Φ̂ → Φ̂− iq̂χ. (48)

We saw that the Lagrangian density is invariant under the generalized gauge transformation
(45) and now we want to find the corresponding GWI. By using the form of generalized
external momentum, Eq. (40) becomes

σ3Ĝ
−1(P +Q, µ)− Ĝ−1(P, µ)σ3 = /qσ3 + 2i∆σ2iγ5 = q̂T · Σ̂. (49)

This is the GWI associated with the generalized gauge symmetry.
Next we adress what the conserved generalized current associated with this gauge trans-

formation should be. Using the self-consistent condition η1,2 = −2
g
∆1,2, Eq. (30) can be

written as



0
0
Jµ


 =



Q̃11 Q12 Qν

13

Q21 Q̃22 Qν
23

Qµ
31 Qµ

32 Qµν
33







∆1

∆2

Aν


 . (50)
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We then define the generalized current Ĵ ≡ (0, 0, Jµ)T and three generalized response-
function vectors

Q̂1 =



Q̃11

Q21

Qµ
31


 , Q̂2 =



Q12

Q̃22

Qµ
32


 , Q̂

µ
3 =



Qµ

13

Qµ
23

Qµν
33


 . (51)

Then the generalized current (50) becomes

Ĵ = (Q̂1, Q̂2, Q̂
µ
3 ) · Φ̂, (52)

The GWIs (37) for the response functions can also be written as

q̂T · Q̂i = 0 for i = 1, 2, 3. (53)

Thus the GWIs directly lead to the conservation of the generalized current

q̂T · Ĵ = (q̂T · Q̂1, q̂
T · Q̂2, q̂

T · Q̂µ
3 ) · Φ̂ = 0. (54)

This gives

qµJ
µ = 0. (55)

Therefore Ĵ is indeed the conserved current associated with the generalized gauge transfor-
mation. We see that the generalized gauge transformation leads to the usual U(1) gauge
invariance of our linear response theory. Importantly, the GWI (49) for the generalized
vertex function is exact since there are no high order corrections to the vertex in the linear
response theory. Thus we have proved that our CFOP theory is indeed gauge invariant.

V. EXPRESSIONS OF THE RESPONSE FUNCTIONS

It will greatly simplify our expressions of the response functions from the CFOP approach
if we sort out the odevities of them first. Here we list the main results and leave the details
in Appdex.E. The odevity of the response functions about the four-momentum Q = (iΩl,q)
is

Qij(iΩl,q) = (−1)(δ
2i+δ2j)Qij(−iΩl,−q). (56)

The odevity about the gauge indices i, j is given by

Qji(iΩl,q) = (−1)(δ
2i+δ2j )Qij(iΩl,q). (57)

The odevity about the boson Matsubara frequency iΩl is relatively complicated. For i =
j = 1, 2 we have

Qii(iΩl,q) = Qii(−iΩl,q). (58)

For i = j = 3 we have

Qµν
33 (iΩl,q) =

{
Qµν

33 (−iΩl,q) if µ = ν = 0 or µ = i, ν = j
−Qµν

33 (−iΩl,q) if µ = 0, ν = i or µ = i, ν = 0
(59)
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For i = 1, j = 2 we have

Q12(iΩl,q) = −Q12(−iΩl,q). (60)

For i = 1, j = 3 we have

Qµ
13(iΩl,q) =

{
Qµ

13(−iΩl,q) if µ = 0
−Qµ

13(−iΩl,q) if µ = i
(61)

For i = 2, j = 3 we have

Qµ
23(iΩl,q) =

{
−Qµ

23(−iΩl,q) if µ = 0
Qµ

23(−iΩl,q) if µ = i
(62)

After sorting out the odevities, the expressions of the response functions can be derived.
After summing the Matsubara frequencies, Eq. (33) becomes

Qij(iΩl,q) =
∑

p

∫
dǫ1

∫
dǫ2Tr

(f(ǫ1)− f(ǫ2)

ǫ1 − ǫ2 − iΩl

Σ̂iδ(ǫ1 − Êp+q)γ
0Σ̂jδ(ǫ2 − Êp)γ

0
)
. (63)

The δ-function operator can be decomposed as (see Appendix.C)

δ(ǫ− Êp) = û−p δ(ǫ− E−
p ) + v̂−p δ(ǫ+ E−

p ) + û+pδ(ǫ+ E+
p ) + v̂+p δ(ǫ− E+

p ). (64)

We define the coherence coefficients as

(u±u±)ij = Tr[Σ̂iû
±
p+qγ

0Σ̂j û
±
pγ

0], (u∓u±)ij = Tr[Σ̂iû
∓
p+qγ

0Σ̂j û
±
pγ

0],

(u±v±)ij = Tr[Σ̂iû
±
p+qγ

0Σ̂j v̂
±
p γ

0], (u∓v±)ij = Tr[Σ̂iû
∓
p+qγ

0Σ̂j v̂
±
p γ

0],

(v±u±)ij = Tr[Σ̂iv̂
±
p+qγ

0Σ̂jû
±
pγ

0], (v∓u±)ij = Tr[Σ̂iv̂
∓
p+qγ

0Σ̂j û
±
pγ

0],

(v±v±)ij = Tr[Σ̂iv̂
±
p+qγ

0Σ̂j v̂
±
p γ

0], (v∓v±)ij = Tr[Σ̂iv̂
∓
p+qγ

0Σ̂j v̂
±
p γ

0]. (65)

The response functions can be explicitly written down as

Qij(iΩl,q)

=
∑

p

[ (
f(E−

p+q)− f(E−
p )

)
(u−u−)ij

E−
p+q −E−

p − iΩl

−

(
1− f(E−

p+q)− f(E−
p )

)
(u−v−)ij

E−
p+q + E−

p − iΩl

−

(
1− f(E−

p+q)− f(E+
p )

)
(u−u+)ij

E−
p+q + E+

p − iΩl

+

(
f(E−

p+q)− f(E+
p )

)
(u−v+)ij

E−
p+q − E+

p − iΩl

−

(
1− f(E−

p+q)− f(E−
p )

)
(v−u−)ij

E−
p+q + E−

p + iΩl

+

(
f(E−

p+q)− f(E−
p )

)
(v−v−)ij

E−
p+q −E−

p + iΩl

+

(
f(E−

p+q)− f(E+
p )

)
(v−u+)ij

E−
p+q − E+

p + iΩl

−

(
1− f(E−

p+q)− f(E+
p )

)
(v−v+)ij

E−
p+q + E+

p + iΩl

−

(
1− f(E+

p+q)− f(E−
p )

)
(u+u−)ij

E+
p+q + E−

p + iΩl

+

(
f(E+

p+q)− f(E−
p )

)
(u+v−)ij

E+
p+q − E−

p + iΩl

+

(
f(E+

p+q)− f(E+
p )

)
(u+u+)ij

E+
p+q − E+

p + iΩl

−

(
1− f(E+

p+q)− f(E+
p )

)
(u+v+)ij

E+
p+q + E+

p + iΩl
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+

(
f(E+

p+q)− f(E−
p )

)
(v+u−)ij

E+
p+q − E−

p − iΩl

−

(
1− f(E+

p+q)− f(E−
p )

)
(v+v−)ij

E+
p+q + E−

p − iΩl

−

(
1− f(E+

p+q)− f(E+
p )

)
(v+u+)ij

E+
p+q + E+

p − iΩl

+

(
f(E+

p+q)− f(E+
p )

)
(v+v+)ij

E+
p+q − E+

p − iΩl

]
. (66)

If Qij is an even function of iΩl, the expression reduces to

Qij(iΩl,q) =

∑

p

[ (
f(E−

p+q)− f(E−
p )

)(
E−

p+q − E−
p

)
(
E−

p+q − E−
p

)2
− (iΩl)2

(
(u−u−)ij + (v−v−)ij

)

−

(
1− f(E−

p+q)− f(E−
p )

)(
E−

p+q + E−
p

)
(
E−

p+q + E−
p

)2
− (iΩl)2

(
(u−v−)ij + (v−u−)ij

)

−

(
1− f(E−

p+q)− f(E+
p )

)(
E−

p+q + E+
p

)
(
E−

p+q + E+
p

)2
− (iΩl)2

(
(u−u+)ij + (v−v+)ij

)

+

(
f(E−

p+q)− f(E+
p )

)(
E−

p+q − E+
p

)
(
E−

p+q − E+
p

)2
− (iΩl)2

(
(u−v+)ij + (v−u+)ij

)

+ terms with super-indices (+ ↔ −)
]
. (67)

If Qij is an odd function of iΩl, the expression reduces to

Qij(iΩl,q) =

iΩl

∑

p

[ f(E−
p+q)− f(E−

p )(
E−

p+q −E−
p

)2
− (iΩl)2

(
(u−u−)ij − (v−v−)ij

)

−
1− f(E−

p+q)− f(E−
p )(

E−
p+q + E−

p

)2
− (iΩl)2

(
(u−v−)ij − (v−u−)ij

)

−
1− f(E−

p+q)− f(E+
p )(

E−
p+q + E+

p

)2
− (iΩl)2

(
(u−u+)ij − (v−v+)ij

)

+
f(E−

p+q)− f(E+
p )(

E−
p+q −E+

p

)2
− (iΩl)2

(
(u−v+)ij − (v−u+)ij

)

− terms with super-indices (+ ↔ −)
]
. (68)

The coherence coefficients are listed in Appendix.F.

VI. COLLECTIVE MODE CONTRIBUTION TO RESPONSE FUNCTIONS

In Section III one saw that the conservation of the induced current qµJ
µ = 0 requires

qµK
′µν(Q)A′

ν = 0, where A′
µ andK

′µν(Q) are an external field and its corresponding response
kernel. In general, if one applies a gauge transformation Aµ = A′

µ−iqµχ, the response kernel
transforms as K ′µν(Q) → Kµν(Q) and the gauge invariant condition requires qµK

µν(Q)Aν =



14

0. From the gauge invariance condition qµK
′µν
0 (Q)A′

ν = 0, one obtains iχ = − qµK
′µνAν

qαK ′αβqβ
.

Using the gauge invariance condition again one obtains

Kµν = K ′µν −
K ′µλqλqδK

′δν

qαK ′αβqβ
. (69)

This is the general expression of how the response kernel transforms under gauge trans-
formations. Clearly, the zeros of qµK

′µνqν = 0, if exist, indicate the presence of collective
excitations. In the following we will show that the massless Nambu-Goldstone boson indeed
contributes. We simplify the expression of Kµν by the response functions we obtained so
far. Following the discussions in Ref. [18], we rewrite Kµν in a more compact form

Kµν = K ′µν
0 + δK ′µν (70)

with

K ′µν
0 = Qµν

33 −
Qµ

31Q
ν
13

Q̃11

, δK ′µν = −
Q′µ

32Q
′ν
23

Q̃′
22

, (71)

where

Q′µ
32 = Qµ

32 −
Q12

Q̃11

Qµ
31, Q̃′

22 = Q̃22 −
Q12Q21

Q̃11

. (72)

By using the GWI (37) and the symmetry (E9), one can show that

δK ′µν = −
K ′µλ

0 qλqδK
′δν
0

qαK
′αβ
0 qβ

. (73)

This implies that Kµν can be thought of as a functional of Kµν
0 and the denominator of the

second term is expressed as qµK
′µν
0 qν = 4∆2Q̃′

22. This expression is useful in the analysis
of the dispersion of collective modes because an expansion around a small four-momentum
around the pole of Kµν gives the dispersion of the Goldstone boson. We suggest that it is the
contribution of the Goldstone boson that leads the kernel to respect the gauge invariance
condition. After making the analytical continuation iΩl → Ω + iδ, the dispersion of the
collective mode at T = 0 is evaluated wtih Ω → 0 and q → 0. Note that q → 0 does not
imply that the system is in the nonrelativistic limit. One necessary condition for that limit
is kF ≪ m.

A. Nonrelativistic Limit

In this limit, all contributions from the negative energy states vanish since Λ−(p) ≃ 0.
Therefore, we have

Q̃22(ω,q) =
∑

p

ω2 − (ξ−p+q − ξ−p )
2

E−
p+qE

−
p

E−
p+q + E−

p

ω2 − (E−
p+q + E−

p )
2

B(p,q)

2ǫp+qǫp
, (74)

where B(p,q) = ǫp+qǫp + ǫ2p +p ·q is defined in Appendix.F and we have omitted the term
proportional to A(p,q) since limq→0A(p,q) = 0. Due to the particle-hole symmetry, Q12

vanishes identically. Therefore Q̃′
22 = Q̃22 so we only need to find a solution to Q̃22 = 0.
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As q → 0, ξ−p ≃ p2

2m
− (µ − m) = p2

2m
− µ−, where µ− plays the role of the conventional

nonrelativistic chemical potential.
At zero temperature, we keep the lowest order terms of ω and q of Q̃22 and it becomes

Q̃22(ω,q) ≃ −
N(0)

2

∫ +∞

−∞
dξ−p

∫ 1

−1

dcosθ
ω2 − q2p2cos2θ

m2

E−2
p

1

2E−
p

= −
N(0)

2

∫ +∞

−∞
dξ−p

( ω2

E−3
p

−
1

3

q2p2

m2

1

E−3
p

)

= −
N(0)

∆2

(
ω2 −

2

3

q2µ−

m

)
, (75)

where we have used p2 = 2m(ξ−p + µ−) and N(0) is the density of states near the Fermi

surface. Note that µ− ≃ ǫF =
k2
F

2m
in BCS theory so we found

Q̃22(ω,q) ≃ −
N(0)

∆2

(
ω2 −

1

3

q2k2F
m2

)
= −

N(0)

∆2

(
ω2 − c2sq

2
)
, (76)

where cs =
1√
3

kF
m

= 1√
3
vF is the sound speed of a BCS superfluid. Thus Q̃22(0, 0) = 0 indeed

and the expansion shows the dispersion ω = csq of the massless Goldstone boson.

B. Relativistic Limit

Next we consider an ultra-relativistic BCS superfluid which is characterized by kF ≫ m
and ∆ ≪ µ ≃ ǫF =

√
k2F +m2 ≃ kF . Again the anti-fermion contribution can be safely

ignored and due to the particle-hole symmetry we have Q12 = 0. Note that ξ−p+q ≃ ξ−p + q ·
∇ξ−p = ξ−p + q·p

ǫp
. Therefore we have

Q̃22(ω,q) ≃ −
1

4π2

∫ +∞

0

dpp2
∫ 1

−1

dcosθ
ω2 − q2p2cos2θ

ǫ2
p

E−2
p

1

2E−
p

= −
1

4π2

∫ +∞

0

dpp2
( ω2

E−3
p

−
1

3

q2p2

ǫ2p

1

E−3
p

)

= −
1

4π2

∫ +∞

0

dpp2
( 1

E−3
p

(ω2 −
q2

3
) +

1

3

q2m2

ǫ2p

1

E−3
p

)
, (77)

where p2 = ǫ2p − m2 has been used. The second term in the big bracket is at most of the

leading order of m2

µ3 . Since m≪ kF ≃ µ, it can be ignored. Therefore Q̃22(0, 0) = 0 and the

expansion of Q̃22(ω,q) leads to ω = 1√
3
q so the contribution from the massless Goldstone

boson is clearly demonstrated. The dispersion also implies cs =
1√
3
, which is a well-known

result for ultra-relativistic BCS theory.

VII. COMPRESSIBILITY FROM RESPONSE FUNCTION

The isothermal compressibility is given by κ ≡ n−2(∂n/∂µ). Here the density suscepti-
bility can be inferred from the response functions by [20]

∂n

∂µ
= −K00(ω = 0,q → 0). (78)
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At T = 0, the number equation (14) and the gap equation (15) are

n = 2
∑

p

( ξ+p
E+

p

−
ξ−p
E−

p

)
, (79)

1

g
=

∑

p

( 1

E−
p

+
1

E+
p

)
. (80)

The density susceptibility can be obtained from these two equations. We treat ∆ as a
function ∆(µ) of µ. Differentiating the gap equation with respect to µ one obtains

∂∆

∂µ
=

∑
p

( ξ−p

E−3
p

−
ξ+p

E+3
p

)

∆
∑

p

(
1

E−3
p

+ 1
E+3

p

) . (81)

Differentiating the number equation with respect to µ and using the above result, one gets

∂n

∂µ
= 2∆2

∑

p

( 1

E−3
p

+
1

E+3
p

)
+

2
[∑

p

( ξ−p

E−3
p

−
ξ+p

E+3
p

)]2

∑
p

(
1

E−3
p

+ 1
E+3

p

) . (82)

Next we check if K00(0,q → 0) can give the same density susceptibility. When ω = 0,
Q0

23 = Q0
32 = Q12 = Q21 = 0. Therefore from Eq.(36) we have

K00(0,q) = Q00
33(0,q)−

Q0
13(0,q)Q

0
31(0,q)

Q̃11(0,q)
. (83)

In the limit q → 0, one gets B(p, 0) = 2 and A(p, 0) = 0. Then at T = 0 one has

Q00
33(0,q → 0) = −2∆2

∑

p

( 1

E−3
p

+
1

E+3
p

)
,

Q0
13(0,q → 0) = Q0

31(0,q → 0) = −2∆
∑

p

( ξ−p
E−3

p

−
ξ+p
E+3

p

)
,

Q̃11(0,q → 0) =
2

g
+Q11(0,q → 0)

= 2
∑

p

( 1

E−
p

+
1

E+
p

)
− 2

∑

p

( ξ−2
p

E−3
p

+
ξ+3
p

E+3
p

)

= 2∆2
∑

p

( 1

E−3
p

+
1

E+3
p

)
. (84)

After comparing this with Eq. (82), one finds that Eq. (78) is indeed satisfied. This consis-
tency implies that the approximation of the fermion propagator is compatible with that of
the response functions. Thus we emphasize that the collective-mode contribution is impor-
tant in maintaining the integrity of the CFOP formalism.
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VIII. MEISSNER EFFECT AND SUPERFLUID DENSITY

The Meissner effect can be demonstrated by examining the behavior of the response

kernel
↔
Kij(0,q) as q → 0. In the previous section, we have learned that

↔
Kij =

↔
Kij

0 + δ
↔
Kij,

where
↔
Kij

0 =
↔
Qij

33 and

δ
↔
Kij = −

Q̃11Q
i
32Q

j
23 + Q̃22Q

i
31Q

j
13 − 2Q12Q

i
31Q

j
23

Q̃11Q̃22 −Q12Q21

(85)

denoting the contribution from collective modes. However, in our model we found that col-
lective mode effects do not contribute to the transverse components of the response functions
in this limit and should not affect the Meissner effect. This is verified as the following. A ten-

sor
↔
P ij can always be decomposed into the longitudinal and the transverse parts PL and PT ,

where PL = q̂·
↔
P ·q̂ and PT = (

∑
i

↔
P ii−PL)/2. Assuming that q is parallel to the z-axis, in the

limit q → 0 among all components of the response functions only Qz
31 and Qz

32 do not vanish
to the first order of q. From this we conclude that limq→0Q3i ·Q3j = limq→0 q̂ ·Q3iQ3j · q̂.
This means that the transverse component of the tensor Q3iQ3j vanishes in the limit q → 0.

Therefore the transverse part of
↔
K receives no contribution from the collective modes so we

only need to consider
↔
Kij

0 =
↔
Qij

33 in the study of the Meissner effect. Defining p̂ ≡ p/ǫp, the
longitudinal and transverse parts of the response functions are given by

lim
q→0

↔
Kij

0L(0,q) = 4

∫
d3p

(2π)3
p̂ip̂j

(∂f(E−
p )

∂E−
p

+
∂f(E+

p )

∂E+
p

)
, (86)

lim
q→0

↔
Kij

0T (0,q) = 4

∫
d3p

(2π)3
(δij − p̂ip̂j)

[(
1 +

ξ+p ξ
−
p −∆2

E+
pE

−
p

)f(E−
p ) + f(E+

p )− 1

E−
p + E+

p

+
(
1−

ξ+p ξ
−
p −∆2

E+
pE

−
p

)f(E−
p )− f(E+

p )

E−
p − E+

p

]
(87)

Now we focus on the nonrelativistic BCS limit where ξ+p ≃ E+
p ≃ 2m (since µ ≃ m),

ǫp ≃ m and µ−,∆ ≪ m. Here a suitable regularization is needed to give physical results.
This is done by subtracting the vacuum contribution from Kij , i.e., Kij(Q) → Kij(Q) −
Kij(Q)|T=∆=0,µ=m. Finally we have

lim
q→0

↔
K ij

0L(0,q) = 4

∫
d3p

(2π)3
pipj

m2

∂f(E−
p )

∂E−
p

+O(
1

m3
), (88)

lim
q→0

↔
Kij

0T (0,q) = 4
δij

m

∫
d3p

(2π)3

[
u−2
p f(E−

p ) + v−2
p f(−E−

p )
]
+O(

1

m3
)

= 2
δij

m
nNR +O(

1

m3
), (89)

where nNR is the fermion number in the nonrelativistic limit. Therefore, from J i = KijAj

we get the well-known London equation

J(q) = −
2

m

(
A(q)nNR +

2

m

∫
d3p

(2π)3
p
(
p ·A(q)

)∂f(E−
p )

∂E−
p

)

= −
2

m
A(q)nNR

(
1 +

1

3π2mnNR

∫ +∞

0

dpp4
∂f(E−

p )

∂E−
p

)
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= −
2

m
A(q)ns, (90)

where

ns = nNR −
1

3π2mnNR

∫ +∞

0

dpp4
(
−
∂f(E−

p )

∂E−
p

)
(91)

is the nonrelativistic superfluid density. Again the extra factor 2 in the London equation
comes from the fact that we introduce the pseudo-spin σ =↑, ↓ so there are two times more
degrees of freedom.

IX. NAMBU’S INTEGRAL EQUATION FOR RELATIVISTIC BCS

SUPERFLUIDS

Before closing our discussions on the CFOP theory of relativistic BCS superfluids, we
present a generalization of Nambu’s integral-equation approach. For nonrelativistic BCS
superfluids, the spontaneously broken U(1) symmetry can be restored in the linear response
theory by Nambu’s approach [2]. In conventional BCS theory, the self-energy of the fermion
is approximated by an integral equation which consists of a ladder approximation for the
electron-phonon interaction. Nambu proposed that the EM vertex in the linear response
theory should be corrected in the same way as the self energy. Hence the EM vertex function
also follows the integral equation

Γ̂NR
µ (P +Q,P ) = γ̂NR

µ (P +Q,P )−

gNR
∑

K

σ3Ĝ
NR(K +Q)Γ̂NR

µ (K +Q,K)ĜNR(K)σ3, (92)

where the superscript “NR” denotes the corresponding nonrelativistic quantities. Explicitly,
the solution to this equation should be an EM vertex that respects the GWIs. For the
relativistic BCS model, following similar arguments we will derive the corresponding integral
equation for the EM vertex.

In Section III, we found that the bare polarization function Kµν
0 = Qµν

33 does not satisfy
the gauge-invariance condition qµK

µν
0 = 0. This is because the collective modes which

correspond to the fluctuations of the order parameter also contribute to response functions.
The EM vertex without collective-mode effects in Nambu space is given by

γ̂µ = σ3γ
µ =

(
γµ 0
0 −γµ

)
. (93)

Then the bare polarization function (see Eq. (33)) can be written as

Kµν
0 (Q) = Tr

∑

P

(
γ̂µĜ(P +Q, µ)γ̂νĜ(P, µ)

)
. (94)

The violation of the conservation law can be traced back to the use of the full fermion
propagator and the bare EM vertex simultaneously [1, 3] so the approximations of the fermion
propagator and EM vertex are not treated on equal footing. In quantum electrodynamics,
the gauge invariance, or equivalently the Ward identity, can be maintained order by order.
However, the generalized Ward identity is not respected even at the tree level for both
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relativistic and nonrelativistic BCS models if the approximations for the vertex and the self
energy are different.

For the bare EM vertex γ̂µ in the relativistic BCS theory, one has

qµγ̂
µ(Q) = /qσ3 = σ3Ĝ

−1
0 (P +Q, µ)− Ĝ−1

0 (P, µ)σ3. (95)

Note that the bare propagator appears in the identity. Thus a gauge invariant EM vertex
must satisfy

qµΓ̂
µ(Q) = σ3Ĝ

−1(P +Q, µ)− Ĝ−1(P, µ)σ3. (96)

If we define the correction of the EM vertex as Γ̂µ(Q) − γ̂µ(Q) = δΓ̂µ(Q), then from the
two equations above and Eqs. (39), one can get the GWI which is associated with the self
energy:

qµδΓ̂
µ(Q) = Σ̂σ3 − σ3Σ̂ = 2i∆σ2iγ5. (97)

One possible method to respect the GWI (96) or (97), as pointed out by Nambu [2], is to

treat the full EM vertex Γ̂µ in the same way as how the self energy is approximated. That
is, the full EM vertex of relativistic BCS superfluids should satisfy the integral equation

Γ̂µ(Q) = γ̂µ(Q)− 2g
∑

P

σ3

[
Ĝ(P, µ)Γ̂µ(Q)Ĝ(P +Q, µ) + Ĝ(P,−µ)Γ̂µ(Q)Ĝ(P +Q,−µ)

]
σ3

= γ̂µ(Q)− 2g
∑

P

∑

σ=±1

σ3Ĝ(P, σµ)Γ̂
µ(Q)Ĝ(P +Q, σµ)σ3. (98)

To prove the gauge invariance of the above vertex Γ̂µ(Q), we substitute Eq. (98) into the
GWI (96). After rearranging both sides, we only need to prove that

2i∆σ2iγ5 = −2g
∑

P

∑

σ=±1

σ3Ĝ(P, σµ)qµΓ̂
µ(Q)Ĝ(P +Q, σµ)σ3. (99)

Details of the proof of this equation is in Appendix.D. Therefore, the vertex given by the
integral equation (98) respects the GWI, or in other words, the theory is gauge invariant.
Moreover, from the proof in Appendix.D we conclude that any truncation of the integral
equation can not produce a gauge invariant vertex since terms of different orders of g in
Eq. (D4) cancel each other.

Interestingly, as pointed out also by Nambu [2], for the nonrelativistic BCS theory, the
integral equation is not only consistent with the generalized Ward identity associated with
the EM vertex but also consist with the GWIs associated with three other interaction vertices
(as shown in Eq. (4.4) of ref. [2]). Moreover, the integral equation of the EM vertex is a
vector equation while the GWI is a scalar equation, they have different degrees of freedom so
there is no strict one-to-one correspondence between the solutions to the integral equation
and the EM vertex respecting the GWI.

For the relativistic BCS theory, those conclusions should remain the same. Hence the
integral equation (98) is not equivalent to the GWI associated with the EM interaction.
What is equivalent to the GWI is the contracted integral equation given by

qµΓ̂
µ(Q) = qµγ̂

µ(Q)− 2g
∑

P

∑

σ=±1

σ3Ĝ(P, σµ)qµΓ̂
µ(Q)Ĝ(P +Q, σµ)σ3. (100)
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Since Eq. (98) satisfies the GWI, we can also derive the GWI from Eq. (100). Thus any vertex
obeying the GWI (96) must satisfy Eq. (100) but not necessarily Eq. (98). Substituting
Eq. (96) into Eq. (100), the right-hand side becomes

/qσ3 − 2g
∑

P

∑

σ=±1

σ3Ĝ(P, σµ)
(
σ3Ĝ

−1(P +Q, σµ)− Ĝ−1(P, σµ)σ3
)
Ĝ(P +Q, σµ)σ3

= /qσ3 − 2g
∑

P

∑

σ=±1

(
σ3Ĝ(P, σµ)− Ĝ(P, σµ)σ3

)

= qµΓ̂
µ(Q) (left-hand side). (101)

Therefore it is the contracted integral equation (100) that is equivalent to the GWI but

not the integral equation (98). A Comparison with the vertex Γ̂µ determined by the latter

shows that the vertex Γ̂′µ determined by Eq. (100) may differ by a gauge transformation

Γ̂′µ = Γ̂µ+χ̂µ, where χ̂µ satisfies the Lorentz equation qµχ̂
µ = 0. Such gauge transformations

correspond to, for example, χ̂µ = ∂µf̂ , where f̂ is a matrix of harmonic functions in Nambu
space.

In Section IV, we derived the generalized vertex function Σ̂ in the generalized gauge
space. In Nambu space we would like to investigate the vertex Γ̂′µ and show that the GWI
(49) will reduce to Eq. (96). Eqs. (34) can be written as

∆1 = −

∣∣∣∣
Qµ

13 Q12

Qµ
23 Q̃22

∣∣∣∣
∣∣∣∣
Q̃11 Q12

Q21 Q̃22

∣∣∣∣
Aµ = −Πµ

1Aµ, , ∆2 =

∣∣∣∣
Qµ

13 Q̃11

Qµ
23 Q21

∣∣∣∣
∣∣∣∣
Q̃11 Q12

Q21 Q̃22

∣∣∣∣
Aµ = Πµ

2Aµ, (102)

where Πµ
1,2 satisfy qµΠ

µ
1 = 0 and qµΠ

µ
2 = −2i∆ by noting Eq.(37). Therefore the gauge

invariant vertex Γ̂′µ is given by

Γ̂′µ = γ̂µ − Πµ
1σ1iγ5 −Πµ

2σ2iγ5, (103)

which obviously obeys the GWI

qµΓ̂
′µ = /qσ3 − 2∆σ2γ5 = σ3Ĝ

−1(P +Q, µ)− Ĝ−1(P, µ)σ3. (104)

As we have discussed previously, since Γ̂′µ satisfies the GWI, it should obey Eq. (100). Hence

it can differ from Γ̂µ given by Eq. (98) by a matrix function χ̂µ at most. Moreover, the EM
response kernel is now expressed as

Kµν(Q) = Tr
∑

P

(
Γ̂′µĜ(P +Q, µ)γ̂νĜ(P, µ)

)
, (105)

where Eq.(36) has been used. Compare to the bare response kernel (94), the GWI (104)
leads to the gauge invariance condition of the full response kernel qµK

µν(Q) = 0.
Although a solution to the integral equation gives a gauge invariant vertex, it is a great

challenge to find a solution. We emphasize that the integral equation (98) for the relativistic
BCS theory should be implemented when one seeks gauge-invariant response functions.
Previous work based on RPA approximations [3] implemented an iterative method without
explicitly showing the complete integral equation for the relativistic BCS model. Further
investigations of Nambu’s integral-equation approach are needed for a better comparison
between the results from the two approaches.
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X. CONCLUSION

The CFOP approach to the linear response functions of relativistic BCS superfluids re-
stores the gauge invariance of the response functions of an external EM field. The man-
ageable computability of this theory allows one to explore several interesting phenomena
including collective modes, compressibility, and Meissner effect. Importantly, this approach
leads to a consistent expression for the compressibility. When the pairing interaction is
tunable, a BCS superfluid may exhibit a BCS - Bose-Einstein condensation (BEC) - rela-
tivistic BEC crossover [12]. Interesting issues may be raised in the linear response theory
of a relativistic BCS superfluid in the crossover. Our CFOP approach could provide some
useful tools for investigating those issues.

CCC acknowledges the support of the U. S. Department of Energy through the LANL/LDRD
Program.

Appendix A: Spinor conventions

Here we use the Weyl or chiral representation of the γ−matrices,

γ0 =

(
0 I
I 0

)
, γi = −γi =

(
0 σi

−σi 0

)
, γ5 =

(
−I 0
0 I

)
. (A1)

The metric is chosen as ηµν = diag(1,−1,−1,−1). The charge conjugation matrix C is
defined as C = iγ0γ2, which satisfies C2 = −I, C† = CT = −C and [γ5, C] = 0. The
γ−matrices satisfy γµ∗ = γ0γµTγ0 and CγµTC = γµ. The energy projectors satisfies

γ0Λ±(p) = Λ±(−p)γ0,

iγ5Λ±(p) = Λ∓(−p)iγ5,

γ0iγ5Λ±(p) = Λ∓(p)γ
0iγ5, (A2)

and

σ̄+Λ−(p) + σ̄−Λ−(p) + σ̄+Λ+(p) + σ̄+Λ−(p) = 1. (A3)

Appendix B: The Fermion Propagator in Nambu Space

From Eq.(18), the Fermion propagator in Nambu space is

Ĝ(P, µ) =
[
γ0(iωn + µσ3 − γ0~γ · p−mγ0 +∆iγ0γ5σ1)

]−1

=
[
(iωn)

2 − (k2 +m2 +∆2 + µ2) + 2µγ0(m+ ~γ · p)σ3
]−1

×(iωn − µσ3 + γ0~γ · p+mγ0 −∆iγ0γ5σ1)γ
0. (B1)

This can be written in a more compact form as

Ĝ(P, µ) = (B2)[
(iωn)

2 − ǫ2p −∆2 − µ2 − 2µγ0(m+ ~γ · p)σ3
][
iωn − µσ3 + γ0(m+ ~γ · p)−∆iγ0γ5σ1

]
γ0

(
(iωn)2 − ǫ2p −∆2 − µ2

)2
− 4µ2ǫ2p
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Note that γ0(m + ~γ · p) = ǫp
(
Λ+(p) − Λ−(p)

)
and σ3 = σ̄+ − σ̄−. The first part of the

numerator can be evaluated as

(iωn)
2 − ǫ2p −∆2 − µ2 − 2µγ0(m+ ~γ · p)σ3

=
(
(iωn)

2 −E+2
p

)(
σ̄+Λ+(p) + σ̄−Λ−(p)

)
+
(
(iωn)

2 − E−2
p

)(
σ̄−Λ+(p) + σ̄+Λ−(p)

)
.(B3)

The second part of the numerator can be evaluated as

iωn − µσ3 + γ0(m+ ~γ · p)−∆iγ0γ5σ1

= (iωn + ξ−p )σ̄+Λ+(p) + (iωn + ξ+p )σ̄−Λ+(p) + (iωn − ξ+p )σ̄+Λ−(p) + (iωn − ξ−p )σ̄−Λ−(p).

Note that ξ±p = (u±2
p − v±2

p )E±
p and u±2

p + v±2
p = 1. One has

iωn − µσ3 + γ0(m+ ~γ · p)−∆iγ0γ5σ1

=
[
u−2
p (iωn + E−

p ) + v−2
p (iωn − E−

p )
]
σ̄+Λ+(p)

+
[
u+2
p (iωn + E+

p ) + v+2
p (iωn − E+

p )
]
σ̄−Λ+(p)

+
[
u+2
p (iωn −E+

p ) + v+2
p (iωn + E+

p )
]
σ̄+Λ−(p)

+
[
u−2
p (iωn −E−

p ) + v−2
p (iωn + E−

p )
]
σ̄−Λ−(p). (B4)

The denominator becomes
(
(iωn)

2 − ǫ2p −∆2 − µ2
)2

− 4µ2ǫ2p = ((iωn)
2 −E−2

p )((iωn)
2 −E+2

p ). (B5)

After substituting Eqs. (B3), (B4) and (B5) into the expression of Ĝ(P, µ) and using σ̄+σ1 =
σ+ and σ̄−σ1 = σ−, we have

Ĝ(P, µ)

=
[( u−2

p

iωn −E−
p

+
v−2
p

iωn + E−
p

)
Λ+(p) +

( u+2
p

iωn + E+
p

+
v+2
p

iωn − E+
p

)
Λ−(p)

]
γ0σ̄+

+
[( u+2

p

iωn −E+
p

+
v+2
p

iωn + E+
p

)
Λ+(p) +

( u−2
p

iωn + E−
p

+
v−2
p

iωn − E−
p

)
Λ−(p)

]
γ0σ̄−

+
[ Λ+(p)∆

(iωn)2 − E−2
p

+
Λ−(p)∆

(iωn)2 − E+2
p

]
iγ5σ+ +

[ Λ+(p)∆

(iωn)2 − E+2
p

+
Λ−(p)∆

(iωn)2 −E−2
p

]
iγ5σ−. (B6)

Appendix C: δ-function operator and general properties of functions of ǫ− Êp

We would like to evaluate an arbitrary function with the argument ǫ− Êp, where Êp =
γ0(~γ ·p+m)−µσ3−∆γ0iγ5σ1. Following the derivation of Eq. (B4) (µ→ −µ ⇒ E+

p ↔ E−
p

and γ0(~γ · p+m) → −γ0(~γ · p+m) ⇒ Λ+(p) ↔ Λ−(p)), we have

ǫ− Êp

= (ǫ+ ξ+p )σ̄+Λ−(p) + (ǫ+ ξ−p )σ̄−Λ−(p) + (ǫ− ξ−p )σ̄+Λ+(p) + (ǫ− ξ+p )σ̄−Λ+(p)

+ ∆γ0iγ5σ1

=
[
u+2
p (ǫ+ E+

p ) + v+2
p (ǫ−E+

p )
]
σ̄+Λ−(p) +

[
u−2
p (ǫ+ E−

p ) + v−2
p (ǫ− E−

p )
]
σ̄−Λ−(p)

+
[
u−2
p (ǫ− E−

p ) + v−2
p (ǫ+ E−

p )
]
σ̄+Λ+(p) +

[
u+2
p (ǫ− E+

p ) + v+2
p (ǫ+ E+

p )
]
σ̄−Λ+(p)
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+ u+pv
+
p

(
(ǫ+ E+

p )− (ǫ− E+
p )

)(
σ̄+Λ−(p) + σ̄−Λ+(p)

)
γ0iγ5σ1

+ u−pv
−
p

(
(ǫ+ E−

p )− (ǫ− E−
p )

)(
σ̄+Λ+(p) + σ̄−Λ−(p)

)
γ0iγ5σ1. (C1)

Explicitly, the four components of ǫ− Êp in Nambu space are

ǫ− Êp = û−p (ǫ− E−
p ) + v̂−p (ǫ+ E−

p ) + û+p (ǫ+ E+
p ) + v̂+p (ǫ−E+

p ), (C2)

where

û−p =

[
u−2
p Λ+(p) −u−pv

−
pΛ+(p)γ

0iγ5
−u−pv

−
pΛ−(p)γ

0iγ5 v−2
p Λ−(p)

]
, (C3)

v̂−p =

[
v−2
p Λ+(p) u−pv

−
pΛ+(p)γ

0iγ5
u−pv

−
pΛ−(p)γ

0iγ5 u−2
p Λ−(p)

]
, (C4)

û+p =

[
u+2
p Λ−(p) u+pv

+
pΛ−(p)γ

0iγ5
u+pv

+
pΛ+(p)γ

0iγ5 v+2
p Λ+(p)

]
, (C5)

v̂+p =

[
v+2
p Λ−(p) −u+pv

+
pΛ−(p)γ

0iγ5
−u+pv

+
pΛ+(p)γ

0iγ5 u+2
p Λ+(p)

]
. (C6)

The four components of Êp in Nambu space explicitly are Êp =
[
(v+2

p − u+2
p )E+

pΛ− + (u−2
p − v−2

p )E−
pΛ+ −2(E+

p u
+
pv

+
pΛ− + E−

p u
−
pv

−
pΛ+)γ

0iγ5
−2(E+

p u
+
pv

+
pΛ+ + E−

p u
−
pv

−
pΛ−)γ

0iγ5 (u+2
p − v+2

p )E+
pΛ+ + (v−2

p − u−2
p )E−

pΛ−

]
.(C7)

We have omitted the argument p of Λ±. After comparing those expressions, one finds that

û−p =
(E−

p + Êp)Λ̂+(p)

2E−
p

, v̂−p =
(E−

p − Êp)Λ̂+(p)

2E−
p

, (C8)

û+p =
(E+

p − Êp)Λ̂−(p)

2E+
p

, v̂+p =
(E+

p + Êp)Λ̂−(p)

2E+
p

. (C9)

It can be verified that the operators û and v̂ also satisfy the following properties

û±2
p = û±p , v̂

±2
p = v̂±p , (C10)

û±p v̂
±
p = v̂±p û

±
p = û±p û

∓
p = û±p v̂

∓
p = v̂±p û

∓
p = v̂±p v̂

∓
p = 0. (C11)

After multiplying ǫ− Êp by itself, one gets

(ǫ− Êp)
n = û−p (ǫ− E−

p )
n + v̂−p (ǫ+ E−

p )
n + û+p (ǫ+ E+

p )
n + v̂+p (ǫ− E+

p )
n, (C12)

where n is a positive integer. One can find that Eq. (C12) holds for n = 0, too. Interestingly,
from Eq. (B6) one can see that the case n = −1 is also valid by inspecting the expression of
G(P, µ)γ0:

(ǫ− Êp)
−1 = û−p (ǫ− E−

p )
−1 + v̂−p (ǫ+ E−

p )
−1 + û+p (ǫ+ E+

p )
−1 + v̂+p (ǫ− E+

p )
−1. (C13)

Following the same argument,

(ǫ− Êp)
−n = û−p (ǫ− E−

p )
−n + v̂−p (ǫ+ E−

p )
−n + û+p (ǫ+ E+

p )
−n + v̂+p (ǫ− E+

p )
−n. (C14)
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That means that Eq. (C12) holds for any integer n. For any function F (ǫ− Êp) , we have
the expansion

F (ǫ− Êp) = û−pF (ǫ−E−
p ) + v̂−pF (ǫ+ E−

p ) + û+pF (ǫ+ E+
p ) + v̂+pF (ǫ− E+

p ). (C15)

Thus,

e−i(ǫ−Êp)t = û−p e
−i(ǫ−E−

p )t + v̂−p e
−i(ǫ+E−

p )t + û+p e
−i(ǫ+E+

p )t + v̂+p e
−i(ǫ−E+

p )t. (C16)

By Fourier transform we get

δ(ǫ− Êp) = û−p δ(ǫ− E−
p ) + v̂−p δ(ǫ+ E−

p ) + û+pδ(ǫ+ E+
p ) + v̂+p δ(ǫ− E+

p ). (C17)

Appendix D: Integral equation of EM vertex and GWI

Before proving that a vertex determined by the integral equation (98) must obey the
Ward identity (41), or equivalently, verifying Eq.(99), we prove the following identity.

2g
∑

P

∑

σ=±1

(
σ3Ĝ(P, σµ)− Ĝ(P, σµ)σ3

)
= −2i∆σ2iγ5 = Σ̂σ3 − σ3Σ̂. (D1)

The left-hand side of (D1) is

= 4g

(
0

∑
P

(
F (P, µ) + F (P,−µ)

)

−
∑

P

(
F (P, µ) + F (P,−µ)

)
0

)

= 4i∆g


 0

∑
p

(1−2f(E−
p )

2E−
p

+
1−2f(E+

p )

2E+
p

)
γ5

−
∑

p

(1−2f(E−
p )

2E−
p

+
1−2f(E+

p )

2E+
p

)
γ5 0




= −2i∆σ2iγ5, (D2)

where the gap equation (15) has been used. From Σ̂ = Ĝ−1
0 (P, µ)− Ĝ−1(P, µ) one concludes

that

Ĝ(P, µ)Ĝ−1
0 (P, µ) = 1 + Ĝ(P, µ)Σ̂, Ĝ−1

0 (P, µ)Ĝ(P, µ) = 1 + Σ̂Ĝ(P, µ). (D3)

Now we turn to the proof of Eq.(99) by considering the right-hand side. By substituting
Eq.(98) into the right-hand side and repeating the process, we get an iterative equation

RHS of Eq. (99)

= −2g
∑

Pσ

σ3Ĝσ(P )qµγ
µ(Q)Ĝσ(P +Q)σ3

+(2g)2
∑

P1P2σ

σ3Ĝσ(P1)σ3Ĝσ(P2)qµγ
µ(Q)Ĝσ(P2 +Q)σ3Ĝσ(P1 +Q)σ3 + · · ·

=

∞∑

i=1

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)qµγ
µ(Q)Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 +Q)σ3

=
∞∑

i=1

(−2g)i
∑

P1···Piσ

i∏

k=1

[
σ3Ĝσ(Pk)

]
qµγ

µ(Q)
i∏

k=1

[
Ĝσ(Pi+1−k)σ3

]
, (D4)
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where we have defined Ĝσ(P ) = Ĝ(P, σµ) to shorten the expression. After inserting the
Ward identity (95) for the bare EM vertex and using Eqs.(D3), we get

RHS of Eq.(99)

=
∞∑

i=1

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)σ3Ĝ
−1
0σ (Pi +Q)Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 +Q)σ3

−

∞∑

i=1

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)Ĝ
−1
0σ (Pi)σ3Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 +Q)σ3

= −2g
∑

Pσ

(
σ3Ĝσ(P )− Ĝσ(P )σ3

)

+
∞∑

i=2

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)Ĝσ(Pi−1 +Q)σ3 · · · Ĝσ(P1 +Q)σ3

+

∞∑

i=1

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)σ3Σ̂Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 + Q)σ3

−

∞∑

i=2

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi−1)Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 +Q)σ3

−

∞∑

i=1

(−2g)i
∑

P1···Piσ

σ3Ĝσ(P1) · · ·σ3Ĝσ(Pi)Σ̂σ3Ĝσ(Pi +Q)σ3 · · · Ĝσ(P1 + Q)σ3. (D5)

By changing the dummy index i→ i+ 1 for the second and fourth summations, we get

RHS of Eq.(99)

= 2i∆σ2iγ5

−
∞∑

i=1

(−2g)i
∑

P1···Piσ

i∏

k=1

[
σ3Ĝσ(Pk)

]
2g

∑

Pi+1

[
σ3Ĝσ(Pi+1)− Ĝσ(Pi+1)σ3

] i∏

k=1

[
Ĝσ(Pi+1−k)σ3

]

+

∞∑

i=1

(−2g)i
∑

P1···Piσ

i∏

k=1

[
σ3Ĝσ(Pk)

][
σ3Σ̂− Σ̂σ3

] i∏

k=1

[
Ĝσ(Pi+1−k)σ3

]

= 2i∆σ2iγ5 = left-hand-side of Eq.(99), (D6)

where Eq.(D1) has been used. Therefore we have proved that any vertex that satisfies the
integral equation must also satisfy the Ward identity and hence must be gauge invariant.

Appendix E: the odevities and symmetries of the response functions

Since the energy projectors satisfy γ5Λ±(p) = Λ∓(−p)γ5, we have (See Eqs.(12) and
(13))

γ5G(P,−µ) = G(−P, µ)γ5,

γ5F (P,−µ) = F (−P, µ)γ5. (E1)

The energy projectors also satisfy γ0Λ±(p) = Λ±(−p)γ0 so we can conclude that

γ0G(P, µ) = G(P̄ , µ)γ0,
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γ0F (P, µ) = −F (P̄ , µ)γ0, (E2)

where P̄ ≡ (iωn,−p). The propagator in Nambu space (B6) can be written as

Ĝ(P, µ) = G(P, µ)σ̄+ +G(P,−µ)σ̄− + F (P, µ)σ+ + F (P,−µ)σ−. (E3)

Using Eqs. (E1), σ2σ± = −σ∓σ2 and σ2σ̄± = σ̄∓σ2 one can show that

σ2γ5Ĝ(P, µ) = σ3Ĝ(−P, µ)σ3σ2γ5. (E4)

Similarly, using Eqs. (E2), σ3σ± = −σ±σ3, and σ3σ̄± = σ̄±σ3 we have

σ3γ
0Ĝ(P, µ) = Ĝ(P̄ , µ)σ3γ

0. (E5)

Thus we can analyze the odevity of the response functions of the four-momentum. Explicitly,

Qij(iΩl,q) =
∑

P

Tr
[
(σ2γ5)

2Σ̂iĜ(P +Q, µ)Σ̂jĜ(P, µ)
]

= (−1)(2δ
1i+2δ1j+δ2i+δ2j )

∑

P

Tr
[
Σ̂iĜ(−P −Q, µ)Σ̂jĜ(−P, µ)

]

= (−1)(δ
2i+δ2j )

∑

P

Tr
[
Σ̂iĜ(−P −Q, µ)Σ̂jĜ(−P, µ)

]
. (E6)

Changing variables by P → −P , one gets

Qij(iΩl,q) = (−1)(δ
2i+δ2j)

∑

P

Tr
[
Σ̂iĜ(P −Q, µ)Σ̂jĜ(P, µ)

]
. (E7)

Therefore,

Qij(iΩl,q) ≡ Qij(Q) = (−1)(δ
2i+δ2j )Qij(−Q) ≡ (−1)(δ

2i+δ2j)Qij(−iΩl,−q). (E8)

Using the relation (E7), one can show that

Qji(iΩl,q) = (−1)(δ
2i+δ2j )Qij(iΩl,q). (E9)

Next we analyze the odevity of the response functions about the spatial components of the
momentum. Using Eq. (E5), for i, j 6= 3, one has

Qij(iΩl,q) =
∑

P

Tr
[
(σ3γ

0)2Σ̂iĜ(P +Q, µ)Σ̂jĜ(P, µ)
]

=
∑

P

Tr
[
Σ̂iĜ(P̄ + Q̄, µ)Σ̂jĜ(P̄ , µ)

]

=
∑

P

Tr
[
Σ̂iĜ(P + Q̄, µ)Σ̂jĜ(P, µ)

]

= Qij(iΩl,−q), (E10)

where in the third line we have changed variables by P → P̄ . For i = 1, 2; j = 3, with the
help of Eq. (E9), we only need to consider the case with i ≤ j. Thus

Qµ
i3(iΩl,q) = (−1)1+δµ0Qµ

i3(iΩl,−q). (E11)
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For i = j = 3, we get

Qµν
33 (iΩl,q) = (−1)δ

µ0+δν0Qµν
33 (iΩl,−q). (E12)

From the odevities of the response functions about the four-momentum (see Eq. (E8)) and
the spatial momentum (see Eqs. (E10), (E11), and (E12)), we derive the odevity of the
response functions about the boson Matubara frequency as follows. For i = j = 1, 2 we have

Qii(iΩl,q) = Qii(−iΩl,q). (E13)

For i = j = 3 we have

Qµν
33 (iΩl,q) =

{
Qµν

33 (−iΩl,q) if µ = ν = 0 or µ = i, ν = j
−Qµν

33 (−iΩl,q) if µ = 0, ν = i or µ = i, ν = 0
(E14)

For i = 1, j = 2 we have

Q12(iΩl,q) = −Q12(−iΩl,q). (E15)

For i = 1, j = 3 we have

Qµ
13(iΩl,q) =

{
Qµ

13(−iΩl,q) if µ = 0
−Qµ

13(−iΩl,q) if µ = i
(E16)

For i = 2, j = 3 we have

Qµ
23(iΩl,q) =

{
−Qµ

23(−iΩl,q) if µ = 0
Qµ

23(−iΩl,q) if µ = i
(E17)

Appendix F: Expressions of the Coherence Coefficients

For convenience, we introduce kµ = (ǫp,p) and k̄µ ≡ kµ = (ǫp,−p) so the energy
projectors can be rewritten as

Λ+(p) =
/k +m

2ǫp
γ0 = γ0

/̄k +m

2ǫp
,

Λ−(p) =
/̄k −m

2ǫp
γ0 = γ0

/k −m

2ǫp
, (F1)

which also satisfy

Λ+(p)γ5 = γ5
/k −m

2ǫp
γ0 = γ5γ

0
/̄k −m

2ǫp
= γ5Λ−(−p),

Λ−(p)γ5 = γ5
/̄k +m

2ǫp
γ0 = γ5γ

0 /k +m

2ǫp
= γ5Λ+(−p) (F2)

We define A(p,q) = ǫp+qǫp − ǫ2p − p · q and B(p,q) = ǫp+qǫp + ǫ2p + p · q, which satisfy
A(p,q) = A(−p,−q) and B(p,q) = B(−p,−q). By using the above relations and the the
identity

Tr
[
(/k

′
+m)γµ(/k +m)γν

]
= 4

[
k′µkν + k′νkµ − gµν(k · k′ −m2)

]
, (F3)
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we can show that

(u−u−)11 = (v−v−)11 =
1

2

(
1−

ξ−p+qξ
−
p −∆2

E−
p+qE

−
p

)B(p,q)

ǫp+qǫp
, (F4)

(u−u−)22 = (v−v−)22 =
1

2

(
1−

ξ−p+qξ
−
p +∆2

E−
p+qE

−
p

)B(p,q)

ǫp+qǫp
. (F5)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u−u−)µν33 + (v−v−)µν33

=





(
1 +

ξ−
p+q

ξ−p −∆2

E−

p+q
E−

p

)
B(p,q)
ǫp+qǫp

if µ = ν = 0
(
1 +

ξ−
p+q

ξ−p +∆2

E−

p+q
E−

p

)
(p+q)ipj+(p+q)jpi+δijA(p,q)

ǫp+qǫp
if µ = i and ν = j

(F6)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u−u−)µν33 − (v−v−)µν33 =
i

2

( ξ−p
E−

p

−
ξ−p+q

E−
p+q

)B(p,q)

ǫp+qǫp
. (F7)

(u−u−)013 + (v−v−)013 = −
∆(ξ−p + ξ−p+q)

E−
pE

−
p+q

B(p,q)

ǫp+qǫp
, (F8)

(u−u−)i13 − (v−v−)i13 = −∆
( 1

E−
p+q

+
1

E−
p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F9)

(u−u−)023 − (v−v−)023 = i∆
( 1

E−
p+q

−
1

E−
p

)B(p,q)

ǫp+qǫp
, (F10)

(u−u−)i23 + (v−v−)i23 =
i∆(ξ−p − ξ−p+q)

E−
pE

−
p+q

(p+ q)iǫp + piǫp+q

ǫp+qǫp
. (F11)

(u−v−)11 = (v−u−)11 =
1

2

(
1 +

ξ−p+qξ
−
p −∆2

E−
p+qE

−
p

)B(p,q)

ǫp+qǫp
. (F12)

(u−v−)22 = (v−u−)22 =
1

2

(
1 +

ξ−p+qξ
−
p +∆2

E−
p+qE

−
p

)B(p,q)

ǫp+qǫp
. (F13)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u−v−)µν33 + (v−u−)µν33

=






(
1−

ξ−
p+q

ξ−p −∆2

E−

p+q
E−

p

)
B(p,q)
ǫp+qǫp

if µ = ν = 0
(
1−

ξ−
p+q

ξ−p +∆2

E−

p+q
E−

p

)
(p+q)ipj+(p+q)jpi+δijA(p,q)

ǫp+qǫp
if µ = i and ν = j

(F14)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u−v−)µν33 − (v−u−)µν33 =
( ξ−p+q

E−
p+q

−
ξ−p
E−

p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F15)
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(u−v−)12 = −(v−u−)12 = −
i

2

( ξ−p
E−

p

+
ξ−p+q

E−
p+q

)B(p,q)

ǫp+qǫp
. (F16)

(u−v−)013 + (v−u−)013 =
∆(ξ−p + ξ−p+q)

E−
pE

−
p+q

B(p,q)

ǫp+qǫp
, (F17)

(u−v−)i13 − (v−u−)i13 = −∆
( 1

E−
p+q

−
1

E−
p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F18)

(u−v−)023 − (v−u−)023 = i∆
( 1

E−
p+q

+
1

E−
p

)B(p,q)

ǫp+qǫp
, (F19)

(u−v−)i23 + (v−u−)i23 = −
i∆(ξ−p − ξ−p+q)

E−
pE

−
p+q

(p+ q)iǫp + piǫp+q

ǫp+qǫp
. (F20)

(u+u+)11 = (v+v+)11 =
1

2

(
1−

ξ+p+qξ
+
p −∆2

E+
p+qE

+
p

)B(p,q)

ǫp+qǫp
. (F21)

(u+u+)22 = (v+v+)22 =
1

2

(
1−

ξ+p+qξ
+
p +∆2

E+
p+qE

+
p

)B(p,q)

ǫp+qǫp
. (F22)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u+u+)µν33 + (v+v+)µν33

=





(
1 +

ξ+
p+q

ξ+p −∆2

E+

p+q
E+

p

)
B(p,q)
ǫp+qǫp

if µ = ν = 0
(
1 +

ξ+
p+q

ξ+p +∆2

E+

p+q
E+

p

)
(p+q)ipj+(p+q)jpi+δijA(p,q)

ǫp+qǫp
if µ = i and ν = j

(F23)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u+u+)µν33 − (v+v+)µν33 = −
( ξ+p+q

E+
p+q

+
ξ+p
E+

p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F24)

(u+u+)12 = −(v+v+)12 =
i

2

( ξ+p
E+

p

−
ξ+p+q

E+
p+q

)B(p,q)

ǫp+qǫp
. (F25)

(u+u+)013 + (v+v+)013 =
∆(ξ+p + ξ+p+q)

E+
pE

+
p+q

B(p,q)

ǫp+qǫp
, (F26)

(u+u+)i13 − (v+v+)i13 = −∆
( 1

E+
p+q

+
1

E+
p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F27)

(u+u+)023 − (v+v+)023 = −i∆
( 1

E+
p+q

−
1

E+
p

)B(p,q)

ǫp+qǫp
, (F28)

(u+u+)i23 + (v+v+)i23 =
i∆(ξ+p − ξ+p+q)

E+
pE

+
p+q

(p+ q)iǫp + piǫp+q

ǫp+qǫp
. (F29)
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(u+v+)11 = (v+u+)11 =
1

2

(
1 +

ξ+p+qξ
+
p −∆2

E+
p+qE

+
p

)B(p,q)

ǫp+qǫp
. (F30)

(u+v+)22 = (v+u+)22 =
1

2

(
1 +

ξ+p+qξ
+
p +∆2

E+
p+qE

+
p

)B(p,q)

ǫp+qǫp
. (F31)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u+v+)µν33 + (v+u+)µν33

=






(
1−

ξ+
p+q

ξ+p −∆2

E+
p+q

E+
p

)
B(p,q)
ǫp+qǫp

if µ = ν = 0
(
1−

ξ+
p+q

ξ+p +∆2

E+

p+q
E+

p

)
(p+q)ipj+(p+q)jpi+δijA(p,q)

ǫp+qǫp
if µ = i and ν = j

(F32)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u+v+)µν33 − (v+u+)µν33 = −
( ξ+p+q

E+
p+q

−
ξ+p
E+

p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F33)

(u+v+)12 = −(v+u+)12 = −
i

2

( ξ+p
E+

p

+
ξ+p+q

E+
p+q

)B(p,q)

ǫp+qǫp
. (F34)

(u+v+)013 + (v+u+)013 =
∆(ξ+p + ξ+p+q)

E+
pE

+
p+q

B(p,q)

ǫp+qǫp
, (F35)

(u+v+)i13 − (v+u+)i13 = −∆
( 1

E+
p+q

−
1

E+
p

)ǫp+qp
i + ǫp(p+ q)i

ǫp+qǫp
. (F36)

(u+v+)023 − (v+u+)023 = −i∆
( 1

E+
p+q

+
1

E+
p

)B(p,q)

ǫp+qǫp
, (F37)

(u+v+)i23 + (v+u+)i23 = −
i∆(ξ+p − ξ+p+q)

E+
pE

+
p+q

(p+ q)iǫp + piǫp+q

ǫp+qǫp
. (F38)

Now we evaluate the “mixed” terms.

(u−u+)11 = (v−v+)11 =
1

2

(
1−

ξ−p+qξ
+
p +∆2

E−
p+qE

+
p

)A(p,q)
ǫp+qǫp

. (F39)

(u−u+)22 = (v−v+)22 =
1

2

(
1−

ξ−p+qξ
+
p −∆2

E−
p+qE

+
p

)A(p,q)
ǫp+qǫp

. (F40)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u−u+)µν33 + (v−v+)µν33

=






(
1 +

ξ−
p+q

ξ+p +∆2

E−

p+q
E+

p

)
A(p,q)
ǫp+qǫp

if µ = ν = 0

−
(
1 +

ξ−
p+q

ξ+p −∆2

E−

p+q
E+

p

)
(p+q)ipj+(p+q)jpi−δijB(p,q)

ǫp+qǫp
if µ = i and ν = j.

(F41)
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If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u−u+)µν33 − (v−v+)µν33 =
( ξ−p+q

E−
p+q

+
ξ+p
E+

p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F42)

(u−u+)12 = −(v−v+)12 =
i

2

( ξ+p
E+

p

−
ξ−p+q

E−
p+q

)A(p,q)
ǫp+qǫp

. (F43)

(u−u+)013 + (v−v+)013 =
∆(ξ−p+q − ξ+p )

E−
p+qE

+
p

A(p,q)

ǫp+qǫp
, (F44)

(u−u+)i13 − (v−v+)i13 = −∆
( 1

E−
p+q

−
1

E+
p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F45)

(u−u+)023 − (v−v+)023 = i∆
( 1

E−
p+q

+
1

E+
p

)A(p,q)
ǫp+qǫp

, (F46)

(u−u+)i23 + (v−v+)i23 =
i∆(ξ−p+q + ξ+p )

E−
p+qE

+
p

(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F47)

(u−v+)11 = (v−u+)11 =
1

2

(
1 +

ξ−p+qξ
+
p +∆2

E−
p+qE

+
p

)A(p,q)
ǫp+qǫp

. (F48)

(u−v+)22 = (v−u+)22 =
1

2

(
1 +

ξ−p+qξ
+
p −∆2

E−
p+qE

+
p

)A(p,q)
ǫp+qǫp

. (F49)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u−v+)µν33 + (v−u+)µν33

=





(
1−

ξ−
p+q

ξ+p +∆2

E−

p+q
E+

p

)
A(p,q)
ǫp+qǫp

if µ = ν = 0

−
(
1−

ξ−
p+q

ξ+p −∆2

E−

p+q
E+

p

)
(p+q)ipj+(p+q)jpi−δijB(p,q)

ǫp+qǫp
if µ = i and ν = j

(F50)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u−v+)µν33 − (v−u+)µν33 =
( ξ−p+q

E−
p+q

−
ξ+p
E+

p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F51)

(u−v+)12 = −(v−u+)12 = −
i

2

( ξ+p
E+

p

+
ξ−p+q

E−
p+q

)A(p,q)
ǫp+qǫp

. (F52)

(u−v+)013 + (v−u+)013 =
∆(ξ+p − ξ−p+q)

E+
pE

−
p+q

A(p,q)

ǫp+qǫp
, (F53)

(u−v+)i13 − (v−u+)i13 = −∆
( 1

E−
p+q

+
1

E+
p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F54)
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(u−v+)023 − (v−u+)023 = i∆
( 1

E−
p+q

−
1

E+
p

)A(p,q)
ǫp+qǫp

, (F55)

(u−v+)i23 + (v−u+)i23 = −
i∆(ξ−p+q + ξ+p )

E−
p+qE

+
p

(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F56)

(u+u−)11 = (v+v−)11 =
1

2

(
1−

ξ+p+qξ
−
p +∆2

E+
p+qE

−
p

)A(p,q)
ǫp+qǫp

. (F57)

(u+u−)22 = (v+v−)22 =
1

2

(
1−

ξ+p+qξ
−
p −∆2

E+
p+qE

−
p

)A(p,q)
ǫp+qǫp

. (F58)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u+u−)µν33 + (v+v−)µν33

=






(
1 +

ξ+
p+q

ξ−p +∆2

E+

p+q
E−

p

)
A(p,q)
ǫp+qǫp

if µ = ν = 0

−
(
1 +

ξ+
p+q

ξ−p −∆2

E+

p+q
E−

p

)
(p+q)ipj+(p+q)jpi−δijB(p,q)

ǫp+qǫp
if µ = i and ν = j

(F59)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u+u−)µν33 − (v+v−)µν33 = −
( ξ+p+q

E+
p+q

+
ξ−p
E−

p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F60)

(u+u−)12 = −(v+v−)12 =
i

2

( ξ−p
E−

p

−
ξ+p+q

E+
p+q

)A(p,q)
ǫp+qǫp

. (F61)

(u+u−)013 + (v+v−)013 =
∆(ξ−p − ξ+p+q)

E+
p+qE

−
p

A(p,q)

ǫp+qǫp
, (F62)

(u+u−)i13 − (v+v−)i13 = −∆
( 1

E+
p+q

−
1

E−
p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F63)

(u+u−)023 − (v+v−)023 = −i∆
( 1

E+
p+q

+
1

E−
p

)A(p,q)
ǫp+qǫp

, (F64)

(u+u−)i23 + (v+v−)i23 =
i∆(ξ+p+q + ξ−p )

E+
p+qE

−
p

(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F65)

(u+v−)11 = (v+u−)11 =
1

2

(
1 +

ξ+p+qξ
−
p +∆2

E+
p+qE

−
p

)A(p,q)
ǫp+qǫp

. (F66)

(u+v−)22 = (v+u−)22 =
1

2

(
1 +

ξ+p+qξ
−
p −∆2

E+
p+qE

−
p

)A(p,q)
ǫp+qǫp

. (F67)

If µ = ν = 0 or µ = i, ν = j, the 33-component is given by

(u+v−)µν33 + (v+u−)µν33
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=





(
1−

ξ+
p+q

ξ−p +∆2

E+

p+q
E−

p

)
A(p,q)
ǫp+qǫp

if µ = ν = 0

−
(
1−

ξ+
p+q

ξ−p −∆2

E+

p+q
E−

p

)
(p+q)ipj+(p+q)jpi−δijB(p,q)

ǫp+qǫp
if µ = i and ν = j

(F68)

If µ = 0, ν = i or µ = i, ν = 0, the 33-component is given by

(u+v−)µν33 − (v+u−)µν33 = −
( ξ+p+q

E+
p+q

−
ξ−p
E−

p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F69)

(u+v−)12 = −(v+u−)12 = −
i

2

( ξ−p
E−

p

+
ξ+p+q

E+
p+q

)A(p,q)
ǫp+qǫp

. (F70)

(u+v−)013 + (v+u−)013 =
∆(ξ+p+q − ξ−p )

E+
p+qE

−
p

A(p,q)

ǫp+qǫp
, (F71)

(u+v−)i13 − (v+u−)i13 = −∆
( 1

E+
p+q

+
1

E−
p

)(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F72)

(u+v−)023 − (v+u−)023 = −i∆
( 1

E+
p+q

−
1

E−
p

)A(p,q)
ǫp+qǫp

, (F73)

(u+v−)i23 + (v+u−)i23 = −
i∆(ξ+p+q + ξ−p )

E+
p+qE

−
p

(p+ q)iǫp − piǫp+q

ǫp+qǫp
. (F74)
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