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We present a measurement of the CP -violating parameter β
J/ψφ
s using approximately 6500

B0
s → J/ψφ decays reconstructed with the CDF II detector in a sample of pp̄ collisions at√
s = 1.96 TeV corresponding to 5.2 fb−1 integrated luminosity produced by the Tevatron Collider at

Fermilab. We find the CP -violating phase to be within the range β
J/ψφ
s ∈ [0.02, 0.52] ∪ [1.08, 1.55]

at 68% confidence level where the coverage property of the quoted interval is guaranteed using
a frequentist statistical analysis. This result is in agreement with the standard model expec-
tation at the level of about one Gaussian standard deviation. We consider the inclusion of a
potential S-wave contribution to the B0

s → J/ψK+K− final state which is found to be neg-
ligible over the mass interval 1.009 < m(K+K−) < 1.028 GeV/c2. Assuming the standard

model prediction for the CP -violating phase β
J/ψφ
s , we find the B0

s decay width difference to be
∆Γs = 0.075 ± 0.035 (stat) ± 0.006 (syst) ps−1. We also present the most precise measurements
of the B0

s mean lifetime τ (B0
s) = 1.529 ± 0.025 (stat) ± 0.012 (syst) ps, the polarization fractions

|A0(0)|2 = 0.524±0.013 (stat)±0.015 (syst) and |A‖(0)|2 = 0.231±0.014 (stat)±0.015 (syst), as well
as the strong phase δ⊥ = 2.95 ± 0.64 (stat) ± 0.07 (syst) rad. In addition, we report an alternative
Bayesian analysis that gives results consistent with the frequentist approach.
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I. INTRODUCTION

Since the discovery of the simultaneous violation of
charge and parity quantum numbers (CP violation) in
1964 in the neutral kaon system [1], CP violation has
played a crucial role in the development of the stan-
dard model (SM) of particle physics and in searches
for “new” physics (NP) beyond the SM. In 1973, be-
fore the discovery of the fourth (charm) quark [2] and
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the third generation (bottom [3] and top [4] quarks),
Kobayashi and Maskawa proposed an extension to a six-
quark model [5] in which CP violation was explained
through the quark mixing parametrized by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. A single, irre-
ducible complex phase in the CKM matrix is responsible
for all CP -violating effects in the standard model.

One of the most promising processes for the search for
physics beyond the standard model is through oscillations
of B0

s and B̄0
s mesons. The time evolution of the B0

s and
B̄0
s mesons can be described by the Schrödinger equation

i
d

dt

(

|B0
s (t) 〉

|B̄0
s (t) 〉

)

=

[

M̂s −
i

2
Γ̂s

](

|B0
s (t) 〉

|B̄0
s (t) 〉

)

(1)

with M̂s =

(

M s
0 M s

12

M s∗
12 M s

0

)

and Γ̂s =

(

Γs0 Γs12
Γs∗12 Γs0

)

,

where M̂s and Γ̂s are the mass and decay rate 2 × 2
matrices. The B0

s mixing diagrams shown in Fig. 1 give
rise to non-zero off-diagonal elements M s

12 and Γs12. The

diagonalization of M̂s − i/2 Γ̂s leads to the heavy and
light mass eigenstates BHs and BLs which are admixtures
of the flavor eigenstates B0

s and B̄0
s :

|BHs 〉 = p |B0
s 〉 − q |B̄0

s 〉
and |BLs 〉 = p |B0

s 〉+ q |B̄0
s 〉, (2)

where p and q are complex quantities which are related to
the respective CKM matrix elements (see Fig. 1) through
q/p = (V ∗

tbVts)/(VtbV
∗
ts) within the SM, and satisfy |p|2+

|q|2 = 1.

The off-diagonal elements of the mass and decay ma-
trices can be related to the mass difference between the
BHs and BLs mass eigenstates [6]

∆ms = mH
s −mL

s

= 2|M s
12|
(

1 +
1

8

|Γs12|2
|M s

12|2
sin2 φs + ...

)

, (3)

and the corresponding decay width difference [6]

∆Γs = ΓLs − ΓHs

= 2|Γs12| cosφs
(

1− 1

8

|Γs12|2
|M s

12|2
sin2 φs + ...

)

, (4)

where φs = arg(−M s
12/Γ

s
12). Typically in the B0

s system

corrections of order (Γs12/M
s
12)

2
can be neglected. The

total B0
s decay width Γs = (ΓLs + ΓHs )/2 = ~/τ(B0

s ) is
related to the mean B0

s lifetime τ(B0
s ), while the mass

difference ∆ms is proportional to the frequency of B0
s -

B̄0
s oscillations, first observed by CDF [7], where the cur-

rent world average is ∆ms = 17.77±0.10±0.07 ps−1 [8].
Assuming no CP violation in the B0

s system, which is
justified in the SM where the CP -violating phase is ex-
pected to be small (φSMs ≈ 0.004 [9]), the B0

s mass eigen-
states are also CP eigenstates where ΓL is the width of
the CP -even state corresponding to the short lived state
in analogy to the kaon system where the short-lived state
(K0

S) is CP even. ΓH is the width of the CP -odd state
corresponding to the long lived B0

s state.
A broad class of theoretically well-founded exten-

sions of the SM predicts new sources of CP -violating
phases [10–12]. In the presence of physics beyond the
standard model, the quantities describing the B0

s system
can be modified by a phase φNP

s as follows [9, 12]:

Γs12 = Γs12
SM,

M s
12 =M s

12
SM ×∆s, where ∆s = |∆s| ei φ

NP

s . (5)

In this parameterization it is assumed that new physics
has a negligible effect on Γs12, which is the case for a large
class of new physics models and confirmed by experimen-
tal data [8], and only M s

12 is changed by the factor ∆s.
As the precise determination of the B0

s oscillation fre-
quency [8] is well within the standard model expectation,
contributions of new physics to the magnitude |∆s| on
the level of greater than about 10-20% are unlikely [12].
A currently preferred place to search for new physics is
through the phase φs which is unconstrained by measure-
ments of the B0

s -B̄
0
s oscillation frequency. Since φSMs is

small, in a new-physics scenario with a large contribution
to φs, the approximation φs = φSMs + φNP

s ≈ φNP
s can be

made.
An excellent probe of this new-physics phase [13] is

through the decay mode B0
s → J/ψφ(1020), with J/ψ →

µ+µ− and φ(1020) → K+K−. Note that throughout
this paper we refer to φ(1020) just as φ for brevity. Fig-
ure 2 shows the leading B0

s → J/ψφ decay diagram
on the left-hand side while the decay topology is indi-
cated on the right. The relative phase between the decay

amplitudes with and without mixing is 2β
J/ψφ
s , which

is responsible for CP violation in B0
s → J/ψφ decays.

Neglecting higher order loop corrections (penguin con-
tributions) and assuming that there is no CP violation

present in the decay amplitude, 2β
J/ψφ
s can be associ-

ated with ei 2β
J/ψφ
s = (q/p) · (Af/Āf ), where Af and

Āf are the decay amplitudes in B0
s → J/ψφ and B̄0

s →
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FIG. 2. Leading B0
s → J/ψφ decay diagram (top) and decay

topology (bottom).

J/ψφ, respectively. In the standard model this phase is
βSM
s = arg [−(VtsV

∗
tb)/(VcsV

∗
cb)], where Vij are again the

corresponding elements of the CKM quark mixing ma-
trix. Global fits of experimental data tightly constrain
the CP -violating phase to small values in the context of
the standard model, βSM

s ≈ 0.02 [9, 14]. The presence of
new physics could modify this phase by the same quantity

φNP
s that affects the phase φs allowing β

J/ψφ
s to be ex-

pressed as 2β
J/ψφ
s = 2βSM

s − φNP
s [9, 12]. Assuming that

new physics effects are much larger than the SM phase,

we can again approximate 2β
J/ψφ
s ≈ −φNP

s ≈ −φs.
The first measurements of the CP -violating phase

β
J/ψφ
s by the CDF and D0 experiments [15, 16] each

showed a mild inconsistency with the SM prediction
where interestingly both results deviated in the same di-
rection. A preliminary combination of the CDF and D0
analyses with samples corresponding to 2.8 fb−1 inte-
grated luminosity was inconsistent with the SM expecta-
tion at the level of about two standard deviations [17].
In addition, recent dimuon asymmetry results from the
D0 collaboration [18] suggest additional indication for ef-
fects of physics beyond the standard model in B0

s mixing.
During the preparation of this manuscript the D0 col-
laboration released an updated measurement of the CP -

violating phase β
J/ψφ
s using a data sample based on

8 fb−1 of integrated luminosity [19], while the LHCb col-
laboration presented a first preliminary measurement of
the B0

s mixing phase showing confidence regions in agree-
ment with the SM prediction within one standard devia-
tion [20].

This paper presents a measurement of the CP -

violating phase β
J/ψφ
s using about four times the in-

tegrated luminosity of our previously published analy-
sis [15], as well as additional improvements in flavor tag-
ging and the inclusion of potential S-wave contributions
to the B0

s → J/ψφ signal. This article is organized as
follows. In Sec. II we give an overview of the work flow
of the analysis, while we describe the CDF experiment
in Sec. III. The data selection is summarized in Sec. IV.
The applied flavor tagging is discussed in Sec. V and the
likelihood fit function is detailed in Sec. VI. The mea-
surements of the B0

s mean lifetime, ∆Γs, the polarization
fraction and the respective systematic uncertainties are
described in Sec. VII and Sec. VIIA, respectively. The

results on β
J/ψφ
s and ∆Γs using a frequentist analysis

are summarized in Sec. VIII while Sec. IX describes an
alternative Bayesian approach. A summary is given in
Sec. X.

II. MEASUREMENT OVERVIEW

The measurement of the phase β
J/ψφ
s relies on an anal-

ysis of the time-evolution and kinematics of the B0
s →

J/ψφ decay, which features a pseudoscalar meson decay-
ing to two vector mesons. Consequently, the total spin in
the final J/ψφ state is either 0, 1 or 2. To conserve the
total angular momentum, the orbital angular momentum
L between the final state decay products must be either
0, 1 or 2. While the J/ψ and φ are CP -even eigenstates,
the J/ψφ final state has a CP eigenvalue given as (−1)L.
Consequently, the states with orbital angular momen-
tum 0 and 2 are CP -even while the state with angular
momentum 1 is CP -odd. We use both the decay time of
the B0

s and the decay angles of the J/ψ → µ+µ− and
φ→ K+K− mesons to statistically separate the CP -odd
and CP -even components of the J/ψφ final state.
There are three angles that completely define the di-

rections of the four particles in the final state. We use
the angular variables ~ρ = {cos θT , φT , cosψT } as de-
fined in the transversity basis [21]. In the following rela-
tions we use a notation where ~p (A)B denotes the three-
momentum of particle A in the rest frame of particle B.
With this notation, the helicity angle ψT of the K+ is
defined in the φ rest frame as the angle between ~p (K+)
and the negative J/ψ direction:

cosψT = − ~p (K+)φ · ~p (J/ψ)φ
|~p (K+)φ| · |~p (J/ψ)φ|

. (6)

To calculate the other two angles, we first define a coor-
dinate system through the directions

x̂ =
~p (φ)J/ψ
∣

∣~p (φ)J/ψ
∣

∣

,

ŷ =
~p (K+)J/ψ −

[

~p (K+)J/ψ · x̂
]

x̂
∣

∣~p (K+)J/ψ −
[

~p (K+)J/ψ · x̂
]

x̂
∣

∣

,

ẑ = x̂× ŷ. (7)

With this coordinate system the following angles of the
direction of the µ+ in the J/ψ rest frame are calculated
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FIG. 3. Illustration of definition of transversity angles θT , φT ,
and ψT .

as

cos θT =
~p (µ+)J/ψ
∣

∣~p (µ+)J/ψ
∣

∣

· ẑ, (8)

φT = tan−1







~p (µ+)J/ψ

|~p (µ+)J/ψ| · ŷ
~p (µ+)J/ψ

|~p (µ+)J/ψ| · x̂






, (9)

where the ambiguity of the angle φT is resolved using
signs of ~p (µ+)J/ψ · x̂ and ~p (µ+)J/ψ · ŷ. The definitions
of the transversity angles are illustrated in Fig. 3.
The decay is further described in terms of the polar-

ization states of the vector mesons, either longitudinal
(0), or transverse to their directions of motion, and in
the latter case, parallel (‖) or perpendicular (⊥) to each
other. The corresponding amplitudes, which depend on
time t, are called A0, A‖ and A⊥, respectively. The trans-
verse linear polarization amplitudes A‖ and A⊥ corre-
spond to CP -even and CP -odd final states at decay time
t = 0, respectively. The longitudinal polarization am-
plitude A0 corresponds to a CP -even final state. The
three states in the transversity basis are easily expressed
as linear combinations of states in either the helicity ba-
sis (++, 00, −−) or the orbital angular momentum basis
(S, P , D). In the helicity basis, A‖ and A⊥ are linear
combinations of the states with helicities ++ and −−,
while the state corresponding to A0 is the same in both
transversity and helicity bases. In terms of the S, P and
D-waves, the states described by A0 and A‖ are linear
combinations of S and D waves, while A⊥ corresponds
to the P -wave state. Since only differences between the
strong phases of these amplitudes are observable, we de-
fine the strong phases relative to A0(0) at time t = 0:
δ0 = 0, δ‖ = arg[A‖(0)A

∗
0(0)] and δ⊥ = arg[A⊥(0)A∗

0(0)].
We note that the strong phases δ‖ and δ⊥ are either 0 or
π in the absence of final state J/ψφ interactions. Devi-
ations of these phases from 0 or π indicate breaking of
the factorization hypothesis which assumes no interac-
tion between the J/ψ and φ in the final state [9, 13].
If the decay width difference between the B0

s mass
eigenstates ∆Γs is different from zero, a time-dependent
angular analysis without flavor tagging is sensitive to

β
J/ψφ
s because of the interference between CP -odd and

CP -even components [22]. The sensitivity to β
J/ψφ
s can

be improved by separating mesons produced as B0
s from

those produced as B̄0
s in order to detect CP asymmetries

in the fast B0
s -B̄

0
s flavor oscillations given sufficient de-

cay time resolution. The process of separatingB0
s mesons

from B̄0
s mesons at production is called flavor tagging.

The angular-dependence and flavor tagged (see Sec. V)
time-dependence are combined in an unbinned maxi-

mum likelihood fit. The fit is used to extract β
J/ψφ
s ,

the B0
s decay width difference ∆Γs, the average B0

s life-
time, the transversity amplitudes and the strong phases.
Since a contamination from K+K− final states that
do not originate from a φ decay can contribute to the
K+K− mass window used to identify φ candidates in this
analysis, we consider potential contributions from other
B0
s → J/ψK+K− decays in our B0

s → J/ψφ candidate
sample. In such decays the relative angular momentum of
the two kaons is assumed to be zero (S-wave) as expected,
for example, from f0(980) → K+K− decays. Continuum
B0
s → J/ψK+K− decays with angular momentum higher

than zero are expected to be suppressed. In all such cases
the K+K− system is assumed to be in a partial S-wave
whose angular momentum combined with that of the J/ψ
leads to a CP -odd final state [23]. The S-wave contribu-
tion is included in the time-dependent angular analysis
and the S-wave fraction together with its corresponding
phase δSW are determined as parameters in the maxi-
mum likelihood fit. The inclusion of the S-wave in the
likelihood function constitutes a significant improvement
with respect to earlier measurements [15, 16].
Due to the non-Gaussian behavior of the likelihood

function with respect to the parameters β
J/ψφ
s and

∆Γs [15, 16], we use a frequentist analysis to obtain con-
fidence regions for both parameters. We also determine
point estimates for other parameters of interest, like the
polarization fractions and the B0

s lifetime. In addition,
we perform an alternative Bayesian approach, through
the use of priors, applied to probability densities deter-
mined with Markov chain Monte Carlo.

III. CDF II DETECTOR AND TRIGGER

The CDF II detector employs a cylindrical geometry
around the pp̄ interaction region with the proton direc-
tion defining the positive z-direction. Most of the quan-
tities used for candidate selection are measured in the
plane transverse to the z-axis. In the CDF coordinate
system, ϕ is the azimuthal angle, θ is the polar angle
measured from the proton direction, and r is the radius
perpendicular to the beam axis. The pseudorapidity η
is defined as η = − ln[ tan(θ/2) ]. The transverse mo-
mentum, pT , is the component of the particle momen-
tum, p, transverse to the z-axis (pT = p · sin θ), while
ET = E · sin θ, with E being the energy measured in the
calorimeter.
The CDF II detector features excellent lepton identi-

fication and charged particle tracking and is described
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in detail elsewhere [24, 25]. The parts of the detector
relevant to the reconstruction of the B0

s → J/ψφ de-
cays used in this measurement are briefly summarized
below. The detector nearest to the pp̄ interaction region
is a silicon vertex detector (SVX II) [26], which consists
of five concentric layers of double-sided sensors located
at radii between 2.5 and 10.6 cm plus one additional
single-sided layer of silicon (L00) [27] mounted directly
onto the beam pipe at radius r∼ 1.5 cm. In addition,
two forward layers plus one central layer of double-sided
silicon located outside the SVX II at radii of 20-29 cm
make up the intermediate silicon layers (ISL) [28]. To-
gether with the SVX II, the ISL detector extends the sen-
sitive region of the CDF II tracking detector to |η| ≤ 2.0.
The CDF silicon system has a typical hit resolution of
∼ 11 µm and provides three-dimensional track recon-
struction. It is used to identify displaced vertices associ-
ated with bottom hadron decays which are reconstructed
with a typical transverse resolution of 10-20 µm. The
central outer tracker (COT) [29], an open-cell drift cham-
ber with 30 240 sense wires arranged in 96 layers com-
bined into four axial and four stereo super-layers (SL),
provides tracking from a radius of ∼ 40 cm out to a ra-
dius of 132 cm covering |z| < 155 cm, as well as the
main measurement of track momentum with a resolu-
tion of σ(pT )/p

2
T ∼ 0.15% [GeV/c]−1 for high momentum

tracks. The COT also provides specific ionization energy
loss, dE/dx, information for charged particle identifica-
tion with approximately 1.5σ separation between pions
and kaons with momenta greater than 2 GeV/c [30]. The
central tracking system is immersed in a superconduct-
ing solenoid that provides a 1.4 T axial magnetic field.
Right outside the solenoid, the time-of-flight (TOF) de-
tector provides additional particle identification for low-
momentum particles.

Central electromagnetic (CEM) [31] and hadronic
(CHA) [32] calorimeters (|η| < 1.1) are located out-
side the COT and the solenoid, where they are ar-
ranged in a projective-tower geometry. The electro-
magnetic and hadronic calorimeters are lead-scintillator
and iron-scintillator sampling devices, respectively. The
energy resolution for the CDF central calorimeter
is σ(ET )/ET = [(13.5%/

√
ET )

2 + (1.5%)2]1/2 for
electromagnetic showers [31, 33] and σ(ET )/ET =
[(75%/

√
ET )

2+(3%)2]1/2 for hadrons [25, 32], where ET
is measured in GeV. A layer of proportional chambers
(CES), with wire and strip readout, is located six ra-
diation lengths deep in the CEM calorimeters, near the
electromagnetic shower maximum. The CES provides a
measurement of electromagnetic shower profiles in both
the ϕ and z directions for use in electron identification.

Muon candidates are identified by multi-layer drift
chambers and scintillator counters [34]. Four layers of
planar drift chambers (CMU) are located outside the cen-
tral calorimeter at a radius of 347 cm from the beam line.
The CMU system covers |η| ≤ 0.6 and can be reached by
muons with pT in excess of ∼ 1.4 GeV/c. To reduce
the probability of misidentifying penetrating hadrons as

muon candidates in the central detector region, four addi-
tional layers of drift chambers (CMP) are located behind
0.6 m of steel outside the CMU system. Approximately
84% of the solid angle for |η| ≤ 0.6 is covered by the CMU
detector, 63% by the CMP, and 53% by both. To reach
these two detectors, particles produced at the primary in-
teraction vertex, with a polar angle of 90◦, must traverse
material totaling 5.5 and 8.8 pion interaction lengths, re-
spectively. Muons with hits in both the CMU and CMP
detectors are called CMUP muons. An additional set of
muon chambers (CMX) is located in the pseudorapidity
interval 0.6 < |η| < 1.0 to extend the polar acceptance of
the muon system to the forward region. Approximately
71% of the solid angle for 0.6 < |η| < 1.0 is covered by the
free-standing conical arches of the CMX. The calorime-
ter, magnet yoke of the detector, and the steel support
structure provide shielding of about 6.2 pion interaction
lengths.
The data used in this measurement are collected

with dimuon triggers [24]. Muons are reconstructed as
track stubs in the CMU, CMP and CMX chambers.
Muon stubs are matched to tracks reconstructed using
COT axial information from the extremely fast trigger
(XFT) [35]. The dimuon trigger requires at least one
central muon matching the CMU or CMUP chambers,
while the second muon can be either central or forward,
matching to the CMU or CMX detectors, respectively.
The CMU, CMUP, or CMX muons must satisfy pT >
1.5 GeV/c, pT > 3.0 GeV/c and pT > 2.0 GeV/c, respec-
tively. The two trigger muon candidates are required to
be oppositely charged, have an opening angle inconsis-
tent with a cosmic ray event, and the invariant mass of
the muon pair must satisfy 2.7 < m(µ+µ−) < 4 GeV/c2.

IV. DATA RECONSTRUCTION AND

SELECTION

We use a data sample corresponding to an integrated
luminosity of 5.2 fb−1 collected with all CDF II detec-
tor subsystems functioning. In addition, all analyzed
data passed the dimuon trigger requirements given above.
We begin our offline reconstruction of the B0

s → J/ψ(→
µ+µ−)φ(→ K+K−) decay mode by requiring two muon
candidate tracks that extrapolate to a track segment in
the muon detectors reapplying the appropriate transverse
momentum requirements for the respective trigger muons
using offline-reconstructed quantities. To reconstruct the
J/ψ candidate, a kinematic fit constraining the two op-
positely charged muon candidate tracks to a common in-
teraction point (vertex) is applied. All other charged
particles in the event are assumed to be kaon candidates
and combined as opposite-charge pairs to reconstruct φ
meson candidates. Finally, all four candidate tracks are
combined in a kinematic fit that constrains the muon
candidates to the J/ψ world average mass [8] and re-
quires the four tracks to originate from a common three-
dimensional vertex point.
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For each event a primary interaction point is con-
structed from all reconstructed tracks in an event, ex-
cluding the J/ψ and φ candidate tracks. This interac-
tion point is used in the calculation of the B0

s proper de-
cay time, ct = m(B0

s )Lxy(B
0
s )/pT (B

0
s ), where Lxy(B

0
s )

is the distance from the primary vertex point to the
B0
s → J/ψφ decay vertex projected onto the momentum

of the B0
s in the plane transverse to the proton beam di-

rection, m(B0
s ) is the nominal mass of the B0

s meson [8],
and pT (B

0
s ) is its measured transverse momentum.

A. Basic selection criteria

For the final selection of B0
s → J/ψφ candidates, we

use the Neurobayes [36] artificial neural network (ANN)
to distinguish signal events from background. Prior to
the training of the ANN, we apply basic selection re-
quirements in order to ensure track and vertex qual-
ity, as well as the reconstructed particle candidates to
have kinematic properties appropriate for B0

s , J/ψ, and
φ mesons. These basic selection criteria are listed in
Table I summarizing the standard quality requirements
that were imposed on track candidates. We require kaon
candidates to have transverse momentum greater than
400 MeV/c and all kinematic fits are required to have
χ2
rφ < 50, where χ2

rφ is the χ2 of the two-dimensional

rφ-vertex fit for four degrees of freedom (dof). To se-
lect B0

s → J/ψφ candidates, we require that the in-
variant mass of the muon pair lies within the mass re-
gion 3.04 < m(µ+µ−) < 3.14 GeV/c2 corresponding
to an interval around the world average J/ψ mass [8]
of about ±2.5σ where σ is the J/ψ mass resolution.
The invariant mass of the kaon pair is required to be
within 1.009 < m(K+K−) < 1.028 GeV/c2 correspond-
ing to a ±2.5σ interval around the nominal φ mass [8]
where σ corresponds to the φ mass resolution. The mass
of the reconstructed J/ψφ candidate has to be in the
mass window 5.1 < m(J/ψK+K−) < 5.6 GeV/c2 corre-
sponding to a ±250 MeV/c2 interval around the nominal
B0
s mass [8]. Additionally we require that the transverse

momentum of the φ candidate is greater than 1.0 GeV/c
and the B0

s candidate has a transverse momentum of
more than 4.0 GeV/c.

B. Monte Carlo simulation

We use simulated B0
s → J/ψφ Monte Carlo (MC)

event samples to describe the signal in the training of
the artificial neural network. These MC samples are also
employed in the determination of the transversity angle
efficiencies due to the non-hermeticity of the CDF II de-
tector (see Sec. VI). We simulate the generation and
fragmentation of b quarks using the bgenerator pro-
gram [37]. It is based on next-to-leading-order QCD cal-
culations and the Peterson fragmentation function [38]
tuned to the b-quark momentum spectrum measured at

TABLE I. Basic selection requirements applied to the B0
s →

J/ψφ four-track system as used in training the artificial neural
network.

Quantity Selection requirement

COT hits ≥ 2 stereo and ≥ 2 axial super-layers

with ≥ 5 hits each

r-φ silicon hits ≥ 3

Kaon track pT > 0.4 GeV/c

Vertex χ2
rφ (4 dof) < 50

J/ψ mass region 3.04 < m(µ+µ−) < 3.14 GeV/c2

φ mass region 1.009 < m(K+K−) < 1.028 GeV/c2

B0
s mass region 5.1 < m(J/ψK+K−) < 5.6 GeV/c2

pT (φ) > 1.0 GeV/c

pT (B
0
s) > 4.0 GeV/c

CDF [24]. The decay of the B0
s meson is simulated with

the evtgen decay package [39]. The interaction of the
generated particles with the CDF II detector is simulated
with the full geant [40] based CDF II detector simula-
tion package [41]. We subject the simulated events to the
same trigger requirements and reconstruction process as
our data events. The B0

s decays are simulated according
to the phase space available to the decay averaging over
the spin states of the decay daughters. This procedure
ensures that all transversity angles are generated flat for
B0
s decays.

C. Selection using artificial neural network

The information from several kinematic variables is
combined into a single discriminant by the artificial neu-
ral network. Based on the discriminant, an event is
classified as background-like or signal-like on a scale of
−1 to +1. Correlations between variables are taken
into account by the ANN, and the weight of each vari-
able in the overall discriminant depends on its corre-
lation with other variables. Our artificial neural net-
work is trained on a signal sample based on 350 000
B0
s → J/ψφ Monte Carlo events. The background sam-

ple used in training the ANN consists of ∼ 300 000 data
events taken from the B0

s invariant mass sideband regions
(5.2, 5.3) ∪ (5.45, 5.55) GeV/c2.
We use the following variables as input to the ANN

listed in order of discriminating power and relevance to
the final discriminant: the transverse momentum pT of
the φ meson, the kaon likelihood [22] based on TOF and
dE/dx information, the muon likelihood [42] for the J/ψ
muon daughters, χ2

rφ for the B0
s decay vertex reconstruc-

tion, the transverse momentum pT of the B0
s meson, and

the probabilities to reconstruct vertices of the B0
s , φ, and

J/ψ candidates. These vertex probabilities are χ2 prob-
abilities for the three-dimensional vertex fit, while χ2

rφ
is the goodness of fit for the two-dimensional vertex fit.
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The muon and kaon likelihoods are quantities used for
particle identification. The algorithm determining the
muon likelihood is described in Ref. [42]. The kaon like-
lihood [22] is a combined discriminant constructed from
the kaon track specific energy loss, dE/dx, and its time-
of-flight information. Both likelihood variables have been
calibrated on large control samples.

D. Optimization of selection

Once the artificial neural network is trained, we choose
a discriminant cut value that provides the best expected
average resolution (sensitivity) to the CP -violating phase

β
J/ψφ
s . This optimization differs from our previous analy-

sis [15] where the significance of B0
s signal yield was max-

imized using S/
√
S +B as figure of merit, in which the

signal S was obtained from Monte Carlo simulation of B0
s

events and the backgroundB taken from the B0
s sideband

regions. In the current optimization we study the sensi-

tivity to β
J/ψφ
s as a function of ANN discriminant CNN

using pseudoexperiments that are generated to mimic our
data with a specific signal-to-background ratio for a given
cut value on CNN . Using the likelihood fit function de-
scribed in Sec. VI, we repeat the entire analysis procedure
for each pseudoexperiment and evaluate the distributions

of the estimated variance on β
J/ψφ
s to find the ANN dis-

criminant cut value that gives the best expected average

resolution for β
J/ψφ
s [43].

In detail, the pseudoexperiments are created by ran-
domly sampling the probability density functions (PDF)
for variables used in the fit to describe the data as out-
lined in Sec. VI. We simulate the effect of varying the cut
on the ANN output variable by generating pseudoexper-
iments at different values of S/NTOT , where NTOT is the
total number of events in the J/ψφ invariant mass win-
dow, and S is the number of B0

s signal events. NTOT and
S are determined from mass fits to the data for different
cut values of CNN . The input values of all other param-
eters in the PDF are kept the same for all pseudoexper-
iments corresponding to the same ANN cut; only NTOT
and S/NTOT are varied. We take the parameter input
values from the results of the unbinned maximum likeli-
hood fit of B0

s → J/ψφ decays using data corresponding
to an integrated luminosity of 2.8 fb−1 [17]. The only ex-
ceptions are the parameters describing the tagging power,
which correspond to the total tagging effectiveness of
both the opposite and same side tagging algorithms (see
Sec. V) valid for the full data set of 5.2 fb−1 integrated
luminosity. To verify in our optimization that the ex-

pected average resolution to β
J/ψφ
s is independent of the

true values of our parameters of interest, β
J/ψφ
s and ∆Γs,

we generate pseudoexperiments at a few points in (β
J/ψφ
s ,

∆Γs) parameter space: (β
J/ψφ
s = 0.5, ∆Γs = 0.12 ps−1),

(β
J/ψφ
s = 0.02, ∆Γs = 0.1 ps−1), and (β

J/ψφ
s = 0.3,

∆Γs = 0.09 ps−1). We also verify that the widths of
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FIG. 4. Magnitude of expected uncertainty on β
J/ψφ
s as a

function of cut value on the artificial neural network dis-
criminant for pseudoexperiments generated with input values

β
J/ψφ
s = 0.5 and ∆Γs = 0.12 ps−1.

the uncertainty distributions do not vary as a function of
artificial neural network discriminant [43].

The most probable values of the β
J/ψφ
s uncertainty for

pseudoexperiments generated at (β
J/ψφ
s = 0.5, ∆Γs =

0.12 ps−1) are shown as a function of the cut value on the
ANN output variable in Fig. 4. It is apparent that tight

cuts on CNN correspond to larger β
J/ψφ
s expected un-

certainties. It should be emphasized that this technique
is not intended to guarantee a particular uncertainty on

β
J/ψφ
s , but is merely used to identify the trend in β

J/ψφ
s

uncertainty size as a function of cut value on the ANN
output variable.

The trend in size of the β
J/ψφ
s uncertainty distribu-

tions is similar for the other sets of (β
J/ψφ
s , ∆Γs) at

which pseudoexperiments are generated. The expected

statistical uncertainty on β
J/ψφ
s shows a shallow mini-

mum around CNN ∼ 0. We adopt a cut on the ANN
output discriminant at > 0.2, where the uncertainty on

β
J/ψφ
s is small, allowing us to avoid adding unnecessary

amounts of background which we would include by going
to a lower cut value on CNN . For comparison, an opti-
mization using S/

√
S +B as figure of merit yields a cut

value of the ANN discriminant of about 0.9 resulting in

an almost 20% larger expected uncertainty on β
J/ψφ
s .

A cut on the ANN output discriminant of 0.2 yields
6504 ± 85 B0

s → J/ψφ signal events, as extracted by
a fit to the invariant mass with a single Gaussian with
flat background as shown in Fig. 5 on the left-hand
side. The signal and sideband regions used to de-
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fine events as signal or background candidates are in-
dicated by the areas with vertical and horizontal lines,
respectively. They explicitly correspond to 5.340 <
m(J/ψK+K−) < 5.393 GeV/c2 for the signal region and
(5.287, 5.314)∪ (5.419, 5.446) GeV/c2 for the sidebands.
Events from the signal and sideband regions are used to
model the respective signal and background components
in the PDF (see Sec. VI). The right-hand side of Fig. 5
shows the J/ψK+K− invariant mass distribution with
an additional lifetime requirement ct > 60 µm on the
B0
s candidate indicating the combinatorial background

to be mainly prompt.

E. Initial study of S-wave contribution

Since this analysis considers a potential S-wave contri-
bution, which is not coming from φ→ K+K− decays, to
the B0

s → J/ψK+K− signal in the description of the like-
lihood function (see Sec. VI), we perform an initial study
to obtain an estimate of the size of the S-wave contri-
bution using a data sample corresponding to integrated
luminosity of 3.8 fb−1. We select φ candidates in a larger
K+K− mass window 0.98 < m(K+K−) < 1.08 GeV/c2

and form B0
s candidates. Taking B0

s candidates from the
signal region defined above, we obtain the K+K− invari-
ant mass distribution shown in Fig. 6. Using a binned
likelihood method, we fit the K+K− invariant mass dis-
tribution with a φ signal component modeled by a tem-
plate from B0

s → J/ψφ MC simulation allowing for a
mass-dependent width consistent with the parameteriza-
tion in Eq. (17) (see Sec. VI). The combinatoric back-
ground is modeled by a histogram taken from the B0

s side-
bands. An additional component takes into account
B0 reflections where the pion from a B0 decay is misiden-
tified as a kaon when reconstructed as B0

s candidate. The
shape of this B0 reflection is obtained from an inclusive
B0 → J/ψX MC simulation and its fraction is deter-
mined from a fit to the B0

s invariant mass together with
the combinatorial background contribution. The ob-
tained B0 reflection and combinatorial background frac-
tions are then fixed in the fit to the K+K− mass distri-
bution which prevents these components from absorbing
a potential non-resonant component in the K+K− mass.
Together with the φ signal and the fixed components,
an additional contribution is included in the fit allow-
ing for a possible non-resonant S-wave contribution from
B0
s → J/ψK+K− or B0

s → J/ψf0(980). This compo-
nent is modeled either flat in K+K− mass or following
a mass parameterization suggested in Ref. [44]. In either
case the S-wave fraction is found to be compatible with
zero as indicated in Fig. 6. From this study we do not ex-
pect a significant S-wave contribution across the φ mass
region.

V. FLAVOR TAGGING

To maximize the sensitivity to the CP -violating phase

β
J/ψφ
s , we employ flavor tagging algorithms to deter-

mine whether the reconstructed J/ψφ candidate was a
B0
s meson or its anti-particle B̄0

s at the time of produc-
tion. Flavor tagging algorithms assign each B0

s meson
candidate a tagging decision and a tagging dilution. The
tagging decision can be ξ = +1 or −1, corresponding to
a B0

s meson at production or a B̄0
s meson, respectively.

A value of ξ = 0 means the tagging algorithm failed and
no tag is assigned. The tagging dilution D is related
to the probability that the tagging decision is correct,
D = 1 − 2pW , where pW is the probability of an incor-
rect tag or mis-tag. In general, the dilution is obtained
by counting the number of correctly and incorrectly as-
signed tags D = (NR − NW )/(NR + NW ), where NR
is the number of correct tags and NW is the number of
incorrect tags. The flavor tagging performance is quan-
tified by the product between the tagging efficiency and
the squared dilution εD2. The tagging efficiency ε is de-
fined as the number of events that receive a tag, divided
by the total number of events considered. We use two
types of flavor tagging algorithms: a same side (SST)
and an opposite side (OST) tagger. Due to the use of
information from different event hemispheres, there is no
overlap between both taggers by construction. In partic-
ular, the SST algorithm considers only tracks within a
cone of

√

(∆φ)2 + (∆η)2 < 0.7 around the B0
s candidate

while the OST tagger only includes tracks outside that
cone, allowing us to treat SST and OST as uncorrelated
tagging methods.

A. Same side tagging

In this analysis we employ a same side kaon tagging
(SSKT) algorithm which uses the charge of the kaon pro-
duced in association with the b (b̄) quark in the fragmen-
tation process forming the B̄0

s (B0
s ) meson as illustrated

in Fig. 7. To determine the b (b̄) production flavor we at-
tempt to find kaon tracks produced in the hadronization
of the B0

s meson. The strangeness of the B0
s meson pref-

erentially produces associated kaons in the fragmentation
process. The charges of these nearby kaons are correlated
to the b quark content of the B0

s meson and provide an
opportunity to identify the initial flavor of the B0

s meson.
However, the B0

s meson can also be accompanied by a
neutral kaon which cannot be used to tag the B0

s flavor
and therefore lowers the tagging power. Misidentifica-
tion of the associated charged kaon leads to a further
decrease of the tagging dilution. The SSKT algorithm
was developed on a simulated high statistics Monte Carlo
B0
s sample, using the B0

s → J/ψφ and B0
s → D−

s π
+ de-

cay modes. We use particle identification (dE/dx and
time-of-flight) to help identify the associated track as a
kaon [7, 45, 46].
We calibrate the SSKT algorithm [47] by measuring
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FIG. 7. Illustration of b quark fragmentation into B̄0
s meson.

the B0
s mixing frequency on a data set corresponding

to 5.2 fb−1 integrated luminosity. Using CDF’s Sili-
con Vertex Trigger [48], we select events that contain
B0
s → D−

s π
+ candidates. The trigger configuration used

to collect this heavy flavor data sample is described in
Ref. [49]. B0

s → D−
s π

+ events are fully reconstructed in
three D−

s decay modes: D−
s → φπ− with φ → K+K−

(5600 events), D−
s → K∗0K− with K∗0 → K+π−

(2760 events), and D−
s → π−π−π+ (2650 events). We

also include the decay mode B0
s → D−

s π
+π+π−, with

D−
s → φπ− and φ→ K+K− (1850 events). To illustrate

this sample of B0
s candidates, the left-hand side of Fig. 8

shows the invariant mass of B0
s → D−

s π
+ candidates with

D−
s → φπ− including background contributions.
The calibration of the SSKT is achieved via an ampli-

tude scan of the mixing frequency ∆ms. The probability
for observing a B0

s meson in a B0
s or B̄0

s flavor eigenstate
as a function of time is

P (t)B0
s ,B̄

0
s
∝ 1±ADp cos∆mst, (10)

where Dp is the event by event predicted dilution and
A is a Fourier-like coefficient called “amplitude”. The
amplitude scan consists of a series of steps in which the
mixing frequency ∆ms is fixed at values between zero and
30 ps−1. At each step, the likelihood function based on
the above probability density function, is maximized and
the best fit value of the amplitude parameter is deter-
mined. Whenever the mixing frequency is fixed to values
far from the true mixing frequency, the best fit value of
the amplitude parameter is consistent with zero. On the
contrary, when values of ∆ms close to the true B0

s mixing
frequency are probed, the best fit value of the amplitude
parameter is inconsistent with zero. If the dilution Dp,
which is predicted on an event-by-event basis by the tag-
ging algorithms, is correct, the amplitude A will be close
to unity at the true value of ∆ms. Deviations from unity
indicate that the predicted dilution has to be re-scaled
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uncertainty. Right: The measured amplitude A and uncertainties versus the B0
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+π+π− candidates. The sensitivity curve represents 1.645 σA, where σA ∝ e(∆msσt)
2/2 is

the expected uncertainty on A for a given value of ∆ms. Note that the uncertainties shown are correlated between data points.

by the actual value of the amplitude parameter at the
amplitude maximum. This value of A is also called the
dilution scale factor SD. If the dilution scale factor is
larger (smaller) than unity, the tagging algorithm under
(over) estimates the predicted dilution. Multiplying the
predicted SSKT dilution by SD will then provide on av-
erage the correct event-by-event dilution.

The result of the ∆ms amplitude scan is shown in
Fig. 8. Maximizing the likelihood as a function of ∆ms

measures the frequency of B0
s oscillations at ∆ms =

17.79± 0.07 (stat) ps−1 in agreement with the world av-
erage value of ∆ms [8]. At this point the maximum
amplitude is consistent with one and the measured di-
lution scale factor for the SSKT algorithm is thus con-
sistent with unity, indicating that the initial calibra-
tion based on simulated events was accurate. We find
SD = 0.94±0.15 (stat)±0.13 (syst). This is the first time
the SSKT dilution was calibrated using data only. We
measure a tagging efficiency of ε = (52.2± 0.7)% and an

average predicted dilution of
√

< D2
p > = (27.5± 0.3)%.

The total tagging power is found to be εSD
2 < D2

p > =
(3.5± 1.4)%.

B. Opposite side tagging

The opposite side tagger capitalizes on the fact that
most b quarks produced in pp̄ collisions originate from bb̄
pairs. The b or b̄ quark on the opposite side of the B0

s or
B̄0
s candidate hadronizes into a B hadron, whose flavor

can be inferred using its decay products.

The OST is a combination of several algorithms: the
soft muon tagger (SMT) [42], the soft electron tag-
ger (SET) [50], and the jet charge tagger (JQT) [51].
The JQT combines all tracks from the fragmentation of
the opposite-side b quark into a single jet charge mea-
surement. The charge of the jet is determined by the
momentum-weighted sum over the momenta piT of all
tracks in the jet Qjet =

∑

iQ
ipiT (1 + P itrk)/

∑

i p
i
T (1 +

P itrk), where Qi = ±1 is the electric charge of track and
P itrk is the probability of the track being part of the b jet.
Jets are reconstructed by a cone-clustering algorithm and
separated into three classes, based on their probability of
containing a b quark. A class 1 jet has a vertex displaced
with respect to the primary pp̄ interaction vertex, while
a class 2 jet contains at least one track displaced with
respect to the primary vertex. If there are no class 1 and
2 jets found, the jet with the highest transverse momen-
tum in the event is used. These jets constitute class 3 jets
which can be identified for nearly 100% of the events.

The lepton taggers, SMT and SET, utilize the charge
of a muon or electron from a b → c ℓ−ν̄ℓ transition to
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determine the production flavor of the parent B meson.
Several variables used to identify electrons and muons
are combined with a multivariate technique into a global
likelihood to select the lepton candidates used in the tag-
ging algorithms [42, 50].
The outcomes of the three OST algorithms are com-

bined to give a single tag decision and predicted dilu-
tion [7]. We optimize the total dilution by combining
the taggers using an artificial neural network trained on
data from semileptonic B → ℓνX decays. The neural
network handles correlations between the jet charge tag-
ger and the lepton taggers and improves the tagging per-
formance by 15% relative to other combinations that do
not account for correlations.
We calibrate the OST performance on B+ → J/ψK+

decays. Since charged B mesons do not oscillate, the
production flavor of the B+ is identified by the charge
of the kaon daughter track. Knowing the true flavor of
the B+ meson as well as the flavor predicted by the OST
algorithm, we can easily identify the dilution measured
from the number of correct and false tags as a function
of the predicted dilution. This dependence is shown for
B+ and B− mesons in Fig. 9 and fitted with a linear
function whose slope is expected to be one for a perfectly
functioning OST algorithm. The actual measured slope
of the linear fitting function provides the OST scale factor
SD which is determined to be 0.93 ± 0.09 (1.12 ± 0.10)
for B+ (B−) mesons.
Although the dilution scale factors determined sepa-

rately fromB+ and B− decays are both within uncertain-
ties consistent with unity and with each other, we use two
scale factors for the opposite side tagger, one for tagging
the B0

s flavor as obtained from the study of B+ mesons
and one for the B̄0

s flavor as obtained from B− mesons,
in order to allow for any potential asymmetry in the tag-
ging algorithms. As a cross-check we determine the scale
factors in different data taking periods and find that the
scale factors are stable throughout all parts of the data.
We measure a tagging efficiency of ε = (94.2±0.4)% and
an average predicted dilution from the B± → J/ψK±

signal events of
√

< D2
p > = (11.04± 0.18)%. The aver-

age OST dilution scale factor is SD = 1.03 ± 0.06. The
total OST tagging power is εSD

2 < D2
p > = (1.2±0.2)%.

VI. THE LIKELIHOOD FUNCTION

A simultaneous unbinned maximum likelihood fit to
our data including information on the J/ψK+K− in-
variant mass, B0

s candidate decay time, and transver-
sity angular variable ~ρ is performed to extract the main

parameters of interest, β
J/ψφ
s and ∆Γs, plus additional

physics parameters, which include the B0
s meson mass,

the mean B0
s width Γs, the polarization amplitudes in

the transversity basis |A0(0)|2, |A‖(0)|2, and |A⊥(0)|2 ≡
1−|A0(0)|2−|A‖(0)|2, the corresponding CP -conserving
strong phases δ‖ and δ⊥, the fraction of the S-wave com-
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FIG. 9. Measured versus predicted dilution for B+ (left) and
B− candidates (right) from B± → J/ψK± events.

TABLE II. Physics parameters of interest in the likelihood fit

with β
J/ψφ
s and ∆Γs as main physics parameters.

Parameter Description

β
J/ψφ
s CP -violating phase [rad]

∆Γs ΓLs − ΓHs [ps−1 ]

∆ms B0
s -B̄

0
s oscillation frequency [ps−1 ]

τ (B0
s) B0

s mean lifetime [ps]

m(B0
s) B0

s mass [MeV/c2 ]

|A0(0)|2 Longitudinally-polarized transition

probability at t = 0

|A‖(0)|2 Parallel component of transversely-polarized

transition probability at t = 0

δ⊥ arg[A⊥(0)A
∗
0(0)]

δ‖ arg(A‖(0)A
∗
0(0)]

fSW Fraction of S-wave in J/ψK+K− sample

δSW Relative phase of S-wave contribution

ponent and its corresponding phase δSW . Since the mean
B0
s width used as parameter in the maximum likelihood

fit is related to the B0
s mean lifetime τ(B0

s ) through
Γs = ~/τ(B0

s ), we refer to τ(B0
s ) as physics parameter

of interest and express our fit result by quoting τ(B0
s )

in the following. The likelihood function also includes
other technical parameters of less interest referred to as
“nuisance parameters” such as the B0

s signal fraction fs,
parameters describing the J/ψφ mass distribution, the
B0
s decay time plus angular distributions of background

events, parameters used to describe the estimated decay
time uncertainty distributions for signal and background
events, scale factors between the estimated decay time
and mass uncertainties and their true uncertainties, as
well as tagging dilution scale factors and efficiency and
asymmetry parameters. There are a total of 35 fit param-
eters in the likelihood function, 11 of which we consider

parameters of physical interest with β
J/ψφ
s and ∆Γs being

the main physics parameters. All the physics parameters
are listed in Table II.
The distributions of the transversity angular variables

~ρ = (cos θT , φT , cosψT ) observed with the CDF II detec-
tor are different from the true distributions because the
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efficiency of detecting the final state muons and kaons
from J/ψ and φ decays is non-uniform. The angular
efficiency function is parametrized in three dimensions
using a set of real spherical harmonics and Legendre
polynomials as basis functions with ranges 0 < ψT < π,
0 < θT < π and 0 < φT < 2π [52]:

ε(ψT , θT , φT ) =
∑

lmk

aklmPk(cosψT )Ylm(θT , φT ). (11)

The parameters aklm are obtained from simulated events
where all transversity angles are generated flat for B0

s de-
cays. These MC events, which have been passed through
the full CDF II detector simulation, enable us to exam-
ine how the initially flat distributions are sculpted by the
detector acceptance, thus allowing us to determine the
angle-dependent efficiencies of the reconstructed particle
candidates. There are no predictions for the distribution
of the background transversity angles, but we find that
they can be represented as the product of three indepen-
dent functions of cos θT , φT , and cosψT that are constant
in time:

f(cos θT ) =
a0 − a1 cos

2(θT )

2a0 − 2a1/3
,

f(φT ) =
1 + b1 cos(2φT + b0)

2π
,

f(cosψT ) =
c0 + c1 cos

2(ψT )

2c0 + 2c1/3
. (12)

The parameters a0,1, b0,1 and c0,1 are determined as
best fit estimates from the maximum likelihood optimiza-
tion. The above functions follow closely the shapes of the
angular efficiencies, which suggests that the underlying
transversity angle distributions of the background events
are flat.

To set up the full unbinned maximum likelihood fit,
we define a set of probability density functions (PDFs),
P (~x | ~µ), which give the probability density of observing
the measured variables ~xi for an event i, given a set of un-
known parameters ~µ. In our likelihood function the mea-
sured variables ~xi for each event i are the J/ψK+K− in-
variant mass valuem and its uncertainty σm, the B0

s can-
didate proper decay length ct and uncertainty σct, the
angular distributions of ~ρ = (cos θT , φT , cosψT ) in the
transversity basis, and the predicted dilution Dp and tag
decision ξ for the SSKT and OST method as described

in Sec. V. Among the unknown fit parameters ~µ = (~θ, ~ν)

are the physics parameters ~θ described in Table II as well
as the nuisance parameters ~ν discussed above.

The likelihood function for our dataset of N events is
given as

L(~x | ~θ, ~ν) =
N
∏

i=1

P (~xi | ~θ, ~ν). (13)

We minimize

− logL(~x | ~θ, ~ν) = −
N
∑

i=1

logP (~xi | ~θ, ~ν) (14)

using the minuit program package [53]. The likelihood
function is composed of separate probability density func-
tions for signal events, Ps, and for background events,
Pb. Both the signal and background components con-
tain PDFs describing the measured variables ~xi of the
B0
s candidate described above.

The full likelihood function, including flavor tagging,
can be expressed for signal and background events as

L =
N
∏

i=1

[fs · Ps(m|σm) · Ps(ξ) · Ps(θT , φT , ψT , ct|σct, ξ,Dp) · Ps(σct) · Ps(Dp)

+ (1− fs) · Pb(m) · Pb(ξ) · Pb(ct|σct) · Pb(θT ) · Pb(φT ) · Pb(ψT ) · Pb(σct) · Pb(Dp)] , (15)

where the product runs over all N events in the data
sample and fs and (1− fs) are the fraction of signal and

background events, respectively. For the case of the fit
without flavor tagging, the likelihood function reduces to

Lnotag =

N
∏

i=1

[fs · Ps(m|σm) · Ps(θT , φT , ψT , ct|σct) · Ps(σct)

+ (1− fs) · Pb(m) · Pb(ct|σct) · Pb(θT ) · Pb(φT ) · Pb(ψT ) · Pb(σct)] (16)

which simply corresponds to the flavor tagged case with
no tag decision (ξ = 0) or a tagging dilution of zero

(Dp = 0).

In the following, we describe the individual elements of
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the full likelihood function in more detail starting with
the signal mass PDF Ps(m|σm). We model the signal
mass distribution with a Gaussian distribution of vari-
able width. To form the probability density function,
Ps(m|σm), we use the candidate-by-candidate observed
mass uncertainty σm multiplied by a scale factor sm,
which is a fit parameter and accounts for a collective mis-
estimation of the mass uncertainties. The PDF is normal-
ized over the range 5.2 < m(J/ψK+K−) < 5.6 GeV/c2.
The background mass PDF, Pb(m), is parametrized as a
first order polynomial. Since the distributions of the de-
cay time uncertainty σct and the event-specific dilution
Dp are observed to be different in signal and background,
we include their PDFs explicitly in the likelihood. The
signal PDFs Ps(σct) and Ps(Dp) are determined from
sideband-subtracted data distributions, while the back-
ground PDFs Pb(σct) and Pb(Dp) are determined from
the J/ψK+K− invariant mass sidebands. The PDFs of

the decay time uncertainties, Ps(σt) and Pb(σt), are de-
scribed with a sum of normalized Gamma function dis-
tributions as described below, while the dilution PDFs
Ps(D) and Pb(D) are included in the likelihood as his-
tograms that have been extracted from data.
For the time and angular dependence of the signal

PDF Ps(θT , φT , ψT , ct|σct, ξ,Dp), we follow the method
derived in Ref. [52]. This PDF includes the additional
contribution from S-waveB0

s → J/ψK+K− decays, with
fraction fSW and relative phase δSW between the S-wave
and P -wave amplitude. The major difference between
our treatment and that of Ref. [52] is a refinement of the
model used to describe the line shape of the K+K− in-
variant mass µ ≡ m(K+K−) [54]. As in Ref. [52] we use
a flat model for the S-wave component, whereas for the
P -wave B0

s → J/ψφ component we instead use an asym-
metric relativistic Breit-Wigner distribution with mass-
dependent width

|BW (µ)|2 =
µ

mφ
· Γ1 ·

E(K+K−)

E(φ)
· 1

(m2
φ − µ2)2 +m2

φ · Γ2
tot

, (17)

where E(φ) (K+K−) is the energy of the φ (K+K−)
in the decay of B0

s → J/ψφ (B0
s → J/ψK+K−). This

treatment assumes a two-body decay, where the other
daughter particle is the J/ψ, and the total decay width
Γtot = Γ1 + Γ2 + Γ3, where Γ1,2,3 are the partial de-
cay widths for the decays φ → K+K− (48.8 ± 0.5%),
φ→ K0

LK
0
S (34.2±0.4%), and φ→ ρπ plus φ→ π+π−π0

(15.32± 0.32%), respectively [8]. Following Ref. [55] we

describe the B0
s decay rate as a function of the transver-

sity angles, decay time and, in addition, the K+K− in-
variant mass. When both a φ component with kaons in
a relative P -wave and a S-wave component are present,
the amplitudes must be summed and then squared. The
P -wave amplitude has a resonant structure due to the
φ propagator, while the S-wave amplitude is flat, but can
have an arbitrary phase δSW with respect to the P -wave

ρB(θT , φT , ψT , t, µ) =
9

16π

∣

∣

∣

∣

[

√

1− fSWBW (µ)A(t) + eiδSW
√

fSW
h(µ)√

3
B(t)

]

× n̂

∣

∣

∣

∣

2

,

ρB̄(θT , φT , ψT , t, µ) =
9

16π

∣

∣

∣

∣

[

√

1− fSWBW (µ)Ā(t) + eiδSW
√

fSW
h(µ)√

3
B̄(t)

]

× n̂

∣

∣

∣

∣

2

. (18)

In our analysis we accept events for which the recon-
structed K+K− mass µ lies within a window µlo =
1.009 < µ < µhi = 1.028 GeV/c2. The φ mass distri-
bution is described by the Breit-Wigner function given
in Eq. (17). The S-wave mass distribution is given by
the flat function h(µ) = 1√

∆µ
between µlo and µhi, where

∆µ = µhi − µlo. The likelihood function used in the
maximum likelihood fit is obtained by numerically inte-
grating Eq. (18) over the K+K− invariant mass µ. A(t)
and Ā(t) are time-dependent complex vector functions
describing the P -wave component in the transversity ba-

sis. They are defined as

A(t) =

(

A0(t) cosψT ,−
A‖(t) sinψT√

2
, i
A⊥(t) sinψT√

2

)

,

Ā(t) =

(

Ā0(t) cosψT ,−
Ā‖(t) sinψT√

2
, i
Ā⊥(t) sinψT√

2

)

,
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with

Ai(t) =
e−Γst/2

√

τH + τL ± cos 2βs (τL − τH)

×
[

E+(t)± e2iβsE−(t)
]

ai ,

Āi(t) =
e−Γst/2

√

τH + τL ± cos 2βs (τL − τH)

×
[

±E+(t) + e−2iβsE−(t)
]

ai , (19)

where i ∈ {0, ‖,⊥} and the upper sign applies to the CP -
even final states (0 and ‖), while the lower sign applies
to the CP -odd final state (⊥). Furthermore,

E±(t) ≡
1

2

[

e+(
−∆Γs

4
+i∆ms

2 )t ± e−(
−∆Γs

4
+i∆ms

2 )t
]

,(20)

and the ai are complex amplitude parameters satisfying
∑

i

|ai|2 = 1 . (21)

The S-wave component is described in the transversity
basis as

B(t) = (B(t), 0, 0) ,
B̄(t) =

(

B̄(t), 0, 0
)

, (22)

where the time-dependent amplitudes are

B(t) = e−Γst/2

√

τH + τL − cos 2βs (τL − τH)

×
[

E+(t)− e2iβsE−(t)
]

,

B̄(t) = e−Γst/2

√

τH + τL − cos 2βs (τL − τH)

×
[

−E+(t) + e−2iβsE−(t)
]

. (23)

In Eq. (18) the unit vector n̂ is defined as n̂ =
(sin θT cosφT , sin θT sinφT , cos θT ) in the transversity ba-
sis and the strong phases δ‖ and δ⊥ appear from terms

of the form AiA
∗
0 = |Ai||A0|earg(AiA

∗

0), where i =′‖′ or
i =′⊥′. The decay width difference ∆Γs and the B0

s os-
cillation frequency ∆ms are encoded in Eq. (20).

The time-dependent functions in the PDFs above are
convolved with a resolution function composed of two
independent Gaussians with candidate-by-candidate ex-
pected width σct. The widths of each Gaussian func-
tion are multiplied by independent scale factors sct1
and sct2 which are freely floated in the maximum like-
lihood fit to account for an overall mis-estimation of
the decay-time resolution. The PDF describing the
decay time distributions for signal events as part of
Ps(θT , φT , ψT , ct|σct, ξ,Dp) in Eq. (15) is of the form

Ps(ct|σct) = Ps(ct, σct|cτ, sct1,2)
= F (ct, cτ)⊗G(ct, σct|fsct1 , sct1, sct2), (24)

where τ = τ(B0
s ) and F (ct, cτ) represents the time de-

pendence of the signal events which, e.g., for an expo-
nential decay is given as e−

ct
cτ /(cτ). The symbol “⊗”

denotes a convolution which is with respect to the decay
time resolution function defined as

G(ct, σct|fsct1 , sct1, sct2) = fsct1
1√

2πsct1σct
e
− c2t2

2s2
ct1

σ2ct + (1− fsct1)
1√

2πsct2σct
e
− c2t2

2s2
ct2

σ2ct , (25)

where fsct1 is the fraction of the first resolution Gaus-
sian. From the distribution of decay time uncertainties,
we find the average of the decay time resolution function
at σct ∼ 30 µm, with a root-mean-square deviation of
about 12 µm [15].
As we are using candidate-by-candidate expected de-

cay time uncertainties, which are not distributed identi-
cally for the signal and background events, it is necessary
to include a PDF for the separate uncertainty distribu-
tions [56]. The PDF describing the decay time uncer-
tainty Ps(σct) is constructed from normalized Gamma
distributions

Γnorm(x) ≡
xae−x/b

ba+1Γ(a+ 1)
, (26)

where a and b define the mean and width of the distribu-
tion. Each function has different values of a and b. We
find these values from a separate lifetime-only fit before
running the full angular analysis and fix these param-
eters within uncertainties in the full likelihood fit. We
handle the background lifetime resolution PDF Pb(σct)
in the same way as the signal distribution, using a sum
of three normalized Gamma distributions Γnorm.

The portion of the likelihood function
Ps(θT , φT , ψT , ct|σct, ξ,Dp) related to tagging can
be written as follows:
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Ps(ct, ψT , θT , φT |σct,DSS ,DOS , ξSS , ξOS) =
1 + ξSSsSSDSS

1 + |ξSS |
1 + ξOSsOSDOS

1 + |ξOS |
ρB(ct, ψT , θT , φT )⊗G(ct, σct)

+
1− ξSSsSSDSS

1 + |ξSS |
1− ξOSsOSDOS

1 + |ξOS |
ρB̄(ct, ψT , θT , φT )⊗G(ct, σct), (27)

where sSS and sOS are the SSKT and OST dilution scale
factors. Since the two flavor taggers search for tagging
information (tracks, jets) in complementary regions in
space, we treat them as independent tags. We have ver-
ified that the tagging decisions and predicted dilutions
are indeed independent.

The probability of a particular combined tag decision
is dependent on the efficiency of each of the taggers

P (ξ) =



















(1− εSS)(1 − εOS) (ξSS = 0, ξOS = 0)

εSS(1 − εOS) (ξSS = ±1, ξOS = 0)

(1− εSS)εOS (ξSS = 0, ξOS = ±1)

εSSεOS (ξSS = ±1, ξOS = ±1).

(28)

The predicted dilution distributions are different for sig-
nal and background events. Therefore the likelihood
function in Eq. (15) contains the corresponding dilution
PDFs separately for signal, Ps(Dp), and for background
events, Pb(Dp). These dilution distributions are mea-
sured with data. In the case of the signal, they are the
sideband-subtracted distributions taken from the B0

s in-
variant mass signal region and stored as histograms. The
histograms are normalized to represent probability den-

sities for the dilution.
Knowledge of the fractions of positively and negatively

charged events is sufficient to describe any tagging asym-
metry present in the background. Therefore, the proba-
bility density Pb(ξ) is equal to the fraction of events with
positive tags for ξ = +1, and equal to the fraction of
events with negative tags for ξ = −1. The background di-
lution distributions are handled analogously to the signal
dilution. The dilution distributions are taken from the
B0
s invariant mass sideband region, normalized to form a

probability density, and again stored as histograms.
The background proper decay time PDF, Pb(ct|σct) is

parametrized as a prompt peak modeled by a δ-function
plus two positive exponentials and one negative exponen-
tial. This function is convolved with the same resolution
function as the signal decay time dependence. In our pa-
rameterization, the prompt peak models the majority of
the combinatorial background events, which are expected
to have no significant lifetime, the negative exponentials
defined for t > 0 account for a small fraction of longer
lived background such as other B hadron decays, and the
positive exponential defined for t < 0 takes into account
events with a mis-reconstructed vertex. The background
decay time PDF reads

Pb (ct|σct) =
{

fg δ(ct) + (1− fg)

[

f++
e
− ct
λ++

λ++
+ (1− f++)

(

f−
e
ct
λ
−

λ−
+ (1 − f−)

e
− ct
λ+

λ+

)]}

⊗ G(ct, σct|fsct1 , sct1, sct2), (29)

where fg is the fraction of the prompt background, λ++,
λ+ and λ− are the effective lifetimes of the background
events distributed according to the long and short lived
positive exponential as well as the negative exponential,
respectively, while f++ and f− are their corresponding
fractions.

VII. B0

S MEAN LIFETIME, DECAY WIDTH

DIFFERENCE AND POLARIZATION

FRACTIONS

We use the likelihood function presented in the previ-
ous section to extract measurements of the physics pa-
rameters of interest. Before applying the unbinned maxi-
mum likelihood fit on data, we perform an extensive set of
tests of the fitting procedure using simulated pseudoex-
periments. We observe that, with the current statistics,

the maximized likelihood function returns biased results
for the parameters of interest. Moreover, the likelihood
function shows non-Gaussian behavior with respect to

the β
J/ψφ
s and ∆Γs parameters. For these reasons we em-

ploy frequentist techniques to determine confidence level

(C.L.) regions in the β
J/ψφ
s -∆Γs plane as described in

Sec. VIII.

However, we find that the likelihood function con-
structed according to the standard model expectation,

in which the CP -violation parameter β
J/ψφ
s is fixed to

a value very close to zero (β
J/ψφ
s = 0.02), returns un-

biased results for the mean B0
s lifetime τ(B0

s ), the decay
width difference ∆Γs, the polarization fractions |A‖(0)|2
and |A0(0)|2 as well as the strong phase δ⊥. We also
observe that the likelihood function is Gaussian with
respect to all these parameters. Under these favorable
circumstances we provide point estimates with Gaussian
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uncertainties for the following quantities:

cτ(B0
s ) = 458.6± 7.6 (stat)± 3.6 (syst) µm,

∆Γs = 0.075± 0.035 (stat)± 0.006 (syst) ps−1,

|A‖(0)|2 = 0.231± 0.014 (stat)± 0.015 (syst),

|A0(0)|2 = 0.524± 0.013 (stat)± 0.015 (syst),

δ⊥ = 2.95± 0.64 (stat)± 0.07 (syst) rad. (30)

The systematic uncertainties on the measured quanti-
ties are discussed in detail in Sec. VIIA and given above
for completeness. We are unable to also quote a result
for δ‖ since the fit prefers a value of δ‖ at the boundary
of π resulting in a non-Gaussian likelihood shape around
the minimum.
The results in Eq. 30 show good agreement with pre-

vious measurements [15, 16]. The B0
s mean lifetime

can be calculated as τ(B0
s ) = 1.529 ± 0.025 (stat) ±

0.012 (syst) ps, which is the most precise single measure-
ment of this quantity. It can be compared to the most
recent measurement from the D0 collaboration using a
data sample based on 8 fb−1 of integrated luminosity [19]
quoting τ(B0

s ) = 1.443+0.038
−0.035 ps and to the Particle Data

Group (PDG) average of τ(B0
s ) = 1.472+0.024

−0.026 ps [8]. The
∆Γs value is of comparable precision to the current world
average of ∆Γs = 0.062+0.034

−0.037 ps−1 [8]. Our central value
is somewhat smaller than the most recent measurement
of ∆Γs = 0.163+0.065

−0.064 ps
−1 from the D0 collaboration [19]

but compares well to the PDG average as well as the SM
prediction ∆Γs = 0.090± 0.024 ps−1 [9].
In addition to comparing the fit results with predic-

tions and other measurements, three cross-checks are per-
formed using alternative versions of the fit. First we use
the likelihood without flavor tagging to check for any bias
which could be introduced by the tagging. The fit with-
out flavor tagging does not have sensitivity to δ⊥. This
quantity is thus omitted from Table III for fits without
flavor tagging. The second and third checks are done
without the S-wave component included in the likelihood
fit, once with flavor tagging included and once without.
These checks are made to determine whether the S-wave
component has a significant effect on the fit results and
to provide a direct comparison with previous CDF re-
sults [15] which did not account for the S-wave compo-
nent. Table III shows the results of these cross-checks,
that demonstrate good agreement between different ver-
sions of the fit and our main results which include both
flavor tagging and the S-wave component.

Since the unbinned maximum likelihood method does
not readily provide a goodness of fit estimator, we present
fit projections onto the data to support the quality of
the fit. The likelihood function, in which all parame-
ters are fixed to their best-fit values, is overlaid on top
of data distributions. Such projections are performed
for both signal and background events and separately
in the subspaces of the B0

s decay time, decay time ex-
pected uncertainty and transversity angles. The fit pro-
jections for the proper decay time and proper decay time

uncertainties are shown in Figs. 10 and 11. Fit projec-
tions for the transversity angles cos θT , φT , and cosψT
from the sideband-subtracted signal region and the back-
ground (sideband) region are shown in Figs. 12 and 13,
respectively. The good agreement between the data and
fit projections validates our parameterization of both the
signal and background distributions plus their uncertain-
ties.

A. Systematic uncertainties

To assess systematic uncertainties on quantities of in-

terest other than β
J/ψφ
s , namely ∆Γs, the B

0
s mean life-

time, the polarization fractions, and the strong phase
δ⊥, we set the CP -violating phase to its standard model

expectation β
J/ψφ
s = 0.02. This choice in addition im-

proves the statistical behavior of the likelihood function
by eliminating biases on these parameters.
Systematic uncertainties are assigned by considering

several effects that are not accounted for in the like-
lihood fit [57]. Such effects include potential mis-
parameterization in the fit model, impact of particular
assumptions in the fit model, and physical effects which
are not well known or fully incorporated into the model.
To estimate the size of the systematic uncertainties, we
generate two sets of pseudoexperiments by extracting
random numbers distributed according to our PDF: one
set with each of the considered systematic variations and
another set of default pseudoexperiments. Each pair of
modified and not modified pseudoexperiments are gener-
ated with the same random seeds. The unbinned likeli-
hood function is maximized over the modified pseudo-
experiments as well as over the corresponding default
ones. For each systematic effect, the associated uncer-
tainty is the difference between the mean of the best fit
value for the pseudoexperiments with the systematic al-
teration included, and the equivalent mean value for the
reference set of pseudoexperiments generated with the
default model. The individual systematic uncertainties
are summed in quadrature and presented in Table IV to
give the total contribution to the uncertainties for each
parameter which are due to sources of systematic uncer-
tainty.
One source of systematic uncertainty is the modeling of

the angular efficiency of the detector described in Sec. VI.
We model the detector efficiency with a linear combi-
nation of Legendre polynomials and spherical harmon-
ics as described in detail in Ref. [52]. The expansion
coefficients of these functions are obtained by fitting a
three-dimensional efficiency distribution obtained using
simulated events. This simulated sample is re-weighted
to match the pT distributions observed in data. If the
modeling is inaccurate, or the pT re-weighting incorrect,
a systematic uncertainty could be introduced. We test
these effects separately. The former effect is investigated
by using the default fit model on pseudoexperiments, gen-
erated with angular efficiencies taken directly from the
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FIG. 10. (color online). Proper decay time fit projections for the B0
s signal (left) and background (right) regions. The dashed

distributions labeled as “Light” and “Heavy” indicate the contribution of the BLs and BHs , respectively. The pull distributions
at the bottom show the difference between data and fit value normalized to the data uncertainty.
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FIG. 11. (color online). Proper decay time uncertainty fit projections for the B0
s signal (left) and background (right) regions.

The pull distributions at the bottom show the difference between data and fit value normalized to the data uncertainty.

)Tψcos(
-1.0 -0.5 0.0 0.5 1.0

E
nt

rie
s 

pe
r 

0.
12

0

100

200

300

400

500 Data

Fit

)Tθcos(
-1.0 -0.5 0.0 0.5 1.0

E
nt

rie
s 

pe
r 

0.
12

0

100

200

300

400

500 Data

Fit

 [rad]Tφ
0 2 4 6

E
nt

rie
s 

pe
r 

0.
42

 r
ad

0

100

200

300

400

500

600

700 Data

Fit

FIG. 12. Fit projections for transversity angles for sideband-subtracted signal.
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TABLE III. Results of alternative fits to cross-check the main SM results. All uncertainties quoted are statistical only. As
shown in Ref. [22] the untagged analysis is not sensitive to the strong phase δ⊥.

Parameter Un-tagged (with S-wave) Tagged (without S-wave) Un-tagged (without S-wave)

cτ (B0
s) [µm] 456.9 ± 8.0 459.1 ± 7.7 457.2 ± 7.9

∆Γs [ps−1] 0.069 ± 0.030 0.073 ± 0.030 0.070 ± 0.040

|A‖(0)|2 0.232 ± 0.032 0.232 ± 0.014 0.233 ± 0.016

|A0(0)|2 0.521 ± 0.013 0.523 ± 0.012 0.520 ± 0.013

δ⊥ [rad] − 2.8 ± 0.6 −
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FIG. 13. Fit projections for transversity angles in background region.

TABLE IV. Summary of systematic uncertainties assigned to the five physics quantities discussed in Sec. VII.

Source of systematic effect ∆Γs [ps−1 ] cτ (B0
s) [µm] |A‖(0)|2 |A0(0)|2 δ⊥ [rad]

Signal efficiency

Parameterization 0.0024 0.96 0.0076 0.008 0.016

MC re-weighting 0.0008 0.94 0.0129 0.0129 0.022

Signal mass model 0.0013 0.26 0.0009 0.0011 0.009

Background mass model 0.0009 1.4 0.0004 0.0005 0.004

Resolution model 0.0004 0.69 0.0002 0.0003 0.022

Background lifetime model 0.0036 2.0 0.0007 0.0011 0.058

Background angular distribution

Parameterization 0.0002 0.02 0.0001 0.0001 0.001

σct correlation 0.0002 0.14 0.0007 0.0007 0.006

Non-factorization 0.0001 0.06 0.0004 0.0004 0.003

B0 → J/ψK∗ cross-feed 0.0014 0.24 0.0007 0.0010 0.006

SVX alignment 0.0006 2.0 0.0001 0.0001 0.020

Mass resolution 0.0001 0.58 0.0004 0.0004 0.002

σct modeling 0.0012 0.17 0.0005 0.0007 0.013

Pull bias 0.0028 0.0013 0.0021

Totals 0.006 3.6 0.015 0.015 0.07
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background angular distributions rather than the default
parameterization. The latter effect is investigated by
generating pseudoexperiments with non-reweighted MC
events as input for the angular efficiencies. The second
test is a rather extreme case, but shows only a small sys-
tematic effect.

The next systematic uncertainty that we consider is
the modeling of the signal B0

s mass distribution, which
is fitted by default with a single Gaussian distribution.
If a double Gaussian model is used, the fit quality would
be comparable and we evaluate a systematic uncertainty
from the comparison of the two fit models. To test
the size of a potential systematic effect, we generate
pseudoexperiments with a double-Gaussian signal mass
model, extracted from data, and fit with the usual single-
Gaussian parameterization.

Similarly, the model used for the mass distribution of
combinatorial background events can be changed to a
second order polynomial with comparable fit quality. To
study this effect, we generate pseudoexperiments with
a second-order polynomial background model instead of
the default first order polynomial and fit with the default
straight line. The results of both tests and the corre-
sponding systematic uncertainties are listed in Table IV.

A particularly important effect to consider for the
lifetime measurement is the lifetime resolution model.
In our standard fit we model the detector resolution
by convolving each lifetime component with a two-
Gaussian resolution function. To test the effect of a mis-
parameterization, we generate pseudoexperiments with
a three-Gaussian resolution model, extracted from data,
and fit with the default two-Gaussian model.

As well as the lifetime resolution, the modeling of the
various components of the background lifetime can sys-
tematically affect the measured B0

s lifetime. To check
the effect of any inaccuracy in our background lifetime
model as described in Section VI, we generate pseudoex-
periments with the decay time of the background events
taken from histograms of the B0

s mass sidebands and fit
with the default model.

We consider three possible sources of systematic un-
certainty related to the transversity angles of the back-
ground events: mis-modeling of the parameterization de-
scribed in Section VI, ignoring the observed small correla-
tions between the three angles, and correlations between
the angles and the expected proper decay time uncer-
tainty, σct. The effect of these sources of uncertainty
is checked using the actual data distributions from the
mass sidebands to generate pseudoexperiments and test
the difference between our model and the true distribu-
tions. For the parameterization check, we simply use the
data background angular distributions in the generation
of the pseudoexperiments before fitting with the default
model. To check the effect of neglecting the small cor-
relations between the angles, we generate pseudoexperi-
ments where two of the background angles are sampled
randomly from the data distributions, and the third one
from a two-dimensional histogram according to the sam-

pled value of the second angle. To check the effect of
ignoring correlations between the transversity angles and
σct, we sample the φT angle distribution, found to have
the largest correlation with σct, using a two-dimensional
histogram of φT versus σct in order to generate the pseu-
doexperiments. The effect of ignoring these very small
correlations results in an almost negligible systematic un-
certainty on the measurements (see Table IV).
In the default fit, we do not account for contamina-

tion from B0 → J/ψK∗0 events mis-reconstructed as
B0
s → J/ψφ decays (B0 cross-feed). A small fraction

of these events lies in the B0
s mass signal region. The

first step in identifying the size of the systematic ef-
fect is to estimate the size of this contribution by us-
ing measured production fractions of the B0

s and B0

mesons, their relative decay rates to J/ψφ and J/ψK∗0,
respectively, and the probability for each type of event to
pass our final selection criteria when reconstructed under
the B0

s → J/ψφ hypothesis. Both the production frac-
tions and the branching fractions are taken from Ref. [8].
We estimate the efficiencies using simulation, with both
B0
s → J/ψφ and B0 → J/ψK∗0 modes reconstructed as

B0
s → J/ψφ decay. The fraction f of B0 cross-feed events

in the B0
s sample is calculated as

f(B0 in B0
s sample) =

=
f(b̄→ B0)B(B0 → J/ψK∗0) ǫ(B0)

f(b̄→ B0
s )B(B0

s → J/ψφ) ǫ(B0
s )

. (31)

Using Eq. (31), we find that the fraction of B0 cross-feed
into the signal sample of this analysis is (1.6± 0.6)%. To
make a conservative estimate of the systematic uncer-
tainty that this effect will add to the measurement of the
parameters of interest, we generate pseudoexperiments
with a fraction of 2.2% B0 cross-feed, and fit with the de-
fault model which does not account for this component.
The cross-feed component is generated using values of
the B0 lifetime, decay width and transversity amplitudes
from the CDF angular analysis of B0 → J/ψK∗0 [58].
A systematic uncertainty can be introduced by the as-

sumption that the silicon detector is perfectly aligned,
when it could actually be mis-aligned by bowing of the
detector layers of up to 50 µm. A study on the effect
of the limited knowledge of the CDF II silicon detector
alignment concluded that a conservative estimation of the
systematic uncertainty on the decay length cτ in CDF
lifetime measurements is given by a 2 µm systematic un-
certainty on cτ [59]. This study was done by fully recon-
structing both data and simulation under different silicon
alignment assumptions, including shifts of ±50 µm in all
silicon detector components. The lifetime was fitted in
several B → J/ψX channels, and the worst shift was
taken as the systematic uncertainty on the lifetime due
to the assumption of perfect silicon alignment.
We use the value of 2 µm systematic uncertainty on

cτ(B0
s ) to also assess secondary effects on the other pa-

rameters of interest. Due to correlations between the
B0
s lifetime and the other physics parameters, it is ex-

pected that an additional uncertainty on the lifetime
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measurement will also cause uncertainties in the mea-
surement of the other parameters. To quantify the effect
on the other parameters, we generate pseudoexperiments
in which the decay time in each event is randomly shifted
±2 µm and fit in the usual manner to allow for compar-
isons between the input and fitted values of the parame-
ters of interest.
In the fit model, we treat the mass resolution iden-

tically for signal and background events. The effect of
any inaccuracy in this assumption can be tested by gen-
erating pseudoexperiments with mass uncertainty distri-
butions modeled by histograms of B0

s sideband data for
background events and sideband-subtracted signal region
data for signal events separately, and then fitted with the
default model.
Finally, we consider the effect of mis-parameterization

of the σct distributions. To account for a possible ef-
fect, we fit with the default model to pseudoexperiments
generated with the uncertainty distributions taken from
data histograms rather than the model described in Sec-
tion VI. This systematic check also accounts for any
effect caused by small observed correlations between σct
and the invariant mass by sampling the background un-
certainties from separate upper and lower sideband his-
tograms according to the generated B0

s mass.
The total systematic uncertainty assigned to ∆Γs is

0.058 ps−1, while 3.6 µm is assigned to the measurement
of cτ(B0

s ). Both |A‖(0)|2 and |A0(0)|2 are assigned an
uncertainty of 0.015. Finally, δ⊥ is assigned a 0.07 rad
uncertainty.

VIII. FREQUENTIST ANALYSIS OF β
J/ψφ
S AND

∆ΓS

As anticipated in Sec. VII, due to the pathological be-

havior of the likelihood function with respect to β
J/ψφ
s

and ∆Γs, we perform a frequentist analysis to determine
confidence regions for these parameters. In addition, we
perform a cross-check in which we determine credible in-

tervals for β
J/ψφ
s and ∆Γs using Bayesian techniques de-

scribed in Sec. IX. In the main analysis we use profile-
likelihood ratio ordering [60] to determine the confidence

level region in the β
J/ψφ
s -∆Γs space. The coverage of

the confidence region against deviations of the nuisance
parameters from their measured values is confirmed by
explicitly checking the effect of variations of the nuisance
parameters on the profile-likelihood shape. Following our
previous publication [15], the confidence regions are cor-
rected to guarantee a coverage of the true value with at
least the nominal confidence level. We thus choose this
method to quote the main results of this paper.
The likelihood function has several symmetries that

are discussed in detail in Ref. [52]. In absence of the
S-wave component in B0

s → J/ψK+K− decays, the
likelihood function is symmetric under the simultaneous

transformations: β
J/ψφ
s → π

2 − β
J/ψφ
s , ∆Γs → −∆Γs,

δ⊥ → π − δ⊥, and δ‖ → −δ‖. An approximate symme-
try is also present under the above simultaneous trans-

formations of only β
J/ψφ
s and ∆Γs. The approximate

symmetry produces a local minimum in the β
J/ψφ
s -∆Γs

space in addition to the global minimum. We account
for this effect by performing the likelihood scan with δ‖
being started in the fit separately in the range [0, π] and

then in the range [π, 2π]. At each point in the β
J/ψφ
s -∆Γs

plane, we choose the deeper of the two −2 logL likelihood
values (absolute minimum) as evaluated for the different
δ‖ ranges. This procedure guarantees that we use the
global, not the local minimum, at each point.
Once we have minimized the likelihood function on

data with respect to the β
J/ψφ
s and ∆Γs parameters,

we proceed with determining the 68% and 95% con-
fidence regions. Constructing correct and informative
confidence regions from highly multi-dimensional likeli-
hoods is challenging and, as in our case, evaluating the
full 35-dimensional confidence space is computationally
prohibitive. To construct a proper coverage adjustment,
which ensures that the quoted 68% (95%) confidence lev-

els do indeed contain the true values of β
J/ψφ
s and ∆Γs

at least 68% (95%) of the time, the choice of the ordering
algorithm is important. We choose the profile-likelihood
ratio ordering method [60] described below. The ob-
tained profile-likelihood ratio is then used as a χ2 variable
to derive confidence regions in the two-dimensional space

of β
J/ψφ
s -∆Γs. However, simulations show that the ob-

served profile-likelihood ratio deviates from a true χ2 dis-
tribution. In particular, the resulting confidence regions
contain true values of the parameters of interest with
lower probability than the nominal confidence level and,
in addition, the profile-likelihood ratio appears to depend
on the true values of the nuisance parameters, which are
unknown. We therefore use a large number of pseudo-
experiments to derive the actual profile-likelihood ratio
distribution relevant for our data. The effect of system-
atic uncertainties is accounted for by randomly sampling
a limited number of points in the space of all nuisance
parameters and using the most conservative of the re-
sulting profile-likelihood ratio distributions to calculate
the final confidence region. In the following, the coverage
adjustment procedure is described in detail.

A. Coverage adjustment

To construct coverage adjusted confidence level regions

for each point in the β
J/ψφ
s -∆Γs plane, we start with cal-

culating a p-value, which, given a certain hypothesis, de-
scribes the probability to observe data as discrepant or
more discrepant than the data observed in our experi-
ment. The set of all points with a p-value larger than
1− x forms the x% C.L. region. In particular, the set of
points with p-value larger than 1 − 0.95 = 0.05 outlines
the 95% confidence region.
Since a main goal of our analysis is to determine the
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compatibility of our data with the standard model expec-

tation for β
J/ψφ
s , we start by calculating the SM p-value.

We generate pseudoexperiments at the standard model

expected point in the β
J/ψφ
s -∆Γs plane (β

J/ψφ
s = 0.02,

∆Γs = 0.090 ps−1). When generating the pseudoexper-
iments, we use the best fit values for all nuisance pa-

rameters as observed in our data while β
J/ψφ
s and ∆Γs

are fixed to the SM expected values. The likelihood
function corresponding to each pseudoexperiment is first
maximized with all parameters floating, and then maxi-

mized a second time with β
J/ψφ
s and ∆Γs fixed to their

SM values while the remaining fit parameters (nuisance
parameters) are independently floating. We then form
twice the negative difference between the logarithms of
the likelihood values obtained in each of the two steps to
obtain a profile-likelihood ratio value −2∆ logL. The
profile-likelihood ratio distribution from 1000 pseudo-
experiments is used to obtain the standard model p-
value, which is the fraction of pseudoexperiments with
−2∆ logL larger than the corresponding quantity ob-
served in data.

We construct the cumulative distribution of −2∆ logL
to obtain a mapping between the p-value = 1−C.L. and
−2∆ logL, as shown in Fig. 14 by the solid black his-
togram which has been interpolated. In an ideal situa-
tion, when the likelihood function is Gaussian with re-

spect to β
J/ψφ
s and ∆Γs, this dependence should be a

χ2 distribution with two degrees of freedom as indicated
by the green line. It is evident from Fig. 14 that, at
least with our current data sample size, we are not in an
asymptotic, Gaussian regime. To test the dependence of

the obtained mapping on the chosen SM point for β
J/ψφ
s

and ∆Γs, we construct similar maps between the con-
fidence level and −2∆ logL for other random points in

the β
J/ψφ
s -∆Γs plane and find very similar dependencies.

Consequently, we consider the mapping determined at

the SM point to apply for all points in the β
J/ψφ
s -∆Γs

plane.

To obtain confidence regions in β
J/ψφ
s and ∆Γs, we de-

termine profile-likelihood ratios for a grid on the β
J/ψφ
s -

∆Γs plane. In a Gaussian regime, the points with p-
value = 0.05, corresponding to a confidence level of 95%,
are identified by the intersection of the two-dimensional
profile-likelihood function and a horizontal plane which
is 5.99 units above the global minimum. The value 5.99
is the point on the −2∆ logL axis where the χ2 distribu-
tion with two degrees of freedom (green line) intersects
the 1 − 0.95 = 0.05 level (red dashed line) in Fig. 14.
The 68% C.L. is correspondingly obtained by the top
horizontal (blue) line. The intersection between the 0.05
level and the actual mapping (black histogram) is at
−2∆ logL = 7.34 which means that the 95% confidence
region is obtained by taking the intersection of the two-
dimensional profile-likelihood function and a horizontal
plane which is 7.34 units above the global minimum. In

this case we find the standard model p-value for β
J/ψφ
s
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FIG. 14. (color online). Mapping of p-value (1 − C.L.) as
a function of twice the negative difference of log-likelihoods
(−2∆ logL) as evaluated in pseudoexperiments. The ideal
dependence is a χ2 distribution with two degrees of freedom
as shown by the solid (green) line. The actual observed map-
ping for our data is shown by the black histogram, while the
corresponding distributions for the alternative ensembles are
displayed by the colored, dashed histograms.

to be 0.27. Clearly, this procedure leads to confidence
regions larger than in the ideal, Gaussian case.

In order to guarantee additional coverage over a con-
servative range of possible values of nuisance parame-
ters, sixteen alternative ensembles are generated. As
we do not know the true values for these nuisance pa-
rameters, we compute the coverage over a wide range
of possible values but always within their physically al-
lowed range [61]. In particular, each alternative ensem-
ble is produced by generating pseudoexperiments with
nuisance parameters randomized uniformly within ±5 σ
of their best fit values as obtained from maximizing the
likelihood function on data. In these pseudoexperiments,

the parameters β
J/ψφ
s and ∆Γs are again fixed to their

standard model expectation. We choose a random vari-
ation of ±5 σ over the nuisance parameters because we
aim to cover the space of nuisance parameters with a
C.L. much larger than the anticipated C.L. for our final
result. Exceptions to this approach are the strong phases
which are generated only within the range from zero to
2π and the dilution scale factors which are generated so
that the dilution is always between zero and one. The
other exception to applying a ±5 σ range is the phase
δSW , which is generated flat between 0 and 2π. Since
the S-wave fraction fSW is consistent with zero as dis-
cussed in Sec. VIII B, we lack sensitivity to the associated
phase and choose to vary it over its full range possible.
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To determine this additional coverage adjustment,
we again generate 1000 pseudoexperiments for each of
the sixteen alternative ensembles. The same profile-
likelihood ratio procedure is performed on each ensemble,
and the broadest and thus most conservative p-value is
taken to form the final confidence regions. The colored,
dashed lines in Fig. 14 show the resulting mappings be-
tween 1−C.L. and −2∆ lnL for each of the sixteen alter-
native ensembles. We use the p-value of the most conser-
vative ensemble to determine the corresponding 68% and
95% confidence regions for our data. The intersection be-
tween the 0.05 (0.32) confidence level (1−C.L.) and the
most conservative mapping is at −2∆ logL = 8.79 (4.19).
This means that the 95% (68%) confidence region with
guaranteed coverage is obtained by taking the intersec-
tion of the two-dimensional profile-likelihood ratio and
a horizontal plane which is 8.79 (4.19) units above the
global minimum. Note that this procedure of randomly
sampling a limited number of points in the space of all
nuisance parameters and using the most conservative of
the resulting profile-likelihood ratio distributions auto-
matically accounts for the effect of systematic uncertain-
ties.
A similar coverage adjustment procedure is carried out

to determine individual confidence intervals for β
J/ψφ
s

and ∆Γs separately. When determining the β
J/ψφ
s con-

fidence interval, ∆Γs is randomized in the pseudoexperi-
ment generation and treated analogously with the other
nuisance parameters. We again generate 1000 pseudoex-
periments per alternative ensemble for the final coverage
adjustment in the one-dimensional case. Using a similar
approach as in the two-dimensional case, we obtain again
mappings of 1−C.L. versus −2∆ logL for alternative en-
sembles with randomized nuisance parameters.

B. Results using frequentist approach

We present frequentist β
J/ψφ
s -∆Γs confidence regions

and p-values obtained according to the procedure de-

scribed in Sec. VIII above. The β
J/ψφ
s -∆Γs confidence re-

gions without the application of flavor tagging are shown
in Fig. 15. The SM prediction is indicated by the black
marker, and the 68% and 95% C.L. regions are shown as
solid (blue) and dot-dashed (red) contours, respectively.

We find the p-value for β
J/ψφ
s to agree with the standard

model prediction to be 0.10. The shaded (green) band
is the theoretical prediction of mixing-induced CP vio-
lation. As discussed above, in the absence of an S-wave
component, the likelihood function is symmetric under

the simultaneous transformations β
J/ψφ
s → π

2 − β
J/ψφ
s ,

∆Γs → −∆Γs, δ⊥ → π−δ⊥ and δ‖ → −δ‖. In addition, if
no flavor tagging information is used, an additional sym-

metry is present in the likelihood β
J/ψφ
s → −βJ/ψφs . As a

consequence of these symmetries, the likelihood function
has four global maxima as can be seen in Fig. 15.
Once the flavor tagging information is added to the
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FIG. 15. (color online). Confidence regions in β
J/ψφ
s -∆Γs

plane for the fit without application of flavor tagging. The
solid (blue) and dot-dashed (red) contours show the 68% and
95% confidence regions, respectively. The dotted lines are the
symmetry axes corresponding to the profiled likelihood invari-

ance under β
J/ψφ
s → π

2
− β

J/ψφ
s and ∆Γs → −∆Γs. In addi-

tion, the likelihood is invariant under β
J/ψφ
s → −βJ/ψφs . The

shaded (green) band is the theoretical prediction of mixing-
induced CP violation.

analysis, the β
J/ψφ
s → −βJ/ψφs symmetry is removed

and the likelihood function has only two global max-
ima corresponding to the likelihood invariance under

β
J/ψφ
s → π

2 − β
J/ψφ
s and ∆Γs → −∆Γs. The β

J/ψφ
s -

∆Γs confidence regions for the flavor tagged analysis,
after coverage adjustment, are shown in Fig. 16. Our

sensitivity to β
J/ψφ
s and ∆Γs has substantially improved

compared to our previously published measurement [15],
as evidenced by the decrease in size of the confidence re-
gion. The result is also more consistent with the standard
model prediction.
To illustrate the effect of the coverage adjustment, the

left-hand side of Fig. 17 compares the 68% and 95%
C.L. contours after coverage adjustment with the cor-
responding contours before the coverage adjustment pro-
cedure. A small increase in the size of the contours can
be seen. As a further cross check, we also performed
the same fit setting the S-wave fraction to zero as shown
on the right-hand side of Fig. 17. The contour regions
corresponding to a profile-likelihood ratio variation of
−2∆ logL = 2.30 (blue) and −2∆ logL = 5.99 (red)
are compared when including (solid) and not including
(dashed) the S-wave fraction in the likelihood fit. The
contours are almost identical.
The one-dimensional likelihood scan in the quantity

β
J/ψφ
s after coverage adjustment is shown in Fig. 18 on
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FIG. 16. (color online). Confidence regions in β
J/ψφ
s -∆Γs

plane for the fit including flavor tagging information. The
solid (blue) and dot-dashed (red) contours show the 68% and
95% confidence regions, respectively. The dotted lines are
the symmetry axes corresponding to the profiled likelihood

invariance under β
J/ψφ
s → π

2
−βJ/ψφs and ∆Γs → −∆Γs. The

shaded (green) band is the theoretical prediction of mixing-
induced CP violation.

the left-hand side. In a Gaussian scenario the 68% (95%)
C.L. range is between the points of intersection of the
profile-likelihood scan curve and a horizontal line which
is one unit (four units) above the global minimum. In
our case after coverage adjustment the solid (blue) and
dot-dashed (red) horizontal lines which indicate the 68%
and 95% C.L. ranges are at 2.74 and 7.11 units above the
global minimum, respectively. We obtain

βJ/ψφs ∈ [0.02, 0.52]∪ [1.08, 1.55] at 68% confidence level,

∈ [−π/2,−1.46]∪ [−0.11, 0.65]∪ [0.91, π/2] at

95% confidence level.

We find the standard model p-value for β
J/ψφ
s to be 0.30

corresponding to about one Gaussian standard deviation
from the SM expectation as is also evidenced in Fig. 16.

In comparison with the recent measurement of β
J/ψφ
s

from the D0 collaboration using a data sample based on
8 fb−1 of integrated luminosity [19], we find a similar

region to constrain β
J/ψφ
s at the 68% C.L. and obtain

a similar p-value for comparison with the SM expecta-

tion. However, our result constrains β
J/ψφ
s to a narrower

region at the 95% confidence level.
In addition, we quote a confidence interval for the

S-wave fraction after performing a likelihood scan for
fSW as shown in Fig. 19. We also show a quadratic
fit overlaid indicating the parabolic shape of the likeli-
hood around the minimum which we integrate to cal-

culate upper limits on the S-wave fraction. The up-
per limit on the S-wave fraction over the mass interval
1.009 < m(K+K−) < 1.028 GeV/c2 corresponding to
the selected K+K− signal region is 4% of the total signal
at the 68% confidence level, and fSW < 6% at 95% C.L.
Since the analysis is limited to events in a narrowK+K−

mass range around the φ signal, the observed S-wave
fraction is small and its effect on the observables quoted
in this analysis is minor. We verified with pseudoexperi-
ments that a sizeable amount of S-wave would affect the
measured value of β

J/ψφ
s . In contrast to our result, the

recent D0 publication [19] quotes a sizeable fraction of
17.3±3.6% for the S-wave fraction over almost the same
K+K− mass range. We also perform a likelihood scan
to determine the associated S-wave phase, but, as ex-
pected from simulated experiments, we find that we are
not sensitive to δSW with the current data sample size.
Finally, we perform a flavor tagged analysis with ∆Γs

Gaussian constrained to the theoretical prediction of
2 |Γs12| = (0.090± 0.024) ps−1 [9]. Under this constraint,

β
J/ψφ
s is found in the range [0.05, 0.40] ∪ [1.17, 1.49] at

the 68% confidence level, and within [−π/2,−1.51] ∪
[−0.07, 0.54]∪ [1.03, π/2] at 95% C.L. as shown in Fig. 18
on the right-hand side. The p-value for the SM expected

value of β
J/ψφ
s from this constrained fit is 0.21, corre-

sponding to a deviation from the SM expectation of 1.3 σ
significance. We note that the likelihood scans in Fig. 18

exhibit small deviations from the symmetry in β
J/ψφ
s that

is expected according to our discussion above. The rea-
son is given by the small S-wave fraction that our like-
lihood fit finds as well as the choice of binning and nu-
merical precision in determining the displayed −2∆ logL
values.

IX. RESULTS ON β
J/ψφ
S AND ∆ΓS IN A

BAYESIAN APPROACH

In addition to the frequentist results shown in the pre-
vious section, we use a Bayesian analysis to provide cross-
checks on the determination of the physics parameters.
We use Bayesian inference via integration of the posterior
density obtained from the likelihood function described
in Sec. VI over the nuisance parameters and over those
physics parameters in which we are not presently inter-
ested.
The starting point for this Bayesian approach is the

likelihood function, L(~x | ~θ, ~ν ), where ~x are the exper-
imental measurements including the B0

s candidate de-
cay time and invariant mass, the transversity angles and

tagging information, while ~µ = (~θ, ~ν ) is a vector distin-

guishing the physics parameters ~θ described in Table II
from the remaining nuisance parameters ~ν in the fit de-
scribing features such as background shapes, tagging per-
formance, and detector resolution (see Sec. VI). In our

analysis the dimensionality of ~θ and ~ν is 11 and 24, re-
spectively.



26

 [rad]                 
 φ ψJ/

s
β

-1.5 -1 -0.5 0 0.5 1 1.5

]  
   

   
   

   
   

 
-1

 [p
s

sΓ
∆

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 95% CL

before adjustment

SM expectation

symmetry line

68% CL

before adjustment

 [rad]φψJ/
sβ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

] 
-1

 [p
s

sΓ
∆

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

before adjustment

no S-wave

with S-wave

SM expectation

symmetry line

FIG. 17. (color online). Left: Confidence regions in β
J/ψφ
s -∆Γs plane for the fit including flavor tagging information before

(dashed) and after (solid) performing the coverage adjustment. Right: Comparison of including (solid) and not including
(dashed) the S-wave contribution in the likelihood fit.
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FIG. 18. Likelihood scan in β
J/ψφ
s with no constraint (left) and with ∆Γs constrained to the SM prediction (right). After

coverage adjustment the solid (blue) and dot-dashed (red) horizontal lines indicate the 68% (95%) C.L. range above the global
minimum.

Within the Bayesian approach to statistical inference,
Bayes’ theorem defines the posterior probability density
given the observed data set ~x

p(~θ | ~x) = p(~x | ~θ ) p(~θ )
∫

p(~x | ~θ ) p(~θ ) dNθ
, (32)

where p(~x | ~θ ) is the likelihood function L(~x | ~θ ) and p(~θ )
is the prior probability density for ~θ, which describes the

knowledge about parameters ~θ that we assume prior to
our measurement. The projection of the N -dimensional
posterior density onto M parameters of physical interest
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FIG. 19. Likelihood scan of the S-wave fraction with a
quadratic fit overlaid indicating the parabolic shape of the
likelihood around the minimum.

corresponds to an integration over all the otherN−M pa-
rameters, where the limits of integration cover all possible
values for the N −M parameters. This projection gives

a new posterior density p(~α | ~x) for parameters αi ∈ ~θ.
For a single variable α and a uniform prior density this
expression reduces to

p(α | ~x) =
∫

p(~θ | ~x) (θ) dN−1θ . (33)

We compute a representation of the 35-dimensional
likelihood function including nuisance parameters, which
we store in a computer-readable data format (Ntuple).
These Ntuples contain Markov chains, which have been
generated by a Markov chain Monte Carlo (MCMC) tech-
nique [62]. Projections of the Markov chains onto sub-
spaces of physical parameters of interest, in particular

β
J/ψφ
s , ∆Γs, etc., are then performed. In addition, we

compute credible intervals for certain parameters and
credible contours for pairs of parameters derived from
these projections, as discussed in more detail below.
From a Markov chain projection one may easily draw

conclusions about specific values of parameters such as

β
J/ψφ
s and ∆Γs with a view toward propagating that

information into global fits of, e.g., CKM parameters
and incorporating certain prior information, about, e.g.,

mixing-induced CP violation and the values of the strong
phases that appear in B0

s → J/ψφ decays. By projecting
a Markov chain onto a subspace of parameters of dimen-
sion M , i.e., making a histogram or a scatter-plot from
the Ntuples, one is in fact performing a numerical inte-
gration of the posterior density, over the other N −M
parameters. The normalization factor, i.e., the denomi-
nator in Eq. (32), is easily identified as the total number
of points of the Markov Chain.

We can define a credible interval [αL, α
U ] for the pa-

rameter α with probability content β through

β =

∫ αU

αL

p(α | ~x) dα = P (αL < α < αU ). (34)

The credible interval [αL, α
U ] contains a fraction β of

the posterior density about α but it is not unique.
However, we can build a “shortest interval” using the
straightforward algorithm of maximum probability or-
dering by accepting into the interval the largest values
of the PDF p(α | ~x). Using the same algorithm as in
the one-dimensional case, we build credible contours in

the β
J/ψφ
s -∆Γs plane. A credible interval (or contour)

does not necessarily cover the true value of a parame-
ter (or parameters) with any given frequentist probabil-
ity. On the other hand, regarding the technical aspect
it allows for the combination of experimental results and
theoretical inputs in a straightforward manner. In ad-
dition, the Bayesian technique can be trivially modified
to incorporate other conditions on, for example, mixing-
induced CP violation or constraints on the strong phase
angles through non-uniform prior probability densities
(see Sec. IXB and Sec. IXB).

To verify convergence of the Markov chain, we gen-
erate sixteen independent chains. A burn-in phase of
approximately 10 000 steps is identified. We discard the
first 250 000 states in each chain and keep the following
one million states. This means the probability densities
shown below are based on sixteen million states.

A. Results using Bayesian approach

The projections of the sixteen chains onto the variables

β
J/ψφ
s and ∆Γs are displayed in Fig. 20 together with the

sum of all sixteen chains. The close agreement between
the sixteen independent chains on the left-hand side of
Fig. 20 also demonstrates the convergence of the com-
putation. Using this Bayesian analysis of the data, we
obtain
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βJ/ψφs ∈ [0.11, 0.41]∪ [1.16, 1.47] as 68% credible interval,

∈ [−0.04, 0.59]∪ [0.98, 1.62] as 95% credible interval,

∆Γs ∈
[

−0.14 ps−1,−0.06 ps−1
]

∪
[

0.06 ps−1, 0.14 ps−1
]

as 68% credible interval,

∈
[

−0.18 ps−1,−0.02 ps−1
]

∪
[

0.02 ps−1, 0.18 ps−1
]

as 95% credible interval.

The joint posterior probability densities and credible

contours in the β
J/ψφ
s -∆Γs plane are displayed in Fig. 21.

The narrow band shown in the figure is the theoretical
prediction of mixing-induced CP violation using 2|Γs12| =
(0.090± 0.024) ps−1 [9, 10] overlapping with our result.
Furthermore, we calculate

∫

Aβs
p(βJ/ψφs ) dβJ/ψφs = 0.119, (35)

where Aβs = {βJ/ψφs ; p(β
J/ψφ
s ) < p(βSMs )}, indicating

that, as the contour is expanded to enclose larger credibil-
ity, the standard model prediction βSMs is first included
within the enclosed region at a credibility of 88.1%.
We also examine the posterior density in the variables

δ‖ versus δ⊥ as shown in Fig. 22. It is predicted that

the phases in B0
s → J/ψφ match those in the equiv-

alent decay B0 → J/ψK∗0 to within 10◦ [63]. The
measured values of these phases in the B0 → J/ψK∗0

decay (δ‖ = −2.93 ± 0.08 (stat) ± 0.04 (syst) rad and
δ⊥ = 2.91 ± 0.05 (stat) ± 0.03 (syst) rad [64]) are over-
laid in form of a green ellipse in Fig. 22. The width of
this ellipse includes the 10◦ theoretical uncertainty added
in quadrature with the experimental uncertainties on δ‖
and δ⊥. For one mode of the probability density good
agreement between the B0

s and B0 system is observed as
predicted in Ref. [63].

B. Constrained results

Figure 21 shows that our measurement in the β
J/ψφ
s -

∆Γs plane is consistent with the hypothesis of mixing-
induced CP violation as well as with the hypothesis that
the measured CP violation originates from the standard
model. We apply the hypothesis of mixing-induced CP

violation, together with the theoretical calculation of Γs12,
to our data in form of a prior density during the com-
putation of the MCMC. We carry out this calculation
by simply re-weighting the Markov chains using a new
flat prior density derived from the theoretical calculation
which gives 2 |Γs12| = (0.090± 0.024) ps−1 [9].
The 68% credible interval on the CP -violating quantity

β
J/ψφ
s is β

J/ψφ
s ∈ [0.09, 0.32]∪ [1.24, 1.48]. The posterior

density in β
J/ψφ
s alone is shown in Fig. 23 on the left-

hand side. Again, we calculate the quantity

∫

Aβs
p(βJ/ψφs ) dβJ/ψφs = 0.131, (36)

where Aβs = {βJ/ψφs ; p(β
J/ψφ
s ) < p(βSMs )}. The SM is

first included at a credibility of 86.9%.
As can be seen in Fig. 22, the theoretical predictions

of Ref. [63] are consistent with one of the modes of the
probability density in the δ⊥ versus δ‖ plane but not
with the other mode. In the following, conditional pos-
terior densities are used to show that the favored mode
of probability from Fig. 24 corresponds to the solution

β
J/ψφ
s ∈ [0.09, 0.32].
The sequence of plots in Fig. 24 illustrates this state-

ment. The figures in the top row show the condi-
tional posterior density in the parameters δ‖ and δ⊥ af-

ter imposing the requirement |βJ/ψφs | < π/4. It can be
seen that this condition completely eliminates one of the
modes of the probability density in the δ‖ versus δ⊥ pa-
rameter space. The plots in the bottom row of Fig. 24
show that, conversely, the condition π/2 < δ⊥ < 3π/2
eliminates one mode of the probability projected onto

β
J/ψφ
s , while there is virtually no impact on the other

mode with |βJ/ψφs | < π/4.
These conditional probabilities allow us to visualize

what is happening in the larger space of all four pa-

rameters (β
J/ψφ
s , ∆Γs, δ‖ and δ⊥), and to identify the

prediction of Ref. [63] with only one of the solutions for

β
J/ψφ
s , namely β

J/ψφ
s ∈ [0.09, 0.32] at the 68% credible

interval. This result confirms the early finding in our pre-
vious publication [15] which indicated that the solution

centered in 0 ≤ β
J/ψφ
s ≤ π/4 and ∆Γs > 0 corresponds

to cos(δ⊥) < 0 and cos(δ⊥ − δ‖) > 0, while the opposite

is true for the solution centered in π/4 ≤ β
J/ψφ
s ≤ π/2

and ∆Γs < 0.

C. Sensitivity analysis

It is a well-known fact that Bayesian results depend on
the chosen prior densities; a flat prior in a given metric
might, in general, not be flat in another metric. To study
such effects, we carried out a sensitivity analysis in order
to characterize the degree to which the Bayesian results
of this section depends upon the chosen input priors. The
sensitivity analysis was performed by weighting the prob-
ability density with the Jacobian of the transformation
from the default parameterization to the desired parame-
terization. Using this technique we checked the variation
of the Bayesian result with respect to the following six

variations. First, the prior is taken flat in sin 2β
J/ψφ
s

rather than flat in β
J/ψφ
s ; second, the prior is taken flat
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FIG. 20. (color online). Bayesian posterior densities for the variables β
J/ψφ
s (top) and ∆Γs (bottom). The left plots show

projections of sixteen independent Markov Chains, while the right two plots show the posterior densities with 68% and 95%
credible intervals in dark-solid (blue) and light-solid (red) areas, respectively.
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FIG. 21. (color online). Joint posterior probability density in

the β
J/ψφ
s -∆Γs plane for the combined analysis. The dark-

solid (blue) and light-solid (red) contours show the 68% and
95% credible regions, respectively. The narrow band (green)
is the theoretical prediction of mixing-induced CP violation.

in cos δ⊥, and third, the prior is taken flat in cos δ‖. Af-
terwards, all three conditions are applied together at the
same time. Fifth, the prior is taken flat in the amplitudes
A‖(0) and A⊥(0) rather than in their squares and finally,
the mixing-induced CP violation constraint is taken as a
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FIG. 22. (color online). Posterior density in the strong phases
δ⊥ versus δ‖ overlaid with the prediction that the phases in

B0
s → J/ψφ match those in B0 → J/ψK0∗ decays to within

10◦ [63]. The dark-solid (blue) and light-solid (red) contours
show the 68% and 95% credible regions, respectively. The
width of the light-shaded (green) ellipse includes the 10◦ the-
oretical uncertainty added in quadrature with the experimen-
tal uncertainties on δ‖ and δ⊥ from B0 → J/ψK0∗.

Gaussian rather than flat constraint. The effect of chang-

ing the priors on the 68% credibility intervals on β
J/ψφ
s
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J/ψφ
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posterior density for the variable β
J/ψφ
s (right) including a prior density for mixing-induced CP violation. The dark-solid

(blue) and light-solid (red) contours show the 68% and 95% credible regions, respectively.
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FIG. 24. (color online). Conditional posterior densities for δ⊥ versus δ‖ and for β
J/ψφ
s . The extra conditions applied to β

J/ψφ
s

(top row) and δ⊥ (bottom row) are shown on the left, and the resulting conditional probabilities are displayed on the right.
The theoretical prediction of Ref. [63] is indicated as green ellipse in the bottom left plot. All plots in this figure are subject
to the constraint of mixing-induced CP violation. The dark-solid (blue) and light-solid (red) contours show the 68% and 95%
credible regions, respectively.

is summarized in Table V. Modest changes are observed
for the unconstrained result and the result with |Γs12| con-
strained to 2 |Γs12| = (0.090 ± 0.024) ps−1 [9]. Only the

effect on the first β
J/ψφ
s credibility interval is shown, since

the second interval can be trivially derived from the num-

bers in Table V.
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TABLE V. Summary of the sensitivity study. The 68% cred-

ibility interval on β
J/ψφ
s is given for the unconstrained result

and when 2 |Γs12| is constrained to its SM prediction.

Variation Constrained Unconstrained

Default [0.09,0.32] [0.11,0.41]

Flat sin 2β
J/ψφ
s [0.08,0.31] [0.09,0.37]

Flat cos δ⊥ [0.09,0.33] [0.10,0.43]

Flat cos δ‖ [0.09,0.32] [0.11,0.41]

Previous three together [0.07,0.31] [0.09,0.39]

Flat in amplitudes [0.09,0.32] [0.11,0.41]

Gaussian mix.-ind. CP viol. [0.09,0.34]

X. SUMMARY

In summary, we have presented a measurement of
CP violation in B0

s → J/ψφ decays using 6500 signal
events from a data sample with 5.2 fb−1 integrated lu-
minosity collected with the CDF II detector operating
at the Tevatron pp̄ collider. We find the CP -violating

phase β
J/ψφ
s to be within the range β

J/ψφ
s ∈ [0.02, 0.52]∪

[1.08, 1.55] at 68% confidence level and within the inter-
val [−π/2,−1.46]∪ [−0.11, 0.65]∪ [0.91, π/2] at 95% C.L.
where the coverage property of the quoted interval is
guaranteed using a frequentist statistical analysis. As-

suming the standard model expectation for β
J/ψφ
s , the

probability to observe a fluctuation as large as in our
data or larger is given by a p-value of 0.30 correspond-
ing to about one Gaussian standard deviation. This re-
sult shows less of a discrepancy with the SM expectation
than our previously published result using 1.3 fb−1 of
integrated luminosity [15]. In comparison with the re-

cent measurement of β
J/ψφ
s from the D0 collaboration

using a data sample based on 8 fb−1 of integrated lu-
minosity [19], our result agrees within uncertainty but

constrains β
J/ψφ
s to a narrower region. With ∆Γs con-

strained to its SM prediction, we find β
J/ψφ
s in the range

[0.05, 0.40] ∪ [1.17, 1.49] at the 68% C.L. The measure-

ment of the CP -violating phase β
J/ψφ
s is still statistics-

limited. It will improve with the final 2011 CDF dataset
approximately doubling the current integrated luminos-
ity.
This analysis also incorporates the possibility of con-

tributions to the B0
s → J/ψK+K− final state in the

region of the φ resonance from B0
s → J/ψf0 and

B0
s → J/ψK+K− (non-resonant) decays. We measure

the S-wave contribution over the mass interval 1.009 <
m(K+K−) < 1.028 GeV/c2 corresponding to the se-
lected K+K− signal region to be less than 6% (4%) at
the 95% (68%) confidence level. We do not confirm a
sizeable fraction of 17.3 ± 3.6% for the S-wave fraction
as quoted over almost the same K+K− mass range in a
recent D0 publication [19].
Assuming the standard model prediction for the CP -

violating phase β
J/ψφ
s , we measure several other param-

eters describing the B0
s system. These include the B0

s

mean lifetime τ(B0
s ), the decay width difference ∆Γs

between the heavy and light B0
s mass eigenstates, the

transversity amplitudes |A‖(0)|2 and |A0(0)|2, as well as
the strong phase δ⊥. The measurements for τ(B0

s ) =
1.529± 0.025 (stat)± 0.012 (syst) ps and ∆Γs = 0.075±
0.035 (stat)± 0.006 (syst) ps−1 are the most precise mea-
surements of these quantities using a single decay mode.
They are also in good agreement with the PDG world
averages [8]. The measurements of the transversity am-
plitudes are consistent with previous measurements in
the B0

s → J/ψφ system. Finally, we report an alternative
Bayesian analysis based on Markov chain integration that
gives results consistent with the frequentist approach.
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