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Abstract

In the presence of a background supergravity flux, N M2-branes will expand via

the Myers effect into M5-branes wrapped on a fuzzy three-sphere. In previous

work the fluctuations of the M2-branes were shown to be described by the five-

dimensional Yang-Mills gauge theory associated to D4-branes. We show that

the ABJM prescription for eleven-dimensional momentum in terms of magnetic

flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory

on the sphere, giving an M-theory interpretation for these instantons.
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1 Introduction

The relation between the low-energy D4-brane theory and its corresponding M-theory

counterpart, the low-energy M5-brane theory, poses some intriguing questions that are not

fully resolved. The conventional understanding is that, since five-dimensional maximally

supersymmetric Yang-Mills (MSYM) is power-counting non-renormalisable, it is only a low-

energy effective description which UV completes to the (2,0) theory on S1. In [1, 2] it was

argued, following earlier leads by [3, 4], that BPS Kaluza-Klein states of the compactified

six dimensional (2, 0) theory on S1 can be recovered as instanton-charged states of five

dimensional MSYM in flat space. This gave rise to the proposal that the latter is not in

need of a UV completion in order to reproduce the finite six dimensional CFT at strong

coupling and is a well defined QFT in its own right. This proposal has recently received

further study and support from [5–9].

In particular, the instanton number of five-dimensional MSYM was identified with units

of Kaluza-Klein momentum in the (2,0) theory on a circle of radius R5 as

P5 =
k

R5
= − 1

2g2YM

∫

Tr (F ∧ F ) . (1.1)

Here we will see how this relation, and as a result the relation between the action and states

of five-dimensional MSYM and the (2,0) theory, emerges in the context of the M2/M5 fuzzy

sphere bound state arising from the Myers effect [10]. Some recent studies of M2/M5-brane

systems include [11, 12].

The M2/M5 system is interesting in this context, since it is expected to admit both

an M2- and an M5-brane weakly-coupled description at large N . The former has been

recently made accessible due to our enhanced understanding of M2-brane theories [13–17]

and is given in terms of the mass-deformed ABJM theory of [18, 19]. The latter should be

captured by an M5-brane theory partially wrapping S3/Zk. The first result of this paper is

to fill a gap in the literature and explicitly construct the M5-brane picture by establishing

this equivalence for large-k, where the M-theory circle shrinks in both descriptions. This

is done by showing that the two theories share the same action for fluctuations. We carry

this out in all detail for irreducible solutions of the mass-deformed ABJM theory and an

Abelian M5-brane. We also give a concrete prescription for the extension of this matching

between reducible ABJM solutions and multiple M5-branes on S3.

We then incorporate momentum around the M-theory circle and show that the agree-

ment still holds: From the ABJM point of view this involves turning on flux along the

spatial worldvolume directions of the M2-brane theory. The associated charge is carried by

the so-called monopole or ’t Hooft operators. Our second result is that there exists a one-

to-one map between this monopole charge and instanton charge in the five-dimensional

MSYM on R
2,1 × S2 both in the Abelian and non-Abelian cases. Note that instanton
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charge in five-dimensional MSYM is not only carried by conventional self-dual gauge field

configurations.

Our results imply that there is a one-to-one map between both perturbative and non-

perturbative states of the mass-deformed ABJM and five-dimensional MSYM theories.

Since the former is the complete description of the M2/M5-brane system [20, 21], correctly

capturing momentum along the M-theory circle, the same should be true for the latter.

This provides strong evidence for the conjecture of [1, 2]. We also hope that this paper

helps to clarify the role of instanton number as Kaluza-Klein momentum.

This result further suggests that instantons are important even in the Abelian theory.

For example, we could wrap the M2-branes on a torus so that the massive vacua describe

a single fuzzy M5 on T 2 × S3. In this case the ABJM prescription for eleven-dimensional

momentum maps to smooth instantons in the Abelian D4-brane picture. This is consistent

with the conjectures of [1, 2] but yet apparently different from the standard prescription

coming from the reduction of the known equations of motion for a single M5-brane [22–

24]. Thus there appears to be a duality between an Abelian D4-brane on T 2 × S2 with

instantons and an Abelian M5 description on T 2×S3 including Kaluza-Klein modes of the

Hopf fibration S3 π→ S2.

The rest of this article is organised as follows: In Section 2 we consider the effective

action of a single M5-brane in a four-form flux background. For states with no Kaluza-

Klein momentum this is the same as a D4-brane in the associated type IIA background

and we find that the brane is indeed stabilised at the correct radius as predicted by the

gauge theory analysis. In Section 3 we then consider fluctuations of the D4-brane theory

and show that this precisely agrees with the effective action calculated in [25] from the

ABJM description of M2-branes in the same background. These calculations are in precise

agreement with the ABJM analysis and provide a non-trivial check on the dual description

obtained from a D4-brane. In Section 4 we discuss the extension of this analysis to multiple

D4-branes or M5-branes. For static configurations these can be obtained by considering

reducible, block diagonal, representations of the ABJM vacuum equations. Dynamically

one must then also allow for off-diagonal modes whose effective action is given by Yang-Mills

gauge theory. In Section 5 we show that the ABJM prescription for momentum around

the M-theory circle in terms of worldvolume U(1) flux is precisely mapped to the instanton

number in the D4-brane description. We comment on the M-theory interpretation of this

result. Finally Section 6 contains our conclusions.

2 Setup

We want to consider an M5-brane probe in a particular flux background with1

G(4) = 2µ(dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx7 ∧ dx8 ∧ dx9 ∧ dx10) , (2.1)

1We work with conventions A = 1
p!
Ai1...ipdx

i1 ∧ . . . ∧ dxip .
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where we note the factor of 2. We observe that this solution is only at leading order in

the fluxes. Due to gravitational effects there is a back-reaction on the geometry. The full

solution is known [26, 27]:

ds2 = H−2/3(−dt2 + dx21 + dx22) +H1/3(dx23 + . . . + dx210) (2.2)

G(4) = 2µ(dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx7 ∧ dx8 ∧ dx9 ∧ dx10) + d(H−1 − 1) ∧ dt ∧ dx1 ∧ dx2 ,

where by directly solving the 4-form equation of motion d ⋆ G = 1
2G ∧G we get2

H = 1− 1

4
µ2r2 . (2.3)

This solution is clearly singular when H ∼ 0. Thus in order to trust the supergravity

background we require that µ2r2 ≪ 1.

N M2 probes were placed in this flux background in [27], leading to the derivation of

the mass-deformed ABJM action of [18, 19]. Compared to the undeformed ABJM theory

[17] there is a correction to the supersymmetry transformations of the M2-branes due to

the flux, given by

δψA = γµDµZ
BǫAB + [ZC , ZD; Z̄A]ǫCD + [ZD, ZC ; Z̄D]ǫAC +

1

2
MA

CZDǫCD , (2.4)

where A = 1, ..., 4, [ZA, ZB ; Z̄C ] ≡ 2π
k (ZAZ†

CZ
B − ZBZ†

CZ
A) and

MA
B = 2µ











1

1

−1

−1











. (2.5)

Setting Z3 = Z4 = 0 leads to the vacuum equation

[ZA, ZB; Z̄B ] = µZA A,B = 1, 2 , (2.6)

which is the one that was used in e.g. [19, 25], justifying the factor of 2 that appears in

(2.1). In the presence of this flux, the M2’s will exhibit a multi-pole coupling to M5-brane

charge through terms
∫

d3x C(6)Tr (DZ̄[Z,Z; Z̄]) + h.c. in an M-theory realisation of the

Myers effect [10, 27, 28]. The resulting configuration is an M2/M5 bound state where the

M2’s have been blown up into an S3 inside one of the R4 sub-planes of the transverse eight

dimensional space.

For large N this M2/M5 bound state is expected to have an equivalent M5-brane

description in terms of a spherical M5 in the same four-form flux background with an

additional worldvolume self-dual flux H. The latter prevents the sphere from collapsing

under its own tension. The system carries M2-brane charge through the coupling
∫

C(3)∧H.

Moreover, since in the ABJM description we have to consider the branes on a Zk orbifold

2Note that due to conventions we obtain a slightly different coefficient here than reported in [26].
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singularity, we also wish to think of the background, in the absence of flux, as R
8/Zk or

(R4 × R
4)/Zk and then factor out a common U(1) fibre where the Zk acts.

In particular, we consider ‘spherical’ coordinates for R
4 and use the standard Hopf

fibration of the unit S3

ds2S3 =
1

4

(

dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2
)

, (2.7)

with ψ ∈ [0, 4π), θ ∈ [0, π] and φ ∈ [0, 2π). Thus we proceed by considering the background

geometry [29]

ds2 = H−2/3(−dt2 + dx21 + dx22) +H1/3(d~r21 + r21(dψ1 +A1)
2 + d~r22 + r22(dψ2 +A2)

2)

d~r2i = dr2i +
1

4
r2i (dθ

2
i + sin2 θidφ

2
i )

Ai = cos θi
dφi
2

. (2.8)

Note that the 2-spheres have radius 1
2 and we have redefined ψi to have period 2π. We

expect the M5-brane to blow-up into a 3-sphere with coordinates ψ, θ, φ and unit radius.

Further defining

ψ1 = ψ̃ + ψ

ψ2 = ψ̃ , (2.9)

we want to implement the orbifold identification on ψ̃, so as to have ψ̃ ∼ ψ̃+ 2π
k , and then

to dimensionally reduce on that direction. To this end we introduce the variable

x11 = kR∗ψ̃ , (2.10)

so that x11 has dimensions of length and periodicity 2πR∗. We will use this coordinate

every time we reduce down to ten dimensions.

One can express

r21(dψ1 +A1)
2 + r22(dψ2 +A2)

2 =
r21r

2
2

r21 + r22
(dψ +A1 −A2)

2 + (r21 + r22)(dψ̃ +A)2

A =
r22A2 + (dψ +A1)r

2
1

r21 + r22
. (2.11)

Then, through the general reduction formula

ds211 = e−2Φ/3ds210 + e4Φ/3(dx11 + C(1))2 , (2.12)

we obtain

ds210 =

√

r21 + r22
kR∗

(

H−1/2(−dt2 + dx21 + dx22)

+H1/2
[

d~r21 + d~r22 +
r21r

2
2

r21 + r22
(dψ +A1 −A2)

2
])

5



eΦ =
(

√

r21 + r22
kR∗

)3/2
H1/4

C(1) = kR∗A . (2.13)

We next consider the reduction of the 11d flux:

G(4) = 2µ(dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx7 ∧ dx8 ∧ dx9 ∧ dx10) + dt ∧ dx1 ∧ dx2 ∧ dH−1

= 2µ
∑

i=1,2

r3i sin θidri ∧ dθi ∧ dφi ∧ dψi + dt ∧ dx1 ∧ dx2 ∧ dH−1 . (2.14)

From this we can compute

C(3) =
µ

2

∑

i=1,2

r4i sin θidθi ∧ dφi ∧ dψi + (H−1 − 1)dt ∧ dx1 ∧ dx2 , (2.15)

so that the ten-dimensional 2-form is

B =
µ

2kR∗
[r41 sin θ1dθ1 ∧ dφ1 + r42 sin θ2dθ2 ∧ dφ2] . (2.16)

We also need to look at

G(7) = dC(6)

= ⋆G(4) − 1

2
C(3) ∧G(4) (2.17)

= 2µH−1dt ∧ dx1 ∧ dx2 ∧
∑

i=1,2

r3i sin θidri ∧ dθi ∧ dφi ∧ dψi + . . . ,

where in the above the ellipsis denotes terms which will not be needed in the rest of the

calculation, e.g. terms with no dt ∧ dx1 ∧ dx2 factor. Thus in ten dimensions we can

effectively use

C(5) = −
( µ

4kR∗
H−1 +

µ

4kR∗

)

dt ∧ dx1 ∧ dx2 ∧
∑

i=1,2

r4i sin θidθi ∧ dφ2 + . . . . (2.18)

2.1 Brane Embedding

We now wish to introduce a brane probe into this background. In particular, we can

consider either an M5-brane in the eleven-dimensional spacetime or, as in this section

we are looking at static solutions where there is a U(1) isometry, a D4-brane in the ten-

dimensional spacetime. Since the action for a D4-brane is unambiguous we chose to work

with the latter. The D4-brane should extend in the t, x1, x2 directions and two more

directions along an S2. For definiteness, we will choose those to be θ1, φ1.

In addition, we would like to have a net D2-brane charge of N units in the system. As

a result we require the presence of a background worldvolume flux

F0 = λF0 − P [B] =
(

2λN − µr41
2kR∗

)

sin θ1dθ1 ∧ dφ1 , (2.19)
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with F0θ1φ1
= 2N sin θ1, so that3

TD4

∫

R3×S2

C(3) ∧ (F0 − P [B]) = NTD2

∫

R3

C012dt ∧ dx1 ∧ dx2 + . . . , (2.20)

where NTD2 = 4π2α′NTD4. In the definition of F0 we have taken into account the pullback

of the background B-field, although its contribution to the D2-brane charge will turn out

to be subleading upon finding the vacuum of the theory. One can check that F0 satisfies

the D4-brane equations of motion in a vacuum where the scalar fields are constant.

With the above in mind, the general form for the effective action is

S = −TD4

∫

d5x e−Φ
√

− det(g + F)−TD4

∫

[

P [C(5)]+P [C(3)]∧F +
1

2
P [C(1)]∧F ∧F

]

,

(2.21)

where Fµν = (λFµν − P [B]µν), with λ = 2πα′, and g is the pullback of the spacetime

metric.

Let us now determine how the D4-brane is embedded. We will write

r1 = ρ cos ξ

r2 = ρ sin ξ (2.22)

and suppose that the brane is at some ρ = R. We then proceed to evaluate the effective

action (2.21). The DBI term simply comes out of using the metric in (2.13) and the flux in

(2.1), while the CS terms come from the C012θ1φ1 term in (2.18) and C012 terms in (2.15).

Then, ignoring fluctuations, we obtain

S = −TD4 cos
2 ξ

∫

d5x sin θ1

(

H−1/2 R
3

kR∗

√

1 +H−1
k2R2∗

R6 cos4 ξ

(

2λN − µR4

2kR∗

)2

+
2λN(H−1 − 1)

cos2 ξ
− µR4

4kR∗
(H−1 + 1) cos2 ξ

)

.

(2.23)

We first note that minimising with respect to ξ we get sin ξ = 0 ⇒ cos ξ = 1, i.e. we

are actually in the R = r1 case. As a result in what follows we will simply set r2 = 0.4

Let us now expand the square root of (2.23). In the large N limit, i.e. to leading order

in R3/λNkR∗, we have

S = −TD4

∫

d5x sin θ1

(

2λN + λNµ2R2 +
R6

4λNk2R2∗
− µR4

kR∗

)

= −TD4

∫

d5x sin θ1

(

2λN + λNµ2R2

(

1− R2

2λµNkR∗

)2
)

(2.24)

= −TD4

∫

d5x sin θ1V (R) .

3Recall that the two-sphere has radius 1
2
.

4For the choice of the embedding of the D4 in the θ2, φ2 sphere, one would have obtained sin ξ = 1 and

as a result R = r2.
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Note that here we have also expanded H−1 = 1 + 1
4µ

2R2 by assuming the approximation

µ2R2 ≪ 1 that was needed to ensure the validity of the supergravity solution.

Clearly V (R) has stable vacuum solutions corresponding to radii

R0 = 0 and R2
0 = 2µλkNR∗ . (2.25)

There is also a local maximum at R2
0 = 2

3µλkNR∗ which we discard. Our approximation

R3/λNkR∗ ≪ 1, used in the square root expansion above, now becomes

R0µ≪ 1 . (2.26)

Note also that by construction 2πR∗ is the periodicity of the eleventh dimension; x11 ∼=
x11 + 2πR∗. Thus following the usual M-theory/Type IIA relations one can identify R∗ =
gsls and lp = g

1/3
s ls where gs = e〈Φ〉 and ls =

√
α′. Therefore we find

R2
0 = 4πµkl3pN (2.27)

and this agrees with the result from the M2-brane description given by Eq. (7.7) in [25].

Finally, if we make the choice R∗ = R0
k , so that R∗ is also the radius of the M-theory

circle as measured at R0 in the eleven-dimensional metric, then we arrive at

R0 = 2λµN . (2.28)

This is exactly the value for the physical radius evaluated in Eq. (7.10) of [25] and corre-

sponds to an M-theory configuration where the M5-brane is wrapping a fuzzy S3 realised

as the Hopf fibration

S1/Zk →֒ S3
F/Zk

π→ S2
F . (2.29)

3 The action for fluctuations

We next study fluctuations around the above solution for the bosonic fields. We first focus

on the gauge field and radial scalar and then move on to the remaining scalar fields.

3.1 Gauge fields and radial scalar

Consider fluctuations with only ∂µδR and δF non-vanishing. The action has the form5

S = −TD4

∫

d5xe−Φ
√

− det(G0 +Υ)− TD4

∫

d5x(C
(5)
012θ1φ1

+ C
(3)
012Fθ1φ1) , (3.1)

where

Υµν = ∂µδR∂νδRgrr + λδFµν

G0µν = gµν + F0µν . (3.2)

5The P [C(1)] ∧ F ∧ F term of (2.21) will result in subleading contributions and will hence be ignored.
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Expanding to quadratic order in Υ we find

S = −TD4

∫

d5xe−Φ
√

− detG0

(

1 +
1

2
Tr (G−1

0 Υ)− 1

4
Tr ((G−1

0 Υ)2) +
1

8
(Tr (G−1

0 Υ))2
)

−TD4

∫

d5x(C
(5)
012θ1φ1

) . (3.3)

Note that G0 can be evaluated from the previous section and is valid for arbitrary but

constant values of R. Explicitly we find

G0 =
RH−1/2

kR∗















−1

1

1

HR2 Σsin θ1
−Σsin θ1 HR2 sin2 θ1















, (3.4)

where

Σ =
kR∗
R

H1/2(2λN − µR4

2kR∗
) . (3.5)

Therefore

G−1
0 =

kR∗
RH−1/2















−1

1

1

∆−1H2R4 sin2 θ1 −∆−1Σsin θ1
∆−1Σsin θ1 ∆−1HR2















, (3.6)

where

∆ = H
k2R2

∗
R2

(

2λN − µR4

2kR∗

)2
sin2 θ1 . (3.7)

Finally, as before, we have

e−Φ
√

− detG0 = sin θ1

√

H−1
R6

k2R2∗
+H−2

(

2λN − µR4

2kR∗

)2
. (3.8)

In order to proceed, it will be useful to split

G−1
0 = D +A , (3.9)

with D diagonal and A antisymmetric. The action for fluctuations can then be written as

S = −TD4

∫

d5xe−Φ
√

− detG0

(

1 +
1

2
Tr (D∂δR∂δRgr1r1)

+
1

2
Tr (AδF) +

1

8
[Tr (AδF)]2 − 1

4
Tr [(DδF)2 + (AδF)2]

)

−TD4

∫

d5x(C
(5)
012θ1φ1

) . (3.10)
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First, we see that there is a linear term in δF = λδF :

1

2
e−Φ

√

− detG0Tr (AδF ) =
1− µR4

4kλNR∗
√

(

1− µR4

4kλNR∗

)2
+ HR6

4λ2N2k2R2
∗

H−1λδFθ1φ1 . (3.11)

To evaluate the above we note that it has the form

1−X
√

(1−X)2 + (1− Z)Y

1

1− Z
λδFθ1φ1 , (3.12)

where

X =
µR4

4kλNR∗
, Y =

R6

4λ2N2k2R2∗
, Z =

1

2
µ2R2 . (3.13)

Now in our approximation X,Y,Z ≪ 1 but all are of the same order (at R = R0). Ex-

panding R = R0 + δR gives to leading order

1

2
e−Φ

√

− detG0Tr (AδF ) =
(

1− 1

2
Y + Z

)

λδFθ1φ1

= λδFθ1φ1 + λ

(

− 6R5
0

8λ2N2k2R2∗
+ µ2R0

)

δRδFθ1φ1(3.14)

= λδFθ1φ1 − 2λµ2R0δRδFθ1φ1 .

The first term in the last line is a total derivative and can be discarded, which is compatible

with the fact that the gauge field is on-shell.

We also need to look at the terms quadratic in δF . The quadratic terms involving the

anti-symmetric part A cancel. In addition we note that to leading order, and for terms

that involve quadratic fluctuations, we can simply take

e−Φ
√

− detG0 = 2λN

H = 1

∆ =
4λ2N2k2R2

∗
R2

sin2 θ1 (3.15)

D =
kR∗
R

















−1

1

1
R4

4λ2N2k2R2
∗

R4

4λ2N2k2R2
∗ sin2 θ1

















.

Putting these together we find

S = −TD4

∫

d3xdθ1dφ1 sin θ1

[

V (R) + λNTr (D∂δR∂δRgr1r1)

− 2λµ2R0

sin θ1
δRδFθ1φ1 −

λ3N

2
Tr [(DδF )2]

]

.

(3.16)
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Next we need to expand R = R0 + δR in the potential V (R).

V (R) = 2λN + 4µ2λN(δR)2 . (3.17)

Combining all terms we arrive at

S = −1

4
TD4µ

2

∫

d5x
√
det h

[

2λN + 4µ2λN(δR)2 + λN∂µδR∂
µδR

−2λµ2R0

sin θ1
δFθ1φ1δR +

λ2kR∗
4µ

δFµνδF
µν
]

= −2λN

4
TD4µ

2

∫

d5x
√
det h

[

1 +
1

2
∂µδR∂

µδR

+
1

4
(λδFµν − 2µδRωµν) (λδF

µν − 2µδRωµν)
]

. (3.18)

In the above the indices are raised and lowered with the metric on a spacetime R
1,2 × S2,

where the sphere has metric h, radius µ−1 and µ, ν = {0, 1, 2, θ1, φ1}.6 In the last line we

also used R0 = kR∗ and have introduced the symplectic form on the sphere

ω =
√
det h dθ1 ∧ dφ1 . (3.19)

Finally, by expressing the scalar field in terms of δR = λδΦ, the action comes to the

familiar form7

S =
1

g2

∫

d5x
√
det h

[1

2
∂µδΦ∂

µδΦ +
1

4
(δFµν − 2µδΦωµν) (δF

µν − 2µδΦωµν)
]

, (3.20)

where g2 = 4gsls(2π)
2/R0µ.

8

3.2 Fluctuation Analysis

A few comments are in order: First, we note that Eq. (3.18) is the same result as the one

for the action of fluctuations in the ABJM calculation of [25]. In particular, it is useful

to compare the coefficient of the δFµνδF
µν term between the ‘M2’ and ‘D4’ calculations.

Examining Eq. (6.1) of [25] we see that

SM2 = − 1

4π

kµ

16π

∫

d5x
√
det hFµνF

µν + . . . . (3.21)

Note the additional coefficient of 1
4π compared to [25]. This arises because, when switching

from matrices to geometry in the large-N limit, one should make the identification

1

N
Tr −→ 1

4π

∫

S2

d2x
√

det ĥ , (3.22)

6The fact that the S2 has radius µ−1 instead of 1
2
is achieved by a scaling of the sphere metric.

7We have dropped the constant term.
8The overall coupling can always be changed by a further simultaneous rescaling of all fields, since the

action is quadratic.
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i.e. including the normalisation 1
4π , where ĥ is the metric on the unit 2-sphere while h

is the metric on the sphere of radius µ−1 that we are interested in. We observe that

TD4 = 2πR∗TM5 = R∗T 2
M2 = (2π)−4l−6

p R∗. Noting that R∗ = gsls and l3p = gsl
3
s we find

TD4λ
2R∗ = (2π)−2. Then we have

SD4 = − kµ

64π2

∫

d5x
√
det hδFµνδF

µν + . . . , (3.23)

which agrees exactly with (3.21) upon identification of FM2 ≡ δFD4.

Thus the effective action obtained from examining fluctuations of M2-branes about a

mass-deformed vacuum using the ABJM description precisely agrees with that obtained

from a single D4-brane in type IIA in the same flux background. In particular, the com-

ponents of the D4-brane gauge field along R
2,1 can be identified with the overall U(1) of

the U(N) diagonal subgroup coming from the Higgsing of the U(N)×U(N) ABJM gauge

fields [25, 30, 31].

We will now argue that the above agreement is still valid in the case where the vacuum

we expand around involves a nonzero constant F12 worldvolume flux. Clearly such a

configuration is a vacuum solution to the mass-deformed ABJM equations of motion if we

note the following fact: Turning on an equal U(1) background flux for the left and right

ABJM gauge fields does not have any effect on the dynamics, since in this case

DµZ
A = ∂µZ

A − i(AL
µ −AR

µ )Z
A = ∂µZ

A, (3.24)

and hence this particular flux does not couple to the matter fields. Hence one can turn

on F12 without modifying the calculation for the action of fluctuations already present in

[25, 30, 31]. Nevertheless this flux is important and corresponds to turning on momentum

in the M-theory picture, in a fashion that we will describe in Section 5.

Second, it might be surprising at first that the sphere metric appearing in (3.18) is

not part of the pull-back metric on the D4-brane. However, this is not unusual: In the

context of open string excitations in the presence of a closed string background with a

B-field the open and closed string modes see a different metric. There is also an induced

noncommutativity on the worldvolume theory, controlled by the parameter Θ [32]. This

has been observed beyond the flat brane case for the D0-D2 dielectric configuration in [33].

The open string metric and noncommutativity parameter are given by

G(open)
µν =

( 1

G(closed) + λF0

)µν

symmetric
and Θµν =

( 1

G(closed) + λF0

)µν

antisymmetric
,

(3.25)

which are precisely our definitions of D and A respectively. Hence, up to the conformal

factor kR∗

R0
due to the nontrivial dilaton, and once again in the limit where we make use of

µ2R2
0 ≪ 1, this is exactly what our fluctuations see. In particular, for the natural choice

12



which gives agreement with [25], R∗ =
R0
k , the dilaton factor drops out and we have

h−1 =















−1

1

1

µ2

µ2 1
sin2 θ1















and Θ =















0

0

0

0 − 1
2λN sin θ1

1
2λN sin θ1

0















.

(3.26)

It is obvious that in our large-N limit the noncommutativity parameter vanishes and the

resulting theory is an ordinary U(1) gauge theory. However, its existence is important if

the D4-brane action is to reproduce the fuzzy sphere geometry at finite N .

Finally, we note that the equation for a constant δΦ (VEV) is

µδΦ =
1

4
ωabδFab (3.27)

where a, b = θ1, φ1. On the other hand the equation for δAa gives

δFab = 2µδΦωab +Gab , (3.28)

where Gab satisfies ∂aGab = 0 and ωabGab = 0. This has the only solution Gab = 0 and

leads to a vanishing on-shell action. In the absence of the µ deformation, the action −1
4δF

2
ab

would allow for constant flux solutions, δFab = cωab. However, these are not allowed in

the case at hand, since δΦ = 0 is not a consistent truncation. Of course, we can still have

constant flux solutions in the x0, x1, x2 directions.

In particular note that the action has an infinite class of vacuum solutions:

δFab =
n

2
ωab , δΦ =

n

4µ
(3.29)

with vanishing action and quantised flux n through S2. However these solutions correspond

to changing the number of M2-branes in the background by n and also the value of the

stabilised radius. As such we should not consider them as valid solutions of the effective

theory with the boundary conditions we have imposed (namely that there are a fixed

number of M2-branes). Indeed such solutions cannot arise if we assume that δAa is globally

defined, ‘small’ fluctuation. On the other hand we will see that allowing for magnetic flux

δF12 through the non-compact spatial dimensions plays the physical role of introducing

eleven-dimensional momentum into the effective theory.

3.3 Overall Transverse Scalars

We now turn our attention to the overall transverse scalars, that is fluctuations in the

directions transverse to both the D4-brane and the radius of the sphere. In order to study

these fluctuations we revisit the expression for the ten-dimensional metric from (2.13). In

13



the limit ξ → 0 and H = 1 this can be approximated by

ds210 =
ρ

kR∗

(

− dt2 + dx21 + dx22 + dρ2 + ρ2(dθ21 + sin2 θ1dφ
2
1)
)

+
ρ3

kR∗

(

dξ2 + ξ2(dθ22 + sin2 θ2dφ
2
2) + ξ2(dψ +A1 −A2)

2
)

≃ ρ

kR∗

(

− dt2 + dx21 + dx22 + dρ2 + ρ2(dθ21 + sin2 θ1dφ
2
1)
)

+ dX2
6 + dX2

7 + dX2
8 + dX2

9

, (3.30)

since the second line of the above essentially describes the origin of R4 in an S3 foliation.

Alternatively, one could have started with (2.8) in the limit where r2 → 0. In this

limit one is fixed at the origin of the second R
4 factor (or C

2 parametrised by Z α̇, where

α̇ = 1, 2) and as such the Zk orbifold projection, with Z α̇ → Z α̇e
2πi
k = Z α̇(1 + 2πi

k + . . .)

for large k, does not have an effect on the fluctuations in these directions:

Z α̇ → (0 + δZ α̇)

(

1 +
2πi

k
+ . . .

)

≃ δZ α̇ + . . . . (3.31)

In summary, one could have started in the approximation where the background ge-

ometry in the absence of fluxes is R
2,1 × R

4/Zk × R
4, with R

4/Zk realised in terms of

an S1/Zk →֒ S3/Zk
π→ S2 foliation, to obtain exactly the same results for the D4-brane

effective action and the action for fluctuations.

Making use of the above, it is straightforward to modify our equations and include the

fluctuations of the transverse scalars. One has that

Υµν = ∂µδR∂νδRgrr + λδFµν + ∂µδX
m∂νδX

ngmn , (3.32)

with m = 6, ..., 9, so that we have an additional kinetic term 1
2Tr (D∂δX

n∂δXmgmn),

resulting in

S = − 1

g2

∫

d5x
√
deth

[1

2
∂µδΦ∂

µδΦ +
1

2λ2
∂µδX

m∂µδXm

+
1

4
(δFµν − 2µδΦωµν) (δF

µν − 2µδΦωµν)
]

.

(3.33)

Note that since we are dealing with a D4-brane wrapping an S2 there is a question about

how to realise supersymmetry in the effective action. This requires twisting the theory by

embedding the spin connection into a U(1) subgroup of the R-symmetry. We have five

scalars δΦ,Xm, the latter of which transform under a global SO(4) ≃ SU(2)A × SU(2)B .

We choose to twist the U(1)A ⊂ SU(2)A.

Usually, in the case of a one-complex-dimensional compactification, this twisting cor-

responds to wrapping the brane on a nontrivial supersymmetric 2-cycle, realised by a

holomorphic curve. Even though here the S2 is contractible, it is prevented from collaps-

ing by the worldvolume flux and the supersymmetry twisting works the same way as in

the topologically nontrivial cases [30, 31, 34].
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It is straightforward to turn the SO(4)-invariant δXi’s in terms of bosonic spinors on

S2. One can repackage them in terms of a new complex field

qα̇ =

√
2

λ

(

X6 + iX8

X7 + iX9

)

, (3.34)

through which we can rewrite the action as

S = − 1

g2

∫

d5x
√
deth

[1

2
∂µδΦ∂

µδΦ+
1

4
(δFµν − 2µδΦωµν) (δF

µν − 2µδΦωµν)+∂µq
†
α̇∂

µqα̇
]

.

(3.35)

In the above one can ‘pull out’ a Hopf spinor from the transverse scalars by defining

qα̇ = Qα̇
αg

α. Then, following a large-N version of the discussion in Sec. 5.3.3 of [30, 31],

(3.35) contains exactly the kinetic and mass terms for the bosonic T-spinors on the S2, Ξ,

as given in Eq. (5.105) of that paper.

Note that, when appropriately supersymmetrised as in [30, 31], (3.35) is the action for

MSYM on R
2,1×S2, despite the presence of the mass terms. Indeed, consider for instance

the case of N = 4 MSYM in four dimensions, arising on D3-branes. The theory on the

R
2×S2 space conformally equivalent to R

4 has conformally coupled scalars, with the mass

terms −µ2

2 Φ2 coming from RΦ2 (with R the Ricci scalar), and mass terms for the other

fields related to it by supersymmetry. For the T-dual D4-brane theory, the same thing

happens.

It is straightforward to obtain the quadratic action for the full D4-brane fields from

the fluctuation action (3.35): One needs to replace ∂µδΦ∂
µδΦ → ∂µΦ∂

µΦ and δFµν −
2µδΦωµν → Fµν −2µΦωµν , where Fµν = δFµν +Fµν

0 , Φ = Φ0+ δΦ and Fµν
0 = 2µΦ0ω

µν =

2µ2Nωµν is the background solution. The full action thus obtained must admit the nonzero

constant background F0 and also be compatible with the twisted supersymmetry of the

theory, as explained below Eq. (3.33).

4 Higher order terms and non-Abelian generalisation

Until now we have only looked at quadratic Abelian fluctuations. However, it is useful to

understand what happens to higher order terms, especially in view of generalising both the

results of this paper and [25, 30, 31] to the non-Abelian case. Due to gauge invariance, we

expect that in the interacting theory the partial derivatives ∂µ are completed to covariant

derivatives Dµ. However, even then one does not expect to see δΦn interactions with

n > 2. We will explicitly check this in the following from the point of view of the M2-brane

theory fluctuations. One should in principle also compute other possible higher order terms

involving different combinations of fields, but we will not attempt that here.

In order to proceed with the calculation, we should remind the reader some of the

backdrop for [25, 30, 31]: For the case of the mass-deformed ABJM theory [19], the ABJM

scalars split as ZA = (Rα, Qα̇), where α, α̇ = 1, 2. This reflects the breaking of the R-

symmetry group SU(4) → SU(2) × SU(2). There is a set of zero-energy solutions where
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Qα̇ = 0. Then the equations of motion reduce to the vacuum equation (2.6)

µk

2π
Rα = RαR†

βR
β −RβR†

βR
α . (4.1)

The solutions are given by Rα = fGα, where f =
√

µk/2π and Gα, G†
α are (anti)bi-

fundamental N × N matrices. The single (Abelian) D4-brane is obtained by considering

irreducible G’s satisfying (4.1), which were first given in [19]. The fluctuations around

these vacua can be organised according to

Rα = fGα + rα , R†
α = fG†

α + r†α
Qα̇ = qα̇ , Q†

α̇ = q†α̇
Aµ = Aµ , ψ†A = ψ†A . (4.2)

We will sketch how to extend these solutions and fluctuations in order to obtain a non-

Abelian theory towards the end of this section. Relevant identities needed for the calcu-

lation, as well as a more precise definition of the continuum limit in which the matrices

become functions on S2, are given in the Appendix.

4.1 Cubic and Quartic fluctuation action from potential terms

Here we will extend the results of [25, 30, 31] for the action of fluctuations in the mass-

deformed ABJM theory by including cubic and quartic powers (as well as higher orders)

of the ‘relative transverse’ scalars. This corresponds to the radial scalar which we have

been denoting as δΦ but, in order to keep with the conventions of that calculation, we will

henceforth call simply Φ.

With the ABJM potential being sixth order, one could a priori also get contributions

to the fluctuation action coming from O(Φ5), O(Φ6) interactions. Since such terms cannot

appear from the D4 MSYM action that we are comparing against, it is important to check

that they vanish. We find that this is indeed the case.

The rα fluctuations of (4.2) can be further decomposed at large N in terms of9

rα =
1

2
ΦGα +

1

2
Ki

aAa(σ̃i)
α
βG

β , (4.3)

where (σ̃i)
α
β ≡ (σ̃i)

α
β are the transpose of the Pauli matrices, such that [σ̃i, σ̃j ] = −2iǫijkσ̃k,

and Ka
i are components of Killing vectors on S2, a = θ, φ. One of the four real degrees of

freedom for the fluctuation rα does not appear in the final D4 action since it plays the role

of a Goldstone boson, eaten by the gauge field during the Higgs mechanism that renders

the ABJM CS-gauge field dynamical [35].

It is also useful to define

GαG†
β = Jα

β , Ji = (σ̃i)
α
βJ

β
α , Jα

β =
N − 1

2
δαβ +

1

2
Ji(σ̃i)

α
β , (4.4)

9This follows from Eq. (4.76) of [25].
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with [Ji, Jj ] = 2iǫijkJk,

The potential terms in the mass-deformed ABJM action relevant for cubic and quartic

fluctuations are the sextic and quartic potential terms. The ABJM sextic potential

V6 =
4π2

3k2

4
∑

i=1

V̂i , (4.5)

is composed of

V̂1 = −Tr (ZAZ̄AZ
BZ̄BZ

CZ̄C)

V̂2 = −Tr (Z̄AZ
AZ̄BZ

BZ̄CZ
C)

V̂3 = −4Tr (ZAZ̄BZ
CZ̄AZ

BZ̄C)

V̂4 = 6Tr (ZAZ̄BZ
BZ̄AZ

CZ̄C) . (4.6)

The quartic potential of the mass-deformed theory is

V4 =
8πµ

k
Tr (R[αR†

βR
β]R†

α) . (4.7)

4.1.1 The Φ4, Φ5 and Φ6 terms

From the sextic potential terms we get:

V̂1 = −15

16
(N − 1)3f2Tr [Φ4]

V̂2 = − 3

16
Nf2Tr [Φ2Jα

βΦ
2Jβ

α ]−
12

16
f2Tr [Φ2Jα

βΦJ
β
γ ΦJ

γ
α ]

V̂3 = −12

16
(N − 2)f2Tr [Φ2Jα

βΦ
2Jβ

α ]−
12

16
(N − 1)2f2Tr [Φ4]

−48

16
f2Tr [Φ2Jα

βΦJ
γ
αΦJ

β
γ ]

V̂ 4 =
36

16
(N − 1)f2Tr [Φ2Jα

βΦ
2Jβ

α ] +
6

16
N(N − 1)2f2Tr [Φ4]

+
48

16
(N − 1)f2Tr [Φ3Jα

βΦJ
β
α ] . (4.8)

Summing the above and using f2 = µk
2π

V6 =
πµ

8k

(

− (3N −1)(N −1)2Tr [Φ4]+ (7N −4)Tr [Φ2Jα
βΦ

2Jβ
α ]+16(N −1)Tr [Φ3Jα

βΦJ
β
α ]

− 4Tr [Φ2Jα
βΦJ

β
γ ΦJ

γ
α ]− 16Tr [Φ2Jα

βΦJ
γ
αΦJ

β
γ ]
)

. (4.9)

The contribution from the quartic potential is

V4 =
πµ

8k

(

Tr [2Φ2Jβ
αΦ

2Jβ
α ]− 2(N − 1)2Tr [Φ4]

)

. (4.10)
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The total contribution for O(Φ4) terms then is

V =
πµ

8k

(

− (3N +1)(N − 1)2Tr [Φ4]+ (7N − 2)Tr [Φ2Jα
βΦ

2Jβ
α ]+ 16(N − 1)Tr [Φ3Jα

βΦJ
β
α ]

− 4Tr [Φ2Jα
βΦJ

β
γ ΦJ

γ
α ]− 16Tr [Φ2Jα

βΦJ
γ
αΦJ

β
γ ]
)

. (4.11)

We next need to manipulate the above using the identities in the Appendix. The

potential contribution now becomes

V =
πµ

8k

(

−(N−1)(6N−11)Tr [Φ4]−3N − 20

4
Tr [[Ji,Φ

2][Ji,Φ
2]]−(N−1)Tr [[Ji,Φ

3][Ji,Φ]]

− 3iǫijkTr [[Ji,Φ
2][Jj ,Φ]JkΦ]

)

. (4.12)

But in the classical limit [Ji, .] = −2iKa
i ∂a and Jk = Nxk, and

1
NTr → 1

4π

∫

d2σ
√

det ĥ,

so we get

VΦ4 =
µ

32k

∫

d2σ
√

det ĥ
[

− 6N3Φ4 + 3N2(∂aΦ
2)(∂aΦ2) +N2(∂aΦ

3)(∂aΦ)
]

, (4.13)

since the ǫijk term is ∼ ωab∂a∂b = 0.

At this stage we need to note that in order for the action of fluctuations to result in

an action on the S2, one had to rescale the Aa,Φ and Q fields by 1
N in the classical limit

(Eq. (6.5) of [25]). This means that all the Φ4 terms evaluated above rescale to zero.

As a result, we do not need to separately calculate the Φ5 and Φ6 terms, which might

have led to higher derivative terms for Φ, since from the traces we can at most get N3.

Together with the N one gets when converting Tr to
∫

this becomes at most N4, which

means that after the rescaling these terms vanish, as they should.

4.1.2 The Φ3 terms

We still need to check the contributions at order O(Φ3). From the sextic potential we get

V̂1 : −20(N − 1)3

8
f3Tr [Φ3]

V̂2 : −12N

8
f3Tr [Φ2Jα

βΦJ
β
α]−

8f3

8
Tr [ΦJα

βΦJ
β
γΦJ

γ
α]

V̂3 : −4f3

8

[

12(N − 1)2Tr [Φ3] + 12(N − 2)Tr [Φ2Jα
βΦJ

β
α] + 8ΦJα

βΦJ
γ
αΦJ

β
γ

]

V̂4 :
6f3

8

[

4N(N − 1)2Tr [Φ3] + 16(N − 1)Tr [Φ2Jα
βΦJ

β
α]
]

. (4.14)

Using the identities in the Appendix, we get for the Φ3 terms in V6

V6 =

√

2πµ

k

µ

24

[

60(N − 1)Tr [Φ3]− (6N − 21)Tr [[Ji,Φ
2][Ji,Φ]]

−6iǫijkTr [[Ji,Φ][Jj ,Φ]JkΦ]
]

, (4.15)
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whereas for the Φ3 terms in V4 we get

V4 =
8πµ

k

f

8

4

2

[

Tr [Jα
βΦ

2Jβ
αΦ]− (N − 1)2Tr [Φ3]

]

=

√

2πµ

k
µ
[

(N − 1)Tr [Φ3] +
1

4
Tr [[Ji,Φ

2][Ji,Φ]]
]

. (4.16)

In total, we have for the Φ3 terms

V =

√

2πµ

k
µ
[7(N − 1)

2
Tr [Φ3]− N − 27/6

4
Tr [[Ji,Φ

2][Ji,Φ]]

− i

4
ǫijkTr [[Ji,Φ][Jj ,Φ]JkΦ]

]

→
√

2πµ

k

µ

4π

∫

d2σ
√

det ĥ

[

7N2

2
Φ3 +N2∂aΦ

2∂aΦ

]

, (4.17)

but this again rescales to zero.10

In conclusion, the action for Φ (with all other fields set to zero) is only quadratic. This

is consistent with the fact that we expect there to be vacuum solutions of the form (3.29) to

all orders. This in turn implies that any higher order power of Φ that appears in the action

must also be accompanied by higher powers of Fab. Therefore, if we consistently truncate to

the two-derivative effective action then only quadratic powers of Φ should arise. However,

we should note that this pertains only to the Abelian MSYM action on a single D4-brane.

One would have to separately check whether the above arguments also generalise to the

full non-Abelian case.

4.2 Non-Abelian Generalisation

We now sketch how one can extend the agreement for the action of fluctuations to the case

of multiple M5/D4-branes. This needs to be implemented both from the M2 and D4-brane

perspectives and while allowing fluctuations up to quartic order.

From the M5/D4 side, the calculation is straightforward: One should use the non-

Abelian form of the effective action (2.21) and keep cubic and quartic orders in fluctuations.

By gauge invariance the result should be a non-Abelian generalisation of (3.33) where the

partial derivatives are replaced by covariant ones. On the other hand, the derivation of the

fluctuation action from the ABJM side is somewhat more involved. We will next set this

up in detail.

In the calculation of the Abelian theory, we have considered irreducible G’s satisfying

(4.1). In order to obtain the action for fluctuations for a full non-Abelian D4-theory on

the S2 through the procedure of [25] one needs to consider reducible representations, as

in all matrix constructions of higher dimensional branes,11 with each block independently

10Here it was essential that both N3 and N2 terms cancelled before the classical limit, corresponding to

divergent and finite terms in the limit.
11See e.g. [36].
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satisfying (4.1). Of particular interest are the configurations which correspond to m copies

of equally sized N × N blocks, since in that case the D4-branes are coincident and one

expects a worldvolume gauge symmetry enhancement to U(m).

The starting point for studying these configurations is to consider mass-deformed ABJM

theory with gauge group U(Nm)×U(Nm) and the solutions

Gα
Nm×Nm = Gα ⊗ 1lm×m , G†

αNm×Nm = G†
α ⊗ 1lm×m , (4.18)

where the Gα, G†
α are N × N matrices. Even though this might look like it is only going

to describe a collection of non-interacting spherical D4’s, the full interacting non-Abelian

theory can be obtained by allowing the fluctuations to take values in the whole Nm×Nm

matrix. These will capture all the ‘open string’ degrees of freedom, both on each as well

as across different branes and can be expressed in terms of:

Rα = fGαT 0 + rα , R†
α = fG†

αT
0 + r†α

Qα̇ = qα̇ , Q†
α̇ = q†α̇

Aµ = Aµ , ψ†A = ψ†A , (4.19)

where T 0 = 1lm×m and e.g.

rα = rα0 T
0 + rαl T

l , (4.20)

with T l a traceless generator of SU(m) and similar expansions for the rest of the fluctuating

fields.

It is then straightforward to see how the non-Abelian fields and interactions will arise.

The trace over the Nm×Nm matrices factorises over the fluctuations (4.19)-(4.20) as

TrNm×Nm → TrN×NTrm×m . (4.21)

In the large-N limit this can be approximated by

TrNm×Nm → N

4π

∫

d2σ
√

det ĥ Trm×m , (4.22)

with σ = θ, φ and ĥ the metric on the unit S2.

In this way the quadratic terms in the fluctuating fields of the mass-deformed ABJM

theory trivially become adjoint fields in the U(m) gauge group for the D4-theory on S2,

as can be seen e.g. for the ∂µΦ∂
µΦ part of the DµΦD

µΦ non-Abelian scalar kinetic term

and similarly for all other fields.

In order to obtain the full theory, involving gauge interactions coming from the covariant

derivatives, one needs to also include cubic and quadratic fluctuations. This should be

relatively straightforward, if not somewhat tedious. We have already seen that the Abelian

parts of the Φ3 and Φ4 contributions are zero up to subleading terms in powers of 1
N . Of

course that does not exclude a priori terms of the type fabcΦ
aΦbΦc or [Φa,Φb]2, which

have no Abelian component, and for which the off-diagonal-block fluctuation in the Nm×
Nm matrix (corresponding to interactions between different branes) could give nonzero
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contributions. One would also need to obtain [Φ, A]2 as well as the ∂Φ[Φ, A] terms in order

to reproduce the full scalar kinetic term, as well as the equivalent contributions for the

gauge fields.

5 Momentum, Fluxes and Instantons

In the ABJM description of M2-branes [17] eleven-dimensional momentum modes are some-

what obscured. The reason for this is that the natural action

ZA → eiθZA , (5.1)

is in fact a gauge rotation. Therefore it is not clear how to describe momentum modes

along the U(1) that describes the common phases of the spacetime coordinates. However

if we construct the Hamiltonian we find

H =

∫

d2x Tr (ΠZAΠZ̄A
) + Tr (DiZ

ADiZ̄A) + V

+Tr

(

iZAΠZA − iΠZ̄A
Z̄A − k

2π
FL
12

)

AL
0 (5.2)

+Tr

(

iZ̄AΠZ̄A
− iΠZAZA +

k

2π
FR
12

)

AR
0 ,

where V is the potential, ΠZA = ∂0Z̄A, and we have set the Fermions to zero for simplicity.

As is usual in a gauge theory, the timelike components of the gauge fields give rise to

constraints. Thus we find

k

2π
FL
12 = iZAΠZA − iΠZ̄A

Z̄A

k

2π
FR
12 = iΠZAZA − iZ̄AΠZ̄A

. (5.3)

In the case that the ZA are all diagonal with eigenvalues zA = 1√
2
eiθ

A

one sees that

k

2π
FL
12 =

k

2π
FR
12 =

∑

A

∂0θ
A . (5.4)

Here we see that the ‘missing’ eleven-dimensional momentum around the common U(1)

phase is given by the magnetic flux, F12.

Let us now look at how the flux of the M2-brane worldvolume gets lifted to an instanton

on the D4-brane. In the following we will denote the non-Abelian U(N) gauge fields of

the M2-brane worldvolume (after Higgsing) with a hat and the resulting D4 (M5) brane

gauge fields without a hat. We note that according to the usual prescription of converting

matrices to functions on the emergent two-sphere [25] one has the appearance of a relative

normalisation factor along the x0, x1, x2 directions:

1

N
Âµ

N×N → Aµ . (5.5)
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We next need to consider the flux quantisation rule for Aµ, i.e. the Abelian part of Âµ.

In particular, note that in a U(N) gauge theory we see that

1

2π

∫

R2

F̂ = Q







1
. . .

1






+ . . . , (5.6)

where the ellipsis denotes terms in the Lie algebra that involve the traceless generators

of U(N) (i.e. those of the SU(N) subalgebra). Thus we need to know the quantisation

condition for the overall U(1) factor. To determine this we simply observe that a single

U(1) generator can be written as






1

0
. . .






=

1

N







1
. . .

1






+ . . . , (5.7)

where again the ellipsis denotes trace-free generators of the Lie algebra. Since the left hand

side has the standard Dirac quantisation 2πZ we conclude that the identity flux component

has charge quantisation 2π
N Z.12 More mathematically this fractional quantisation condition

arises because U(N) ∼ (U(1) × SU(N))/ZN as discussed for M2-branes in more detail in

[37]. Thus we see that

Q =
q

N
, (5.8)

with q ∈ Z, and therefore

1

2πN

∫

R2

Tr F̂ =
q

N
→ 1

2π

∫

R2

F =
q

N
, (5.9)

with q ∈ Z.

Finally we remind that the D4 (M5) brane configuration includes the background flux

(2.19):
1

2π

∫

S2

F = N . (5.10)

With these ingredients we see that the instanton number is

1

8π2

∫

R2×S2

F ∧ F =
1

4π2

∫

R2

F

∫

S2

F = q ∈ Z . (5.11)

The D4-brane action on R
2,1 × S2 has therefore states carrying nonzero instanton number

equal to an arbitrary integer.

We can extend this argument to the non-Abelian case corresponding to m D4(M5)-

branes. Here the D4(M5)-brane background gauge field is

1

2π

∫

S2

F =







N1

. . .

Nm






. (5.12)

12That is, if we allow for integer charges on the LHS then we must allow for fractional charges on the

RHS.
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To turn on momentum in ABJM we need to consider fluxes of the form

1

2π

∫

R2

F =







Q1

. . .

Qm






. (5.13)

Such a flux arises from the reducible M2-brane flux

1

2π

∫

R2

F̂ =







Q1IN1×N1

. . .

QmINm×Nm






. (5.14)

To determine the quantisation rule for Qi we observe that






Q1IN1×N1

0
. . .






=

Q1N1

N1 + . . .+Nm







1
. . .

1






+ . . . , (5.15)

where again the ellipsis denotes trace-free terms. Since the coefficient on the right hand

side must be of the form q/(N1 + . . .+Nm) we obtain that

Qi =
qi
Ni

, qi ∈ Z . (5.16)

From these we deduce that the instanton number is

1

8π2
Tr

∫

R2×S2

F ∧ F =
1

4π2
Tr

∫

R2

F

∫

S2

F =
∑

i

QiNi = q1 + . . .+ qm . (5.17)

Thus we see that the ABJM prescription for momentum through the eleventh dimension,

given by magnetic flux, is precisely mapped into the instanton number in the D4-brane

description.

It is important to emphasise that the instanton states that we are referring to here

are not necessarily the usual selfdual solutions but any state in the 5D MSYM theory

which carries nonzero
∫

F ∧ F as a result of the fluxes. Indeed, one can see from the

discussion at the end of Section 3.3 that the on-shell action for the configuration with

F12 6= 0 and F ab = F ab
0 (the only one allowed by the equations of motion), receives a

nonzero contribution just from
∫

F 2
12. Therefore the instanton number ∼

∫

F12 ∧ Fθ1φ1

does not appear as the usual topological contribution to the on-shell action. One could of

course also find customary instanton configurations, particularly in the non-Abelian case,

where the dynamics of the sphere directions do contribute to the action. These would

involve turning on nontrivial scalar fields while still having an on-shell action quantised in

terms of the instanton number.

5.1 M5-brane picture

In Section 3.2 we mapped the action for fluctuations of the M2-brane action, including F12

flux, to those of the D4-brane theory on R
2,1 × S2. Moreover, we argued that turning on

23



this flux corresponds to turning on units of momentum around the M-theory circle. We

now finally show that this is compatible with the expected spacetime interpretation of an

M5-brane wrapping S3/Zk.

Let us consider the case of N M2-branes expanding into a single M5. For concreteness

suppose that the spatial dimensions x1, x2 are compactified on a torus or size L. Without

turning on any additional worldvolume fluxes the action is

S = −M = −λN
2
TD44πL

2 = − L2N

4π2l3p
, (5.18)

where we have used once again that TD4 = (2π)−4l−6
p R∗, λ = 2πl2s , R∗ = gsls and l

3
p = gsl

3
s .

This corresponds to an M5-brane wrapped on T 2×S3 (or a D4-brane wrapped on T 2×S2)

in the presence of background four-form flux.

Let us now include the effect of worldvolume flux. According to our discussion above,

the allowed flux that corresponds to turning on q units of eleven-dimensional momentum

is

δF12 =
2πq

L2N
, q ∈ Z . (5.19)

The action becomes

S = −M
(

1 +
1

2

R2
0

4µ2N2
δF12δF12

)

= −M
(

1 +
1

2

4π2q2R2
0

4µ2N4L4

)

= −M
(

1 +
1

2M2

R4
0

16π2µ2N2l6p

(

q

R0

)2
)

= −
(

M +
1

2M

(

kq

R0

)2
)

. (5.20)

This precisely agrees with the action of a single M5-brane wrapped on T 2 × S3/Zk that

carries momentum q
R∗

, such that the action is S = −
√

M2 + ( q
R∗

)2 when expanded to

second order in q.

Finally let us comment on the extra term that appears in the D4-brane analysis of the

fluctuations that was mentioned in footnote 5. This term gives rise to a Chern-Simons

like coupling on the five-dimensional Yang-Mills theory of the D4-brane: ω ∧ dδF ∧ δA.

If we include this term then one finds that solutions with non-zero instanton number are

excluded. This may seem paradoxical, however we note that it is derived from the D4-brane

effective action which, by construction, is not valid when there is non-vanishing eleven-

dimensional momentum. Therefore the appearance of this term is consistent with the

D4-brane analysis. On the other hand, as we have argued above, there is no obstruction to

turning on magnetic flux in the ABJM theory and indeed this Chern-Simons term appears

to be absent from the five-dimensional Yang-Mills effective action obtained from M2-branes

[25]. It would be interesting to reconcile this observation with the recent results of [22, 23]

and the role of supersymmetry.
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6 Conclusions

In this paper we have studied M2-branes in a background four-form flux. The resulting

system expands via the Myers effect into M5-branes wrapped on a fuzzy S3. We computed

the effective action of a static M5-brane in this background and showed that it stabilised

at the same radius as predicted by the M2-brane gauge theory. In addition, by reducing

to type IIA string theory, we derived the fluctuation action of the associated D4-brane

wrapped on S2. These are determined by five-dimensional MSYM and also agree with the

fluctuations about the M2-brane vacuum that were obtained in [25].

We next considered the effect of introducing worldvolume magnetic flux into the world-

volume description of M2-branes. According to ABJM [17] this corresponds to introducing

momentum along the eleventh-dimension of M-theory. We showed that this was equivalent

to introducing instanton flux in the five-dimensional MSYM description of the D4-brane

theory. Since the ABJM description captures the full M-theory dynamics of M2-branes, we

thus conclude that the five-dimensional MSYM theory on R
2,1 × S2, Eq. (3.35), when one

includes all states carrying nonzero instanton charge, captures the full M5-brane degrees

of freedom on R
2,1 × S3/Zk. This is in agreement with the conjecture of [1, 2].
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A Identities and formalism needed for cubic/quartic fluctu-

ations

In this Appendix we gather identities used in the calculation of Φ3,Φ4 terms in the action

for fluctuations. Most of these can be found in [25, 30, 31].

For Gα and G†
α, we have the identities

GαG†
α = J = N − 1 G†

αG
α = J̄ = N(1− E11) (A.1)

GαJ̄ = NGα J̄G†
α = NG†

α (A.2)

Jα
β J

γ
α = (N − 2)Jγ

β + δγβJ Jα
β J

β
α = NJ . (A.3)

In the continuum limit one can identify [Ji, ·] = −2iǫijkxj∂k = −2iKa
i ∂a and xi =

Ji√
N2−1

, as well as Tr → N
4π

∫

dσ2
√

det ĥ, where ĥ is the dimensionless unit metric on S2,

and the matrix fluctuations become fields on the sphere.

Definitions and some identities for Ka
i follow:

Kθ
1 = − sinφ Kφ

1 = − cot θ cosφ
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Kθ
2 = cosφ Kφ

2 = − cot θ sinφ

Kθ
3 = 0 Kφ

3 = 1 . (A.4)

The relations between Cartesian and spherical coordinates is

x1 = sin θ cosφ

x2 = sin θ sinφ

x3 = cos θ . (A.5)

One can then explicitly evaluate the sets of identities

Ka
i K

b
i = ĥab

ǫijkxiK
a
jK

b
k = ω̂ab =

ǫab
√

ĥ
Ka

i habK
b
j = δij − xixj

Ka
i ∂aK

b
i =

1
√

ĥ
∂b
√

ĥ . (A.6)

Further identities that were used for calculations include

xi∂
aKb

i = ω̂ab

ǫijk∂aK
b
i xjK

a
k = 0

ǫijk∂aK
b
iK

c
jK

a
k × (sym.b↔ c) = 0

(∂axi)K
a
j = ǫijkxk . (A.7)

From the last relation we also obtain

(∂axi)K
a
i = 0

ǫijk(∂axi)K
a
j xk = 2

ǫijk(∂axi)K
a
jK

b
k = 0 . (A.8)

Some useful identities for objects appearing in the sixth order scalar potential are

Tr [Jα
βAJ

β
αB] =

(N − 1)2

2
Tr [AB] +

1

2
Tr [AJiBJi]

= N(N − 1)Tr [AB] +
1

4
Tr [[Ji, A][Ji, B]] (A.9)

Tr [AJα
βBJ

β
γ CJ

γ
α ] =

(N − 1)3

4
Tr [ABC] +

N − 1

4
Tr [ABJiCJi +BCJiAJi + CAJiBJi]

− i

4
ǫijkTr [AJiBJjCJk] (A.10)

Tr [AJα
βBJ

γ
αCJ

β
γ ] =

(N − 1)3

4
Tr [ABC] +

N − 1

4
Tr [ABJiCJi +BCJiAJi + CAJiBJi]

+
i

4
ǫijkTr [AJiBJjCJk] . (A.11)
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In our case these translate into

Tr [Jα
βΦ

2Jβ
αΦ

2] =
(N − 1)2

2
Tr [Φ4] +

1

2
Tr [Φ2JiΦ

2Ji]

= N(N − 1)Tr [Φ4] +
1

4
Tr [[Ji,Φ

2][Ji,Φ
2]] (A.12)

Tr [Jα
βΦ

3Jβ
αΦ] =

(N − 1)2

2
Tr [Φ4] +

1

2
Tr [Φ3JiΦJi]

= N(N − 1)Tr [Φ4] +
1

4
Tr [[Ji,Φ

3][Ji,Φ]] (A.13)

Tr [Φ2Jα
βΦJ

β
γ ΦJ

γ
α ] =

(N − 1)3

4
Tr [Φ4] +

N − 1

4
Tr [2Φ3JiΦJi +Φ2JiΦ

2Ji]

− i

4
ǫijkTr [Φ

2JiΦJjΦJk] (A.14)

=
(N − 1)2(2N + 1)

2
Tr [Φ4] +

N − 1

8
Tr [2[Ji,Φ][Ji,Φ

3] + [Ji,Φ
2][Ji,Φ

2]]

− i

4
ǫijkTr [Φ

2JiΦJjΦJk] (A.15)

Tr [Φ2Jα
βΦJ

γ
αΦJ

β
γ ] =

(N − 1)3

4
Tr [Φ4] +

N − 1

4
Tr [2Φ3JiΦJi +Φ2JiΦ

2Ji]

+
i

4
ǫijkTr [Φ

2JiΦJjΦJk]

=
(N − 1)2(2N + 1)

2
Tr [Φ4] +

N − 1

8
Tr [2[Ji,Φ][Ji,Φ

3] + [Ji,Φ
2][Ji,Φ

2]]

+
i

4
ǫijkTr [Φ

2JiΦJjΦJk] . (A.16)

We also have

ǫijkTr [JiΦJjΦJkΦ
2] = ǫijkTr [[Ji,Φ][Jj ,Φ]JkΦ

2] + 2i(N2 − 1)Tr [Φ4]

+iTr [[Ji,Φ
2][Ji,Φ

2]] , (A.17)

as well as

Tr [Φ2Jα
βΦJ

β
α] = N(N − 1)Tr [Φ3] +

1

4
Tr [[Ji,Φ

2][Ji,Φ]] (A.18)

Tr [ΦJα
βΦJ

β
γΦJ

γ
α] = N2(N − 1)Tr [Φ3] +

3N − 1

8
Tr [[Ji,Φ

2][Ji,Φ]]

− i

4
ǫijkTr [[Ji,Φ][Jj ,Φ]JkΦ] (A.19)

Tr [ΦJα
βΦJ

γ
αΦJ

β
γ ] = (N2 −N − 1)(N − 1)Tr [Φ3] +

3N − 5

8
Tr [[Ji,Φ

2][Ji,Φ]]

+
i

4
ǫijkTr [[Ji,Φ][Jj ,Φ]JkΦ] . (A.20)
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