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ABSTRACT

In the presence of a background supergravity flux, N M2-branes will expand via
the Myers effect into Mb5-branes wrapped on a fuzzy three-sphere. In previous
work the fluctuations of the M2-branes were shown to be described by the five-
dimensional Yang-Mills gauge theory associated to D4-branes. We show that
the ABJM prescription for eleven-dimensional momentum in terms of magnetic
flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory
on the sphere, giving an M-theory interpretation for these instantons.
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1 Introduction

The relation between the low-energy D4-brane theory and its corresponding M-theory
counterpart, the low-energy M5-brane theory, poses some intriguing questions that are not
fully resolved. The conventional understanding is that, since five-dimensional maximally
supersymmetric Yang-Mills (MSYM) is power-counting non-renormalisable, it is only a low-
energy effective description which UV completes to the (2,0) theory on S'. In H, Ij],it was
argued, following earlier leads by E, Q], that BPS Kaluza-Klein states of the compactified
six dimensional (2,0) theory on S! can be recovered as instanton-charged states of five
dimensional MSYM in flat space. This gave rise to the proposal that the latter is not in
need of a UV completion in order to reproduce the finite six dimensional CFT at strong
coupling and is a well defined QFT in its own right. This proposal has recently received
further study and support from ﬁ@]

In particular, the instanton number of five-dimensional MSYM was identified with units
of Kaluza-Klein momentum in the (2,0) theory on a circle of radius R5 as

k 1
R5 29)2/M

P; /Tr (FAF). (1.1)
Here we will see how this relation, and as a result the relation between the action and states
of five-dimensional MSYM and the (2,0) theory, emerges in the context of the M2/M5 fuzzy
sphere bound state arising from the Myers effect |10]. Some recent studies of M2/M5-brane

systems include , ] .

The M2/M5 system is interesting in this context, since it is expected to admit both
an M2- and an Mb-brane weakly-coupled description at large N. The former has been
recently made accessible due to our enhanced understanding of M2-brane theories ]
and is given in terms of the mass-deformed ABJM theory of ﬂE, ] The latter should be
captured by an M5-brane theory partially wrapping S®/Z;.. The first result of this paper is
to fill a gap in the literature and explicitly construct the M5-brane picture by establishing
this equivalence for large-k, where the M-theory circle shrinks in both descriptions. This
is done by showing that the two theories share the same action for fluctuations. We carry
this out in all detail for irreducible solutions of the mass-deformed ABJM theory and an
Abelian M5-brane. We also give a concrete prescription for the extension of this matching
between reducible ABJM solutions and multiple M5-branes on S3.

We then incorporate momentum around the M-theory circle and show that the agree-
ment still holds: From the ABJM point of view this involves turning on flux along the
spatial worldvolume directions of the M2-brane theory. The associated charge is carried by
the so-called monopole or 't Hooft operators. Our second result is that there exists a one-
to-one map between this monopole charge and instanton charge in the five-dimensional
MSYM on R%*! x S? both in the Abelian and non-Abelian cases. Note that instanton



charge in five-dimensional MSYM is not only carried by conventional self-dual gauge field
configurations.

Our results imply that there is a one-to-one map between both perturbative and non-
perturbative states of the mass-deformed ABJM and five-dimensional MSYM theories.
Since the former is the complete description of the M2/M5-brane system @, Iﬂ], correctly
capturing momentum along the M-theory circle, the same should be true for the latter.
This provides strong evidence for the conjecture of ﬂ, E] We also hope that this paper
helps to clarify the role of instanton number as Kaluza-Klein momentum.

This result further suggests that instantons are important even in the Abelian theory.
For example, we could wrap the M2-branes on a torus so that the massive vacua describe
a single fuzzy M5 on T2 x S3. In this case the ABJM prescription for eleven-dimensional
momentum maps to smooth instantons in the Abelian D4-brane picture. This is consistent
with the conjectures of ﬂ, B] but yet apparently different from the standard prescription
coming from the reduction of the known equations of motion for a single M5-brane f
]. Thus there appears to be a duality between an Abelian D4-brane on T2 x S? with
instantons and an Abelian M5 description on 72 x S% including Kaluza-Klein modes of the
Hopf fibration S 5 2.

The rest of this article is organised as follows: In Section [2] we consider the effective
action of a single Mb5-brane in a four-form flux background. For states with no Kaluza-
Klein momentum this is the same as a D4-brane in the associated type IIA background
and we find that the brane is indeed stabilised at the correct radius as predicted by the
gauge theory analysis. In Section [3] we then consider fluctuations of the D4-brane theory
and show that this precisely agrees with the effective action calculated in [25] from the
ABJM description of M2-branes in the same background. These calculations are in precise
agreement with the ABJM analysis and provide a non-trivial check on the dual description
obtained from a D4-brane. In Section @ we discuss the extension of this analysis to multiple
D4-branes or Mb5-branes. For static configurations these can be obtained by considering
reducible, block diagonal, representations of the ABJM vacuum equations. Dynamically
one must then also allow for off-diagonal modes whose effective action is given by Yang-Mills
gauge theory. In Section B we show that the ABJM prescription for momentum around
the M-theory circle in terms of worldvolume U(1) flux is precisely mapped to the instanton
number in the D4-brane description. We comment on the M-theory interpretation of this
result. Finally Section [6] contains our conclusions.

2 Setup

We want to consider an M5-brane probe in a particular flux background Wit}‘ﬂ

GW = 2u(da® A da* Ada® A da® + da” A da® A dz® A dat) (2.1)

1We work with conventions A = %Ail,“ip dz™ A ... A\dzx'.



where we note the factor of 2. We observe that this solution is only at leading order in
the fluxes. Due to gravitational effects there is a back-reaction on the geometry. The full
solution is known |26, ]:

ds* = H72B(—dt® + da? + da) + H3(dz? + ... + dz?,) (2.2)
GW = 2u(dad A dxt A da® Ada® + de” A da® A de® A det) + d(HTH — 1) A dt A day A das

where by directly solving the 4-form equation of motion d * G = %G NG we ge@

H=1- %,ﬁr? : (2.3)

This solution is clearly singular when H ~ 0. Thus in order to trust the supergravity
background we require that p?r? < 1.

N M2 probes were placed in this flux background in ], leading to the derivation of
the mass-deformed ABJM action of ﬂE, ] Compared to the undeformed ABJM theory
] there is a correction to the supersymmetry transformations of the M2-branes due to
the flux, given by

_ _ 1
0va ="DuZ s + 12,27 Zaleop + 127, 2% Zpleac + 5 Ma“ZPccp . (24)

where A =1,...,4, [Z4,25; Zc) = (242825 — 2B 7L,24) and

1
B 1
Ms” =2u 1 (2.5)
-1
Setting Z3 = Z* = 0 leads to the vacuum equation
(z4, 28, 2] = pzt A, B=1,2, (2.6)

which is the one that was used in e.g. @, ], justifying the factor of 2 that appears in
2I). In the presence of this flux, the M2’s will exhibit a multi-pole coupling to M5-brane
charge throu terms Ij d*x COTr (DZ|Z,Z; Z]) + h.c. in an M-theory realisation of the
Myers effect The resulting configuration is an M2/M5 bound state where the
M2’s have been blown up into an S? inside one of the R* sub-planes of the transverse eight

dimensional space.

For large N this M2/M5 bound state is expected to have an equivalent M5-brane
description in terms of a spherical M5 in the same four-form flux background with an
additional worldvolume self-dual flux H. The latter prevents the sphere from collapsing
under its own tension. The system carries M2-brane charge through the coupling [ C GIAH.
Moreover, since in the ABJM description we have to consider the branes on a Zj orbifold

“Note that due to conventions we obtain a slightly different coefficient here than reported in ]



singularity, we also wish to think of the background, in the absence of flux, as R8/Z; or
(R* x R%)/Zy, and then factor out a common U(1) fibre where the Z acts.

In particular, we consider ‘spherical’ coordinates for R* and use the standard Hopf
fibration of the unit 53

s’y = i (d6? + sin® 0d¢* + (dip + cos 0dg)?) | (2.7)

with ¢ € [0,47), 0 € [0, 7] and ¢ € [0,27). Thus we proceed by considering the background
geometry [29]

ds? = H723(—dt?* 4 da? + dad) + HY3(d + v (dyy + A1)? + dis + r2(dipy + Ag)?)
d? = dr?+ %r?(d@f + sin? 0;d¢?)

A, = cos@idgsi. (2.8)

Note that the 2-spheres have radius % and we have redefined ; to have period 2r. We
expect the Mb5-brane to blow-up into a 3-sphere with coordinates v, 0, ¢ and unit radius.

Further defining

P = @+¢
¢2 = ¢ ) (29)

we want to implement the orbifold identification on 1/;, so as to have 1/; ~ 1/; + Qf, and then
to dimensionally reduce on that direction. To this end we introduce the variable

211 = kR (2.10)

so that x17 has dimensions of length and periodicity 27w R,. We will use this coordinate
every time we reduce down to ten dimensions.

One can express

2.2
P

r3(dypy + Ay)? 43 (diby + Ag)? = g (dy o+ Ay~ Ag)? + (r} 4+ r2)(dib + A)?
1T 72
2 2
A = DAt @t Ayn (2.11)
ry +r3
Then, through the general reduction formula
dsy = e 23 ds3, + **/3 (dxyy + CW)? (2.12)

we obtain
2 2
Vvr]+ _
dS%O = % <H 1/2(—dt2 + dlU% + dlU%)
—|—H1/2 d—Q_i_d—Q_l_ T%r% (d¢+A A )2])
T T + 55 -
1 2 7‘%—1—7‘% 1 2



2 2
o _ (VT HTINY2
© = < kR, > A

cM = EkR.A. (2.13)

We next consider the reduction of the 11d flux:

GW = 2u(da® A dat Ada® A da® + dz” A da® A da® A da'®) + dE A day A dag AdHTY
= 2u > r¥sinOidr; AdO; Adg; Adi; + dt A day Adzg NdH T (2.14)
i=1,2

From this we can compute

c® = g > risin€;d0; A de; Adips + (H™ = 1)dt Aday Aday (2.15)
i=1,2

so that the ten-dimensional 2-form is

B = 21{5% [rfsin 61d6y A dgy + 3 sin Gadfa A des) . (2.16)
We also need to look at
aM = 4q0©

*GW — %0@) AGW (2.17)

= 2,uH_1dt A dxy A dxg A Z rf’ sin 6;dr; A dO; N do; N d; + ...,
i=1,2

where in the above the ellipsis denotes terms which will not be needed in the rest of the
calculation, e.g. terms with no dt A dx' A dz? factor. Thus in ten dimensions we can
effectively use

C <4kR*H +4kR*)dt/\d$1/\dx2/\i:§1:2rl sin 0;df; Adps + ... . (2.18)

2.1 Brane Embedding

We now wish to introduce a brane probe into this background. In particular, we can
consider either an Mb-brane in the eleven-dimensional spacetime or, as in this section
we are looking at static solutions where there is a U(1) isometry, a D4-brane in the ten-
dimensional spacetime. Since the action for a D4-brane is unambiguous we chose to work
with the latter. The D4-brane should extend in the ¢,xq,z9 directions and two more
directions along an S?. For definiteness, we will choose those to be 61, ¢;.

In addition, we would like to have a net D2-brane charge of N units in the system. As
a result we require the presence of a background worldvolume flux

priy
Fo=\Fy — P[B] = <2>\N -5 ) sin 01d0; A dé (2.19)



with Fpg, 4, = 2N sin by, so tha‘rﬁ
TD4/ cB® A (Fo — P[B]) = NTpo / Coredt Ndxy Ndxg + ..., (2.20)
R3xS2 R3

where NTpy = 4720/ NTp4. In the definition of F we have taken into account the pullback
of the background B-field, although its contribution to the D2-brane charge will turn out
to be subleading upon finding the vacuum of the theory. One can check that Fy satisfies
the D4-brane equations of motion in a vacuum where the scalar fields are constant.

With the above in mind, the general form for the effective action is

1
S = —TD4/d5:r e ?y/— det(g+f)—TD4/ [P[0<5>]+P[0<3>]Af+§P[0<1>]AIAI] ,

(2.21)
where F,,, = (AF,, — P[B],), with A = 27¢/, and g is the pullback of the spacetime
metric.

Let us now determine how the D4-brane is embedded. We will write

ry = pcosé
ro = psiné (2.22)

and suppose that the brane is at some p = R. We then proceed to evaluate the effective
action (Z21)). The DBI term simply comes out of using the metric in (2I3]) and the flux in
(2.1), while the CS terms come from the Cpjg¢,4, term in (2ZI8]) and Cpi2 terms in (2.13]).
Then, ignoring fluctuations, we obtain

3 2 P2 4\ 92
Sz—TD4cos2g/d5a:sin91 <H‘1/2R—\/1+H—1&<2/\N pi )

kR, RS cost & ~ 2kR,

+2)\N(H—1 -1) R
cos? & 4k R,

(2.23)

(H™' 4+ 1) cos? §> .

We first note that minimising with respect to £ we get sin{ = 0 = cos§ = 1, i.e. we
are actually in the R = r; case. As a result in what follows we will simply set ro = 0

Let us now expand the square root of (Z.23]). In the large N limit, i.e. to leading order
in R3/ANER,, we have

S = -T / dPzsinf; ( 2AN + AN 2 R? + R pR
- ! a INNK’RZ kR,
D ol 2 152 R2 2
— —TD4/d xsinfy | 2AN + ANu“R <1 — 72/\,uNk:R*> (2.24)
= —TD4/d5xsin91V(R).

3Recall that the two-sphere has radius %
4For the choice of the embedding of the D4 in the 62, ¢2 sphere, one would have obtained sin £ = 1 and
as a result R = rs.



Note that here we have also expanded H~! =1 + %M2R2 by assuming the approximation
p2R? < 1 that was needed to ensure the validity of the supergravity solution.

Clearly V(R) has stable vacuum solutions corresponding to radii
Ry=0 and  R%=2uMkNR, . (2.25)

There is also a local maximum at R2 = % uAkEN R, which we discard. Our approximation
R3/ANER, < 1, used in the square root expansion above, now becomes

Rop < 1. (2.26)

Note also that by construction 27 R, is the periodicity of the eleventh dimension; z'! =

2! + 27 R,. Thus following the usual M-theory/Type IIA relations one can identify R, =
gsls and [, = gi/glS where g5 = e!?) and I, = Vo'. Therefore we find

R} = dmpkIsN (2.27)

and this agrees with the result from the M2-brane description given by Eq. (7.7) in @]

Finally, if we make the choice R, = %, so that R, is also the radius of the M-theory
circle as measured at Ry in the eleven-dimensional metric, then we arrive at

Ry = 2AuN . (2.28)

This is exactly the value for the physical radius evaluated in Eq. (7.10) of ﬂﬁ] and corre-
sponds to an M-theory configuration where the M5-brane is wrapping a fuzzy S realised
as the Hopf fibration

SYZy — S/ 7y 5 S% (2.29)

3 The action for fluctuations

We next study fluctuations around the above solution for the bosonic fields. We first focus
on the gauge field and radial scalar and then move on to the remaining scalar fields.

3.1 Gauge fields and radial scalar

Consider fluctuations with only 9,0 R and JF non-vanishing. The action has the formﬁ

S = —Tp, / Pre~®\/—det(Go + Y) — Ty / Pr(Cig 5 + CirForen) , (3.1)

where
T = 0,0R0,0Rg, +AoF,,
GO;LV = Guw + ]:0,uu . (3'2)

®The P[CMW] A F A F term of (Z2I)) will result in subleading contributions and will hence be ignored.




Expanding to quadratic order in T we find

S = —Tpy [ dPze?/—det Gy <1+%Tr(G51T)—iT‘r((GalT)z)+é(T‘r(G51T))2>
~Tpy / P2(C s, - (3.3)

Note that G can be evaluated from the previous section and is valid for arbitrary but
constant values of R. Explicitly we find

—1
1
RH—1/2
Gy = R 1 ) (3.4)
: HR? Ysin 6y
—Ysin6, HR?sin’#6,
where bR I
1/2 I
Y= 7 ——H/*(2AN — 2/<;R*) . (3.5)
Therefore
-1
1
kR*
A-TH?R*sin?60; —A~1¥sinb,;
A~ 1¥sin 0, A~THR?
where K2R R 2
_ 12
A= Ho (2)\N ShF ) sinf; . (3.7)
Finally, as before, we have
R6 NR4 2
—b /T e 1 2 _
e~/ det Gy 511191\/H  t (2an %R*> . (3.8)
In order to proceed, it will be useful to split
Go'=D+ A4, (3.9)

with D diagonal and A antisymmetric. The action for fluctuations can then be written as
1
= —Tpy / dPre®\/— det Gy <1 + 2Tr (DOSROSRgy, r,)
1
+§ﬂ (ASF) + é[Tr (ASF)]2 = JTr[(DSF)* + (Aaf)2])

—Tp4 / P2(Cir,s,) - (3.10)



First, we see that there is a linear term in §F = \JF":

4
56—45 — det GoTr (A6F) = ARANEE. H™'\6Fp, 4, - (3.11)

2
uRA HRS
\/(1 - 4k)\NR*> T I NZR?
To evaluate the above we note that it has the form

1-X 1

AOF; 3.12
VOI—XP+(1-2)y1-2"""" (3.12)
where ot .
__mr B 1,
~ 4kANR, '’ Y= ANZN2[2R2 Z = o1 R”. (3.13)

Now in our approximation X,Y;Z < 1 but all are of the same order (at R = Ry). Ex-
panding R = Ry + dR gives to leading order

%e_@ —det GoTr (A6F) = (1 - %Y + Z) A6Fp, o,

L
SA2N2k2R?
= )\(5F91¢1 - 2)\/L2R05R(5F91¢1 .

= AFp 4 + A ( + ,ﬂRo) SROEy, 4, (3.14)

The first term in the last line is a total derivative and can be discarded, which is compatible
with the fact that the gauge field is on-shell.

We also need to look at the terms quadratic in dF'. The quadratic terms involving the
anti-symmetric part A cancel. In addition we note that to leading order, and for terms
that involve quadratic fluctuations, we can simply take

e ?\/—detGy = 2\N

H =1
AN’N2K2R?
A = Tsmz& (3.15)
-1
kR !
D = - 1
R R4

4N2N2k2R2
R4
4X2N2k2R2 sin? 0

Putting these together we find

S = —Tpy / d3zdfyd¢, sin 6, [V(R) + ANTr (DOSRIS Ry, r, )

3.16)
A2 NN (
2R s By — A (sey]

sin 64

10



Next we need to expand R = Ry + 0R in the potential V(R).

V(R) = 2AN + 4> AN (6R)* . (3.17)
Combining all terms we arrive at

1
S = —ZTD4,u2 / d5:m/deth[2AN + 44> AN(6R)* + AN O, 0RO"SR

222 Ry N2kR, »
— gy P OR + SO F 0T ]

= —%Tmﬂzﬁ/dsxv deth[l + %8M5R0”5R

+— (ANOF,, — 2udRwy,,, ) (AOFHY — 2,u(5Rw‘“’)} : (3.18)

I

In the above the indices are raised and lowered with the metric on a spacetime R x §2,
where the sphere has metric h, radius =% and p,v = {0,1,2,61, 1 }19 In the last line we
also used Ry = kR, and have introduced the symplectic form on the sphere

w = Vdeth do; Adé; . (3.19)

Finally, by expressing the scalar field in terms of 0R = Ad®, the action comes to the
familiar formﬁ,

1 1 1
S = 7 /d%\/ det hb@u&b@%@ + 2 (0Fu — 2udPw,,,,) (0FM —2p0Pwh”) |, (3.20)

where g2 = 49518(271)2/R0uﬁ

3.2 Fluctuation Analysis

A few comments are in order: First, we note that Eq. is the same result as the one
for the action of fluctuations in the ABJM calculation of [25]. In particular, it is useful
to compare the coefficient of the §F),, 0 F* term between the ‘M2’ and ‘D4’ calculations.
Examining Eq. (6.1) of ﬂﬁ] we see that

1 klu’ 5 v

Sme = ———— [ d’zvVdethF, F" 4+ ... . (3.21)

47 167
Note the additional coefficient of ﬁ compared to @] This arises because, when switching
from matrices to geometry in the large-N limit, one should make the identification

1 1 -
—Tr — — [ d’zVdeth, (3.22)
N 47 S2

5The fact that the S? has radius p~" instead of % is achieved by a scaling of the sphere metric.

"We have dropped the constant term.

8The overall coupling can always be changed by a further simultaneous rescaling of all fields, since the
action is quadratic.

11



i.e. including the normalisation ﬁ, where £ is the metric on the unit 2-sphere while h
is the metric on the sphere of radius pu~! that we are interested in. We observe that
Tps = 20 R Ty = R*TJ\%[2 = (27r)_4l;6R*. Noting that R, = gsls and lg = g,l2 we find
TpsN’R, = (2m)~2. Then we have

kp

— 17 d°zv/det h6 F,, 6" + ... | (3.23)

Spa =

which agrees exactly with (8.2I)) upon identification of Fyso = 6Fpy.

Thus the effective action obtained from examining fluctuations of M2-branes about a
mass-deformed vacuum using the ABJM description precisely agrees with that obtained
from a single D4-brane in type ITA in the same flux background. In particular, the com-
ponents of the D4-brane gauge field along R?*! can be identified with the overall U(1) of
the U%) I%aii'nal subgroup coming from the Higgsing of the U(NV) x U(N) ABJM gauge
fields [25, 130, [31]].

We will now argue that the above agreement is still valid in the case where the vacuum
we expand around involves a nonzero constant Fjs worldvolume flux. Clearly such a
configuration is a vacuum solution to the mass-deformed ABJM equations of motion if we
note the following fact: Turning on an equal U(1) background flux for the left and right
ABJM gauge fields does not have any effect on the dynamics, since in this case

D, Z" = 0,2" —i(A — A Z4 = 0,27, (3.24)

and hence this particular flux does not couple to the matter fields. Hence one can turn
on Fis without modifying the calculation for the action of fluctuations already present in
ﬂﬁ, @, Iﬂ] Nevertheless this flux is important and corresponds to turning on momentum
in the M-theory picture, in a fashion that we will describe in Section [l

Second, it might be surprising at first that the sphere metric appearing in ([B.I8]) is
not part of the pull-back metric on the D4-brane. However, this is not unusual: In the
context of open string excitations in the presence of a closed string background with a
B-field the open and closed string modes see a different metric. There is also an induced
noncommutativity on the worldvolume theory, controlled by the parameter @ @] This
has been observed beyond the flat brane case for the D0-D2 dielectric configuration in [33].

The open string metric and noncommutativity parameter are given by

G openy™ = (—1 ) and OM = (—1 "
(open) G(closed) + AFp/ symmetric G(closed) + AFy/ antisymmetric
(3.25)
which are precisely our definitions of D and A respectively. Hence, up to the conformal

factor % due to the nontrivial dilaton, and once again in the limit where we make use of

,qug < 1, this is exactly what our fluctuations see. In particular, for the natural choice

12



which gives agreement with @], R, = %, the dilaton factor drops out and we have

—1 0

I 1 and O = 0

w 0 — XN
e NSO 0
(3.26)
It is obvious that in our large-N limit the noncommutativity parameter vanishes and the
resulting theory is an ordinary U(1) gauge theory. However, its existence is important if

the D4-brane action is to reproduce the fuzzy sphere geometry at finite N.

Finally, we note that the equation for a constant 0® (VEV) is
1 ab
uod = v 0Fu (3.27)
where a,b = 01, ¢1. On the other hand the equation for §A, gives
OF . = 20Pwap + Gap (3.28)

where G, satisfies 9°Gyp = 0 and w®Gy, = 0. This has the only solution Gg, = 0 and
leads to a vanishing on-shell action. In the absence of the  deformation, the action —%5Fa2b
would allow for constant flux solutions, dF,;, = cwy. However, these are not allowed in
the case at hand, since §® = 0 is not a consistent truncation. Of course, we can still have
constant flux solutions in the 20, z', 22 directions.

In particular note that the action has an infinite class of vacuum solutions:

5Fab = 2Wab ) od "

= — 2
> m (3.29)

with vanishing action and quantised flux n through S2. However these solutions correspond
to changing the number of M2-branes in the background by n and also the value of the
stabilised radius. As such we should not consider them as valid solutions of the effective
theory with the boundary conditions we have imposed (namely that there are a fixed
number of M2-branes). Indeed such solutions cannot arise if we assume that 6 A, is globally
defined, ‘small’ fluctuation. On the other hand we will see that allowing for magnetic flux
0 F12 through the non-compact spatial dimensions plays the physical role of introducing
eleven-dimensional momentum into the effective theory.

3.3 Overall Transverse Scalars

We now turn our attention to the overall transverse scalars, that is fluctuations in the
directions transverse to both the D4-brane and the radius of the sphere. In order to study
these fluctuations we revisit the expression for the ten-dimensional metric from (2I3]). In
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the limit ¢ — 0 and H = 1 this can be approximated by

ds?y = k‘f% < — dt? + dz} + dx3 + dp* + p*(d67 + sin? Hldgb%))
3
p 2 2( 102 .2 2 2 - 2
e <d§ + €2(d62 + sin2 Gode?) + €2(dip + Ay — As) ) | 5.30)
:k’; < — df® + da? + dod + dp® + p*(d6? + sin® eldqﬁ))

+dXZ +dX? +dX3 4+ dX3

since the second line of the above essentially describes the origin of R* in an S® foliation.

Alternatively, one could have started with (2.8]) in the limit where ro — 0. In this
limit one is fixed at the origin of the second R* factor (or C? parametrised by Z & where
& = 1,2) and as such the Z; orbifold projection, with Z¢ — 76 = Z9(1 + % +...)
for large k, does not have an effect on the fluctuations in these directions:

. . 27i .
Z“—>(0+5Z“)<1+%2+...>zaz%u.... (3.31)
In summary, one could have started in the approximation where the background ge-
ometry in the absence of fluxes is R>! x R*/Z; x R*, with R*/Z;, realised in terms of
an S'/Z; < S3/7Z; = S? foliation, to obtain exactly the same results for the D4-brane
effective action and the action for fluctuations.

Making use of the above, it is straightforward to modify our equations and include the
fluctuations of the transverse scalars. One has that

Y = 0,6RO,6Rgry + MNF,y + 0,6 X" 0,6 X" Gy (3.32)

with m = 6,...,9, so that we have an additional kinetic term %Tr (DASX"IOX™ gy ),
resulting in

1 1 1
S=—— / Pov/Aeth|50,000"50 + o0, 0X " P*OX™
9 2 2X% (3.33)
+ ! (0Fu, — 210Pw,,,,) (6FH — 2udPwh”)

4

Note that since we are dealing with a D4-brane wrapping an S2 there is a question about
how to realise supersymmetry in the effective action. This requires twisting the theory by
embedding the spin connection into a U(1) subgroup of the R-symmetry. We have five
scalars 0@, X™ the latter of which transform under a global SO(4) ~ SU(2)4 x SU(2)p.
We choose to twist the U(1)4 C SU(2) 4.

Usually, in the case of a one-complex-dimensional compactification, this twisting cor-
responds to wrapping the brane on a nontrivial supersymmetric 2-cycle, realised by a
holomorphic curve. Even though here the S? is contractible, it is prevented from collaps-
ing by the worldvolume flux and the supersymmetry twisting works the same way as in

the topologically nontrivial cases @, @, @]
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It is straightforward to turn the SO(4)-invariant 6X*’s in terms of bosonic spinors on
S2. One can repackage them in terms of a new complex field

o V2 [ XO+ix®
e X7 4ix9 )

= (3.34)

through which we can rewrite the action as

S = —9—12 / dz\/det h [%aua@aﬂacb% (0Fu — 20080y,) (SF™ — 20500 )10, 0" | .

(3.35)
In the above one can ‘pull out’ a Hopf spinor from the transverse scalars by defining
q* = Q%g®. Then, following a large-N version of the discussion in Sec. 5.3.3 of @, @],
(B335) contains exactly the kinetic and mass terms for the bosonic T-spinors on the S?, Z,
as given in Eq. (5.105) of that paper.

Note that, when appropriately supersymmetrised as in @, @], ([B35)) is the action for
MSYM on R%*! x §2, despite the presence of the mass terms. Indeed, consider for instance
the case of N' = 4 MSYM in four dimensions, arising on D3-branes. The theory on the
R? x S? space conformally equivalent to R* has conformally coupled scalars, with the mass
terms —“72<I>2 coming from R®? (with R the Ricci scalar), and mass terms for the other
fields related to it by supersymmetry. For the T-dual D4-brane theory, the same thing
happens.

It is straightforward to obtain the quadratic action for the full D4-brane fields from
the fluctuation action ([3.35)): One needs to replace 0,0®0*0® — 0,P0"® and SFM —
2u0PwH” — FH —2pdwh” where FH = §FH + F"Y | & = &g+ 0P and F}"" = 2udowh” =
211> Nwh is the background solution. The full action thus obtained must admit the nonzero
constant background Fjy and also be compatible with the twisted supersymmetry of the
theory, as explained below Eq. (3:33).

4 Higher order terms and non-Abelian generalisation

Until now we have only looked at quadratic Abelian fluctuations. However, it is useful to
understand what happens to higher order terms, especially in view of generalising both the
results of this paper and ﬂﬁ, Iﬁ

expect that in the interacting theory the partial derivatives 9, are completed to covariant

@] to the non-Abelian case. Due to gauge invariance, we

derivatives D,. However, even then one does not expect to see d®" interactions with
n > 2. We will explicitly check this in the following from the point of view of the M2-brane
theory fluctuations. One should in principle also compute other possible higher order terms
involving different combinations of fields, but we will not attempt that here.

In order troceed with the calculation, we should remind the reader some of the
25,

backdrop for |2 @, @] For the case of the mass-deformed ABJM theory @], the ABJM
scalars split as Z4 = (R*,Q%), where a,& = 1,2. This reflects the breaking of the R-
symmetry group SU(4) — SU(2) x SU(2). There is a set of zero-energy solutions where
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Q% = 0. Then the equations of motion reduce to the vacuum equation (Z.6])

wk

SR = R°RLR® — RPRiR™ . (4.1)

The solutions are given by R* = fG®, where f = /uk/27 and G?, Gl, are (anti)bi-
fundamental N x N matrices. The single (Abelian) D4-brane is obtained by considering
irreducible G’s satisfying (4.1]), which were first given in @] The fluctuations around
these vacua can be organised according to

R* = fG*+r*, Rl =fGl +r
QY =4q", QL =d!
A=A, Pt =4 (4.2)

We will sketch how to extend these solutions and fluctuations in order to obtain a non-
Abelian theory towards the end of this section. Relevant identities needed for the calcu-
lation, as well as a more precise definition of the continuum limit in which the matrices
become functions on S?, are given in the Appendix.

4.1 Cubic and Quartic fluctuation action from potential terms

Here we will extend the results of @, Iﬁ, @] for the action of fluctuations in the mass-
deformed ABJM theory by including cubic and quartic powers (as well as higher orders)
of the ‘relative transverse’ scalars. This corresponds to the radial scalar which we have
been denoting as d® but, in order to keep with the conventions of that calculation, we will
henceforth call simply .

With the ABJM potential being sixth order, one could a priori also get contributions
to the fluctuation action coming from O(®%), O(®°) interactions. Since such terms cannot
appear from the D4 MSYM action that we are comparing against, it is important to check
that they vanish. We find that this is indeed the case.

The r* fluctuations of (2] can be further decomposed at large N in terms oiﬁ
a 1 « 1 ) ~ \apB
ro = §®G + §KaAa(Ui)ﬁG s (43)

where (52-)% = (6;) 5 are the transpose of the Pauli matrices, such that [7;, 5] = —2ie;;,0%,
and K are components of Killing vectors on 52, a =6, ¢. One of the four real degrees of
freedom for the fluctuation r® does not appear in the final D4 action since it plays the role
of a Goldstone boson, eaten by the gauge field during the Higgs mechanism that renders
the ABJM CS-gauge field dynamical |35].
It is also useful to define
N -1 1

GGh=Jg, =3,  J§=—5—05+ SHi(E)5 (4.4)

9This follows from Eq. (4.76) of ]
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with [Jw Jj] == 2262]kt]k7
The potential terms in the mass-deformed ABJM action relevant for cubic and quartic
fluctuations are the sextic and quartic potential terms. The ABJM sextic potential

a2 X
Vo= — Vi, 4.5
e EpS (4.5)
is composed of
Vi = —Tr(Z2424287Z52°70)
Vo = —Tr(Z42%2p282:2°)
Vs = —ATv(Z4Zp2°24287¢)
Vi = 6Tr(Z24ZpzBZ.2°7c) . (4.6)
The quartic potential of the mass-deformed theory is
Vi = &TTMH (RRLRPRY) . (4.7)
4.1.1 The &%, ®° and ®° terms
From the sextic potential terms we get:
- 1
- —1—2(N—1)3f2Tr[<I>4]
¥ _ 3 2 2 raf2 78 12 2 2 7 B
Vo = —1—6Nf Tr [@°J5 0] —Ef Tr [ T30V @ J]]
~ 12 12
Vs = —1c(N =2)f*Tr[@2J5 @] — = (N = 1) f*Tr [@']
48 2 2 7o B
_Ef Tr[®° 5T ®J)]
vt o= %(N — )T (@2 T2 T5) + 1—66N(N —1)2f2Tr (@Y
48
NV -1 I[P T5007) . (4.8)

Summing the above and using f? = %

Vs = Z—Z ( — (BN —1)(N = 1)°Tr [@"] 4+ (TN — 4)Tr [2J§ 2T + 16(N — 1)Tr [®° J§ D]

—ATr [ J§ R T D)) — 16Ty [<1>2ng>ng>,],§]> . (4.9)

The contribution from the quartic potential is

Vi = g_’];‘ (Tr 2027502 5] — 2(N — 1)*Tr [@4]) . (4.10)
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The total contribution for O(®%) terms then is

T

V=2
8k

( — (BN + 1)(N — 1)>Tr [&] + (TN — 2)Tr [B2J502JF] + 16(N — 1)Tr [0 J5P.77]

— ATy (D25 D0 BT]) — 16T [<1>2Jg<1>Jg<I>J$]) L (411)

We next need to manipulate the above using the identities in the Appendix. The
potential contribution now becomes

N-2
v = T (V)N [0 2 1, 97, 97 - (V1) T [, @)L, @)
- 3ieijkTr[[Ji,CI)z][Jj,@]Jk@]) L (412)
But in the classical limit [J;, ] = —2iK#8, and Jy = Ny, and £ Tr — & [ d?oVdeth,

so we get

Vs = 32% d%x/detﬁ[ — 6N3D* + 3N2(8,82)(8°D2) + N2(8a<1>3)(8“<1>)] . (4.13)

since the €;;;, term is ~ w®9,0, = 0.

At this stage we need to note that in order for the action of fluctuations to result in
an action on the S?, one had to rescale the A,, ® and Q fields by % in the classical limit
(Eq. (6.5) of @]) This means that all the ®* terms evaluated above rescale to zero.

As a result, we do not need to separately calculate the ®® and ®° terms, which might
have led to higher derivative terms for ®, since from the traces we can at most get N3.
Together with the N one gets when converting Tr to [ this becomes at most N 4 which
means that after the rescaling these terms vanish, as they should.

4.1.2 The 3 terms

We still need to check the contributions at order O(®3). From the sextic potential we get

. 20(N —1)3
i _Ww -1 3 ) 3T [@3]
. 12N 8f?
Vo —Tf?’Tr [(I)2Jaﬁq>Jﬁa] - %Tr [(I)Jaﬁthﬁ“/q)']ﬁ/a]
A~ 4f3 (6% (6%
Vs o [12(N — 1)*Tr [®] + 12(N — 2)Tr [92J 307, ] + 8B JF DI D]
3
o _Gg [NV = 12T [0%] 4+ 16(N — 1) Tr[82.7°50.77]] . (4.14)

Using the identities in the Appendix, we get for the ®3 terms in Vg

2mp p
Vo = (| =ha [GO(N — )T [®3] — (6N — 21)Tx [[J;, ®2][J;, ®]]
—6ieijkTr[[Ji,CI)][Jj,tID]JktI)]] : (4.15)
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whereas for the ®3 terms in V; we get

8 4
11502 0] - (V — 1)7Tx 0]

2 1
N %“[(N_ UTe [07] + S Tr [, @[, @] (4.16)
In total, we have for the ®3 terms

v = \/27,;%[7“2‘ Dear) - X220 1, 02, 0
e,JkTr ([;, ®][J;, @] chp]}

‘/2”’“"“‘ d2oV det h [ + N20,020°D | | (4.17)

Vi

but this again rescales to Zero

In conclusion, the action for ® (with all other fields set to zero) is only quadratic. This
is consistent with the fact that we expect there to be vacuum solutions of the form ([3.29)) to
all orders. This in turn implies that any higher order power of ® that appears in the action
must also be accompanied by higher powers of Fj;,. Therefore, if we consistently truncate to
the two-derivative effective action then only quadratic powers of ® should arise. However,
we should note that this pertains only to the Abelian MSYM action on a single D4-brane.
One would have to separately check whether the above arguments also generalise to the
full non-Abelian case.

4.2 Non-Abelian Generalisation

We now sketch how one can extend the agreement for the action of fluctuations to the case
of multiple M5/D4-branes. This needs to be implemented both from the M2 and D4-brane
perspectives and while allowing fluctuations up to quartic order.

From the M5/D4 side, the calculation is straightforward: One should use the non-
Abelian form of the effective action ([2:2]]) and keep cubic and quartic orders in fluctuations.
By gauge invariance the result should be a non-Abelian generalisation of (3.33]) where the
partial derivatives are replaced by covariant ones. On the other hand, the derivation of the
fluctuation action from the ABJM side is somewhat more involved. We will next set this
up in detail.

In the calculation of the Abelian theory, we have considered irreducible G’s satisfying
(@1I). In order to obtain the action for fluctuations for a full non-Abelian D4-theory on
the S? through the procedure of @] one needs to consider reducible representations, as
in all matrix constructions of higher dimensional branes. with each block independently

0Here it was essential that both N® and N? terms cancelled before the classical limit, corresponding to
divergent and finite terms in the limit.
HSee e.g. @]

19



satisfying (@.1]). Of particular interest are the configurations which correspond to m copies
of equally sized N x N blocks, since in that case the D4-branes are coincident and one
expects a worldvolume gauge symmetry enhancement to U(m).

The starting point for studying these configurations is to consider mass-deformed ABJM
theory with gauge group U(Nm) x U(Nm) and the solutions

(]l\lmem =G“ ® ]lm><m ’ GLNmXNm = GL ® ]lme ) (4-18)

where the G¢, Gl, are N x N matrices. Even though this might look like it is only going
to describe a collection of non-interacting spherical D4’s, the full interacting non-Abelian
theory can be obtained by allowing the fluctuations to take values in the whole Nm x Nm
matrix. These will capture all the ‘open string’ degrees of freedom, both on each as well
as across different branes and can be expressed in terms of:

R® = fGT° +r*, Rl = fGIT° +r]
Q% =q", QL =4}
A=A, , Pt = t4 (4.19)

where 70 = 1,5, and e.g.
r® =g T+ T (4.20)

with 7" a traceless generator of SU(m) and similar expansions for the rest of the fluctuating
fields.

It is then straightforward to see how the non-Abelian fields and interactions will arise.
The trace over the Nm x Nm matrices factorises over the fluctuations (ZI9)-(Z.20]) as

Ty NmxNm — TI‘NXNTI‘me . (4.21)

In the large-N limit this can be approximated by

N =
Tr Nomx Nm — —4 /d20 Vdet h Trxm (4.22)
T

with 0 = 60, ¢ and h the metric on the unit S2.

In this way the quadratic terms in the fluctuating fields of the mass-deformed ABJM
theory trivially become adjoint fields in the U(m) gauge group for the D4-theory on S2,
as can be seen e.g. for the 9,P0"® part of the D, DH® non-Abelian scalar kinetic term
and similarly for all other fields.

In order to obtain the full theory, involving gauge interactions coming from the covariant
derivatives, one needs to also include cubic and quadratic fluctuations. This should be
relatively straightforward, if not somewhat tedious. We have already seen that the Abelian
parts of the ®3 and ®? contributions are zero up to subleading terms in powers of % Of
course that does not exclude a priori terms of the type fu, ®¢®*®° or [®¢, ®°)2, which
have no Abelian component, and for which the off-diagonal-block fluctuation in the Nm x
Nm matrix (corresponding to interactions between different branes) could give nonzero
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contributions. One would also need to obtain [®, A]? as well as the 9®[®, A] terms in order
to reproduce the full scalar kinetic term, as well as the equivalent contributions for the
gauge fields.

5 Momentum, Fluxes and Instantons

In the ABJM description of M2-branes ﬂﬁ] eleven-dimensional momentum modes are some-
what obscured. The reason for this is that the natural action

z4 & 74 (5.1)

is in fact a gauge rotation. Therefore it is not clear how to describe momentum modes
along the U(1) that describes the common phases of the spacetime coordinates. However
if we construct the Hamiltonian we find

H = /d%; Tr (M, ally,) + Tr (D Z4D'Z4) +V

_ ok
+Tr (z‘ZAHZA —illy, Zs — %F1L2> Ak (5.2)

- k
+Tr (z’ZAHZA — il aZ + 2—Ff§> Al
T
where V is the potential, I1,4 = 9yZ4, and we have set the Fermions to zero for simplicity.

As is usual in a gauge theory, the timelike components of the gauge fields give rise to
constraints. Thus we find

k . . S
%Flg = iZMya —illy, Zs
k . o
%FS = ilyaZt —iZull,, . (5.3)
In the case that the Z4 are all diagonal with eigenvalues z4 = %ei(’A one sees that
kor k r A
%Flz — %F12 - 2809 . (54)

Here we see that the ‘missing’ eleven-dimensional momentum around the common U(1)
phase is given by the magnetic flux, Fis.

Let us now look at how the flux of the M2-brane worldvolume gets lifted to an instanton
on the D4-brane. In the following we will denote the non-Abelian U(N) gauge fields of
the M2-brane worldvolume (after Higgsing) with a hat and the resulting D4 (M5) brane
gauge fields without a hat. We note that according to the usual prescription of converting
matrices to functions on the emergent two-sphere ] one has the appearance of a relative

normalisation factor along the z°, z!, 22 directions:

1.
NAMNXN — Al (5.5)
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We next need to consider the flux quantisation rule for A, i.e. the Abelian part of flu.
In particular, note that in a U(N) gauge theory we see that

1
! F=Q 4., (5.6)

1

2 R2

where the ellipsis denotes terms in the Lie algebra that involve the traceless generators
of U(N) (i.e. those of the SU(N) subalgebra). Thus we need to know the quantisation
condition for the overall U(1) factor. To determine this we simply observe that a single
U(1) generator can be written as

1 1
' 1

where again the ellipsis denotes trace-free generators of the Lie algebra. Since the left hand
side has the standard Dirac quantisation 277 we conclude that the identity flux component
has charge quantisation %FZ More mathematically this fractional quantisation condition
arises because U(N) ~ (U(1) x SU(N))/Zy as discussed for M2-branes in more detail in
ﬂﬁ] Thus we see that

Q= (5.8)

a4

N )

with ¢ € Z, and therefore

a 1 q

— | TrF = — | F=— :
%N Jpr T TN 2wl TN (5:9)
with g € Z.

Finally we remind that the D4 (M5) brane configuration includes the background flux

2.19):

1
— F=N. (5.10)
2T S2
With these ingredients we see that the instanton number is
1 1
— FANF=— F F=qeZ. 5.11
87'('2 /Rz % .S2 47'('2 /]Rz S2 9 ( )

The D4-brane action on R*! x S? has therefore states carrying nonzero instanton number
equal to an arbitrary integer.

We can extend this argument to the non-Abelian case corresponding to m D4(M5)-
branes. Here the D4(M5)-brane background gauge field is
Ny
F= . (5.12)
Nm

1
2T S2

2That is, if we allow for integer charges on the LHS then we must allow for fractional charges on the
RHS.
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To turn on momentum in ABJM we need to consider fluxes of the form

. Q1
— | F= - . (5.13)
27T R2
Qm
Such a flux arises from the reducible M2-brane flux
. Q1N x vy
— | F= . (5.14)
27T R2
Qm]INm X N,

To determine the quantisation rule for ); we observe that

Q1N x N 1
o 0 _ Q1N

—_—— + ..., 5.15
Ni+...4+ N, ( )

1

where again the ellipsis denotes trace-free terms. Since the coefficient on the right hand
side must be of the form ¢/(Ny + ...+ N;;,) we obtain that

4
Qi:ﬁ:7 G e (5.16)
From these we deduce that the instanton number is
1 1
—T FANF=—Tr F F = N; = . 5.17
87‘(2 T /RQXS2 471'2 /[R2 /5‘2 ZZ:QZ 7 Q1+ +Qm ( )

Thus we see that the ABJM prescription for momentum through the eleventh dimension,
given by magnetic flux, is precisely mapped into the instanton number in the D4-brane
description.

It is important to emphasise that the instanton states that we are referring to here
are not necessarily the usual selfdual solutions but any state in the 5D MSYM theory
which carries nonzero [ F'A F as a result of the fluxes. Indeed, one can see from the
discussion at the end of Section B3] that the on-shell action for the configuration with
Fis # 0 and F% = Foab (the only one allowed by the equations of motion), receives a
nonzero contribution just from [ F%. Therefore the instanton number ~ [ Fig A Fp, ¢,
does not appear as the usual topological contribution to the on-shell action. One could of
course also find customary instanton configurations, particularly in the non-Abelian case,
where the dynamics of the sphere directions do contribute to the action. These would
involve turning on nontrivial scalar fields while still having an on-shell action quantised in

terms of the instanton number.

5.1 Mb5-brane picture

In Section [3.2] we mapped the action for fluctuations of the M2-brane action, including Fo
flux, to those of the D4-brane theory on R*! x S%. Moreover, we argued that turning on
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this flux corresponds to turning on units of momentum around the M-theory circle. We
now finally show that this is compatible with the expected spacetime interpretation of an
M5-brane wrapping S3/Z.

Let us consider the case of N M2-branes expanding into a single M5. For concreteness
suppose that the spatial dimensions !, 2 are compactified on a torus or size L. Without

turning on any additional worldvolume fluxes the action is

AN I’N
S=-M=—-""Tpanl? = ———
g P 4723

(5.18)
where we have used once again that Tpy = (27T)_4l;6R*, A\ =272, R, = gsls and lg = g 3.
This corresponds to an M5-brane wrapped on T2 x S? (or a D4-brane wrapped on 7?2 x S?)
in the presence of background four-form flux.

Let us now include the effect of worldvolume flux. According to our discussion above,
the allowed flux that corresponds to turning on ¢ units of eleven-dimensional momentum
is
2mq

§Fpy = 14
12 L2N7

qEZ. (5.19)

The action becomes
1 R3
S - —M (1 + §W5F125F12>
1 47*¢* Ry
24p2N4LA

1 R} q 2
— _—um|1 0 4
( T M 1672 2 NI <R0>

- (M + ﬁ <%>2> : (5.20)

This precisely agrees with the action of a single M5-brane wrapped on T? x S%/Z; that

carries momentum z-, such that the action is S = —,/M? + (5-)? when expanded to
second order in q.

= —M<1+

Finally let us comment on the extra term that appears in the D4-brane analysis of the
fluctuations that was mentioned in footnote 5. This term gives rise to a Chern-Simons
like coupling on the five-dimensional Yang-Mills theory of the D4-brane: w A déF A JA.
If we include this term then one finds that solutions with non-zero instanton number are
excluded. This may seem paradoxical, however we note that it is derived from the D4-brane
effective action which, by construction, is not valid when there is non-vanishing eleven-
dimensional momentum. Therefore the appearance of this term is consistent with the
D4-brane analysis. On the other hand, as we have argued above, there is no obstruction to
turning on magnetic flux in the ABJM theory and indeed this Chern-Simons term appears
to be absent from the five-dimensional Yang-Mills effective action obtained from M2-branes
]. It would be interesting to reconcile this observation with the recent results of , ]
and the role of supersymmetry.
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6 Conclusions

In this paper we have studied M2-branes in a background four-form flux. The resulting
system expands via the Myers effect into M5-branes wrapped on a fuzzy 5. We computed
the effective action of a static M5-brane in this background and showed that it stabilised
at the same radius as predicted by the M2-brane gauge theory. In addition, by reducing
to type IIA string theory, we derived the fluctuation action of the associated D4-brane
wrapped on S2. These are determined by five-dimensional MSYM and also agree with the
fluctuations about the M2-brane vacuum that were obtained in ]

We next considered the effect of introducing worldvolume magnetic flux into the world-
volume description of M2-branes. According to ABJM ﬂﬂ] this corresponds to introducing
momentum along the eleventh-dimension of M-theory. We showed that this was equivalent
to introducing instanton flux in the five-dimensional MSYM description of the D4-brane
theory. Since the ABJM description captures the full M-theory dynamics of M2-branes, we
thus conclude that the five-dimensional MSYM theory on R*! x S2, Eq. [8.35), when one
includes all states carrying nonzero instanton charge, captures the full M5-brane degrees
of freedom on R%! x $3/Zy. This is in agreement with the conjecture of ﬂ, B]
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A Identities and formalism needed for cubic/quartic fluctu-

ations

In this Appendix we gather identities used in the calculation of ®3, ®* terms in the action
for fluctuations. Most of these can be found in , Iﬁ, Iﬁ]

For G and GQ, we have the identities

GGl =J=N-1 GIL.GY=J=N(1-Ep) (A1)

G*J = NG JGI = NG, (A.2)

J§JL = (N =2)J] +63J J§J =NJ. (A.3)

In the continuum limit one can identify [J;,:] = —2ie;p2;0, = —2iK'0, and z; =

\/%, as well as Tr — % f do?V/ det ﬁ, where h is the dimensionless unit metric on 52,

and the matrix fluctuations become fields on the sphere.

Definitions and some identities for K;* follow:

K% = —sing¢ Kf’z—cot@cosgb
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K = cos¢ Kéb:—cotHSin(b
K{=0 Ky =1. (A.4)

The relations between Cartesian and spherical coordinates is

xr1 = sinfcos ¢
To = sinfsing
x3 = cosf. (A.5)

One can then explicitly evaluate the sets of identities

KAKY = b

a1-b ~ab
EijkxinKk = W =

Eab

Vh

KlqhabKjl? = 52']'—332'33]'
1
Kl K = —=

\/ﬁab\/ﬁ : (A.6)

Further identities that were used for calculations include

20K = "

EijkaaKfl'ng =0

€ijr0a K] KK X (sym.b ++ ¢) = 0

(Oaz:i) K = €ijrxy - (A7)

From the last relation we also obtain

(aa:ni)Kf = 0
eijk(aaxi)K]qu = 2
€iji(Oazi) K§K) = 0. (A.8)

Some useful identities for objects appearing in the sixth order scalar potential are

1\2
Tr[J§AJSB] = %Tr [AB] + %ﬁ [AJ;BJ;]
1

= N - DTr[AB] + 7Tr [[;, A][Ji, B]] (A.9)

S (N —1)3 N -1
Tr[AJ§BI]C ) = ————Tr[ABC] + Tr[ABJ;CJ; + BCJ;AJ; + CAJ;B.J))
—%eijkTr [AJ; BJ;C.J] (A.10)

N 5 (N —1)3 N -1
Tr[AJ§BICI]) = ————Tr[ABC] + Tr[ABJ;CJ; + BCJ;AJ; + CAJ;B.J))
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In our case these translate into

Tr [J§ ©% TS 3]

Tr [J§ ®° T )

Tr (@25 0T ®.J]]

Tr (92 T3 DT D]

(N g 1)2Tr @4 + %Tr [®2.7;®2J;]

N(N = )T [@1] + 1 Te (L, %17, 7] (A12)
(N ; 1)2 - [(I>4] n %Tr [<I>3Ji‘I>Jz']

N(N = )T @] 4 1T [, %], @] (A.13)
wﬁ (1] + N-ln [203,0.; + ®2J;02J;]

_ieijkﬁ (@2 ;8.J;8.J;] (A.14)
W LPONE Doyt - N og g, @7, 97] + [, 91, 07)
LT (21000 (A.15)
MI} (@] 4 %Tr 207 J;®.J; 4+ 92 J;0% ]

+i€ijkTr [(132JZ(I)JJ(I)Jk]

WD CONE Dy oty 4 XLy g, 0107, 09+ (7,9%110,,92)
+£eijkTr (D2, ®J;0J;] . (A.16)
We also have
e T [Ji®T; 01, 8% = e Tr [[J;, @[T}, ®]J,. % + 2i(N? — 1)Tr [0Y]
+iTr [[J;, ®2][J;, 2] , (A.17)
as well as
Tr [@2J%3®J%,] = N(N — 1)Tr [®%] 4 %Tr ([Ji, @%][J;, @] (A.18)
Tr [®J%30J°,®J7,] = N2(N — 1)Tr [@%] + 3N8_ ' [[J;, ®2][J;, ®]]
e T [ 175, 3170 (A.19)
Tr [®J 0], ®J%,] = (N? = N — 1)(N — 1)Tr [®°] + SN =5 [[J;, ®2][J;, ®]]
e T [, 9], B (A.20)
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