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Abstract

The relativistic Boltzmann equation for a single particle species generally implies a fixed, un-

changeable equation of state that corresponds to that of an ideal gas. Real-world systems typ-

ically have more complicated equation of state which cannot be described by the Boltzmann

equation. The present work derives a ’Boltzmann-like’ equation that gives rise to a conserved

energy-momentum tensor with an arbitrary (but thermodynamically consistent) equation of state.

Using this, a Lattice Boltzmann scheme for diagonal metric tensors and arbitrary equations of

state is constructed. The scheme is verified for QCD in the Milne metric by comparing to viscous

fluid dynamics.
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I. MOTIVATION

The Boltzmann equation is a tool that has proven to be very useful in many different areas

of physics. Despite its usefulness, there are some properties of the Boltzmann equation that

are not optimal for modelling physics systems. In particular, for a single particle species the

equation of state is fixed by one parameter alone, namely the particle’s mass. Since in the

limit of a small particle mean free path the Boltzmann equation describes fluid dynamics,

this implies that the equation of state for the fluid hence described is unchangeable and

(typically) not realistic. This is a problem in particular for the so-called Lattice Boltzmann

Approach to fluid dynamics [1–3], where the Boltzmann equation serves as a convenient

algorithm for computing the behavior of fluids. In the non-relativistic context, ways to

circumvent this problem are known, e.g. a modification of the equilibrium distribution

function, modifying only the pressure components or introducing a new force term [4–8],

but it is not obvious how to generalize those to the relativistic case [9, 10].

On the other hand, it is known that particle masses change when considering a heat bath:

for instance, photons acquire temperature-dependent masses in a plasma, which leads to a

corresponding change of the plasma equation of state [11]. In high-temperature Quantum-

Chromodynamics (QCD), these medium-dependent quasiparticles have been successfully

used to model the QCD equation of state [12]. Is it thus possible to write down a ’Boltzmann-

like’ equation for a single particle species with a medium-dependent mass that can reproduce

any thermodynamically consistent equation of state? The objective of the present work is

to give an affirmative answer to this question by means of an explicit construction.

Note that in the context of quasiparticle and Nambu-Jona-Lasinio models, essentially all

the relevant parts of the present derivation can be found [13–17]. In this sense, the results

presented here are not new. However, as far as I can tell, all published results employ

multiple species of particles, while the results below are for a single species of a ’virtual’

particle, and therefore probably computationally cheaper. Also, to my knowledge the present

work is the first to provide a concrete example for an algorithm outside equilibrium with

an arbitrary equation of state. The article is structured as follows: in Sec. II, I give a

textbook-style review of the Boltzmann equation in curved spaces. In Sec. III, a framework

for arbitrary non-ideal equations of state is set up and subsequently tested for the case of

QCD at high temperature. In Sec. IV, a relativistic lattice Boltzmann scheme for matter
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with a non-ideal equation of state in curved spacetime is given, with the particular example

of QCD in a Milne spacetime that may be of relevance for high energy nuclear collisions.

Finally, I conclude in section V.

II. BOLTZMANN EQUATION IN CURVED SPACE: A REVIEW

This section gives a text-book style review of the Boltzmann equation in curved space,

introducing the usual particle current and energy-momentum tensor. Expert readers may

want to skip this section and read on in Sec. III.

The Boltzmann equation specifies the evolution of the single particle distribution function

f(Xµ, P µ), which is dependent on space-time Xµ ≡ (t,x) and four-momentum P µ ≡ (E,p).

If collisions are absent, but forces such as gravity are present, particles are assumed to prop-

agate along geodesics which can be parameterized by an affine parameter T . Accordingly,

the single particle distribution f does not change along geodesics,

df

dT =
dt

dT
∂f

∂t
+

dx

dT
∂f

∂x
+

dP α

dT
∂f

∂P α
= 0 .

Multiplying with the mass m one can recognize mdt/dT = E, mdx/dT = p, the energy and

momentum of a relativistic particle. When re-instating collisions, particles will no longer

follow geodesics, so df/dT will no longer be vanishing. Hence in the general case one has

P µ∂µf + F α∂(p)
α f = −C[f ] , (2.1)

where C[f ] is the collision term and F α ≡ mdPα

dT
the force felt by individual particles. For

gravity, the force is given by F α = −Γα
µνP

µP ν where Γα
µν are the Christoffel symbols that

are calculated as derivatives of the underlying metric tensor gµν . For electromagnetism, the

force is given by the Lorentz force F α = qF αβPβ where F αβ is the electromagnetic field

strength tensor that can be specified in terms of electric and magnetic fields, and q is the

particle’s charge.

Including both the gravitational and electromagnetic force terms, let us now take an

integral moment of Eq. (2.1) with weight

∫

dχ ≡
∫

d4P

(2π)4
√−g 2Θ(p0)(2π)δ

(

gµνP
µP ν −m2

)

, (2.2)

where for clarity d4P =
∏3

µ=0 dP
µ and Θ denotes the Heaviside step-function, g denotes the

determinant of the metric tensor gµν and I have adopted the ’mostly-minus’ sign convention
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for the metric. The delta-function in dχ places particles on the mass shell and the step-

function picks out positive energy states. Apart from the appearance of p0, which could be

replaced by a scalar product with a future pointing four-vector, this form of dχ is Lorentz

covariant (cf. [18]). Using ∂µ
√−g =

√−gΓα
αµ and ∂λgµν = Γρ

λµgρν + Γρ
λνgρµ one has

√−gP µ∂µf = ∇µ (
√−gP µf)− 2

√−gP µΓα
αµ f ,

∇µ [2Θ(p0)δ (P 2 −m2)] = 2Θ(p0)δ′ (P 2 −m2) 2P αPβΓ
β
αµ ,

where ∇µ denotes the (geometric) covariant derivative. Rewriting 2Pβδ
′ (P 2 −m2) =

∂
(p)
β δ (P 2 −m2) and using partial integration one finds

∫

dχP µ∂µf = ∇µ

∫

dχP µf +
∫

dχΓβ
αµP

αP µ∂
(p)
β f .

Also, it is straightforward to show that
∫

dχF αβPβ∂
(p)
α f = 0 via partial integration and the

fact that F αβ = −F βα. Hence the Boltzmann equation implies

∇µ

∫

dχP µf = −
∫

dχC[f ] . (2.3)

Defining the particle number current as Nµ ≡ ∫

dχP µf one finds that the Boltzmann equa-

tion implies the covariant conservation of particle number, ∇µN
µ = 0, if

∫

dχC[f ] = 0.

Taking the integral moment
∫

dχP ν of Eq. (2.1), one finds

∇µ

∫

dχP µP νf − qF νβ
∫

dχPβ = −
∫

dχP νC[f ] . (2.4)

For uncharged particles (q = 0), and defining the energy-momentum tensor as T µν ≡
∫

dχP µP νf , the Boltzmann equation implies covariant conservation of energy and momen-

tum if
∫

dχP νC[f ] = 0 . (2.5)

I will assume the collision term to fulfill Eq. (2.5) for the remainder of this work. For charged

particles, the Boltzmann equation implies

∇µT
µν = qF νβNβ ,

or the change of energy and momentum being caused by the Lorentz force for a current

Jβ ≡ qNβ. For the remainder of this work, I will deal with uncharged particles (q = 0).

However, the generalization to charged particles should be straightforward.
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A. Equation of State for Uncharged Boltzmann Gas

In equilibrium, the energy-momentum tensor is given by ideal hydrodynamics,

T µν
eq = ǫUµUν − p∆µν , (2.6)

where Uµ is the fluid velocity obeying U2 = 1 and ∆µν ≡ gµν − UµUν . The equilibrium

energy density ǫ and pressure p of the system are related by the equation of state. Since

Eq. (2.6) must correspond to the particle’s energy-momentum tensor in equilibrium, one has

ǫ = UµUνT
µν
eq =

∫

dχ (P µUµ)
2 feq, p = −∆µν

3
T µν
eq = −1

3

∫

dχ
[

P 2 − (P µUµ)
2
]

feq ,

which may be conveniently evaluated by performing a Lorentz boost to the frame where

P µUµ = p0 (recall that dχ is Lorentz covariant).

Let us now consider a specific equilibrium distribution function for a system of uncharged

particles (cf. [18]),

feq(X
α, P α) = Z × exp

[

−
(

P αUα − µ

T

)]

, (2.7)

where Z denotes the number of degrees of freedom and µ and T are the chemical potential

and temperature, respectively. In Eq. (2.7), Uα is a macroscopic velocity that can be identi-

fied with the fluid velocity in Eq. (2.6). In this case, ǫ, p and the number density n ≡ UµN
µ

may be evaluated as1

ǫ =
Z eµ/Tm2T

2π2

(

3TK2

(

m

T

)

+mK1

(

m

T

))

, p =
Z eµ/Tm2T 2

2π2
K2

(

m

T

)

, n = p/T ,

by using the identity
∫∞

m (x2 − m2)n+1/2e−x/T = (2n + 1)!!K1+n(m/T )(mT )n+1 for modi-

fied Bessel functions Kα. It is straightforward to show that these results obey the basic

thermodynamic relations

ǫ+ p = sT + µn , dǫ = Tds+ µdn , (2.8)

where s denotes the entropy density. From the equation of state, an interesting quantity

to calculate is the speed of sound squared c2s ≡ dp/dǫ. For illustration, at µ = 0 it can be

calculated from the above expressions as

c2s(T, µ = 0) =

(

3 +
m

T

K2(m/T )

K3(m/T )

)−1

,

1 Note that this definition of n corresponds to ∂p/∂µ. To see this, first go to the local rest frame where

P 2−(PαUα)
2 = p2 and then rewrite ∂feq/∂µ = −∂

(p)
0 feq. Integrate by parts and rewrite 2p2δ′(P 2−m2) =

−pi∂
(p)
i δ(P 2 −m2). Another integration by parts then gives ∂p/∂µ = UµN

µ.

5



which increases monotonically with temperature from zero to 1/3. Also, the relation p = nT

is the equation of state of an ideal gas. Clearly, non-ideal equations of state with a non-

monotonic behavior of cs or p 6= nT are not describable in this framework.

In particular, note that changing the behavior of the equilibrium distribution function

feq will not change the relation p = nT , and hence does not provide the freedom needed to

describe a particular non-ideal equation of state that is dictated by nature.

III. NON-IDEAL EQUATIONS OF STATE

As shown in the preceding section, the Boltzmann equation (2.1) for a single uncharged

particle species leads to equations of state that depend only on one parameter, namely the

particle’s mass. In order to describe arbitrary equations of state with a single uncharged

particle species I therefore want to consider temperature (and density) dependent masses

m → M(T, µ), motivated by the fact that in a plasma at high temperature or density this

approach is physically sound [11]. The particles described by the Boltzmann equation should

then be regarded as virtual or ’quasi’-particles, but for sufficiently non-ideal equations of

state, they will no longer correspond to any real excitations found in nature. However,

the virtue of introducing this virtual particles will be that no long-range forces or particle

mixtures will be necessary to describe the macroscopic system dynamics.

One immediate problem that arises when considering medium-dependent masses is that

thermodynamic consistency is no longer guaranteed. Specifically, basic thermodynamic re-

lations imply that

ǫ+ p = T
∂p

∂T

∣

∣

∣

∣

∣

µ

+ µ
∂p

∂µ

∣

∣

∣

∣

∣

T

, (3.1)

which would be violated when inserting m → M(T, µ) in the formulas from Sec. IIA. To

fix thermodynamic consistency, I propose the following alternate definition for the energy-

momentum tensor:

T µν ≡
∫

dχP µP νf +B(T, µ) gµν , (3.2)

where B(T, µ) is a function that will be determined by requiring thermodynamic consistency

in equilibrium, cf. (3.1). Calculating energy density and pressure from (3.2), one finds that

B(T, µ) drops out in ǫ+ p and that thermodynamic consistency requires

0 = dB +
1

2

∫

dχfeq dM
2 , (3.3)
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FIG. 1: Left: Results for M(T ) when fitting the entropy density from lattice QCD collaborations

(hotQCD [19] and Wuppertal-Budapest (WB) [20], respectively) or an interpolation from hadron-

resonance gas to perturbative QCD (Laine/Schröder, Ref. [21]). Right: quality of the fit (symbols)

when comparing the trace anomaly ǫ− 3p to the original lattice QCD results (full lines).

where I used 2p2δ′(P 2 −M2) = −pi∂
(p)
i δ(P 2 −M2) and integration by parts.

Considering the concrete example (2.7), one has explicitly

ǫ = Z eµ/TM2T 2

2π2

[

3K2

(

M
T

)

+ M
T
K1

(

M
T

)]

+B(T, µ) ,

p = Z eµ/TM2T 2

2π2 K2

(

M
T

)

− B(T, µ) , n = Z eµ/TM2T
2π2 K2

(

M
T

)

. (3.4)

A. Example: QCD at Small Densities

Let us consider the above construction for the QCD equation of state at zero baryon chem-

ical potential. In order for the Boltzmann energy-momentum tensor to correctly reproduce

the high temperature limit of QCD with Nc = 3, Nf = 3, one has to set

Z =
π4

180

(

4(N2
c − 1) + 7NcNf

)

.

Then, one can determine M(T ) by inverting ǫ+p
T

= Z
2π2M

3K3

(

M
T

)

= slQCD, where slQCD

may be obtained from the lattice QCD results (cf. [19, 20], both Nf = 3) or an interpolation

from hadron resonance gas results to perturbative QCD (cf. [21], Nf = 4). Thermodynamic

consistency requires −ZM2T
2π2 K1

(

M
T

)

dM
dT

= dB(T )
dT

, which can be solved for B(T ) numerically

by integrating up from small temperatures where B ≃ 0. The resulting fits for the masses

and the quality of the fit for the quantity ǫ− 3p for three ’physical’ QCD equations of state

are shown in Fig. 1.
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B. The ’Boltzmann-like’ Equation

The modified energy-momentum tensor (3.2) is no longer expected to correspond to a

moment of the Boltzmann equation (2.1), because of the extra term in (3.2). However,

one can ask if there is a modified ’Boltzmann-like’ equation that will give ∇µT
µν = 0 (for

uncharged particles). Inverting the steps leading to this equation in Sec. II, and rewriting

P µδ′(P 2 −M2) = 1
2
∂µ
(p)δ(P

2 −M2) and integrating by parts I find that

∇µT
µν =

∫

dχP ν
[

P µ∂µ − Γλ
αβP

αP β∂
(p)
λ +

1

2
∂µM

2∂µ
(p)

]

f = 0 ,

where the term involving B(T, µ) cancels if

0 = dB +
1

2

∫

dχfdM2 . (3.5)

Note that this is the same as the thermodynamic consistency condition (3.3), except that it

is promoted to hold also out of equilibrium. As a consequence, the ’Boltzmann-like’ equation

P µ∂µf − Γλ
αβP

αP β∂
(p)
λ f +

1

2
∂µM

2∂µ
(p)f = −C[f ] (3.6)

is guaranteed to reproduce a conserved energy-momentum tensor that allows arbitrary equa-

tions of state parameterized by medium-dependent masses M(T, µ). Note that the ’new’

term 1
2
∂µM

2∂µ
(p)f precisely corresponds to the result found when deriving the Boltzmann

equation from quantum field theory (cf. [22]). Finally, repeating the steps in Sec. II, one

finds that for
∫

dχC[f ] = 0, Eq. (3.6) leads to

∇µN
µ = 0 , Nµ ≡

∫

dχP µf , (3.7)

so that the current is formally unchanged when considering medium-dependent masses.

C. On-shell-ization

For some applications, it is useful to explicitly perform the dp0 integral of the Boltzmann-

like equation. The reason is that if one is interested in moments of the Boltzmann equation

with respect to the integral measure dχ, this will allow one to work with a distribution

function f̂ that then only depends on p rather than the four momentum P µ. When dis-

cretizing momenta (see below), one thus only has to deal with three dimensions rather than
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four. Note that any factors of p0 that one may have wanted to include before integration

will simply turn into multiplicative factors of E ≡
√

(−gijpipj +M2)/g00 because of the

delta-function that is part of dχ. Defining

f̂(Xµ,p) ≡
∫

dp02p0Θ(p0)δ(P 2 −M2)f(Xµ, p0,p) (3.8)

which is in accordance with [23] up to a factor of g00, one can integrate Eq. (3.6) with
∫

dp02Θ(p0)δ(P 2 −M2), finding

∂µ

(

P µ f̂

E

)

− Γi
αµ∂

(p)
i

(

P αP µ f̂

E

)

+
1

2
∂iM

2∂i
(p)

f̂

E
+ 2Γα

αµP
µ f̂

E
= − 1

E
C[f̂ ] , (3.9)

where P µ here is to be understood as on-shell momentum, P µ = (E,p). In terms of f̂ , the

particle current and energy-momentum tensor are given as

Nµ =
∫

d3p

(2π)3
√−gP µ f̂

E
, T µν =

∫

d3p

(2π)3
√−gP µP ν f̂

E
+B(T, µ)gµν . (3.10)

As a specific example (cf. [23]), consider a metric with a line element of the form ds2 =

dt2−R(t)2(dx2). Then Γi
αµP

αP µ = 2E piR′/R , Γα
αµP

µ = 3E R′/R and Eq. (3.9) becomes

P µ∂µf̂ − 2piER′

R
∂
(p)
i f̂ +

1

2
∂iM

2∂i
(p)f̂ = −C[f̂ ] .

As another example, consider the line element ds2 = dτ 2 − dx2 − dy2 − τ 2dY 2 (Milne

metric). Then one has Γi
αµP

αP µ = −2E pY giY τ , Γα
αµP

µ = E/τ , so that one finds

P µ∂µf̂ − 2pYE

τ
∂
(p)
Y f̂ +

1

2
∂iM

2∂i
(p)f̂ = −C[f̂ ] . (3.11)

IV. LATTICE BOLTZMANN-EQUATIONS

The main idea behind Lattice Boltzmann equations is to have a minimum sampling of

momentum space given by a discrete set of N vectors P µ
n with n = 0, . . .N −1 such that the

conservation equations for the current and energy-momentum tensor are reproduced exactly.

For maximum efficiency, one uses a linear ansatz for the collision term

C[f̂ ] = P µUµ

τR

(

f̂ − f̂eq
)

(4.1)

with τR the relaxation time. Taking the first two moments of the Boltzmann equation this

leads to the conservation of the current and energy momentum tensor provided that

UµT
µν = UµT

µν
eq = ǫ(T, µ)Uν UµN

µ = UµN
µ
eq = n(T, µ) , (4.2)
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where the equilibrium energy and particle densities are given in Eqns. (3.4). The function

B, which is required to always match its equilibrium value, is determined from Eq. (3.3).

Before discretizing momentum space on a lattice, it is instructive to first consider the

shear and bulk viscosity coefficients that the collision term (4.1) corresponds to.

A. Chapman-Enskog Expansion

In the hydrodynamic (close to equilibrium) limit, the particle distribution function can

be expanded around equilibrium in powers of space-time gradients,

f = feq + f1 + f2 + . . . ,

where f1 is of first order in gradients, f2 of second order, and so on. In the absence of

external forces (Γλ
αβ = 0), the Boltzmann Equation (3.6) with the collision term (4.1) can

then be solved iteratively in powers of gradients. Specifically, to first order in gradients one

finds

f1 = − τR
P · U

[

P µ∂µfeq +
1

2
∂µM

2∂µ
(p)feq

]

,

which can be evaluated easily using feq = Ze−P ·U/T . Since a small-gradient expansion

corresponds to an expansion around ideal hydrodynamics, we may use the equations of ideal

hydrodynamics to simplify the above equations. Specifically, for a metric signature of the

form +−−− one has (c.f. [25])

D ln s = −∇ · U , DUα = c2s∇α ln s ,

where cs is the speed of sound and D ≡ Uµ∂µ and ∇α ≡ ∆αβ∂β, ∆
αβ = gαβ − UαUβ . Using

the thermodynamic relation dP
ds

= c2sT = dT
ds
s and consistently ignoring higher order gradient

term corrections, one finds

f1 = feq
τR

P · U

[

P µP ν

T
σµν +

1

3T

(

P 2 − (1− 3c2s)(P · U)2 − 3c2sMT
dM

dT

)

∇ · U
]

where σµν = ∇(µUν) − 1
3
∆µν∇ · U . Decomposing the full energy momentum tensor into

T µν ≡
∫

dχP µP νf + gµνB = ǫUµUν − P∆µν + πµν +∆µνΠ ,

where πµν = 2ησµν and Π = ζ∇·U , one identifies the shear and bulk parts of the dissipative

tensor with

πµν ≡ T<µν> =
∫

dχP<µP ν>f , Π ≡ 1

3
∆µνT

µν + P =
1

3

∫

dχ∆µνP
µP νf1 .
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Note that
∫

dχ(P · U)2f1 = 0 because of Eq. (2.5). Using usual the decomposition of the

integrals in a tensor basis spanned by UµUν and ∆µν one finds the shear and bulk viscosity

coefficients from πµν and Π as

η =
τR
15T

Z
∫ d3p

(2π)3
(M2 −E2)2

E2
e−E/T , (4.3)

ζ =
τR
9T

Z
∫

d3p

(2π)3
p2
−M2 + (1− 3c2s)E

2 + 3c2sMTdM/dT

E2
e−E/T , (4.4)

where E =
√
M2 + p2. After a little bit of algebra it is possible to show that in the

massless limit η = τR
(ǫ+P )

5
(c.f. [26]), while for constant masses η = τR

T

∫ T
0 dT ′ (ǫ+ P ),

ζ = τR
3T

(

−3c2sT (ǫ+ P ) + 5
∫ T
0 dT ′ (ǫ+ P )

)

. No simple formulae seem to exist for medium-

dependent masses. Note also that these results differ from Ref. [24, 27] (and many others

using the Israel-Stewart ansatz) because non-linearities where not taken account there prop-

erly.

Pushing the Chapman-Enskog expansion to second order or following Ref. [28] would be

desirable to extract all the second-order hydrodynamic transport coefficients [25]. While

this is left for future work, it is possible to extract the value of the hydrodynamic relaxation

times for the shear sector, τπ. Identifying the relaxation time with the coefficient that is

multiplying −Uα∂α(ησµν) in πµν , one finds after a little algebra

τπ = τR

from the derivative of f1. Note that it is therefore possible to use the same value of τπ

in numerical simulations using the Lattice Boltzmann with medium-dependent masses and

second-order hydrodynamics.

B. Lattice Boltzmann with Medium-Dependent Masses

In the following, I will present a minimal set of vectors P µ
n that is usable for a general

relativistic Boltzmann equation with medium dependent masses, albeit only for metric ten-

sors that are diagonal. The scheme is constructed by noting that the (on-shell) equilibrium

distribution function for a Boltzmann gas can be expanded as

f̂eq(X
µ,p) = eµ/T−E u0/T

∞
∑

n=0

(

piui/T
)n

/n! ,
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and I recall the definition of E given in Sec. IIIC. If the metric is diagonal, one may

rescale the space-like momentum components such that −gijp
ipj → δij p̃

ip̃j ≡ |p̃|2. (Note

that this rescaling also changes the form of the Boltzmann equation.) Now p̃/|p̃| is a unit

vector that may be parameterized by spherical coordinates (angles φ, θ). Setting furthermore

|p̃| = M sinh ξ (implying E = M cosh ξ/
√
g00) one has the parametrization

P µ ≡ M sinh ξ
(

cotanhξ/
√
g00, sin θ cos φ/

√−g11, sin θ sinφ/
√−g22, cos θ/

√−g33
)

for the momentum in terms of the variables ξ, θ, φ. Therefore one has

f̂eq(X
µ, P µ) = e−p0u0/T

∞
∑

n=0

(

vi
)n

a(n)(Xµ) ,

where vi ≡ p̃i/M ≡ (sinh ξ sin θ cosφ, sinh ξ sin θ sinφ, sinh ξ cos θ) and a(n)(Xµ) are some

coefficients that are only space-time (but not momentum-) dependent. Powers of the veloci-

ties2 v may be be represented using the polynomials P
(n)
i1...in (v/|v|) that are orthogonal with

respect to the angular integral dΩ (see Ref. [10] for details).

This then motivates the ansatz for the general distribution function:

f̂(Xµ, ξ, θ, φ) = e
−

M0

T0
cosh ξ

∞
∑

n=0

∞
∑

k=0

P
(n)
i1...in

(

v

|v|

)

sinhn ξ R(k)(cosh ξ) a
(nk)
i1,...in(X

µ) , (4.5)

where T0,M0 are some reference temperature and mass, respectively, and Rk are polynomials

of degree k that will be defined below. In practice, the infinite sums above are truncated at

some finite order. Furthermore, it turns out that for any even n, the sinh ξ terms may be

represented by the sum over polynomials R(k), so Eq. (4.5) may be modified such that there

is a single inverse power of sinh ξ for every n odd. Replacing continuum momenta P µ by a

discrete set requires the condition that the integrals in Eqns. (3.10) are represented exactly.

For the angular integrals, this requirement is identical to that of massless particles discussed

in Ref. [10]. Note that Eqns. (3.10) are then evaluated for fixed values of ξ rather than

fixed E,p, implying another change in the Boltzmann equation coming from the space-time

dependent masses. For convenience, a concrete example will be given below.

2 Note that v really is equal to velocity times the Lorentz factor.
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C. Deriving the Momentum Lattice

Let us quickly review the derivation of the discrete set of momenta: the angles φ can be

found from the requirement that

∫ 2π

0
dφ(sinφ)a(cos φ)Nφ−a−1 =

π

Nφ

∑

l

(sinφl)
a(cosφl)

Nφ−a−1 ,

where a is assumed to be a non-negative integer smaller than 2Nφ − 1. Namely, the above

integrand can be recast as a Fourier series involving as highest harmonics cos[(Nφ − 1)φ]

and sin[(Nφ − 1)φ]. Exact representation of the integral as a sum is possible if the angles

are chosen as the nodes of functions orthogonal to the integrand. For the Fourier series

above, there are actually two sets of orthogonal functions: cos[Nφφ] and sin[Nφφ]. Choosing

sin[Nφφ], the nodes are given by φ = φl =
lπ
Nφ

, l = 0, 1, . . . 2Nφ − 1, which fixes the set for φ.

For the discrete set of angles θ, note that the integrands Eq. (3.10) only depend on θ through

P µ, so that sin θ always comes with either cos φ or sin φ. Since any odd power of cosφ, sinφ

integrates to zero, any non-vanishing contribution must involve sin2 θ = 1−cos2 θ. Hence, it

is sufficient to consider only integrands with powers of cos θ, which may be recast as a sum:

∫ 1

−1
d(cos θ) cos2Nθ−1 θ =

∑

j

wθ
j cos

2Nθ−1 θj ,

where the discrete angles θj are given as the roots of the Legendre polynomial

LNθ
(cos θj) = 0, j = 0, 1, . . .Nθ − 1 and the weight factors wθ

j are given as wθ
j =

2/
[

(1− cos2 θj)
(

L′
Nθ
(cos θj)

)2
]

.

Similarly, the integrands in Eq. (3.10) then only depend on cosh ξ and sin2 ξ, since any

odd power of sinh ξ would have integrated to zero already. Therefore, it is sufficient to

consider integrals of the form

∫ ∞

0
dξe−z0 cosh ξ sinh2 ξ cosh2Nξ−1 ξ =

∑

k

wξ
k(z0) cosh

2Nξ−1 (ξk(z0)) , z0 ≡ M0/T0 ,

and the nodes ξk and weights wξ
k are calculated from the set of polynomials Rk which are

orthogonal on
∫

dξe−z0 cosh ξ sinh2 ξ. Specifically, one finds

R0(ξ) = 1 , R1(ξ) = cosh ξ − K2(z0)
K1(z0)

,

R2(ξ) = cosh2 ξ +
6K1(−z2

0
K2

0
+(4+z2

0
)K2

1
)

z0(z30K
3
0
+8z2

0
K2

0
K1+14z0K0K2

1
+2(2−z2

0
)K3

1
−z3

0
K3

2

R1(ξ)− 3K2+z0K1

z0K1
, etc.

13



Hence the discrete values ξk are calculated from RNξ
(ξk) = 0 and the weights wξ

k fulfill

Nξ−1
∑

k=0

wξ
kR0(ξk) =

K1(z0)

z0
,

Nξ−1
∑

k=0

wξ
kRm(ξk) = 0, m = 1, . . .Nξ − 1 .

Thus, one finds the following representation of the momentum integrals:

∫

dΩ

4π

∫ ∞

0
dξ sinh2 ξ f̂(ξ, θ, φ) =

Nξ−1
∑

k=0

Nθ−1
∑

j=0

2Nφ−1
∑

l=0

wkj f̂(ξk, θj , φl) =
∑

n

wnf̂(P
µ
n ) ,

with the weights wkj = ez0 cosh ξkwξ
kw

θ
j/(4Nφ) ≡ wn , and where the collective index n runs

over all discrete momenta P µ
n constructed from the ensemble φl, θj, ξk.

D. Lattice Boltzmann Algorithm for Milne Spacetime

In this subsection I give a detailed construction of a lattice Boltzmann algorithm with non-

ideal QCD equation of state in an expanding spacetime with ds2 = dτ 2− dx2− dy2− τ 2dY 2

(Milne). For simplicity, I will limit myself to neglecting space dependencies, which are

algorithmically easy to program (cf. [10] for a practical example).

Starting with the Boltzmann-equation (3.11) for the on-shell distribution function, let us

first rescale momenta pY = p̃Y /τ so that E = δij p̃
ip̃j. Next, replacing p̃i = M(τ)vi and

using Eq. (4.1), Eq. (3.11) becomes

∂τ f̂
∣

∣

∣

v
− p̃Y

τ
∂
(p̃)
Y f̂ − ∂τ lnM p̃ · ∂(p̃)f̂ = − f̂ − f̂eq

τR
. (4.6)

Neglecting space dependencies, one has cylindrical symmetry and hence f̂ = f̂(τ, ξ, θ).

Therefore the ansatz for the general distribution function can be simpler than (4.5), namely

f̂(Xµ, ξ, θ, φ) = e−M0/T0 cosh ξ
∞
∑

n=0

∞
∑

k=0

Ln (cos θ) R(k)(cosh ξ) a
(nk)(τ) . (4.7)

Using the nodes and weights from Sec. IVC, one immediately finds

a(ml) =
(2m+ 1)

I(l)

∫ dΩ

4π

∫

dξ sinh ξ2Lm(cos θ)Rl(cosh ξ)f̂ =
(2m+ 1)

I(l)

∑

n

wn LmRlf̂
∣

∣

∣

Pµ
n

,

where I(l) =
∫

dξ sinh2 ξR2
l (cosh ξ).

I will not consider conserved particle number, so the only quantity of interest is

T µν =
M2

2π2

∑

n

wnf̂(P
µ
n )P

µ
nP

ν
n +B(T )gµν . (4.8)
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Since all spatial dependencies have been neglected, the fluid velocity is trivial, Uµ = (1, 0),

and the equilibrium energy density is given by the 00 component of Eq. (4.8).

A change in the energy density can be calculated via the Boltzmann equation (4.6):

∂τ ǫ =
M4

2π2

∑

n

wn cosh ξ
2
n

[

p̃Y

τ
∂
(p̃)
Y f̂ − f̂ − f̂eq

τR

]

, (4.9)

where I used partial integration and the identity (3.5), which becomes

∂τM
4

8π2

∑

n

wnf̂(P
µ
n ) + ∂τB(T ) = 0 . (4.10)

More specifically, a lattice Boltzmann algorithm may hence be constructed as follows: a

valid initial condition at time τ consists of specifying f̂ = f̂cur and an initial temperature

and particle mass, Tcur,Mcur. Then, make a prediction of the change in distribution function

and (logarithm of) mass:

δfpred =

(

Ŝ1

τ
+

δ lnMpred

δτ
Ŝ2 −

f̂cur − f̂eq(Tcur)

τR(Tcur)

)

δτ ,

δ lnMpred = − dB

dǫ

∣

∣

∣

∣

∣

Tcur

∑

wn

(

Ŝ1/τ − f̂cur−f̂eq(Tcur)
τR(Tcur)

)

∑

wnf̂cur
δτ (4.11)

where Ŝ1 and Ŝ2 are representations of the momentum derivatives p̃Y ∂
(p̃)
Y and p̃ ·∂(p̃)f̂ in the

form of (4.7) with coefficients

sml
1 = −2m+ 1

I(l)

∑

n

wnf̂cur
[

(PmR
′
l cosh ξ − Rl) cos

2 θ tanh ξ2 +Rl

(

Pm + P ′
m(cos θ − cos3 θ)

)]

sml
2 = −2m+ 1

I(l)

∑

n

wnf̂1

[

PmRl

(

2 +
1

cosh2 ξ

)

+ PmR
′

l cosh ξ tanh
2 ξ

]

,

respectively. Via Eq. (4.9), this leads to a prediction for the new temperature Tpred. These

predictions are then corrected using the trapezoid integration formula

δfcorr =
δτ

2

(

∂τ f̂
∣

∣

∣

τ
+ ∂τ f̂

∣

∣

∣

τ+δτ

)

+O(δτ)3 , δ lnMcorr =
δτ

2

(

∂τ lnM |τ + ∂τ lnM |τ+δτ

)

+O(δτ)3 ,

where the values at time τ + δτ are calculated using δfpred and δ lnMpred. Note that the re-

sulting mass Mcorr does not necessarily correspond to the equilibrium particle mass M(Tnew).

As a consequence, I use feq = Ze−
√

M2
eq+M2

corr sinh
2 ξ/T for the equilibrium distribution func-

tion in the algorithm. The above steps may be repeated to solve the Boltzmann equation

(4.6) for arbitrary times. The resulting algorithm leads to time integrated quantities that

are accurate to O(δτ)2 (cf. [29]).
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E. Results for Milne Spacetime

In this section I provide tests of the above Lattice Boltzmann algorithm by comparing

results to viscous fluid dynamics for the QCD equation of state of Ref. [21] and a Milne

metric. The fluid dynamics equations for the energy density and quantity Φ ≡ T Y
Y − p fulfill

the coupled equations [24]

∂τ ǫ = −ǫ+ P

τ
+

Φ

τ
, ∂τΦ = −Φ

τπ
+

4η

3τπτ
− 4Φ

3τ
− λ1

2τπη2
Φ2 , (4.12)

where τπ is the relaxation time and λ1 is a self-coupling parameter. While I found τπ = τR

in Sec. IVA, λ1 is currently not known. For simplicity, for the hydrodynamic calculation I

will use the values τπ = 5 η
ǫ+P

and λ1 =
5
7
ητπ that are reported for the massless gas case [26].

One should keep in mind that — since the correct values for τπ, λ1 will differ from this

choice in view of the findings in section IVA — this implies that the hydrodynamic and

Lattice Boltzmann results will not agree in practice. Note, however, that there is another

issue that prevents perfect agreement between (second-order) hydrodynamics and Lattice

Boltzmann theory even in principle: the reason is that, even if one were to use the same

second-order transport coefficients in a numerical second-order hydrodynamics and a Lattice

Boltzmann solver, the two would still disagree because of the different third order gradient

terms. However, for all practical purposes when hydrodynamics itself can be considered

applicable, the difference between the two numerical schemes could be considered small.

For the Lattice-Boltzmann framework, the QCD equation of state is parameterized as in

Sec. IIIA with a reference value M0/T0 = 1 for (4.5). Note that this reference value corre-

sponds to a reference temperature of T ∼ 0.82 GeV, This means that results will be most

accurate for this temperature (cf. [10]), and in particular will break down if applied to prob-

lems involving fluid cells with temperatures exceeding two times this reference temperature.

The results at temperatures different than this reference value can be improved by increasing

the value of Nξ, but in practice I find that Nξ ≥ 3 gives adequate results. In Fig. 2, I show

the temperature evolution in viscous fluid dynamics and the above lattice Boltzmann algo-

rithm for Nξ = 5, Nθ = 5 and δτ = 0.2 fm/c. As can be seen from this figure, the non-ideal

equation of state time evolution in fluid dynamics for η/s = 0.5 is described reasonably

well throughout the whole simulation time, even though it differs markedly from the ideal

equation of state time evolution (shown in Fig. 2 for comparison). Overall, the algorithm
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FIG. 2: Temperature evolution for various viscosities, from fluid dynamics (’VH’) and Lattice

Boltzmann (’LB’) respectively. Results are for a QCD equation of state except for the ideal equa-

tion of state evolution (left plot). Transport coefficients for VH are only approximate, so perfect

agreement is not expected. Right: results normalized with respect to the ideal fluid dynamics to

highlight differences. The η/s = ∞ results are obtained by setting τR = ∞ (free-streaming) and

updating the medium-dependent mass according to the change in energy density. These results do

not correspond to an actual physics situation and are presented for illustrative purposes only.

seems to perform rather well and provides a concrete example for simulating the Boltzmann

equation for a system with non-ideal equation of state and non-Minkowski geometry.

V. CONCLUSIONS

In this note I have set up a general relativistic transport equation for a single species

of uncharged particles with a medium-dependent mass. This ’Boltzmann-like’ equation

allows for a conserved particle current and energy-momentum tensor. The latter explicitly

allows arbitrary (thermodynamically consistent) equations of state when using the medium-

dependent mass as fitting parameter. I expect this formulation to be useful for relativistic

fluid dynamics simulation in the Lattice Boltzmann framework with arbitrary equations of

state. Possibly, it can also have relevance for non-relativistic computational non-ideal fluid

dynamics (cf. [30]). Furthermore, it can be applicable in the context of simulating parton

dynamics with non-ideal equations of state, cf. [31, 32] or quasiparticle models of QCD [16].

17



Acknowledgments

I would like to thank I. Bouras, A. El, V. Greco, M. Mendoza, D. Radice and S. Succi for

fruitful discussions. This work was supported in part by the Helmholtz International Center

for FAIR within the framework of the LOEWE program launched by the state of Hesse and

in part by the US Department of Energy within the framework of the JET Collaboration

under grant No. DE-AC-02-05CH11231, subcontract No. 6990498. This sponsorship does

not constitute endorsement by the University or Governement of the views expressed in this

publication.

[1] R. Benzi and S. Succi and M. Vergassola, Phys. Rep. 222, 145-197 (1992)

[2] He, Xiaoyi and Luo, Li-Shi, Phys. Rev. E 56, 6811-6817 (1997).

[3] Guy R. McNamara and Gianluigi Zanetti, Phys. Rev. Lett. 61, 23322335 (1988).

[4] X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994).

[5] L.-S. Luo, Phys. Rev. E 62, 4982 (2000).

[6] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan and S. Succi, J. Fluid Mech. 628,

299-309 (2009). arXiv:0901.1946 [physics.flu-dyn]].

[7] M. .R Swift, W.R. Osborn, and J.M. Yeomans, Phys. Rev. Lett. 75 830 (1995).

[8] X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).

[9] M. Mendoza, B. Boghosian, H. J. Herrmann, S. Succi, Phys. Rev. Lett. 105 (2010) 014502.

[10] P. Romatschke, M. Mendoza, S. Succi, [arXiv:1106.1093 [nucl-th]].

[11] U. Kraemmer, A. Rebhan, Rept. Prog. Phys. 67 (2004) 351. [hep-ph/0310337].

[12] A. Peshier, B. Kampfer, G. Soff, Phys. Rev. C61 (2000) 045203. [hep-ph/9911474].

[13] B. Blattel, V. Koch, W. Cassing, U. Mosel, Phys. Rev. C38 (1988) 1767-1775.

[14] P. Bozek, Y. B. He, J. Hufner, Phys. Rev. C57 (1998) 3263-3270. [nucl-th/9802021].

[15] S. Plumari, V. Baran, M. Di Toro, G. Ferini, V. Greco, Phys. Lett. B689 (2010) 18-22.

[16] M. Bluhm, B. Kampfer, K. Redlich, [arXiv:1011.5634 [hep-ph]].

[17] S. Plumari, W. M. Alberico, V. Greco, C. Ratti, [arXiv:1103.5611 [hep-ph]].

[18] S.R. de Groot, W.A. van Leeuwen and Ch.G. van Weert, “Relativistic Kinetic Theory”, North

Holland Publishing Company (1980).

18



[19] A. Bazavov, T. Bhattacharya, M. Cheng, N. H. Christ, C. DeTar, S. Ejiri, S. Gottlieb,

R. Gupta et al., Phys. Rev. D80 (2009) 014504. [arXiv:0903.4379 [hep-lat]].

[20] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, K. K. Szabo,

JHEP 1011 (2010) 077. [arXiv:1007.2580 [hep-lat]].

[21] M. Laine, Y. Schroder, Phys. Rev. D73 (2006) 085009. [arXiv:hep-ph/0603048 [hep-ph]].

[22] J. Berges, S. Borsanyi, Phys. Rev. D74 (2006) 045022. [hep-ph/0512155].

[23] J. Bernstein, “Kinetic Theory in the Expanding Universe”, Cambridge University Press (1988).

[24] P. Romatschke, Int. J. Mod. Phys. E 19 (2010), 1 [arXiv:0902.3663 [hep-ph]].

[25] P. Romatschke, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787 [hep-th]].

[26] B. Ling, private communication.

[27] B. Betz, D. Henkel, D. H. Rischke, Prog. Part. Nucl. Phys. 62 (2009) 556-561.

[28] M. A. York, G. D. Moore, Phys. Rev. D79 , 054011 (2009). [arXiv:0811.0729 [hep-ph]].

[29] P.J. Dellar, Phys. Rev. E64, 031203 (2001).

[30] S. Succi, Eur. Phys. J. B64 (2008), 471.

[31] Z. Xu, C. Greiner, Phys. Rev. C79 (2009) 014904. [arXiv:0811.2940 [hep-ph]].

[32] Z. Xu, C. Greiner, Phys. Rev. C81 (2010) 054901. [arXiv:1001.2912 [hep-ph]].

19


