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We explore the effects of collective neutrino flavor oscillations due to neutrino-neutrino interactions
on the neutrino heating behind a stalled core-collapse supernova shock. We carry out axisymmetric
(2D) radiation-hydrodynamic core-collapse supernova simulations, tracking the first 400 ms of the
post-core-bounce evolution in 11.2-M⊙ and 15-M⊙ progenitor stars. Using inputs from these 2D
simulations, we perform neutrino flavor oscillation calculations in multi-energy single-angle and
multi-angle single-energy approximations. Our results show that flavor conversions do not set in until
close to or outside the stalled shock, enhancing heating by not more than a few percent in the most
optimistic case. Consequently, we conclude that the postbounce pre-explosion dynamics of standard
core-collapse supernovae remains unaffected by neutrino oscillations. Multi-angle effects in regions
of high electron density can further inhibit collective oscillations, strengthening our conclusion.

PACS numbers: 14.60.Pq, 97.60.Bw

I. INTRODUCTION

Stars with a zero-age main-sequence (ZAMS) mass
greater than ∼(8−10)-M⊙ undergo core collapse at the
end of their lives. When the inner core reaches nuclear
density, the stiffening of the nuclear equation of state
(EOS) induces core bounce, launching a strong shock
wave that slams into the still infalling outer core. Created
at a mass coordinate of ∼0.5-M⊙ and endowed with the
kinetic energy from infall, the shock initially moves out
rapidly in mass and radius, but dissociation of heavy
infalling nuclei and neutrino losses from neutronization
and thermal processes in the hot region behind the shock
sap its energy. As a result, the shock soon succumbs to
the ram pressure of the outer core and stalls at a radius
of ∼(100− 200) km.
Finding the mechanism that robustly revives the

stalled shock to blow up a massive star in a core-collapse
supernova has been the primary objective of core-collapse
supernova theory for decades, but so far success has been
limited. The neutrino mechanism [1, 2], based on the net
deposition of neutrino energy by charged-current absorp-
tion in the semi-transparent gain region below the shock,
has been shown by radiation-hydrodynamics simulations
to work in its purest, spherically-symmetric (1D) form
only in the lowest-mass massive stars with oxygen-neon
cores [3–5] and the most accurate 1D simulations fail to
explode more massive stars [6, 7]. In axisymmetry (2D),
neutrino-driven convection and the standing-accretion-
shock instability (SASI, e.g., [8–10]) increase the efficacy
of the neutrino mechanism (by enhancing heating [11–13]
or reducing cooling by neutrinos [14]). Neutrino-driven
explosions in 2D simulations have been reported [13, 15,
16], though only in models using the softest variant of
the Lattimer-Swesty EOS [17], which is disfavored by the
recent discovery of a 2-M⊙ neutron star [18], but leads to
a compact protoneutron star (PNS) and a hard neutrino
spectrum [13, 19], favorable for heating due to the ǫ2ν
dependence of the neutrino absorption cross section.
Other multi-dimensional phenomena have led to pro-

posals of alternatives to the neutrino mechanism: Rapid
rotation in combination with rotational magnetic field
amplification can lead to magnetorotational explosions
with bipolar morphology [20–23]. But rapid core rotation
may be present only in a small fraction of all massive
stars [24, 25], ruling out this magnetorotational mech-
anism for the garden-variety core-collapse supernova.
Burrows et al. [26, 27] proposed an acoustic mechanism in
which non-linear PNS oscillations, driven by turbulence
and accretion downstreams, emit sound waves into the
region behind the shock that steepen to secondary
shocks, injecting heat and reviving the stalled shock.
The acoustic mechanism leads to perhaps too late, too
weak explosions and bleeding of PNS oscillation power
to numerically unresolved daughter modes may diminish
its relevance in nature [28].

Exploratory 3D simulations [29, 30] are suggestive of
the possibility that the additional degree of freedom over
2D and the physical nature of turbulence in 3D could
render the neutrino mechanism robust. But full 3D
neutrino radiation-hydrodynamics simulations must be
awaited before 3D can be declared the missing piece in
the core-collapse supernova puzzle.

The marginality of the various proposed mechanisms
combined with nature’s robust ability to produce explo-
sions in massive stars up to at least ∼20-M⊙ [31, 32]
makes one wonder: Is there important physics missing
from core-collapse supernova models? With the current
standard set of physics included in models, we might, for
example, miss an early hadron-quark phase transition in
the PNS, leading to a second collapse and bounce and a
second shock wave that revives the first. This possibility
was proposed by [33, 34], but requires a soft hadronic
EOS that has now been ruled out.

In this article, we consider new physics that has not
previously been included in the core-collapse supernova
problem: self-induced collective neutrino flavor oscilla-
tions. Neutrino oscillations have long been known to
occur in vacuum (e.g., [35]) and in matter, mediated by
neutrino-electron scattering (via the Mikheyev-Smirnov-
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Wolfenstein (MSW) effect, [36, 37]). Less appreciated,
until recently, has been the possibility of oscillations
occurring due to neutrino-neutrino forward scattering
in regions of high neutrino number density. This self-
induced oscillation process was first discussed in [38] and
then explored in a series of papers [39–46]. Thereafter,
following the simulations of Duan et al. [47, 48], it has
received much attention recently as a process occurring
in the core-collapse supernova environment and leading
to flavor conversions of neutrinos and antineutrinos of al-
most all energies (e.g., [49–68]. Also see the review [69]).

The most intriguing result of these so-called “collective
oscillations” (flavor conversions take place collectively
over all energies) is an almost complete exchange of
electron neutrino (νe) and antineutrino (ν̄e) spectra
with the spectra of the heavy-lepton neutrinos and
antineutrinos νx ∈ {νµ, ντ , ν̄µ, ν̄τ}. The νx, due to
the absence of muons and taus, do not interact via
charged-current processes in core-collapse supernovae.
They are created by thermal processes in the PNS core
and decouple from matter at smaller radii and higher
temperatures than νe and ν̄e. Hence, the initial νx
spectra are much harder. Due to the ǫ2ν dependence of
the charged-current absorption cross section, a swap of νx
and νe/ν̄e spectra would dramatically enhance neutrino
heating and may be the crucial ingredient missing in core-
collapse supernova models, provided the swap occurs at
sufficiently small radii in the region behind the shock
to boost net heating. This is indeed the recent result
obtained by Suwa et al. [70], where a neutrino conversion
radii was assumed at a radius of 100 km.

Fuller et al. [71] were the first to propose increased
heating due to neutrino oscillations, but their MSW
resonance based oscillation mechanism required a large
neutrino mass of ∼ (10 − 100) eV for one of the active
neutrinos. Akhmedov et al. [72] put forth a similar
proposal, but both are now ruled out by stringent
constraints on neutrino masses (e.g., [73]).

Self-induced collective neutrino oscillations, on the
other hand, do not require large neutrino masses, are
a rather straightforward consequence of the Standard
Model of particle physics, and may, in principle, occur
in both the inverted and the normal neutrino mass
hierarchy [60]. In this work, we study their relevance
for the core-collapse supernova mechanism by calculating
approximate analytic and detailed numerical estimates
for the radii at which collective oscillations set in
and could influence neutrino heating. We base these
calculations on neutrino radiation fields from 2D neutrino
radiation-hydrodynamic simulations of the postbounce
core-collapse supernova evolution in 11.2-M⊙ and 15-M⊙

progenitor stars, representative of the progenitors of
standard Type-II supernovae.

We find that the calculated oscillation radii, while
reaching average shock radii, due not penetrate deeply
into the heating region. Large shock excursions due to
the SASI reach and surpass the radius at which oscilla-
tions set in, but the region in which the vast majority of

net heating occurs remains always at least ∼100 km be-
low the oscillation radius, even in the low-mass 11.2-M⊙

progenitor. Recent results of Chakraborty et al. [74, 75],
obtained on the basis of 1D simulations, show the
suppression of collective oscillations by very high electron
number density in dense matter. In our 2D models, we
find that such a suppression may be significantly weaker
than reported by Chakraborty et al.. Nonetheless,
the flavor conversion still happens too far out in the
supernova, and we conclude that collective neutrino os-
cillations do not have a significant effect on the explosion
mechanism of core-collapse supernovae in progenitors in
and above the explored mass range.
The structure of this article is as follows. In Section II,

we review neutrino heating in core-collapse supernovae
and in Section III, we introduce collective neutrino oscil-
lations and present an approximate analytic prescription
that can be used to determine the radius at which
neutrinos will begin to collectively oscillate. In Section
IV, we go on to discuss our 2D radiation-hydrodynamic
postbounce core-collapse supernova simulations and con-
trast the evolutions of their characteristic radii with the
analytic estimates and detailed numerical results for the
oscillation radius. This allows us to ascertain the impor-
tance of collective neutrino oscillations for shock revival.
In Section V, we summarize our results and conclude.

II. NEUTRINO HEATING IN CORE-COLLAPSE
SUPERNOVAE

To elucidate the basics of the neutrino mechanism, we
make a number of simplifying assumptions, which we lay
out in the following. We assume a spherically symmetric
mass distribution and expect neutrinos to stream freely
outside their energy-averaged neutrinospheres. We define
the neutrinosphere radii for each neutrino species via a
Rosseland mean neutrino optical depth,

τRM,νi(r) =

∫ ∞

r

(∫∞

0
Jνi/κνi dǫ∫∞

0
Jνi dǫ

)−1

dr′ . (1)

and set the neutrinosphere radius Rνi = R(τRM,νi =
2/3). In this expression for the energy-averaged optical
depth, κνi is the sum of the absorption and scattering
opacities, and Jνi is the νi energy density.
The energy-dependent optical depth is a quadratic

function of the neutrino energy, the energy-dependent
neutrinospheres move outward with neutrino energy (cf.
Fig. 13 of [76]). The energy-averaged variant of the
optical depth that we use produces a neutrinosphere that
matches rather well the radius of the neutrinosphere of
the average neutrino energy for each species. In the
following, we will consider only the νe neutrinosphere
radius Rνe , since νe decouple from matter furthest out,
followed first by ν̄e, then by νx. The νx are not involved
in charged-current interactions, hence have the largest
mean free path. The ν̄e interact with the less abundant
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proton and, hence, also have a greater mean free path
than the νe. This decoupling hierarchy is also present
in the mean and mean-squared neutrino energies, giving
〈ǫνx〉 > 〈ǫν̄e〉 > 〈ǫνe〉 and 〈ǫ2νx〉 > 〈ǫ2ν̄e〉 > 〈ǫ2νe〉, reflecting
the fact that the least interacting neutrino decouples at
the smallest radius and the highest matter temperature.
Typical values for the mean neutrino energies, 〈ǫνi〉, are
∼(10− 15) MeV for νe, and ν̄e and ∼(15− 20) MeV for
νx (see, e.g., [19, 77, 78]). In the very early postbounce
phase of a core-collapse supernova, Rνe is typically
around ∼(70− 80) km, reaching ∼(30− 40) km within
(200− 300)ms of core bounce.

We make the assumption that beyond our nominal
neutrinosphere Rνe , the radiation fields of all neutrinos
are freely streaming with a luminosity Lνi , an average
energy of 〈ǫνi〉, a mean squared energy of 〈ǫ2νi〉, and

a total number luminosity of Nνi = 4πR2
νeΦνi , where

Φνi is the neutrino number flux of species i at radius
Rνe . We normalize the spectral neutrino distribution
function dΦνi/dǫ at the νe neutrinosphere according to
4πR2

νe

∫∞

0
dǫ dΦνi/dǫ = 4πR2

νeΦνi . The neutrino energy
distribution function is then simply ǫdΦνi/dǫ.

Outside of Rνe , conditions arise where absorption of
νe and ν̄e via charged-current interactions with neutrons
and protons inject more energy into the matter than is
lost due to thermal emission and electron and positron
capture on neutrons and protons. This is the case
in the gain region [79], which, in our simplified 1D
picture, extends from the gain radius Rg, where neutrino
heating balances cooling, to the shock radius Rs. Typical
values of Rg and Rs during the accretion phase of
core-collapse supernovae are ∼100 km, and ∼200 km,
respectively [12, 13, 77, 80].

In the gain region, the heating due to the charged-
current neutrino-matter interactions is given by the
absorption cross section σνi(ǫνi) convolved with the
spectral energy fluxes of both νes and ν̄es incident on
the gain region from below,

H =
∑

νe,ν̄e

∫ rs

rg

dr 4πr2 ni

∫ ∞

0

dǫ σνi(ǫ)
ǫdΦνi

dǫ
, (2)

where ni is the local number density of nucleons relevant
for interactions with neutrino species i. For Eq. (2), we
approximate σνi (ǫ) = σ0(1 + 3g2A)/(4m

2
ec

4) × ǫ2 = σ̂ǫ2,
where σ0 ∼1.76× 10−44 cm2 is the reference weak inter-
action cross section, and gA is the axial-vector coupling
constant. Note that the units of σ̂ are cm2/MeV2. This
approximation of the neutrino absorption cross section,
in combination with our free-streaming assumption, leads
to a gross heating rate,

H ∼
∑

νi

σ̂〈ǫ2νi〉Lνi

∫ Rs

Rg

dr ni

∼ σ̂
[
〈ǫ2νe〉LνecN + 〈ǫ2ν̄e〉Lν̄ecP

]
, (3)

where cN and cP are the target nucleon column densities

(in #/cm2) for νe and ν̄e, respectively. Note that Lνi

and 〈ǫ2νi〉 will typically vary somewhat across the gain
region. We neglect this variation for simplicity. Eq. (3)
gives the integrated gross heating rate, H, but it is
important to note that the majority of the heating occurs
very near the gain radius due to the strong dependence
of the rest-mass density on radius, ρ ∝ r−3 (as pointed
out by [79] and seen in simulations. See, e.g., Fig. 16
of [77], and Fig. 6 of this work). Also, while neutrino
heating dominates over cooling in the gain region, the
latter is still significant and must not be neglected. The
net heating rate (heating minus cooling) is estimated by
Janka [79] to be Hnet = H− C ≈ H/2, which is in rough
agreement with what one finds in simulations.
The main take-away message from this section is that

the heating rate H depends on the νe and ν̄e spectral
fluxes as

H ∝
∑

νi=νe,ν̄e

Lνi〈ǫ2νi〉 . (4)

Our aim in this study is to explore if flavor conversions
due to collective neutrino oscillations can increase the
quantity Lνe, ν̄e〈ǫ2νe, ν̄e〉 to boost the heating mechanism.
There are two aspects to this question – (i) What is the
typical degree of flavor conversion? (ii) Does this flavor
conversion take place at sufficiently small radii to have
a significant effect on the total neutrino heating? To
address these questions, we discuss collective oscillations
in the next section.

III. COLLECTIVE NEUTRINO FLAVOR
CONVERSION

A. Equations of Motion

Neutrinos with massesm1, m2, m3 are related to three
flavor states νe, νµ, ντ . These flavor states oscillate
from one to another as a function of time, depending
on the mass-square differences ∆m2

ij = m2
j − m2

i and
mixing angles θij , where the indices run over (1, 2, 3).
For an introduction to neutrino oscillation physics, see
e.g., Chapter 3 of [81]. As is usual in particle physics,
we will use units in which the speed of light c and Planck’s
constant ~ are equal to 1.
In the core-collapse supernova context, a two neu-

trino flavor approximation is often appropriate because
∆m2

21 ≪ |∆m2
31| and θ13 ≪ 1. In that case, the

oscillations are primarily between νe and the linear com-
bination (νµ−ντ )/

√
2, while the other linear combination

is decoupled from the system. Our numerical results have
been obtained with a full three-flavor code. The νe ↔ νx
and ν̄e ↔ νx oscillations are governed by ∆m2

atm ≈
∆m2

31 (the subscript “atm” is used, because this quantity
determines the oscillations of neutrinos created in the
atmosphere) and the mixing angle θ13. We take the
absolute value of ∆m2

atm to be 2.6 × 10−3 eV2, close to
the best fit of experimental data [82], while the sign is not
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known. We will use a benchmark value of θ13 = 0.001,
consistent with the upper limit sin2 θ13 < 0.035 [82].
Neutrino oscillations can alter the flux differences

dΦνe/dǫ−dΦνx/dǫ and dΦν̄e/dǫ−dΦνx/dǫ at a given en-
ergy. We will represent the flux differences at each energy
ǫ by a polarization vector P and P in a three-dimensional
flavor space, as in [49]. At the neutrinosphere, all
neutrinos are emitted as flavor states. Thus the initial
polarization vectors are aligned with the z-direction

P(ǫ) =
dΦνe/dǫ− dΦνx/dǫ

Φνe +Φν̄e + 4Φνx

ẑ , (5)

P(ǫ) =
dΦν̄e/dǫ− dΦν̄x/dǫ

Φνe +Φν̄e + 4Φνx

ẑ , (6)

where a vertically upward vector represents a νe (or ν̄e)
excess and a downward vector shows a νx excess. When
the fluxes of νe (or ν̄e) and νx are equal, the polarization
vector vanishes. Other directions represent states that
are coherent superpositions of the two pure states which
will be generated by flavor oscillations.
In the treatment of neutrino oscillations it is important

to consider the angle ϑRνe
at which neutrinos are emitted

from the neutrinosphere at Rνe . We will therefore attach
a label u to polarization vectors signifying the direction
of emission, i.e., P(ǫ, u), where u = sin2 ϑRνe

. Of course,∫ 1

0
duP(ǫ, u) = P(ǫ), and similarly for antineutrinos.
In vacuum, the νe (or ν̄e) oscillate to νx and back with

a frequency [35]

ω(ǫ) =
|∆m2

atm|
2ǫ

, (7)

= 0.65 km−1 ×
[
10MeV

ǫ

]
, (8)

solely under the action of neutrino masses and mixing.
The vacuum Hamiltonian is represented by a vector
ω(ǫ)B with B = ∓(sin 2θ13, 0, cos 2θ13) where the mi-
nus sign applies for normal neutrino mass hierarchy
(∆m2

atm > 0) and the plus sign for inverted neutrino
mass hierarchy (∆m2

atm < 0).
In the core-collapse supernova environment there are

additional sources of flavor oscillation, i.e., weak inter-

actions with the stellar material, and weak interactions
between the neutrinos themselves. In the limit that
neutrinos are free streaming, i.e., outside the neutri-
nospheres, elastic scattering with electrons is the only
neutrino–matter process that is relevant. Of these, the
forward scattering amplitudes add coherently with the
free propagator to introduce a potential in the flavor
evolution Hamiltonian. This contribution due to the net
local number density of electrons in the medium is known
as the MSW potential [36, 37],

λ(r) =
√
2GF [ne(r) − ne+(r)] , (9)

= 6.6× 105 km−1 ×
[
ne(r) − ne+(r)

1033/cm3

]
, (10)

where, in the second line, we have used the value of the
Fermi constant GF = 1.16 × 10−5 GeV−2. The matter-
induced contribution to the Hamiltonian is represented
by a vector λ(r)L, where L = (0, 0, 1).

The above two contributions are well-known, and lead
to the traditional paradigm of core-collapse supernova
neutrino oscillations based on vacuum oscillations and
matter-induced oscillations [83]. However, near the
neutrinosphere, neutrino densities are very high, so in
addition to ordinary neutrino oscillations due to ω(ǫ)
and matter oscillations due to λ(r), one has appreciable
forward scattering of neutrinos and antineutrinos off each
other [38]. This leads to another potential, induced by
all other neutrinos and antineutrinos, whose value at the
neutrinosphere Rνe is given by [38, 52]

µRνe
=

√
2GF Φν,ν̄ (11)

= 1.1× 106 km−1 (12)

×
[
(10 km)2

R2
νe

]∑

νi

[ Lνi

1052 erg/s

] [
10MeV

〈ǫνi〉

]
.

The exact quantity that appears here, i.e., Φν,ν̄ =
Φνe+Φν̄e+4Φνx , depends on our chosen normalization for
the polarization vectors – Eqs. (5) and (6) have the same
quantity in the denominator. Altogether, the equations
of motion become [52]

dP(ǫ, u)

dr
= +

ω(ǫ)B×P(ǫ, u)

vr(u, r)
+

λ(r)L×P(ǫ, u)

vr(u, r)
(13)

+µRνe

R2
νe

r2

[(∫ 1

0

du′

∫ ∞

o

dǫ′
P(ǫ′, u′)−P(ǫ′, u′)

vr(u′, r)

)
× P(ǫ, u)

vr(u, r)
−
(∫ ∞

0

dǫ′
(
P(ǫ′)−P(ǫ′)

))
×P(ǫ, u)

]
,

dP(ǫ, u)

dr
= −ω(ǫ)B×P(ǫ, u)

vr(u, r)
+

λ(r)L×P(ǫ, u)

vr(u, r)
(14)

+µRνe

R2
νe

r2

[(∫ 1

0

du′

∫ ∞

o

dǫ′
P(ǫ′, u′)−P(ǫ′, u′)

vr(u′, r)

)
× P(ǫ, u)

vr(u, r)
−
(∫ ∞

0

dǫ′
(
P(ǫ′)−P(ǫ′)

))
×P(ǫ, u)

]
.
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Note that neutrinos emitted at angle ϑRνe
have a radial

velocity,

vr(u, r) = cosϑ(u, r) =

√
1− u

R2
νe

r2
, (15)

and their flavor evolution has been projected onto the
radial direction.
To keep our discussion simple, we will often use an

effective spherically symmetric description proposed in
[52], where all neutrinos are assumed to be emitted at
45◦ to the nominal neutrinosphere at Rνe . This is often
referred to as the single-angle approximation. We will see
that there is no flavor change close to the neutrinosphere,
thus this choice of a common neutrinosphere merely acts
as a boundary condition where we specify our initial
states. In this approximation, all neutrinos have a radial
velocity

vr(r) =

√
1− R2

νe

2r2
. (16)

The forward scattering amplitudes due to neutrinos
and antineutrinos scattering off each other leads to a
collective potential,

µ(r) = µRνe
×
(
R2

νe

r2

)(
R2

νe/r
2

2−R2
νe/r

2

)
. (17)

The potential weakens as 1/r4 at large distances because
the fluxes dilute as 1/r2 and there is another approxi-
mately 1/r2 suppression from the last term in brackets,
because the neutrino flux becomes more collinear at
large distances. The potential enters the Hamiltonian
as vr µ(r)D, where

D =

∫ ∞

0

dǫ
(
P(ǫ)−P(ǫ)

)
. (18)

Note that the Hamiltonian now depends on P and P

themselves, thus making the flavor evolution nonlinear.
The single-angle equations of motion for the flavor

composition of neutrino and antineutrino fluxes from a
core-collapse supernova are then given by

dP(ǫ)

dr
=

(
+
ω(ǫ)B

vr
+

λ(r)L

vr
+ µ(r)D

)
×P(ǫ) , (19)

dP(ǫ)

dr
=

(
−ω(ǫ)B

vr
+

λ(r)L

vr
+ µ(r)D

)
×P(ǫ) . (20)

B. Flavor Evolution

In the central regions of a core-collapse supernova, the
matter potential λ(r) ≫ ω, and the mixing angle θ13 is
suppressed by the factor ∼ ω/λ [36, 37]. As was shown
in [47, 49, 54], the role of a large MSW potential is

mimicked by setting the mixing angle θ13 to a small value,
and removing λ(r) from the equations of motion. We
use this result without proof. Now, adding Eq. (19) and
Eq. (20) and integrating over all energies, one finds that

the vector
∫∞

0
dǫ(P + P) − ω̃/vr

µ B acts like a pendulum

with the energy [49, 50]

E =
ω̃

vr
B ·
∫ ∞

0

dǫ
(
P+P

)
+

1

2
µ(r)|D|2 , (21)

where ω̃ is the the average of the oscillation frequency ω
over the spectrum of flux differences [53],

ω̃ =

∫∞

0
dǫ ω(ǫ)

(
dΦνe

dǫ − dΦνx

dǫ

)

2(Φνe − Φνx)
(22)

+

∫∞

0
dǫ ω(ǫ)

(
dΦν̄e

dǫ − dΦνx

dǫ

)

2(Φν̄e − Φνx)
,

and B is approximately equal to ∓(0, 0, 1) +O(θ213).

The dynamics of the neutrino flavor pendulum is ap-
proximately determined by a comparison of the potential
and kinetic energy of the system [49]. The potential
energy of the system is the first term on the r.h.s. of
Eq. (21), i.e., ω̃F+/vr, where

F+ ≡ B ·
∫ ∞

0

dǫ
(
P+P

)
, (23)

which is initially

F+(Rνe) = ∓Φνe +Φν̄e − 2Φνx

Φνe +Φν̄e + 4Φνx

, (24)

is the measure of the fraction of the neutrino flux
available for oscillation. We remind the reader that the ∓
sign depends on whether ∆m2

atm > 0 (normal hierarchy)
or < 0 (inverted hierarchy). On the other hand, the
kinetic energy of the system is the second term on the
r.h.s. of Eq. (21), given by 1

2
µ(r)F2

−, where

F− ≡ |D| , (25)

which is initially

F−(Rνe) =
Φνe − Φν̄e

Φνe +Φν̄e + 4Φνx

, (26)

is the net lepton asymmetry in the system. For the
first few 100 ms after bounce, in which the explosion
mechanism must operate, one typically has Φνe > Φν̄e >
Φνx , thus Pz and Pz are positive except at the very
highest energies. For normal hierarchy, i.e., ∆m2

atm > 0,
the potential energy ω̃/vrB ·

∫∞

0
dǫ
(
P+P

)
is already

negative in the initial state, and therefore the pendulum
remains close to its initial state (any other configuration
would have higher energy). In the inverted hierarchy,
i.e., ∆m2

atm < 0, however, the potential energy is
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positive initially, and flipping the polarization vectors
P and P leads to a lowering of the total energy.
This instability of the neutrino flavor distribution leads
to almost complete flavor conversions by flipping the
polarization vectors P and P if ∆m2

atm < 0.

The above argument assumes that all Pz and Pz are
positive, which is true for supernova neutrino fluxes in
the early postbounce phase, at all but the very highest
energies. This may not always be the case and it is worth
emphasizing that even for normal hierarchy it is possible
to get flavor flips, as first shown in [60]. However, that
requires a larger flux of µ and τ neutrinos (to make Pz

and Pz negative) than is typically available in the early
postbounce phase.

When the kinetic energy 1
2
µ(r)F2

− becomes compara-
ble to the potential energy ω̃F+/vr, the flavor pendulum
begins flipping back and forth between the up and down
states, and does not always return to its initial position.
This radius, below which the collective potential pins
all polarization vectors together and the motion is
synchronized, is given by the condition

µ(rsync) ≈ 4ω̃

(
1 +

R2
νe

4r2sync

) F+

F2
−

. (27)

Beyond this radius, the neutrinos begin to convert flavor
as the flavor pendulum tends to drift towards the lower
energy configuration.

As the neutrinos stream out, the magnitudes
of the vacuum Hamiltonian ω̃/vr and the collec-
tive Hamiltonian µ|D| eventually become compara-
ble. This happens at a radius rend where µ(rend) ≈
ω̃
(
1 +R2

νe/(4r
2
end)

)
/F−, the flavor pendulum settles

into the lower energy state, which involves a flip in flavor
space in the inverted hierarchy. Collective flavor conver-
sions approximately freeze-out at this radius. Vacuum
and MSW neutrino oscillations take place at much larger
radii and we neglect them here.

The flip of the flavor pendulum, as described above,
leads to a swap of the νe and ν̄e number fluxes with those
of νx and ν̄x number fluxes via pair-conversions νeν̄e ↔
νxν̄x. The number fluxes after collective effects (on the
l.h.s.) are given in terms of the number fluxes before
collective effects (on the r.h.s.) as

dΦνe/dǫ =

{
dΦνe/dǫ ǫ < ǫsplit
dΦνx/dǫ ǫ > ǫsplit

, (28)

dΦν̄e/dǫ = dΦνx/dǫ , (29)

4dΦνx/dǫ = dΦνe/dǫ+ dΦν̄e/dǫ+ 2dΦνx/dǫ , (30)

where ǫsplit is given by the constraint [51]

∫ ǫsplit

0

dǫ dΦνe/dǫ =

∫ ∞

0

dǫ (dΦνe/dǫ− dΦν̄e/dǫ) . (31)

The sharp discontinuity for νe at ǫsplit is known in
the literature as a spectral split, and appears at
∼(6− 8) MeV. There is a spectral split in ν̄e too,
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FIG. 1: Survival probabilities of flavor states νe (same for
νx) at representative energies (5, 10, 25, and 40 MeV) as
a function of distance from the origin in a snapshot at 250
ms after bounce in the core collapse evolution of the 15-M⊙

progenitor star discussed in Section IVA.

but typically at even lower energies (< 5 MeV) and is
generally ignored [53, 60].

A representative example of νe flavor evolution is
shown in Fig. 1. Note how the survival probability is
initially close to one (νe preserve their original state),
begins to decrease from rsync (which in the example
shown here is ∼ 250 km), and finally around rend (here ∼
700 km) asymptotes to zero (complete flavor conversion).
Note that there are neutrinos that return back to their
original state – those are the lowest energy νe (below
∼ 7 MeV) that do not convert flavor as mentioned
above. We remind that in a two-flavor approximation,
this survival probability for νe is exactly the same as for
νx. The behavior of ν̄e (and ν̄x) is only slightly different
(energies below ∼ 4 MeV return back to their original
flavor), and therefore not shown.

The value of the collective potential when
the flavors flips start occurring, i.e., µ(rsync) =
4ω̃
(
1 +R2

νe/(4r
2
sync)

)
F+/F2

−, does not depend on the
total neutrino number flux, but only on the relative
number fluxes. Note that Φν,ν̄ in µ(r) cancels with
the denominator of F−, and is simply a choice of
normalization. With our normalizations for P, P,
and µ(r), all model-dependence on neutrino spectra is
absorbed into one number, i.e., ω̃F+/F2

−.

For core-collapse supernova emission parameters pre-
dicted by typical simulations, ω̃F+/F2

− is typically in
the range (30 − 300) km−1. We plot in Fig. 2, the
synchronization radius rsync as a function of the number
luminosity Nν,ν̄ and the neutrinosphere radius Rνe using
Eq. (27) and assuming ω̃F+/F2

− = 50 km−1. Note
that a factor of six increase in the value chosen as the
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FIG. 2: Contours of equal synchronization radius (in km), us-
ing Eq. (27), as a function of the neutrino number luminosity
Nν,ν̄ = 4πR2

νeΦν,ν̄ (in 1057 s−1) and the νe neutrinosphere
radius Rνe for a fiducial value of ω̃F+/F2

− taken to be
50 km−1. See text for more details.

critical µ(rsync), reduces rsync by only ∼ 40% because
of the 1/r4 scaling of µ. In the postbounce pre-
explosion phase, the total neutrino number luminosity is
Nν,ν̄ ∼(1− 10)× 1057 s−1 and νe neutrinosphere radius
is Rνe ∼(40− 80) km, which leads to a typical synchro-
nization radius rsync∼(200− 400) km. Similarly rend is
seen to be ∼(400− 700) km.

Our discussion so far has been based on a single-angle
formalism. However, as we have already mentioned,
neutrinos emitted at different angles relative to the
neutrinosphere experience different collective and MSW
potentials. This leads to multi-angle effects. There are
three ways in which these multi-angle effects are known
to become important.

First, if the MSW potential itself is much larger
than the collective potential weighted by the lepton
asymmetry factor, i.e., λ(r)/vr ≫ µ(r)|D|, collective
oscillations are suppressed [58]. Spelled out, this is the
case where

λ(r) ≫ 2
√
2GFΦν,ν̄

R2
νe

r2
F− . (32)

Second, if the νe and ν̄e fluxes are very similar,
i.e., Φνe ≈ Φν̄e , a single angle treatment is not
appropriate due to multi-angle decoherence [52]. In
this case, one finds that different angular modes accrue
random phases for both normal and inverted hierarchy.
Thus the polarization vectors P and P shrink to zero
due to kinematic decoherence. This can begin as soon as
the synchronization radius is reached and leads to rapid

flavor equilibration (all flavors assume the same spectrum
and number flux).
Third, if the fluxes of µ and τ neutrinos and antineu-

trinos become comparable to or greater than the νe or
ν̄e fluxes, i.e., Φνx & Φνe ,Φν̄e , there can be self-induced
suppression of collective oscillations [64]. If this were to
happen, it would delay flavor conversions to larger radii.
However, in the first few 100 ms after core bounce, Φνx is
generally significantly smaller than Φνe and Φν̄e . Hence,
self-induced suppression of collective effects, shown to
occur when Φνx ≈ Φνe ≈ Φν̄e [64], is rather unlikely [53].
We do not have a detailed analytical understanding

of these multi-angle effects, and they will be studied
numerically in the Section IVC. Before we perform a
more detailed numerical study, we can now provide first
approximate answers to the two questions raised at the
end of Section II.
(i) What is the typical enhancement in heating that one

can expect? It is easy to see that collective oscillations
can give rise to almost maximal flavor conversion. All
neutrinos and antineutrinos change their spectra, thus
the entire νe and ν̄e spectra can get exchanged with
those of νx leading to the largest possible effect that
can be expected from any flavor changing phenomenon.
The quantities responsible for heating, i.e., Lνe〈ǫ2νe〉 and
Lν̄e〈ǫ2ν̄e〉, can get replaced by Lνx〈ǫ2νx〉, which may be
significantly higher if the luminosities in all flavors are
comparable but νx energies are larger, leading to net
enhancement of neutrino heating.
(ii) Does this enhancement take place at sufficiently

small radii to have a significant effect on the total
neutrino heating? Based on typical postbounce neutrino
emission characteristics, we expect flavor exchange to be-
gin at rsync∼(200−300) km and complete at rend ∼(500−
700) km at ∼100ms after bounce. Neglecting multi-
angle effects that could force rsync & 700 km [74, 75],
the oscillation radii will decrease in the later postbounce
evolution, since the neutrinospheres recede and the
luminosities decrease with time. Hence, depending
on the detailed dynamical evolution of a given core
collapse event, collective oscillations may indeed occur
at sufficiently small radii to significantly affect neutrino
heating. In the next section, we will use full radiation-
hydrodynamic core-collapse supernova simulations to
obtain a more quantitative handle on the relevance of
collective oscillations including multi-angle effects.

IV. EFFECT OF COLLECTIVE OSCILLATIONS
ON SUPERNOVA SHOCK REVIVAL

To explore the potential effect of collective neu-
trino oscillations in the core-collapse supernova envi-
ronment more quantitatively, we perform simulations
with VULCAN/2D, an axisymmetric Newtonian radiation-
hydrodynamics code [27, 77, 84, 85]. In the variant of
VULCAN/2D that we use here, neutrino transport is han-
dled in the multi-group flux-limited diffusion (MGFLD)
approximation to the full Boltzmann equation, evolving
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FIG. 3: Neutrino number luminosities (left plot) and energy luminosities (right plot) as a function of time after bounce for
model s11.2WHW02 (left panels) and model s15WH07 (right panels). We extract the neutrino luminosities at both the νe
neutrinosphere and at 500 km. The difference in the luminosities between Rνe and 500 km is as expected: little difference in
the νx luminosities but significant differences in the νe and ν̄e luminosities due to the large accretion luminosity, especially
in model s15WH07. We also show the total number luminosity, Nν,ν̄ = Nνe + Nν̄e + 4Nνx , and the total energy luminosity
Lν,ν̄ = Lνe + Lν̄e + 4Lνx .

the mean radiation intensity and using Bruenn’s flux lim-
iter [86]. Velocity dependence and energy-redistribution
between neutrino groups via inelastic scattering are
neglected. Three neutrino species are evolved, νe and
ν̄e along with a representative µ, τ flavor neutrino, νx,
using 16 energy groups, logarithmically spaced from 2.5
to 250MeV. The neutrino opacities are taken from [87].
More details on VULCAN/2D are provided in [27, 77, 85].

The computational grid consists of an inner quasi-
Cartesian region that gradually transitions to an outer
polar grid starting at a radius of 20 km and extending
out to 5000 km with 221 logarithmically-spaced radial
zones and 121 angular zones, covering the full 180◦ of the
axisymmetric domain. Using a Cartesian center avoids
the small time steps associated with converging angular
zones of a polar grid. See Fig. 4 of [88] for an example of
our grid setup.

It is obvious from Fig. 2 that low neutrino number
luminosities are favorable for collective oscillations to
occur at small radii where they may have an impact
on neutrino heating. There is a general trend (at least
in the ∼ (10 − 20)-M⊙ ZAMS mass range) for more
massive progenitors to lead to higher postbounce neu-
trino luminosities [12]. Hence, in this study, we perform
calculations with the nonrotating 11.2-M⊙ progenitor
model of Woosley et al. [89] (solar composition, model
s11.2WHW02 in the following) and, for comparison, also
with the nonrotating 15-M⊙ progenitor model of Woosley
& Heger [90] (also solar composition, model s15WH07 in
the following).

We evolve both progenitors with the H. Shen et

al. EOS (HShen EOS, [91, 92]), which is based on
a relativistic mean field model of nuclear matter and
yields a maximum gravitational mass of 2.24-M⊙ for a
cold neutron star. We follow models s11.2WHW02 and
s15WH07 from the onset of core collapse to 400ms after
core bounce and do not observe an onset of explosion in
either model before we terminate our calculations. For
the 11.2-M⊙ progenitor, Buras et al. [80] observed an
early and weak neutrino-driven, SASI-aided explosion.
For the 15-M⊙ progenitor, Bruenn et al. reported an
explosion setting in at ∼ 300ms after bounce. These
differences in outcome observed by these groups may be
due to their use of the softest variant of the Lattimer-
Swesty EOS [17] (which has now been ruled out [18]),
inclusion of general-relativistic effects and/or their more
sophisticated treatment of neutrino transport.

A. Postbounce Evolution:
Neutrino Radiation Fields and Hydrodynamics

In Fig. 3, we show the postbounce neutrino energy lu-
minosities (Lνi ) and number luminosities (Nνi ) for mod-
els s11.2WHW02 and s15WH07. We extract the angle-
averaged luminosities both at the νe neutrinosphere
(Rνe) and at a radius of 500 km. Significant νe and, to
some extent, ν̄e emission does occur outside the neutri-
nosphere due to charged-current interactions involving
accreted dissociated material (accretion luminosity; e.g.,
[93]). Since the νx do not participate in charged-current
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interactions, their luminosities evolve little between Rνe

and 500 km.

In model s15WH07, the neutrino luminosities are
consistently higher than in model s11.2WHW02. This is
due to the higher temperatures in this progenitor, which
lead to higher core luminosities, and to a higher accretion
rate, which leads to higher accretion luminosities. With
the exception of a very short period close to bounce (<
30ms), the standard hierarchy of neutrino number flux
(Φνi = Nνi/4πr

2), Φνe > Φν̄e > Φνx , is achieved in both
models at Rνe and at 500 km. Such a hierarchy is not
present in the energy luminosities at Rνe , but is obtained
when taking the accretion luminosity into account.

In the following, we make the simplifying assumption
that neutrinos traveling through the neutrinosphere will
undergo collective oscillations but those emitted as part
of the accretion luminosity will not. This approximation
is difficult to overcome, since a full collisional Boltz-
mann solution including collective oscillations would be
required for a self-consistent treatment. However, tests
in which we used the asymptotic (Lns

νi + Lacc
νi ) instead

of the neutrinospheric luminosities led to no qualitative
and only small quantitative differences in the critical
oscillation radii.

In the left panel of Fig. 4, we show the evolution of the
shock radii at the North and South pole, and of the angle-
averaged shock radius in model s11.2WHW02. Also
shown are the energy-averaged νe neutrinosphere and
gain radii in this model. Until ∼150ms after bounce, the
shock remains essentially spherically symmetric. Then,
the SASI begins to grow and large asymmetries arise
in the shock front. The ℓ = 1 sloshing of the shock
radius in the North-South direction is characteristic of
the SASI in 2D (cf. [8], but note that 3D gives a different
SASI behavior, e.g., [30]). While oscillations in the shock
position reach radii upwards of ∼400 km, the average
peaks at ∼300 km at ∼150ms after bounce, then slowly
recedes, reaching∼200 km at 350ms. The angle-averaged
gain radius, where charged-current neutrino heating
balances cooling, hovers around ∼100 km. The hashed
region denotes the angle-averaged radial extent in which
75% of the net heating occurs. The charged-current
interactions are most effective at transferring energy to
the matter at high density (cf. Eq. (2)), therefore, most
of the net heating occurs near the gain radius where
the density is the highest (cf. the discussion in [79] and
Fig. 10 of [77] depicting the heating rate as a function of
radius). The energy-averaged νe neutrinosphere radius
peaks near ∼70 km at ∼40ms after bounce and recedes
thereafter. By 350ms after bounce, the νe neutrinosphere
has receded to ∼40 km.

The postbounce evolution of model s15WH07 is sum-
marized by the right panel of Fig. 4. The postbounce dy-
namics is qualitatively similar to model s11.2WHW02’s
and quantitative differences are due primarily to model
s15WH07’s higher postbounce accretion rate. This pre-
vents the shock from reaching the higher radii achieved
in model s11.2WHW02 before stagnation and suppresses

the development and the strength of the SASI until
later times.

B. Collective Neutrino Oscillation Radii

Collective neutrino oscillations may be relevant in the
postbounce evolution if they occur within the region
behind the shock where conditions are conducive to
net neutrino heating. We post-process the spectral
neutrino fluxes predicted by the VULCAN/2D simulations
in two ways to determine the radius at which collective
oscillations may begin. As input to these calculations,
we chose the neutrino spectra at the νe neutrinosphere,
which we average over lateral angle1.

Our first method is using the analytic expressions of
Section III. We invert Eq. (27) using Eqs. (17), (22), (24),
and (26) and solve for rsync,

rsync = Rνe


 1 +

√
2GFΦν,ν̄/(ω̃F+/F2

−)√
9 + 8

√
2GFΦν,ν̄/(ω̃F+/F2

−)− 1



1/2

.

(33)
We also use µ(rend) ≈ ω̃

(
1 +R2

νe/(4r
2
end)

)
/F− to obtain

an estimate for the radius at which the oscillations
effectively are complete. Once again inverting this using
Eqs. (17), (26), and (22), we obtain for rend,

rend = Rνe



 1 + 4
√
2GFΦν,ν̄F−/ω̃√

9 + 32
√
2GFΦν,ν̄F−/ω̃ − 1




1/2

. (34)

As an alternative to the rather rough approximation
of Eqs. (33) and (34), we determine the critical collective
neutrino oscillation radii by numerically solving the set
of coupled nonlinear differential Eqs. (19) and (20) with
the initial conditions given by Eqs. (5) and (6) based
on the neutrino number fluxes at Rνe in the VULCAN/2D

simulations. The equations are solved as a function of
radius r for 32, 64, and 128 energy groups spaced as in
Gauss-Legendre quadrature with the oscillation code of
Dasgupta et al. [54] in combination with the open-source
ordinary differential equation solver CVODE [95]. We
carry out this calculation for select postbounce times
and numerically identify rsync and rend with the radii
at which 5% and 90% flavor conversion have occurred,
respectively. For reference, Fig. 1 shows the νe survival
probability for select energies obtained with such an
evolution for the neutrino spectra in model s15WH07 at
250 ms after bounce.

We present the results of both methods applied to
models s11.2WHW02 and s15WH07 in Fig. 4. The
values of rsync and rend predicted by the two methods
agree well at early to intermediate times. At late

1 Since our models are nonrotating, the variation of the neutrino
spectra with lateral angle is not large (cf. [19, 77, 78, 94]).
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FIG. 4: Comparison of neutrino oscillation radii to shock and gain radii. Average (thin solid lines) and polar shock radii
(dot-dot-dashed and dot-dashed-dashed lines) in the postbounce phase of model s11.2WHW02 (left plot) and model s15WH07
(right plot). Also shown (dot-dashed lines) are the energy-averaged νe neutrinosphere locations and the angle-averaged gain
radii (dashed lines). The hashed region just above the gain radius denotes the area in which 75% of the net heating occurs. We
show the radii at which collective neutrino oscillations begin (rsync; dark black lines and symbols) and end (rend; light green
lines and symbols) as obtained via an analytic approximation (solid lines) and via detailed numerical calculations at select
times (squares and circles). rsync is initially large, but drops to radii comparable to the shock radii at ∼(100−150) ms in model
s11.2WHW02 and at ∼(300− 350)ms in model s15WH07. See text for details.

times, the analytic approximation overpredicts by ∼25%.
Note that, although the analytical formulae derived in
Sec. III B are in a two-flavor approximation, they can be
compared to a three-flavor numerical calculation, because
the third flavor is almost decoupled.
It is apparent from Fig. 4 that the radial interval over

which the collective oscillations occur is well outside the
shock at early times. Only after ∼150ms (∼350ms)
in model s11.2WHW02 (s15WH07), when the total
number luminosity has decreased and the neutrinosphere
has receded, does rsync recede below the shock radius
and collective oscillations can have an effect on the
subsequent evolution.

C. Multi-angle Effects

To ascertain the importance of multi-angle effects
we use the neutrino luminosities and electron density
profile as predicted along the equatorial direction by our
VULCAN/2D simulations. Due to the high computational
demand of multi-angle oscillation calculations, we do
not include the energy spectra of the different flavors,
and instead assume a monoenergetic ensemble with
the average vacuum oscillation frequency ω̃. This is
the same approximation as used by [74, 75]. Since
our VULCAN/2D simulations made use of the efficient
MGFLD variant of the code, which does not carry direct
information on the momentum-space angle dependence

of the neutrino radiation field, we compare with the
fully angle-dependent calculations of [77] and construct
approximate angle-dependent radiation fields. We find
that the angular distribution of the neutrino luminosity,
derived from the simulations of [77], is parametrized
quite well by dΦ/d cosϑRνe

∝ exp
[
(cosϑRνe

− 1)/σRνe

]
,

where we choose σRνe
= 0.357(〈1/F〉 − 1), and where

〈1/F〉 is the inverse flux factor. This parameterization
reproduces both the isotropic (〈1/F〉 ≫ 1, σ ≫ 1, and
dΦ/d cosϑ ∝ constant) and the free streaming (〈1/F〉 ∼
1, σ ∼ 0, and dΦ/d cosϑ ∝ δ(ϑ)) limits, and qualitatively
reproduces the angular distribution at the neutrinosphere
(cf. Figure 3 of [77]). At the neutrinosphere, our inverse
flux factors are ∼4-5. We assume a sharp neutrinosphere,
cutting off all neutrinos traveling backwards into the
neutrinosphere. With these choices, we solve Eqs. (13)
and (14) using a multi-angle oscillation code that is
technically similar to the one used for the single-angle
calculations.2.

2 We have verified numerical convergence by comparing results
from calculations with 100, 200, and 400 angular bins. The local
error tolerance was fixed at 10−12, which allows us to achieve
convergence with ∼ 400 modes. Additionally, we have verified
the calculations with 800 modes in a limited number of cases, and
found them to be consistent. We have also reproduced results
similar to Ref.[52].
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higher electron density. The vertical lines are from our single angle calculations and represent the radii at which 5% flavor
conversion has occurred in models s11.2WHW02 (dotted) and s15WH07 (dashed).

In Fig. 5, we show the survival probability (averaged
over all emission angles) of the average-energy neutrinos
calculated using the multi-angle code. The three panels
show the situation at 150ms (left), 250ms (center), and
350ms (right) after core bounce and results for model
s11.2WHW02 and s15WH07 are shown in dashed red
and solid blue lines, respectively. The vertical lines in
Fig. 5 are from our single angle calculations and represent
the radii at which 5% flavor conversion has occurred for
the s11.2WHW02 (dotted) and the s15WH07 (dashed)
progenitors.

We find that in model s11.2WHW02 the onset of
flavor conversion is delayed by multi-angle effects to
∼ (300 − 500) km. This is expected and due to high
electron number density. As we remarked in Section III,
whenever the MSW potential λ(r) ≫ λMA(r) =

2
√
2GFΦν,ν̄(R

2
νe/r

2)F−, multi-angle effects are strong
and suppress the oscillations. In Fig. 6, we plot λ(r)
and λMA(r) as a function of radius at 150ms (left
panels), 250ms (center panels), and 350ms (right panels)
after bounce, for models s11.2WHW02 (top panels) and
s15WH07 (bottom panels). Radial profiles along ten
lateral directions from the North to South pole are shown
to capture variations in λ(r) due to SASI oscillations.
λ(r) is almost always larger than λMA, which decreases
∝ r−2 as expected. λ(r), which effectively traces the
electron number density, falls off ∝ r−3 below the shock
radius. Above the shock, where matter is essentially in
free fall, the density roughly follows r−1.5. Typically,
the ratio λ(r)/λMA(r) is in the range (1 − 100), getting
close to 1 at later times (t & 250ms) at r ∼200km in
model s11.2WHW02.

Comparing λ(r) along different directions, we find
that the SASI oscillations developing at t − tbounce &
150ms lead to a significant spread in the values of λ(r),

sometimes, in model s11.2WHW02, bringing it just below
the critical value below which multi-angle suppression
is less effective. This occurs when the shock recedes
to particularly small radii and the region in which the
suppression is lifted is always at or outside the shock.
On the other hand, as we remarked in Section III B,

multi-angle effects may appear in a second way: If the
νe and ν̄e fluxes are very similar, i.e., Φνe ≈ Φν̄e ,
multi-angle decoherence of flavors sets in. In our model
s11.2WHW02, the νe and ν̄e fluxes are not too similar
((Φνe − Φν̄e)/Φν̄e ≈ 0.25), thus the decoherence effect
remains negligible.
In model s15WH07, on the other hand, the multi-

angle oscillation calculation does not predict a significant
delay in radius compared to the single-angle prediction,
in spite of the high electron number density also present
in this model. Since in model s15WH07 the νe and ν̄e
fluxes are quite similar ((Φνe −Φν̄e)/Φν̄e ≈ 0.1) early on,
we attribute this surprising result to (at least partial)
multi-angle flavor decoherence, which leads to oscillations
despite the high electron number density. We find flavor
conversion almost as soon as the neutrinos cross the
synchronization radius. This observation is consistent
with the previous work by Esteban-Pretel et al., in which
where they found that (Φνe − Φν̄e)/Φν̄e ∼< 0.2 leads to
decoherence [52].
Comparing our results quantitatively with the recent

multi-angle work of Chakraborty et al. [74, 75] is not
straightforward, since these authors based their calcu-
lations on 1D supernova simulations using a different
progenitor model (a 10.8-M⊙ progenitor of [89]). How-
ever, we note that they observe a stronger multi-angle
suppression than borne out by our models. For example,
flavor conversion is delayed for their 10.8-M⊙ progenitor
almost until (700 − 1000)km, while we observe flavor
evolution to begin around already at (300 − 500)km in
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FIG. 6: The MSW potential λ(r) along various directions (thin solid lines, 10 rays equally spaced in cos(θlat)), in comparison to
the minimum λ(r) needed for multi-angle suppression λMA = 2

√
2GFΦν,ν̄(R

2
νe
/r2)F− (thick dot-dashed line, taken along the

North pole (NP), South pole (SP), and equator (EQ)). To guide the eye, rulers show r−1.5, r−2, and r−3 radial profiles. The
steep rise in the λ(r) profiles occurring around r ∼200 km, but varying with lateral angle, is the location of the shock. The MSW
potential λ(r) is generally larger than the critical value λMA(r) needed for multi-angle suppression of neutrino oscillations.

our models. We believe that this is due to two reasons:

Firstly, a half-isotropic angular distribution
(dΦ/d cosϑRνe

∝ cosϑRνe
) was used in the calculations

of [74, 75]. Compared to our angular distribution,
this underestimates neutrinos emitted at large angles.
The collective interaction is stronger for tangentially
emitted neutrinos than for radially emitted neutrinos,
therefore suppressing the tangential modes leads to a
slower growth of the collective instability. We verify this
claim by replacing the angular distribution in our model
s11.2WHW02 by a half-isotropic angular distribution.
The results for this half-isotropic case are shown in
Fig. 5 (dot-dashed green line). The “double-step”
feature only appears when we use our angular emission
spectrum, which introduces stronger collective effects.
This suggests that the feature is related to the angular
spectrum, and not a numerical artifact. It is thus
clear that simply changing the angular distribution
can change the onset of flavor conversion. This may
be strong enough to create a qualitative difference as
evident from the snapshot at t = 350ms in our 11.2-M⊙

model, where we find that the oscillations do not occur
for a half-isotropic angular distribution, but do occur
for our angular distribution modeled after the full 2D
multi-angle neutrino transport simulations of [77].

Secondly, in the 10.8-M⊙ model of [74, 75], one

finds a ratio of electron to neutrino density that is
up to 10 times larger than in our 11.2-M⊙ model at
various radii and times. This is due to the different
progenitor structure used – our s11.2WHW02 model has
a lower postbounce accretion rate than the models of
[74, 75]. We verify that this is indeed an important
factor, by artificially increasing the electron density by
a factor of 10 and replacing the angular distribution in
our oscillation calculations by a half-isotropic angular
spectrum for model s11.2WHW02. This case is expected
to closely follow the results of [74, 75]. The results of
this are shown in Fig. 5 (dot-dot-dashed black line).
They demonstrate that such a change in the electron
density and angular distribution can indeed significantly
suppress the flavor evolution, in agreement with previous
results [74, 75].

In the light of these results, we believe that the role
of multi-angle effects remains an issue that requires
further scrutiny. The role of the matter density, νe/ν̄e
asymmetry, and the angular distribution need to be
studied in more detail. Flavor conversion are not
always completely suppressed due to multi-angle matter
suppression. Predictions of the neutrino flavor content
at early times must therefore be used with abundant
caution. Fortunately, as we shall see in the next
section, our conclusions regarding the impact of collective
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oscillations on the supernova mechanism remain largely
unchanged.

D. Potential Enhancement of Neutrino Heating

As discussed in Section III, collective neutrino oscilla-
tions (in the inverted mass hierarchy) will lead to a swap
of the νe and ν̄e spectral fluxes with the spectral fluxes of
the νx neutrinos (cf. Eqs. (28)-(30)). In order to illustrate
the potential enhancement of neutrino heating due to this
swap, we first consider the original heating rate before
oscillations (cf. Eq. (3)), which can be expressed as

Hbefore ∼ σ̂〈ǫ2νe〉[Lns
νe + Lacc

νe ]cN

+ σ̂〈ǫ2ν̄e〉[Lns
ν̄e + Lacc

ν̄e ]cP , (35)

where we explicitly split the luminosity into core lu-
minosity emanating from the neutrinosphere (Lns

νi ) and
accretion luminosity (Lacc

νi ), the latter being emitted

almost entirely interior to the gain region. We take 〈ǫ2νi〉
as the value calculated at the νe neutrinosphere. The νx
do not take part in charge-current interactions and play
no role in the heating before oscillations.
We now estimate the heating rate after taking into

account a partial conversion of the neutrino spectra in
the region behind the shock, as observed at late times in
our simulations.

Hafter ∼ Hbefore

+ σ̂
[
〈ǫ2νx〉Lns

νx − 〈ǫ2νe〉Lns
νe

]
cON

+ σ̂
[
〈ǫ2νx〉Lns

νx − 〈ǫ2ν̄e〉Lns
ν̄e

]
cOP

+ σ̂〈ǫ2νe〉⋆
[
〈ǫνe〉⋆(N ns

νe −N ns
ν̄e

)
]cON . (36)

The stars (⋆) on 〈ǫ2νe〉 and 〈ǫνe〉 denote that the respective
averages are taken over only the part of the spectrum
below the split energy ǫsplit (cf. Section III). cON and cOP
are the column number densities of interacting baryons
taking oscillations into account,

cOi =

∫ Rs

Rg

dr ni Pex(r) , (37)

where Pex(r) is the flavor conversion fraction and Rg and
Rs are the gain and shock radius, respectively. If no
oscillations occur, Pex = 0 everywhere and cOi is zero,
Hafter = Hbefore. If complete oscillations occur before
Rg, Pex = 1 everywhere and cOi = ci. All other quantities
in Eq. (36) have their pre-oscillated values.
We employ the neutrino data from models

s11.2WHW02 and s15WH07 and the analytic
approximations to the heating, Eqs. (35) and (36),
to calculate the change in the heating rate due to
collective oscillations. The column number densities, ci
and cOi , going into the heating rates are angle-averaged
values obtained from simulation data. The results are
depicted by Fig. 7. Shown with dashed lines are the
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FIG. 7: Time evolution of the potential percentage increase
in the heating rate, Hafter/Hbefore − 1, due to collective
neutrino oscillation. The dashed lines (thick for model
s11.2WHW02 and thin for model s15WH07) assume the
hypothetical case of complete conversion already below the
gain radius, leading to an enhancement of (20 − 100)%
depending on the progenitor and time after bounce. In
our simulations, complete conversion does not occur before
the gain radius. The more realistic estimate of the heating
enhancement based on the oscillation calculations in Section
III is much lower and shown in solid lines. Before t = 150ms
and 330ms the synchronization radius is outside the shock in
model s11.2WHW02 and s15WH07, respectively. The points,
blue squares for the s11.2WHW02 model and red circles for
the s15WH07 model, represent our estimate of the heating
enhancement if the multi-angle survival probabilities are used.
At 150ms for the s11.2WHW02 model and at 150 and 250ms
for the s15WH07 model, no heating enhancement is seen, the
conversion occurs completely outside the shock.

expected heating enhancements in model s11.2WHW02
(thick lines) and model s15WH07 (thin lines) in a
hypothetical scenario in which we assume complete flavor
conversion below the gain radius (Pex = 1 everywhere).
In this extreme case, the heating would be enhanced
by &60% in model s11.2WHW02 and &20% in model
s15WH07, this is similar to the configuration of Suwa et
al. [70]. Note, however, that our assumption that
neutrinos of the accretion luminosity do not undergo
oscillations may be invalid in this hypothetical situation.

For a more realistic estimate of the heating enhance-
ment, we use rsync as numerically computed for both
models in Section IVB and assume that above this radius
Pex = 0.05 and below this radius, Pex = 0. As a
consequence, if rsync is greater than the shock radius,
there is no heating enhancement. The result of this
is shown in Fig. 7 in thick-solid (thin-solid) lines for
model s11.2WHW02 (s15WH07). The predicted heating
enhancement sets in at much later times and is. 0.1% for
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both models. If one instead assumed that Pex = 1 outside
of rsync, the enhancement would still be . (2 − 3)%
When considering the predicted flavor conversion in

our multi-angle calculations discussed in Section IVC, we
find, as expected, that there is no further enhancement
of the heating, but rather that the enhancement is
even more suppressed. We show this in Fig. 7, where
we denote by points the expected heating enhancement
using the multi-angle survival probabilities presented in
Fig. 6 at three postbounce times for each progenitor.
In the s11.2WHW02 model, the heating enhancement is
zero or reduced significantly. The heating enhancement
estimated in the s15WH07 model, where we observed
little change in the onset of collective neutrino oscilla-
tions, is not as strongly affected. Hence, we conclude
that collective neutrino oscillations are very unlikely to
have a measurable effect on the neutrino heating and
postbounce dynamics in progenitors in and above the
mass range considered in this study.

V. DISCUSSION AND CONCLUSIONS

Almost eight decades after Baade & Zwicky’s stageset-
ting 1934 proposal [96, 97] that a core-collapse supernova
represents the transition of an ordinary star to a neutron
star, the details of the mediating mechanism that
converts gravitational energy of collapse into energy of
the core-collapse supernova explosion remain uncertain.
The neutrino mechanism, based on net heating by

charged-current neutrino absorption in the region just
below the stalled shock, appears to be the most vi-
able candidate mechanism, requiring the least spe-
cial conditions (e.g., not requiring rapid rotation or
strong magnetic fields etc.) to succeed in exploding
garden-variety Type-II supernova progenitor stars. Yet,
neutrino-driven explosions fail in 1D, are marginal in
2D simulations, and modeling groups are now exploring
the neutrino mechanism’s potentially boosted efficacy
in 3D [29, 30]. While dimensionality may be the key
to successful explosions, it is also possible that current
1D/2D models are still missing some physics crucial to
successful explosions.
In this paper, we have considered new physics pre-

viously left out of core-collapse supernova models: col-
lective neutrino flavor oscillations induced by neutrino-
neutrino forward scattering in the core-collapse super-
nova core. If the neutrino mass hierarchy is inverted
(∆m2

atm < 0), collective oscillations will invariably
lead to a swap of νe and ν̄e spectra with the signif-
icantly harder spectra of their heavy-lepton neutrino
counterparts. Assuming a hypothetical scenario in which
this swap is complete below the gain region, we find
that neutrino heating is enhanced by (20 − 100)% in
representative Type-II supernova progenitors of 11.2-M⊙

and 15-M⊙. Such a significant boost of heating may lead
to strong, early explosions, breaking the strong feedback
between EOS, weak interactions, neutrino transport, and
hydrodynamics that is present in the postbounce phase of

core-collapse supernovae and that tends to absorb small
variations in any of its components3.

To study the viability of this scenario, we have per-
formed collective neutrino oscillation calculations in the
single-angle and multi-angle approximation on the basis
of the neutrino radiation fields obtained from 2D neutrino
radiation-hydrodynamic core-collapse simulations using
11.2-M⊙ and 15-M⊙ progenitors. From the oscillation
calculations we obtain the characteristic radii rsync and
rend at which ∼5% and ∼90% of the flavor conversion
have occurred, respectively. In our simulations, these
radii start hundreds of kilometers above the typical shock
radii in the early postbounce phase, but recede with
time as the neutrinospheres settle to smaller radii as the
neutrino luminosities decrease. The radius of onset of
oscillations (rsync) reaches the average shock radius at
(150 − 350)ms and thereafter stays close to the latter,
while rend is systematically (150 − 200) km outside the
average shock radius. As a consequence, most of the
flavor conversion occurs outside the shock and can have
no effect on the postbounce heating and hydrodynamics.
Those oscillations that take place inside the shock occur
close to the shock radius and, even when taking large
shock excursion driven by the SASI into account, enhance
the net heating by less than ∼(2 − 3)% in the most
optimistic case. These results strongly suggest that
collective neutrino oscillations are unlikely to have any
qualitative or significant quantitative impact on the
postbounce evolution and the explosion mechanism in the
standard Type-II supernova progenitors considered here.

Our results also show that the characteristic oscillation
radii assume small values faster in cooler, less massive
progenitors with lower postbounce accretion rates and
smaller neutrinosphere radii in the postbounce phase.
While oscillations are unlikely to boost the pre-explosion
neutrino heating in our 11.2-M⊙ and 15-M⊙ models, the
situation may be different in even lower-mass progenitors
with O-Ne cores or in O-Ne white-dwarf progenitors of
accretion induced collapse. The weak explosions already
obtained for such progenitors [3–5, 99] could thus be
significantly enhanced.

As an aside, we have also shown that the multi-angle
matter suppression [58, 74, 75] is somewhat sensitive to
the choice of angular emission spectrum and the matter
density profile. This is expected to affect the predictions
of flavor evolution.

In deriving our results, we have made some ap-
proximations and simplifications. Of these the most
limiting is that we have assumed a sharp neutrinosphere,
common to all flavors and energies. This ignores the
interplay of oscillations and collisions, but a completely
self-consistent treatment would require a full collisional
Boltzmann calculation including oscillations, which must
be left to future work. Also, due to computational

3 This behavior of strongly coupled astrophysical systems is known
as Mazurek’s Law [98].
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limitations, we have not carried out multi-energy multi-
angle oscillation calculations, which could be improved
upon in subsequent work. The other significant limita-
tion is the assumption of axisymmetry in our supernova
calculations. Future, full 3D radiation-hydrodynamics
simulations may lead to different hydrodynamic post-
bounce evolutions and could yield different results. Given
that the understanding of core-collapse supernova physics
and collective neutrino oscillations is still in a state
of rapid development, there might be additional, yet
unknown, effects that could change our conclusions.
Finally, to summarize, collective neutrino oscillations

are an intriguing phenomenon. They have important
important ramifications for the core-collapse supernova
neutrino signature, but, as we have shown in this paper,
they develop at too large radii to play a significant role
in the explosion mechanism.
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