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We present a new formulation of the Einstein equations based on a conformal and traceless de-
composition of the covariant form of the Z4 system. This formulation combines the advantages of a
conformal decomposition, such as the one used in the BSSNOK formulation (i.e. well-tested hyper-
bolic gauges, no need for excision, robustness to imperfect boundary conditions) with the advantages
of a constraint-damped formulation, such as the generalized harmonic one (i.e. exponential decay
of constraint violations when these are produced). We validate the new set of equations through
standard tests and by evolving binary black hole systems. Overall, the new conformal formulation
leads to a better behaviour of the constraint equations and a rapid suppression of the violations
when they occur. The changes necessary to implement the new conformal formulation in standard
BSSNOK codes are very small as are the additional computational costs.

PACS numbers: 04.40.-b,95.35.+d

I. INTRODUCTION

Numerical relativity has seen, over the last few years,
a truly remarkable development. Starting from the first
simulations showing that black-hole binaries could be
evolved for a few orbits [1–3], or that black holes could
be produced from unstable stellar configurations using
simple gauges and without excision [4], new results have
been obtained steadily. As a result, it is now possible
to simulate binary black holes [5] and binary neutron
stars [6] accurately for dozens of orbits, from the weak-
field inspiral, down to the final black-hole ringdown (see
also [7, 8] for recent reviews on binary black holes and
neutron stars, respectively). In addition, the progress
in numerical relativity has also been accompanied by a
comparable progress of analytical approximation tech-
niques, which have been shown to be able to reproduce
the numerical results to very high precision both for bi-
nary black holes [9, 10] and for binary neutron stars [11].
Finally, numerical simulations have now investigated sce-
narios never considered before and that could lead to
a new and deeper understanding of the astrophysics of
compact objects [12, 13].

There are several reasons behind this rapid progress,
and the use of more accurate numerical techniques and
the availability of larger computational facilities are cer-
tainly among the most important ones. None of these,
however, would be useful without the use of formulations
of the Einstein equations that are well-suited for numer-
ical evolutions. Most of the present three-dimensional
(3D) numerical-relativity codes implement either one of
the two formulations discussed below. The first and most
popular one is the conformal and traceless re-formulation
of the 3 + 1 ADM equations [14], which is also known as
the BSSNOK (or BSSN) formulation [15–17]. The sec-

ond formulation is instead based on the use of a fully
4D form of the Einstein equations in coordinates that re-
semble the harmonic ones and is therefore known as the
Generalized-Harmonic formulation (GH) [18].

There are several differences between these two formu-
lations, each having its own advantages and disadvan-
tages. One of the main advantages of BSSNOK is that,
being based on a conformal decomposition, it can sepa-
rate potential singular terms in the conformal factor. In
addition, it can count on well-tested and robust gauge
conditions, such as the singularity-avoiding slicing con-
ditions of the 1 + log family [19]. Similarly, the spatial
gauges can rely on the hyperbolic Gamma-driver condi-
tion for the shift vector [20] (or some recent variants for
unequal-mass binaries [21–23]), which removes to a large
extent, the gauge dynamics near the compact objects.
When combined, these two gauge choices eliminate the
need to excise a region of the computation domain inside
the apparent horizon, greatly simplifying the numerical
infrastructure. Finally, the use of the momentum con-
straint equations (but not of the energy constraint) in
the evolution of the dynamical variables, which is cru-
cial for ensuring strong hyperbolicity, provides BSSNOK
with a certain “forgiveness”, so that the violation of the
constraints does not grow rapidly, even when boundary
conditions which are constraint-violating are used near
the strong-field region.

In contrast, the GH formulation uses a generalized har-
monic gauge which cannot deal with the physical singu-
larity inside the apparent horizon. As a result, at least for
the gauges considered so far (see also [24, 25]), it requires
the use of excision and thus of numerical techniques that
are devised for handling a special region of the compu-
tational domain [26]. To its advantage, however, the GH
formulation leads to a set of equations whose principal
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parts are wave equations and thus with very well-known
mathematical properties. In addition, the use of damping
terms allows for the dynamical control of the constraint
violations and thus for a powerful way of reducing them
when necessary. Of course, a solution with smaller con-
straint violations will intrinsically be a more accurate
solution to the Einstein equations.
Clearly, it would be useful to employ a formulation

of the Einstein equations that combines the best of both
worlds and thus that has the robustness and gauge condi-
tions of the BSSNOK formulation but, at the same time,
has well-defined mathematical properties and the possi-
bility of dynamically controlling the constraint violations
as the GH formulation. As we will show, these properties
are met by a new conformal and covariant formulation of
the Z4 system with constraint-violation damping. This is
obtained by starting from the fully covariant Z4 formu-
lation [27] and by performing a conformal decomposition
which includes all the non-principal terms coming from
the covariant form of the equations. In addition, damp-
ing terms are included for controlling the constraints in
the spirit of the GH formulation. We will refer to this
new formulation as the conformal and covariant Z4 sys-
tem, i.e. CCZ4, and present tests of its behaviour by
considering evolutions in vacuum of gauge waves in 1D
and isolated and binary black holes in 3D.
It should be remarked that this is not the first time that

a conformal decomposition of the Z4 system has been
proposed and indeed a very interesting attempt has been
made in Ref. [28], where it was named Z4c. Although
the tests presented in Ref. [28] were performed in spher-
ical symmetry, they already highlighted the potential of
a conformal formulation of the Z4 system, especially in
the presence of matter (see also [29, 30]). Unfortunately,
we were not able to obtain equally good results when
evolving the formulation of Ref. [28] in vacuum and in
3D; at the same time, we did not find that our CCZ4
formulation is more sensitive to boundary problems than
the BSSNOK one (this was a point raised in Ref. [28]).
The structure of the paper is as follows. In Sect. II, we

derive the full set of the CCZ4 equations starting from
the covariant form of the Z4 system. In Sect. III we in-
troduce the details of the numerical infrastructure and
present a numerical comparison between the CCZ4 and
the BSSNOK systems for a gauge-wave test and for bi-
nary black-hole simulations. Finally, the conclusions are
summarized in Sect. IV.

II. THE CONFORMAL COVARIANT Z4

SYSTEM

The Z4 formulation was introduced as a covariant ex-
tension of the Einstein equations [27], where the origi-
nal elliptic constraints are converted into algebraic con-

ditions for a new four vector Zµ. This formulation can
be derived from the covariant Lagrangian

L = gµν [Rµν + 2 ∇µZν ] , (1)
by means of a Palatini-type variational principle [31].
The vector Zµ measures the deviation from the Ein-
stein field equations. The algebraic constraints Zµ = 0
amount therefore to the fulfilling of the standard energy-
momentum constraints. In order to control these con-
straints, the original system was supplemented with
damping terms such that the true Einstein solutions
(i.e. the ones satisfying the constraints) become an at-
tractor of the enlarged set of solutions of the Z4 sys-
tem [32]. The Z4 damped formalism can be written in
covariant form as

Rµν + ∇µZν +∇νZµ + κ1[nµZν + nνZµ

− (1 + κ2)gµνnσZ
σ] = 8π(Tµν − 1

2gµνT ) , (2)

where nµ is the unit normal to the time slicing, Tµν the
stress-energy tensor and T its trace, i.e. T ≡ gµνT

µν .
The (constant) coefficients κi are free parameters related
to the characteristic time of the exponential damping
of constraint violations. Assuming energy-momentum
tensor conservation, the Bianchi identities lead to the
constraint-propagation system

∇ν∇νZµ+RµνZ
ν = −κ1∇ν [nµZν+nνZµ+κ2gµνnσZ

σ] .
(3)

It has been shown in Ref. [32] that all the constraint-
related modes are damped when

κ1 > 0 κ2 > −1 . (4)

The Z4 formulation can be rewritten as a Cauchy prob-
lem by performing the 3 + 1 decomposition of the space-
time, in which the line element reads

ds2 = −α2dt2 + γij (dx
i + βidt) (dxj + βjdt) , (5)

where α is the lapse function, βi is the shift vector and
γij the intrinsic metric of the constant-time slices. The
Einstein equations within this decomposition lead to the
well known ADM system [14], which is usually cast as
a system of evolution equations for the extrinsic curva-
ture Kij and the three-metric γij , plus four elliptic equa-
tions for the energy (or Hamiltonian) and the momentum
constraints, involving space derivatives of the dynamical
fields γij and Kij . In the Z4 formulation, the energy-
momentum constraints become evolution equations for
Zµ, modifying the principal part of the ADM system
and converting it from weakly to strongly hyperbolic [33].
The 3+1 decomposition of the Z4 formulation including
the damping terms reads
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(∂t − Lβ) γij = −2αKij , (6)

(∂t − Lβ) Kij = −∇iαj + α
[

Rij +∇iZj +∇jZi − 2Ki
l Klj + (K − 2Θ)Kij − κ1(1 + κ2)Θ γij

]

−8πα

[

Sij −
1

2
(S − τ) γij

]

, (7)

(∂t − Lβ) Θ =
α

2

[

R+ 2∇jZ
j + (K − 2Θ)K −Kij Kij − 2

Zjαj

α
− 2 κ1(2 + κ2)Θ− 16π τ

]

, (8)

(∂t − Lβ) Zi = α [∇j (Ki
j − δi

jK) + ∂iΘ− 2Ki
j Zj −Θ

αi

α
− κ1Zi − 8π Si ] , (9)

where Lβ is the Lie derivative along the shift vector ~β, Θ
is the projection of the Z4 four-vector along the normal
direction, Θ ≡ nµZ

µ = αZ0, and the following defini-
tions apply for matter-related quantities τ ≡ nµnνT

µν,
Si ≡ nνT

ν
i, Sij ≡ Tij .

Equations (6)–(9) must be complemented with suit-
able gauge conditions that determine the system of co-
ordinates used during the evolution. Of all the possible
options, the most interesting ones are those which pre-
serve the hyperbolicity of the full evolution system, such
as the 1 + log family and the Gamma-driver shift condi-
tion.
As a first step towards deriving the CCZ4 formulation,

we express the metric γij in terms of a conformal metric

γ̃ij = φ2γij with unit determinant φ = (det(γij))
−1/6,

while the extrinsic curvature Kij is decomposed into its
trace K ≡ Kijγ

ij and in its trace-free components

Ãij = φ2 (Kij −
1

3
Kγij) . (10)

This allows us to write the three-dimensional Ricci tensor
as Rij = R̃ij + R̃φ

ij , thus splitting it into a part contain-
ing conformal terms and another one containing space
derivatives of the conformal metric

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
[

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃kj l

]

, (11)

R̃φ
ij =

1

φ2

[

φ
(

∇̃i∇̃jφ+ γ̃ij∇̃l∇̃lφ
)

− 2γ̃ij∇̃lφ∇̃lφ
]

, (12)

where

Γ̃i ≡ γ̃jkΓ̃i
jk = γ̃ij γ̃kl∂lγ̃jk . (13)

The conformal and covariant Z4 formulation (CCZ4) is
thus given by the following system of evolution equations

∂tγ̃ij = −2αÃ
TF

ij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k βk + βk∂kγ̃ij , (14)

∂tÃij = φ2 [−∇i∇jα+ α (Rij +∇iZj +∇jZi − 8πSij)]
TF

+ αÃij (K − 2Θ)

−2αÃilÃ
l
j + 2Ãk(i∂j) β

k − 2

3
Ãij∂k βk + βk∂kÃij , (15)

∂tφ =
1

3
αφK − 1

3
φ∂kβ

k + βk∂kφ , (16)

∂tK = −∇i∇iα+ α
(

R+ 2∇iZ
i +K2 − 2ΘK

)

+ βj∂jK − 3ακ1 (1 + κ2)Θ + 4πα (S − 3τ) , (17)

∂tΘ =
1

2
α

(

R+ 2∇iZ
i − ÃijÃ

ij +
2

3
K2 − 2ΘK

)

− Zi∂iα+ βk∂kΘ− ακ1 (2 + κ2)Θ− 8πα τ , (18)

∂tΓ̂
i = 2α

(

Γ̃i
jkÃ

jk − 3Ãij ∂jφ

φ
− 2

3
γ̃ij∂jK

)

+ 2γ̃ki

(

α∂kΘ−Θ∂kα− 2

3
αKZk

)

− 2Ãij∂jα
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+γ̃kl∂k∂lβ
i +

1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i + 2κ3

(

2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβ
i

)

+βk∂kΓ̂
i − 2ακ1γ̃

ijZj − 16παγ̃ijSj , (19)

∂tα = −2α (K − 2Θ) + βk∂kα , (20)

∂tβ
i = fBi + βk∂kβ

i , (21)

∂tB
i = ∂tΓ̂

i − βk∂kΓ̂
i + βk∂kB

i − ηBi , (22)

where we have defined

Γ̂i ≡ Γ̃i + 2γ̃ijZj . (23)

Note that the choice made with the definition (23) is
equivalent, in the ADM context, to adding the momen-
tum constraint to the right-hand-side of the evolution
equation of Γ̃i. In the context of the Z4 formulation, this
just amounts to replacing the vector Zi by the quantities
Γ̂i in the set of basic fields to be evolved.
The gauge conditions (20)–(22) correspond respec-

tively to the standard “1 + log” slicing condition and
to the original form of the gamma-driver shift condition,
where a generic gauge parameter f was introduced [20].
Note that in the Z4 formulation there is an additional
propagation speed and the standard BSSNOK choice of
f = 3/4 can then lead to weak hyperbolicity when the
lapse α is close to one. This is why safer choices, such as
f = 1, have been proposed in Ref. [28]. In this paper we
use f = 3/4 to be as close as possible to a standard BSS-
NOK formulation, but we also consider how the system
of equations reacts when switching to f = 1.
We also note that experimentation with black-hole

spacetimes and the emergence of unstable behaviours,
has induced us to introduce an extra parameter, κ3,
affecting some quadratic terms in the evolution equa-
tion (19) for Γ̂i. As discussed before, this equation cor-
responds to the evolution of Zi, so this is not just a
gauge choice, but rather an essential ingredient of the
Z4 system. Indeed, the covariance inherent to the con-
formal decomposition of the Z4 system is broken unless
we take κ3 = 1. For some of the tests presented in this
paper we retain a fully covariant formulation (i.e. with
κ3 = 1). However, this is not possible for black-hole
spacetimes, where nonlinear couplings with the damping
terms, which are important for reducing the violations
in the constraints, lead to numerical instabilities. As a
result, for black-spacetimes we have resorted to a non-
covariant and conformal formulation of the Z4 system
(i.e. with κ3 = 1/2) (see discussion in Sect. III B for de-
tails).
A number of remarks are important at this point.

First, although the structure of the CCZ4 formulation
is very similar to the BSSNOK one, there is an impor-
tant difference in the evolution of the trace-free variable
Ãij . In the BSSNOK formulation, in fact, the Hamil-
tonian constraint is assumed to be satisfied exactly and
thus used to eliminate the Ricci scalar from the right-
hand-side of the evolution equation for Ãij [20]. In the

CCZ4 system, on the other hand, the evolution of Ãij

follows directly from (the trace-free part of) the original
ADM evolution equation for the extrinsic curvature Kij ,
plus the extra terms in Zi and Θ. Second, the equiva-
lent of the trace of the extrinsic curvature in BSSNOK
formulations is given by

K
BSSNOK

= K − 2Θ , (24)

again because the Hamiltonian constraint is assumed to
remove the Ricci scalar from the evolution equations in
the BSSNOK approach. In the CCZ4 system, we rather
use (the trace part of) the ADM evolution equation for
Kij , modulo some Zi and Θ terms.
A closer look at the resulting CCZ4 system shows that

it is not fully equivalent to the Z4 system, modulo a rear-
rangement of the dynamical fields. There are two extra
fields which were not present in the Z4 system, namely
det γ̃ij and tr Ãij . These are not dynamical fields at the
continuum level, where the consistency constraints

det γ̃ij = 1 , tr Ãij = 0 , (25)

hold by construction. But at the discrete level, these are
just two more constraints, which can be dealt with in
many different ways. For instance:

• Constrained approach. We could enforce (25) at ev-

ery integration step, by removing the trace of Ãij

and rescaling γ̃ij as it is usually done in BSSNOK
codes [34]. The remaining dynamical modes have
then the same characteristic structure of the orig-
inal Z4 system. This is the safest choice, and we
will use it in the tests presented in this paper.

• Relaxed approach. We could instead relax (25), en-
forcing it just on the initial/boundary data. In
this way the two extra dynamical modes propa-
gate along normal lines, as their evolution equa-
tions [i.e. the trace of Eqs.(14)-(15)] are trivial.
Note that in this case the trace of the first term
in the evolution equation (14) must be removed ex-
plicitly to avoid any spurious numerical modes by
evolving:

∂tγ̃ij = −2α

(

Ãij −
1

3
γ̃ijÃklγ̃

kl

)

+2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k βk + βk∂kγ̃ij .
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Moreover, in tests like the robust stability or the
gauge waves, it may be necessary to keep also under
control the trace of Ãij . This can be achieved by
adding, for instance, a damping term proportional
to γ̃ij trÃij to the evolution equation (15).

Finally, the ADM constraints are given by

H = R−KijK
ij +K2 , (26)

Mi = γjl(∂lKij − ∂iKjl − Γm
jlKmi + Γm

jiKml) . (27)

In the results presented below we compute the constraint
violations for both the BSSNOK and CCZ4 systems using
the ADM quantities computed from the evolution vari-
ables corresponding to the two systems, allowing for the
correspondence (24).

III. NUMERICAL RESULTS

In this section we validate the robustness and accuracy
of the CCZ4 evolution system and compare it against the
BSSNOK system in two different cases: the gauge-waves
test and black-hole spacetimes. In addition, we have per-
formed several evolutions with the robust-stability test to
ensure that the system is stable to linear perturbations,
recovering the expected results (see [35] for a discussion
of this test).

The numerical setup used in the simulations presented
here is the same one discussed in Ref. [36] and more re-
cently applied to the Llama code described in Ref. [37].
The latter makes use of higher-order finite-difference al-
gorithms satisfying the summation-by-parts rule (up to
8th order in space) and a multi-block structure for the
outer computational domain. More specifically, we use a
central cubical Cartesian patch containing multiple lev-
els of adaptive mesh refinement with higher-resolution
boxes. The Cartesian grid is surrounded by 6 additional
patches with the grid points arranged in a spherical-
type geometry, with constant angular resolution to best
match the resolution requirements of radially outgoing
waves. This allows us to move the outer boundary to
a radius where it is causally disconnected from the bi-
nary at a tiny fraction of the computational cost which
would be necessary to achieve the same resolution with
a purely Cartesian code. The time evolution is based
on the method-of-lines with a 4th order Runge-Kutta
algorithm. Our general computational infrastructure is
based on the Cactus framework and we are using pack-
ages such as TwoPunctures [38], AHFinderDirect [39]
and of SummationByParts [40], which are freely available
and part of the Einstein Toolkit. In addition, our evolu-
tions make use of the mesh-refinement driver Carpet [41],
which implements higher-resolution boxes with multiple
levels of adaptive mesh refinement.

FIG. 1: L-infinity norm of the Hamiltonian constraint in the
gauge-wave test, when performed with a CCZ4 formulation
with damping terms (black solid line), with a CCZ4 formu-
lation without damping terms (blue dotted line), or with the
BSSNOK formulation (red dashed line). Clearly, the Z4u and
the BSSNOK formulations are unstable (cf. Fig. 5 of Ref. [42])
and a similar behaviour will be encountered also in black-hole
spacetimes (cf. Fig. 4).

A. Gauge Waves

A classical test for different formulations of the Ein-
stein equations is offered by the “gauge-wave” [35],
in which a fictitious one-dimensional pulse propagating
along the x-direction can be simulated by performing a
conformal transformation of the Minkowski metric in the
two-dimensional sector spanned by the (t, x) coordinates,
namely using the line element

ds2 = h(x, t) (−dt2 + dx2) + dy2 + dz2 . (28)

The solution of the pulse at any time is just given by
the advection of the initial profile of the gauge wave,
which can be set to be smooth and periodic by choosing
a sine-like initial data of the type [35]

h(x, t = 0) = 1−A sin

(

2πx

L

)

, (29)

with an amplitude A < 1. Although this test is appar-
ently trivial as it does not involve the solution of the Ein-
stein equations in a very nonlinear regime, it nevertheless
represents a serious benchmark even for formulations as
robust as BSSNOK, which indeed does not pass it [42].
Following [42], we choose an amplitude of A = 0.1

in a domain of L = 1 with three uniform resolutions
h0/L = {1/50, 1/100, 1/200} and periodic boundary con-
ditions. Notice that the metric form (28) corresponds to
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outer boundary h0/M Nang Rin/M Rout/M Nlev. rlev/M (1− φZ4d/φB) (1− φZ4u/φB) (1− φZ4d/φZ4u)

multiblock, caus. discon. 0.80 33 40.00 2192.80 6 (12, 6, 3, 1.5, 0.6) 0.0445 0.0465 0.00230

multiblock, caus. discon. 0.60 43 39.60 2192.40 6 (12, 6, 3, 1.5, 0.6) 0.0315 0.0335 0.00175

multiblock, caus. discon. 0.48 53 39.84 2192.16 6 (12, 6, 3, 1.5, 0.6) 0.0245 0.0255 0.00135

multiblock, caus. discon. 0.40 65 40.00 2192.40 6 (12, 6, 3, 1.5, 0.6) − − −

multiblock, caus. con. 0.60 43 39.60 350.40 6 (12, 6, 3, 1.5, 0.6) − − −

Cartesian, caus. con. 1.20 0 − 199.20 7 (110, 12, 6, 3, 1.5, 0.6) − − −

TABLE I: Properties of the black-hole binaries simulated. The first column indicates the type of outer boundary and whether
causally connected. h0 is the grid spacing on the coarsest Cartesian grid, which is equal in all cases to the radial grid spacing in
the angular patches. Nang is the number of cells in the angular directions in the angular patches. Rin and Rout are the inner and
outer radii of the angular patches. Nlev. is the number of refinement levels (including the coarsest) on the Cartesian grid, and
2 rlev indicates the size of the cubical refinement boxes centered on each black hole. The unit of the spacetime mass M is chosen
such that each black hole has mass 0.5M in both the single and binary black cases. Finally, the last three columns contain
the relative difference in the ℓ = m = 2 gravitational-wave phase between evolutions carried out with either the BSSNOK
formulation (φB), the CCZ4 formulation with damping terms (φZ4d), or the CCZ4 formulation without damping terms (φZ4u).

an harmonic slicing condition with zero shift, so we have
to change our preferred coordinate choice (i.e. the 1+log
slicing with the Gamma-driver) to perform this test. Fur-
thermore, different implementations of the CCZ4 formu-
lation: one in which the constraints are damped with
coefficients κ1 = 1/L and κ2 = 0, and one in which the
constraints are undamped, i.e. κ1 = 0 = κ2. We will refer
to these two cases as to “Z4d” and “Z4u”, respectively
(Note that in these tests the shift is set to zero and hence
we do not need to specify a value for κ3, which we take
to be one).

The infinity-norm of the Hamiltonian constraint rela-
tive to simulations at the highest resolution is displayed
in Fig. 1 for the damped CCZ4 formulation (black solid
line), for the undamped CCZ4 formulation (blue dashed
line), and for the BSSNOK formulation (red dotted line).
Clearly, the BSSNOK and the CCZ4 formulation with-
out damping terms fail before 50 crossing times (BSS-
NOK after 42 crossing times and Z4u after 56 crossing
times) as indicated by the an exponential increase in the
violation of the energy constraint. However, with the
addition of the damping terms, the CCZ4 formulation
is able to accurately evolve this solution for more than
1000 crossing times, while preserving the profile of the
pulse. Furthermore, we have verified that the evolved
solution converges to the expected spatial-discretization
order (i.e. either 4th or 8th order), with only a very small
phase error when using the 8th order scheme.

Overall, this test shows that the dynamical control of
the energy constraint via the damping term κ1 is crucial
to attain a stable evolution, even in such a simple type
of spacetimes. We also note that this test is more de-
manding for conformal formulations, where there is more
than one component of the metric which is nontrivial.
This is confirmed by comparing our results with those in
Ref. [43], where the standard Z4 formulation, i.e. not im-
plementing a conformal decomposition, was able to pass
this test without the need of damping terms. The GH
formulation also passes this test.

B. Black-Hole Spacetimes

Before considering black-hole binaries, we have tested
extensively our new CCZ4 formulation in the evolution
of single non-spinning black holes. This has allowed us
to determine how different choices for the damping coeffi-
cients κ1 and κ2 influence the solution and, in particular,
the violation of both the ADM and the Zµ constraints. In
this way we have concluded that most of the dynamics in
the evolution of the constraint equations comes from the
first damping coefficient, so that κ2 = 0 represents a sen-
sible choice and is the one that we will consider hereafter.
On the other hand, increasing values of κ1 produce lower
violations of the constraints and a value of κ1 ≈ 0.1/M
seems optimal in this sense. Higher values, in fact, lead
only to marginal improvements of the solution, but also
tend to increase the stiffness of the damping terms.

An important and unexpected result obtained when
implementing the CCZ4 formulation in black-hole space-
times is that subtle and nonlinear couplings can occur,
leading to unstable evolutions also for those choices of the
coefficients that are perfectly stable in other spacetimes.
While, in fact, we have carried out stable evolutions of
the robust-stability test with the covariant and damped
CCZ4 formulation (i.e. with κ3 = 1 and κ1 6= 0), we
were not able to obtain stable evolutions of black hole
spacetimes with κ3 = 1, although the growth time of the
instability does change with the values of κ1 (see discus-
sion around Fig. 4). Clearly, non-trivial couplings seem
to appear between these coefficients, which depend on
the degree of nonlinearity and which deserve further in-
vestigation to be properly understood.

On the whole, and as we will detail below, we have
found that accurate and stable evolutions of binary black-
hole spacetimes can be obtained with the damped non-
covariant Z4 systems (i.e. with κ3 = 1/2, κ1 = 0.1/M).
On the other hand, covariant and conformal Z4 formula-
tions that are either damped (i.e. with κ3 = 1, κ1 6= 0),
or undamped (i.e. with κ3 = 1, κ1 = 0), have been found
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to lead to unstable evolutions, although on rather differ-
ent timescales and with variable degree of accuracy (see
discussion below).

The initial data of the binary black-hole evolutions is
obtained from a circular-orbit condition at the third post-
Newtonian order [44] and corresponds to an equal-mass
non-spinning binary with an initial coordinate separa-
tion of D = 8M . The binary performs about 3.5 or-
bits before merging and settles to an isolated spinning
black hole after t ≈ 360M . To carry out a meaning-
ful comparison, the binary is evolved with the BSSNOK
and the CCZ4 formulations keeping the same choice for
the gauges, namely the 1 + log slicing condition and the
Gamma-driver shift condition with f = 3/4, η = 2/M ,
and the same grid setup. For the latter, in particular,
we have considered three different choices aimed at de-
termining the influence of the outer boundaries on the
quality of the solution. This is a point discussed in
Refs. [28, 29], where it was argued that the Z4c formu-
lation is more sensitive than the BSSNOK one to incor-
rect (or constrain-violating) boundary conditions. As a
result, we consider three different classes of simulations
depending on the treatment of the outer boundary: (i)
multiblock padding and spherical outer boundary which
is causally disconnected (i.e. at ∼ 2200M for a sim-
ulation lasting ∼ 800M); (ii) multiblock padding and
spherical outer boundary which is causally connected
(i.e. at ∼ 350M); (iii) Cartesian outer boundary which
is causally connected (i.e. at ∼ 200M). For case (i), we
reduce the order of the finite-difference operator at the
outer boundary but, because it is causally disconnected,
the initial conditions are preserved there. For case (ii),
instead, we impose reflecting boundary conditions so as
to “stress” the solution with data from the outer bound-
ary which is constraint-violating and injected mostly at
the time of the reflection. Finally, in case (iii) we have
applied ordinary, outgoing Sommerfeld boundary condi-
tions to all variables, again triggering violations in the
constraint equations.

All the properties of the grid structure and the treat-
ment of the outer boundary are summarized in Table I,
where h0 is the grid spacing on the coarsest Cartesian
grid, which is equal in all cases to the radial grid spacing
in the angular patches. Nang is the number of cells in the
angular directions in the angular patches, while Rin and
Rout are the inner and outer radii of the angular patches,
respectively (In the case of a Cartesian outer boundary,
Rout represents the distance to the outer boundary along
coordinate lines.). Finally, Nlev. is the number of re-
finement levels (including the coarsest) on the Cartesian
grid, while 2 rlev indicates the size of the cubical refine-
ment boxes centered on each black hole.

As final remark before discussing the results, we note
that all the rest being the same, at any given resolu-
tion the CCZ4 system has a smaller violation of the con-
straints than the BSSNOK one. At the same time, how-
ever, because the violations of both the energy and mo-
mentum constraints are part of the evolution equations

FIG. 2: Real part of the ℓ = m = 2 mode of the gravitational
waveform Ψ4 for an equal mass nonspinning black-hole binary.
Different lines refer to evolutions with the non-covariant for-
mulation with and without damping terms, i.e. with κ3 = 1/2
and κ1 = 0.1/M , κ2 = 0 (Z4d), or κ3 = 1/2 and κ1 = κ2 = 0
(Z4u). The two evolutions are indicated respectively as Z4d
and with a black solid line or as Z4u and with a blue dotted
line; the BSSNOK formulation is shown with a red dashed
line. Shown in the inset is a magnification of the merger.

in the CCZ4 system, the latter is more strongly affected
than BSSNOK one, for which only the violations of the
momentum constraint are included in the evolution sys-
tem. As a result, the CCZ4 formulation requires a com-
paratively higher minimum-resolution treshold in order
to enter a convergent regime.

A first comparison of the behaviour of the different for-
mulations is offered in Fig. 2, where we show the ℓ = m =
2 mode of the gravitational waveform Ψ4 as extracted on
a sphere of coordinate radius r = 100M (see [37] for de-
tails on the extraction procedure). Different lines refer
to simulations using either the non-covariant formulation
with damping terms, i.e. with κ3 = 1/2 and κ1 = 0.1/M ,
κ2 = 0 (Z4d, black solid line), or to the non-covariant for-
mulation without damping terms, i.e. with κ3 = 1/2 and
κ1 = κ2 = 0 (Z4u, blue dotted line). Also shown as a ref-
erence is a simulation with the BSSNOK formulation (red
dashed line) using the same numerical setup. The simu-
lations refer to the highest resolution (i.e. h0/M = 0.48)
and the grid having the multiblock padding and an outer
boundary at Rout = 2192.16M .

The first obvious thing to note is that all simulations
lead to a stable merger and ringdown at all the resolu-
tions considered. Furthermore, while a small phase dif-
ference is present between the Z4 and the BSSNOK runs,
this difference is very small and ∆φ . 0.02 rad over the
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FIG. 3: Differences in the phase evolutions at the high,
medium and low resolutions, respectively (these are indicated
as “HR”, “MR” and “LR”). The top panel refers to the BSS-
NOK formulation, while the bottom one the the non-covariant
damped CCZ4 formulation (Z4d). The differences between
the low and medium resolutions are also scaled with the ap-
propriate convergence coefficients (marked as CF4 and CF8,
see text) to highlight the convergence order of the solution;
all the data refers to simulations with a multiblock padding
and causally disconnected outer boundary. Note that at these
resolutions the CCZ4 formulation has larger phase errors, but
due its higher convergence factor, these errors are expected
to decay at a faster rate than for BSSNOK.

whole simulation. As a comparison, the phase difference
between the Z4 and the Z4u simulations is ∆φ . 0.002
rad (see Table I for the relative maximum differences).
Although the phase differences between the waveforms

obtained with the two formulations is relatively small, it
also decreases with the resolution, thus indicating that
both formulations would yield the same phase evolution
in the continuum limit. The rate of convergence, how-
ever, is different when considering either the BSSNOK
or the CCZ4 formulation. This is shown in Fig. 3, where
we report the residuals in the phase evolutions at the
high, medium and low resolutions, respectively (these
are indicated as “HR”, “MR” and “LR”). The differ-
ences between the low and medium resolutions are also
scaled to highlight the convergence order of the solu-
tion. More specifically, the “HR”, “MR” and “LR” refer
to simulations with the coarsest resolutions of h0/M =
0.6, 0.48, 0.4 (cf. Table I). The convergence coefficients
correspoding to these resolutions and used for rescaling
are CF4 = 3.0898, for a convergence factor of 4.5 in the
BSSNOK case, and CF8 = 7.1906 for a convergence fac-
tor of 8.5 in the Z4d case. Note however that, as men-
tioned above, the CCZ4 formulation needs a higher reso-

lution to enter the convergence regime, while a triplet of
resolutions with h0/M = 0.8, 0.6, 0.48 would be enough
to show convergence at about 4th order for the BSSNOK
runs.
Beside this minimum resolution threshold, the addi-

tional computational expenses required by the CCZ4
formulations are not significant. The difference with
the BSSNOK system consists in an additional evolu-
tion equation for the scalar variable Θ, which would
amount to solving 25 evolution equations (instead of 24
as in BSSN), implying around 4% higher computational
costs. However this is an over-estimate, as in reality
the time spent in computing the evolution equations de-
pends on the computational infrastructure. In our case,
it is about half of the total time of a binary black-hole
simulation, while the other half is dedicated to mesh-
refinement, gravitational-wave extraction and other anal-
ysis routines.
All in all, we find that for the highest resolutions used

the results of the BSSNOK runs converge at about 4th
order (top panel in Fig. 3), while the Z4d runs converge at
about 8th order (bottom panel in Fig. 3); in both cases,
the convergence order is lost in the very final stages of
the merger. It is a present unclear why the two formula-
tions yield, with the same computational infrastructure,
two different convergence rates. It is possible that the
constraint-damping properties of the CCZ4 formulation
are able to suppress the small violations coming from the
reflections across refinement boundaries, that are a major
source of error and one of the largest obstacles to attain
clean convergence. However, more efforts (and consider-
able computational costs) need to be invested to assess
whether this is the correct explanation.
A useful way to appreciate the different behaviour of

the two formulations is shown in Fig. 4, which reports the
evolution of the L2-norm of the ADM energy (i.e. the
violation of the Hamiltonian constraint) for the covari-
ant CCZ4 formulation with and without damping (light-
blue dot-dashed line and magenta long-dashed line, re-
spectively), for the non-covariant CCZ4 formulation with
and without damping (black solid line and blue dotted
line, respectively), and for the BSSNOK formulation (red
dashed line). We also report the different values of co-
efficient f in the shift equation (21), which does change
the growth rate of the unstable simulations, but does not
remove the instability in the case of the fully covariant
formulation1. The data refers to simulations having a
coarse resolution of h0/M = 0.48 and outer boundary
placed at Rout = 2192.16M , but similar behaviours have
been seen also at higher and lower resolutions.
Note that as the initial data settles and the evolution

1 We have performed simulations also with κ3 = 1, κ1 =
0.1/M, f = 1, or κ3 = 1, κ1 = 0.1/M, f = 3/4, and κ3 = 1, κ1 =
0, f = 3/4; in all cases we have found an instability (although
with different growth rates), which we do not report to avoid
overloading Fig. 4.
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FIG. 4: L2-norm of the Hamiltonian constraint for the non-
covariant CCZ4 formulation with and without damping terms
(black solid line and blue dotted line, respectively), for the co-
variant CCZ4 formulation with and without damping terms
(light-blue dot-dashed line and magenta long-dashed line, re-
spectively), and for the BSSNOK formulation (red dashed
line). Also indicated are the different values of coefficient f
in the shift equation (21), which however do not introduce
qualitatively different behaviours. The data refers to the a
simulations having a coarse resolution of h0/M = 0.48 and
outer boundary at Rout = 2192.16M .

proceeds, the CCZ4 formulation shows a violation of the
Hamiltonian constraint smaller than for the BSSNOK
case (the L2-norm being at least one order of magni-
tude smaller), hence yielding a more accurate solution of
the Einstein equations. However, after this initial stage,
the evolutions with the CCZ4 formulation can be con-
siderably different according to the choice made for the
parameters κ3 and κ1. More specifically, the covariant
and damped system (i.e. κ3 = 1, κ1 6= 0) exhibits a
very rapid violation of the constraint at ∼ 100M and
inevitably leads to a code crash (light-blue dot-dashed
line in Fig. 4). Other variants of the CCZ4 formula-
tion, on the other hand, show a different behaviour. In
particular, both of the undamped CCZ4 formulations
(i.e. κ3 = 1/2, 1, κ1 = 0) lead to a successful merger,
which can be easily identifiable as the peak at about
≃ 350 − 380M , and which is due to larger local vio-
lations of the constraints as the merger takes place2. At
the same time, however, both implementations show a

2 Note that the time of merger is a gauge dependent quantity and
can therefore take place at slightly different times in different
formulations.

growth of the constraint violation (blue dotted line and
magenta long-dashed line). This growth can be rather
slow in the case f = 1, but it is likely to yield unstable
evolutions on very long timescales. Finally, Fig. 4 shows
that a non-covariant and damped implementation of the
CCZ4 formulation (i.e. κ3 = 1/2, κ1 6= 0; black solid line)
leads not only to a stable merger and subsequent evolu-
tion, but it also provides a violation of the constraints
which is at least one order of magnitude smaller than the
corresponding one obtained with the BSSNOK evolution
(red dashed line). This is one the main results of this
paper and the ultimate justification for investigating this
new formulation of the equations.

We note that the behaviour of the constraints de-
scribed above for the CCZ4 formulation is indeed very
similar to what already experienced by many groups im-
plementing the GH formulation3. In that case, in fact,
the addition of the damping terms was crucial to achieve
stable black hole evolutions [1, 26, 45]. Altogether, the
evolution shown in Fig. 4 already provides the needed
evidence that the new CCZ4 formulation, once suitable
damping terms are added and the boundary conditions
do not play a role, represents a considerable improve-
ment over the standard BSSNOK formulation. In what
follows we will show that this continues to be the case
also when the outer boundaries are chosen to produce
incorrect data, or when they are placed very close to the
merging binary.

Figure 5 reports with black solid lines the ℓ = m = 2
mode of the gravitational waveform Ψ4 extracted at
r = 100M for simulations having a coarse resolution
h0/M = 0.60 and an outer boundary which is causally
connected and at Rout = 350.40M (cf. Table I). The
top panel, in particular, refers to a simulation using the
non-covariant and damped implementation of the CCZ4
formulation (i.e. Z4d, with κ3 = 1/2, κ1 6= 0), while the
bottom one to a simulation using the BSSNOK formu-
lation. Also shown with red dashed lines are the corre-
sponding waveforms obtained when the outer boundary
is causally disconnected and at Rout = 2192.40M . As
shown more clearly in the two insets, the CCZ4 formula-
tion yields waveforms which are essentially identical and
are unaffected by the constraint-violating outer bound-
aries. This is to be contrasted with the evolution per-
formed with the BSSNOK formulation and which shows
strong signs of reflection at t ≃ 510M .

The reason behind this different behaviour is to be
found in the different way in which the two formulations
handle the constraint-violations coming from the outer
boundaries and is best appreciated in Fig. 6, where we
show again the L2-norm of the ADM energy for the non-
covariant and damped implementation of the CCZ4 for-
mulation (i.e. Z4d with κ3 = 1/2, κ1 6= 0) and for the

3 We recall that GH formulation can can be seen as a reduction of
the Z4 formalism [27].
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FIG. 5: Real part of the ℓ = m = 2 mode of the gravita-
tional waveform Ψ4 (black solid line) extracted at r = 100M
for simulations having a coarse resolution h0/M = 0.60
and an outer boundary which is causally connected and at
Rout = 350.40M . The top panel refers to a simulation using
the non-covariant and damped implementation of the CCZ4
formulation (i.e. κ3 = 1/2, κ1 6= 0), while the bottom one to a
simulation using the BSSNOK formulation; also shown are the
corresponding waveforms obtained when Rout = 2192.40M
(red dashed lines).

BSSNOK formulation. Note that both suffer of a very
large increase at t ∼ 250M when the waves from the ini-
tial gauge settling of the binary, propagating at a speed of
vg ∼

√
2, reach the outer boundary at Rout = 350.40M

and lead to larger violations. Also note that this increase
in the constraint violation happens much earlier than the
one associates with the merger (which is at t ∼ 350M).
As evident from Fig. 6, the CCZ4 is able to recover effi-
ciently from this violation, and the damping terms act in
such a way that by t ∼ 400M the violation is completely
removed, with the Hamiltonian constraint brought back
to its minimum value. By contrast, the evolution with
the BSSNOK formulation never recovers from the bound-
ary contamination, leading to an increasing violation re-
sponsible for the incorrect behaviour discussed in Fig. 5.
The CZZ4 formulation experiences another increase in
the violation at t ∼ 750M , when the gauge waves com-
ing from the binary reach again the outer boundary, but
once again the constraint damping terms act so as to
remove the violation.

An additional and concluding evidence of the
constraint-damping properties of the CCZ4 formulation
is shown is Fig. 7, where we report the evolution of the
L2-norm of the Hamiltonian constraint (top panel) and of
the root-mean-square of the momentum constraint (bot-

FIG. 6: L2-norm of the Hamiltonian constraint for the non-
covariant and damped implementation of the CCZ4 formula-
tion (i.e. Z4d with κ3 = 1/2, κ1 6= 0), and for the BSSNOK
formulation (red dashed line). The data refers to the a simu-
lations having a coarse resolution of h0/M = 0.60 and outer
boundary placed at Rout = 350.40M .

tom panel) for the non-covariant and damped implemen-
tation of the CCZ4 formulation (i.e. Z4d with κ3 = 1/2,
κ1 6= 0, black solid lines), and for the BSSNOK for-
mulation (red dashed lines). The data refers to simu-
lations performed with a plain Cartesian outer boundary
which is very close to the binary and at Rout = 199.20M
(cf. Table I). As in the previous figure, also here it is
possible to detect the increase of the constraint viola-
tions when gauge waves from the binary have reached
the outer boundary at t ∼ 140M .
Also in this case, the damping terms in the equations

remove rapidly the violations, which decay exponentially
to their minimum values. Because the boundary is so
close-in, this behaviour of rapid increase and exponential
decay takes place at least three times, both for the Hamil-
tonian and momentum constraints. Any formulation of
the Einstein equations having this type of behaviour is
obviously preferable over one in which the violations are
trapped in the computational domain and are not allowed
to be damped.

IV. CONCLUSIONS

By starting from the Z4 formulation [27] and by includ-
ing all the non-principal terms coming from the covariant
form of the equations, we have introduced the CCZ4 for-
mulation, i.e. the conformal and covariant formulation of
the Z4 system, and proposed it as a new and effective way
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FIG. 7: L2-norm of the Hamiltonian constraint (top panel)
and of the root-mean-square of the momentum constraint
(bottom panel) for the non-covariant and damped implemen-
tation of the CCZ4 formulation (i.e. Z4d with κ3 = 1/2,
κ1 6= 0, black solid lines), and for the BSSNOK formula-
tion (red dashed lines). The data refers to simulations having
a coarse resolution of h0/M = 1.20 and outer boundary at
Rout = 199.20M .

to solve numerically the Einstein equations in arbitrary
spacetimes.

The new set of equations combines the most important
features of the commonly used formulations of the Ein-
stein equations employed in numerical-relativity calcula-
tions. In particular, it is able to make use of well-tested
and robust gauge conditions which remove the need of
excision and, at the same time, it is able to control dy-
namically the violation of the constraint equations and
to rapidly suppress them when they occur.

We have validated the robustness of the CCZ4 evolu-
tion system by performing a number of tests both in flat
and in black-hole spacetimes. We have thus found that
the CCZ4 formulation without damping terms does not
pass the standard gauge-advection test, in analogy with
the behaviour of the BSSNOK formulation. However,
when the damping terms are switched on, the new CCZ4
formulation passes the test stably and accurately.

This ability of the formulation to control and damp vi-
olations in the constraint equations has been confirmed
also through the simulation of nonspinning black-hole
binaries, which have been followed for about three or-
bits before merging to a rapidly rotating black hole.
Through a series of simulations at different resolutions
and with different treatments of the outer boundary –
handled either with multiblocks and placed at a causally-
disconnected distance, or with a Cartesian box and

placed close to the binary – we have shown that not all

of the implementations of the CCZ4 formulation lead to
stable evolutions of binary black-hole spacetimes.
Rather, we have found that the covariant form of the

CCZ4 formulation, in conjunction with the use of damp-
ing terms, leads to exponentially growing modes that
rapidly destroy the numerical solution. Fortunately, the
use of a non-covariant formulation and of damping terms
leads not only to a stable evolution, but it also provides a
violation of the constraints which is at least one order of
magnitude smaller than the corresponding one obtained
with the BSSNOK evolution. A close comparison with
simulations performed with the BSSNOK formulation
using the same numerical setup, has also revealed that
the CCZ4 formulation can efficiently recover from large
violations of the constraints, with the damping terms
rapidly removing constraint violations produced at the
outer boundary. By contrast, evolutions with the BSS-
NOK formulation experiencing similar violations never
recover from the boundary contamination, leading to an
increasing violation and incorrect gravitational waves.
Because the changes necessary to implement the new

conformal formulation in BSSNOK codes and the addi-
tional computational costs are very small, we propose
the new formulation as a new standard for the numerical
solution of the Einstein equations in generic 3D space-
times. We expect, in fact, that a numerical solution of the
Einstein equations having smaller violations of the con-
straints will also yield a more accurate modelling of the
gravitational-wave emission, both in vacuum and non-
vacuum spacetimes.
At the same time, however, much remains to be done

to fully understand the role played by the damping co-
efficients in fully nonlinear regimes and in the covari-
ant form of the CCZ4 formulation. Our experience with
binary black-hole spacetimes has revealed, in fact, that
there are situations in which the damping of the con-
straints interferes negatively with a fully covariant form
of the CCZ4 formulation, leading to unstable evolutions.
In these cases, even small changes in the covariant char-
acter of the equations (e.g., by using κ3 = 0.9 instead
of κ3 = 1) allows one to use nonzero damping coeffi-
cients and hence to obtain a smaller violation of the con-
straints. A systematic investigation of the space of pa-
rameters κ1×κ2×κ3 is difficult due to the large compu-
tational costs of these simulations, but is clearly needed
for a deeper understanding of the behaviour of the CCZ4
formulation. Much of our future work will be dedicated
to elucidate this point.
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[26] B. Szilágyi, D. Pollney, L. Rezzolla, J. Thornburg, and
J. Winicour, Class. Quant. Grav. 24, S275 (2007).

[27] C. Bona, T. Ledvinka, C. Palenzuela, and M. Zacek,
Phys. Rev. D 67, 104005 (2003).

[28] S. Bernuzzi and D. Hilditch, Phys. Rev. D 81, 084003
(2010).

[29] M. Ruiz, D. Hilditch, and S. Bernuzzi, Phys. Rev. D 83,
024025 (2011).

[30] A. Weyhausen, S. Bernuzzi, and D. Hilditch,
arXiv:1107.5539 (2011).

[31] C. Bona, C. Bona-Casas, and C. Palenzuela, Phys. Rev.
D 82, 124010 (2010).

[32] C. Gundlach, J. M. Martin-Garcia, G. Calabrese, and
I. Hinder, Classical Quantum Gravity 22, 3767 (2005).

[33] C. Bona, T. Ledvinka, C. Palenzuela, and M. Zacek,
Phys. Rev. D 69, 064036 (2004).
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