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Abstract

First laws of black hole mechanics, or thermodynamics, come in a variety of different forms. In

this paper, from a purely post-Newtonian (PN) analysis, we obtain a first law for binary systems

of point masses moving along an exactly circular orbit. Our calculation is valid through 3PN order

and includes, in addition, the contributions of logarithmic terms at 4PN and 5PN orders. This first

law of binary point-particle mechanics is then derived from first principles in general relativity, and

analogies are drawn with the single and binary black hole cases. Some consequences of the first

law are explored for PN spacetimes. As one such consequence, a simple relation between the PN

binding energy of the binary system and Detweiler’s redshift observable is established. Through it,

we are able to determine with high precision the numerical values of some previously unknown high

order PN coefficients in the circular-orbit binding energy. Finally, we propose new gauge invariant

notions for the energy and angular momentum of a particle in a binary system.
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I. INTRODUCTION

A. Motivation

Inspiralling and coalescing binary systems composed of black holes and/or neutron stars

are among the most promising sources of gravitational radiation that might be detectable by

forthcoming ground-based interferometers, such as Advanced LIGO and Advanced Virgo, as

well as by future space-based observatories [1]. The detection and analysis of these signals

require very accurate theoretical predictions, for use in the construction of gravitational-wave

templates. Given the complexity of the Einstein field equations, continued progress requires

that we must (i) cleverly identify which parts of the problem naturally lend themselves to

simplification, and (ii) rely on a combination of approximation and numerical methods.

There are two main approximation schemes for studying the relativistic dynamics of

compact binary systems, and the associated emission of gravitational radiation: the post-

Newtonian (PN) approximation, which is well-suited to describe the inspiralling phase of

arbitrary mass ratio compact binaries in the small velocity and weak field regime (v � c) [2],

and black hole perturbation theory, which provides an accurate description of extreme mass

ratio binaries (m1 � m2), even in the strong field regime [3].

Each of these approximation methods frequently relies on a simplified description of one

or both of the compact objects in terms of structureless point particles, characterized solely

by their masses m1 and m2, and eventually their spins. Even though the notion of a point

mass has been shown to be ill-defined in the exact theory of general relativity [4, 5],1 it can be

made sensible in approximation methods such as PN expansions or black hole perturbation

theory. This idealization is particularly convenient in order to carry out calculations up to

very high orders, as required for gravitational-wave searches relying on matched filtering.

Except for the occurrence of a gradual inspiral driven by radiation-reaction, the orbits

of stellar mass compact binaries can be considered to be circular, to a very high degree

of approximation. Mathematically, the approximation of an exactly closed circular orbit

translates into the existence of a helical Killing vector (HKV), along the orbits of which the

spacetime geometry is invariant. This HKV field (say Kα∂α = ∂t + Ω ∂ϕ, where Ω is the

1 Physically, if one tries to compress an extended body down to a single point, a black hole will form before

the point-particle limit is reached.
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constant circular orbit frequency) can be viewed as the generator of time translations in a

co-rotating frame. Given the high astrophysical relevance of this approximation, helically

symmetric spacetimes have been studied extensively in the literature [6–16]; these numerous

works range from formal mathematical analyses to practical calculations of initial data for

binary black holes and binary neutron stars.

In general relativity, it is known that helically symmetric spacetimes cannot be asymp-

totically flat [12]. This can easily be understood from a heuristic point of view: in order to

maintain the binary on a fixed circular orbit, the energy radiated in the form of gravitational

waves needs to be compensated by an equal amount of incoming radiation. Far away from

the source, the resulting system of standing waves rapidly dominates the energy content of

the spacetime, such that the falloff conditions necessary to ensure asymptotic flatness can-

not be satisfied. Nevertheless, asymptotic flatness can be recovered if, loosely speaking, the

gravitational radiation can be “turned off”. There are two well-known approximations to

general relativity for which this can be achieved: the Isenberg, Wilson and Mathews approx-

imation (or conformal flatness condition) [17–19], and the post-Newtonian approximation.

In the latter, it is in principle possible to unambiguously disentangle the conservative part

of the orbital dynamics, from the dissipative effects related to radiation-reaction (at least

up to 3.5PN order2). Consequently, in the PN approximation, one can justifiably consider

non-radiative, helically symmetric, asymptotically flat spacetimes.

B. Overview

In this paper we shall consider such non-radiative, helically symmetric, asymptotically

flat spacetimes, in which both compact objects are modelled as point masses m1 and m2

moving on exact circular orbits. Building on previous works [20, 21],3 we compute Detweiler’s

redshift observables z1 and z2 [22], which represent the redshift of light rays emitted from

the particles and received on the helical symmetry axis perpendicular to the orbital plane.

On the other hand we compute also the total ADM mass M and total angular momentum

J of the system of two point particles. Our calculations are carried through high post-

Newtonian order, being complete up to 3PN order and including also the leading-order 4PN

2 As usual we refer to nPN as the order corresponding to terms O(c−2n) in the equations of motion.
3 The papers [20] and [21] are hereafter referred to as Papers I and II, respectively.

3



and next-to-leading 5PN logarithmic contributions.

The ADM mass M , angular momentum J , and redshifts z1,2 are all functions of the

three independant variables of the problem, namely the orbital frequency Ω that is imposed

by the existence of the HKV, and the individual masses m1 and m2 of the particles. We

shall prove from our high-order post-Newtonian calculation that the variations of the ADM

quantities are linked to the variations of the individual masses by the first law of the binary

point-particle mechanics (or “thermodynamics”)

δM − Ω δJ = z1 δm1 + z2 δm2 . (1.1)

We shall demonstrate that this law is actually a particular case, valid when one assumes

the existence of a HKV covering the entire spacetime, of the generalized law of black hole

mechanics obtained by Friedman, Uryū, and Shibata [11]. Various consequences of this

law will also be investigated and discussed in the framework of post-Newtonian spacetimes,

notably the interesting relation

M − 2ΩJ = m1z1 +m2z2 . (1.2)

As an application of the first law (1.1) we shall be able to determine the numerical values

of some previously unknown post-Newtonian coefficients (at 4PN, 5PN and 6PN orders) in

the binding energy of the compact binary on a circular orbit. We shall also propose some

gauge invariant definitions for the energy and angular momentum of a point particle in a

binary system.

This paper is organized as follows. In Sec. II we complete the PN calculations performed in

Papers I and II by taking into account new logarithmic contributions coming from memory-

type hereditary terms in the metric, and show that including these new contributions yields

the first law (1.1), which is thereby proved up to 3PN order plus the log-terms at 4PN and

5PN orders. In Sec. III we show that this law is a particular case of the known general

law of mechanics for systems of black holes and extended fluid bodies. Analogies with the

single and binary black hole cases are drawn, and various discussions and alternative proofs

are presented. Finally, in Sec. IV these results are applied (i) to provide gauge invariant

candidates for the perturbed energy and angular momentum of a point particle in circular

orbit about a Schwarzschild black hole, and (ii) to the numerical determination of high-

order PN coefficients in the circular-orbit binding energy. We end up with a list of potential

applications which are left for future work.
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II. POST-NEWTONIAN DERIVATION OF THE FIRST LAW

In Papers I and II, motivated by high-accuracy comparison between the post-Newtonian

approximation and self-force (SF) perturbative results [22], we derived the redshift observ-

ables z1 and z2 of a circular-orbit binary up to order 3PN, and included the specific contribu-

tions of logarithms at 4PN and 5PN orders (see also Ref. [23] for the 4PN logarithm). In the

limit of small mass ratio, we showed a very good agreement with numerical SF computations

based on first-order black hole perturbation theory.

A. Logarithmic contributions coming from memory-type hereditary terms

We have found that the previous calculation of the 4PN and 5PN logarithmic terms had

overlooked a subtle point related to the assumption of helical symmetry: in the Appendix of

Paper II, it was shown that a class of logarithmic terms contributing to the metric appeared

in the form of an infinitesimal gauge transformation. These terms were left out of the

calculation, because they could not contribute to the coordinate invariant relations computed

for quasi-circular orbits. That conclusion is correct in the case of the physical problem

where both conservative and dissipative effects are included, such that the binary decays

and coalesces within a finite amount of time (from the point of view of a distant inertial

observer). However, once the helical symmetry is imposed, the binary must be seen as

having orbited for an infinite amount of time, and the infinitesimal gauge transformation

used in the Appendix of Paper II turns out to become meaningless. In the present Section

we correct for this effect and consider only a class of gauge transformations allowed by the

HKV. We shall show that this adds extra logarithmic contributions at 4PN and 5PN orders,

but that these do not affect the self-force regime investigated in Papers I and II.

The logarithms at 4PN and 5PN orders are produced by so-called “hereditary” terms [24]

when the helical symmetry is imposed. They can be computed by using the “instantaneous”

propagator given by

I−1 ≡ FP
B=0

+∞∑
k=0

(
∂

c∂t

)2k

∆−k−1
( r
λ

)B
. (2.1)

This propagator depends explicitly on the orbital frequency Ω imposed by the helical sym-

metry, through the length scale λ = 2πc/Ω. Indeed a certain Finite Part (FP) operation

at B = 0 is required (see e.g. Papers I and II), which involves the regulator (r/λ)B and
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yields when B → 0 some logarithms of the type ln(r/λ). At quadratic non-linear order these

logarithms are contained into the following piece of the “gothic” metric:4

δhαβ2 = I−1

[
1

r2

(
4M

c4

(2)
z αβ +

kαkβ

c2
σ

)]
. (2.2)

The first term in the right-hand-side (RHS) corresponds to gravitational-wave tails (back-

scattering of linear waves onto the background curvature associated with the monopole M

of the source), while the second term is due to the non-linear memory effect (radiation of

waves by the stress-energy distribution of linear waves). The tensor zαβ(n, u) in Eq. (2.2)

represents the coefficient of the dominant 1/r term of the (non-static part of the) linearized

metric hαβ1 at future null infinity, i.e. when r → +∞ with the retarded time u ≡ t − r/c

kept fixed. It is in the form of a sum of multipoles parametrized by mass-type moments

ML(u) and current-type moments SL(u):

z00 = −4
∑
`>2

nL
c`+2`!

M
(`)
L (u) , (2.3a)

z0i = −4
∑
`>2

[
nL−1

c`+2`!
M

(`)
iL−1(u)− `

c`+3(`+ 1)!
εiab naL−1S

(`)
bL−1(u)

]
, (2.3b)

zij = −4
∑
`>2

[
nL−2

c`+2`!
M

(`)
ijL−2(u)− 2`

c`+3(`+ 1)!
naL−2 εab(iS

(`)
j)bL−2(u)

]
. (2.3c)

Our notation for multi-indices such as L = i1 · · · i` (and so on) is the same as in Paper II.

The superscript (`) refers to time derivatives. In the second term of the RHS of Eq. (2.2),

kα = (1,n) is the outgoing Minkowskian null vector and σ(n, u), which is essentially the

energy carried away by the waves in the direction n = x/r, is given by

σ =
1

2

(1)
z αβ

(1)
z αβ −

1

4

(1)
z αα

(1)
z ββ . (2.4)

The whole computation of the log-terms in Paper II was based on the first contribution

(tail) in Eq. (2.2). The second contribution (memory) was discarded because the log-terms

therein are formally in the form of an infinitesimal gauge transformation. However, the argu-

ment overlooks the fact that the needed gauge transformation involves some anti-derivatives

of the quantity σ defined by (2.4); cf. the Appendix of Paper II. Since the average of σ

4 We pose hαβ ≡
√
−g gαβ − ηαβ , where gαβ denotes the inverse of the usual covariant metric gαβ , of

determinant g = det(gαβ), and ηαβ is the Minkowski metric. We use harmonic coordinates throughout,

i.e. ∂βh
αβ = 0.

6



over all directions represents the energy flux in the waves [see e.g. Eq. (2.13a) below], this

means that the gauge transformation is actually not admissible in the presence of the helical

symmetry, because the integral of the flux, or total energy emitted, is infinite in that case.

In the present paper we redo the analysis of the memory term in Eq. (2.2), i.e.

[
δhαβ2

]
memory

= I−1

[
kαkβ

r2c2
σ(n, u)

]
, (2.5)

and show that it does contribute (together with its iteration at cubic non-linear order) to

some new log-terms at 4PN and 5PN orders with respect to the results of Paper II. To this

end we decompose σ(n, u) into symmetric and trace-free (STF) spherical harmonics:

σ(n, u) =
+∞∑
`=0

nL σ̂L(u) , (2.6)

where σ̂L(u) denotes the STF coefficient of order ` and nL = ni1 · · ·ni` . In the Appendix of

Paper II, it is shown that the log-terms issued from Eq. (2.5) are given by5

δhαβ2 = ln
( r
λ

) +∞∑
`=0

(−c)`+1∂α∂β∂L
{
σ̂

(−`−3)
L

}
, (2.7)

where ∂L = ∂i1 · · · ∂i` and the superscript (−` − 3) refers to time anti -derivatives. We

employ the following convenient notation for a monopolar anti-symmetric wave built from

an arbitrary function F (u) [25]:

{
F
}
≡ F (t− r/c)− F (t+ r/c)

2r
. (2.8)

It was then shown in Paper II that the log-terms (2.7) can formally be rewritten in the form

of an infinitesimal gauge transformation, i.e. δhαβ2 = 2∂(αξβ) − ηαβ∂γξγ, where the gauge

vector is explicitly given by

ξα =
1

2
ln
( r
λ

) +∞∑
`=0

(−c)`+1∂α∂L
{
σ̂

(−`−3)
L

}
. (2.9)

5 We no longer mention the “memory” origin of this term. For the rest of this Section the notation δq

will refer to a modification in the quantity q with respect to Paper II, i.e. which is to be added to the

corresponding results of Paper II.
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1. “Maximal allowed” gauge tranformation

However it is crucial to control the occurence of time anti-derivatives in this gauge vector.

Recall from Paper II that we are looking for so-called near-zone logarithms, present in the

near-zone expansion when r → 0 of the metric. So we must here discard time anti-derivatives

which appear in the near-zone expansion of the gauge vector (2.9). The near-zone expansion

when r → 0 of the antisymmetric wave (2.8) is regular, and given by

{
F
}

= −1

c

+∞∑
k=0

1

(2k + 1)!

(r
c

)2k

F (2k+1)(t) . (2.10)

Inspection of Eq. (2.9) with the help of the expansion formula (2.10) then shows that the

monopole ` = 0 and dipole ` = 1 contributions in (2.9) involve time anti-derivatives. These

are clearly incompatible with the imposition of the helical Killing symmetry, since for in-

stance the anti-derivative of the energy flux is the total radiated energy, which is infinite.

We shall therefore have to define a gauge transformation ηα differing from Eq. (2.9), and

whose near-zone expansion is free of time anti-derivatives. There is a large number of pos-

sible choices for such a gauge vector. Here we choose to define ηα by removing from ξα a

minimal number of terms containing the putative anti-derivatives, in such a way that the

new gauge is still harmonic. This corresponds to a “maximal allowed” gauge transformation

in the context of helical symmetric spacetimes. Our definition of ηα reads

η0 = ξ0 − 1

2

{
σ̂(−2)

}
ln
( r
λ

)
, (2.11a)

ηi = ξi − 1

6

{
σ̂

(−2)
i

}
ln
( r
λ

)
, (2.11b)

where σ̂ and σ̂i denote the monopolar and dipolar coefficients in the STF multipole expansion

(2.6), given by (with dΩ the solid angle in the direction n)

σ̂(u) =

∫
dΩ

4π
σ(n, u) , (2.12a)

σ̂i(u) = 3

∫
dΩ

4π
ni σ(n, u) . (2.12b)

An easy computation using the definition (2.4) together with the explicit expression (2.3)

of zαβ shows that σ̂(u), which is the average of σ(n, u), starts to contribute at order 1/c8,

while the dipole part σ̂i(u) starts at order 1/c9. These will correspond to 4PN and 5PN

terms in the metric, respectively. Here, to be consistent with 5PN, we have to obtain also
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the next-to-leading correction O(1/c10) in σ̂, while the leading term is sufficient for σ̂i. We

find

σ̂ =
4

5c8
M

(3)
ij M

(3)
ij +

1

c10

[
4

189
M

(4)
ijkM

(4)
ijk +

64

45
S

(3)
ij S

(3)
ij

]
+O

(
1

c12

)
, (2.13a)

σ̂i =
1

c9

[
8

21
M

(3)
jk M

(4)
ijk +

64

15
εijkM

(3)
jl S

(3)
kl

]
+O

(
1

c11

)
. (2.13b)

We recognize the fluxes of energy and linear momentum carried away by the gravitational

waves at future null infinity, so that the usual balance equations for the losses of energy E

and linear momentum Pi read, with such notations,

dE

dt
= −Gc

3

4
σ̂ , (2.14a)

dPi
dt

= −Gc
2

12
σ̂i . (2.14b)

Since the energy flux is accurate up to next-to-leading order with respect to the quadrupole

approximation, the quadrupole moment Mij in Eq. (2.13a) has to properly include the 1PN

relativistic corrections.

Performing the maximal allowed gauge transformation with gauge vector ηα defined by

Eq. (2.11), we obtain the following extra logarithmic contributions in the quadratic metric

perturbation (with respect to Eqs. (3.3) in Paper II):

δh00
2 =

[
− 1

2c

{
σ̂(−1)

}
+

1

6
∂i
{
σ̂

(−2)
i

}]
ln
( r
λ

)
, (2.15a)

δh0i
2 =

[
1

2
∂i
{
σ̂(−2)

}
− 1

6c

{
σ̂

(−1)
i

}]
ln
( r
λ

)
, (2.15b)

δhij2 =

[
1

3
∂(i

{
σ̂

(−2)
j)

}
− 1

2c
δij
{
σ̂(−1)

}
− 1

6
δij∂k

{
σ̂

(−2)
k

}]
ln
( r
λ

)
. (2.15c)

It can be checked that ∂βδh
αβ
2 = 0 (modulo some non-logarithmic terms); hence the metric

is still harmonic. The formula (2.10) then gives the 4PN and 5PN terms in the metric

perturbation as

δh00
2 =

[
1

2c2
σ̂ +

r2

12c4
σ̂(2) − xk

18c3
σ̂

(1)
k

]
ln
( r
λ

)
+O

(
1

c14

)
, (2.16a)

δh0i
2 =

[
1

6c2
σ̂i −

xi

6c3
σ̂(1)

]
ln
( r
λ

)
+O

(
1

c13

)
, (2.16b)

δhij2 =

[
1

2c2
δijσ̂ +

r2

12c4
δijσ̂

(2) − 1

9c3
x(iσ̂

(1)
j) +

1

18c3
δijx

kσ̂
(1)
k

]
ln
( r
λ

)
+O

(
1

c14

)
. (2.16c)
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As usual this quadratic 4PN + 5PN contribution will generate at cubic order an extra 5PN

contribution, which is readily computed using techniques similar to those in Paper II. The

required equation to be integrated is

∆
[
δh00

3 + δhii3
]

=
4

c2
δhij2 ∂ijU +

8

c2
∂iδh

00
2 ∂iU +O

(
1

c14

)
, (2.17)

where U is the Newtonian potential obeying ∆U = −4πGρ∗.
6 At 4PN order both δh00

2

and δhii2 are proportional to σ̂, and thus depend only on time (modulo some non log-terms).

Using this fact we can readily integrate Eq. (2.17) and obtain the following cubic contribution

to the log-terms at 5PN order:7

δh00
3 + δhii3 =

2

c4
σ̂ U ln

( r
λ

)
+O

(
1

c14

)
. (2.18)

Finally, gathering the results we end up with the supplementary contributions (i.e., with

respect to Eqs. (3.9) and (3.12) in Paper II) of the logarithms at 4PN and 5PN orders in

the covariant metric as

δg00 =

[
−G

2

c2
σ̂ +

2G2

c4
U σ̂ − G2

6c4
r2 σ̂(2)

]
ln
( r
λ

)
+O

(
1

c14

)
, (2.19a)

δg0i =

[
G2

6c2
σ̂i −

G2

6c3
xi σ̂(1)

]
ln
( r
λ

)
+O

(
1

c13

)
, (2.19b)

δgij = O
(

1

c12

)
. (2.19c)

This harmonic metric is rather simple and we have done all computations with it.

2. Cross-checking in a different gauge

As a check of the computations, we have also used an equivalent metric corresponding to

a different (non-harmonic) coordinate system, and given by

δg′00 =

[
−G

2

c2
σ̂ +

2G2

c4
U σ̂

]
ln
( r
λ

)
+ ∆−1

[
G2

c4
σ̂∆U ln

( r
λ

)]
+O

(
1

c14

)
, (2.20a)

6 Here ρ∗ = m1δ(x− y1) +m2δ(x− y2) is the Newtonian coordinate mass density of the particles.
7 We also obtain a contribution of far-zone logarithms given by

(
δh00

3 + δhii3
)

FZ
=

2

c4
σ̂ ln

( r
λ

)∑
`>0

(−)`

`!(2`+ 1)
ML∂L

(
1

r

)
.

However, according to the arguments in Paper II, we can ignore the contribution of far-zone logarithms.
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δg′0i =

[
G2

6c2
σ̂i −

G2

2c3
xi σ̂(1)

]
ln
( r
λ

)
+O

(
1

c13

)
, (2.20b)

δg′ij = −G
2

c2
δijσ̂ ln

( r
λ

)
+O

(
1

c12

)
. (2.20c)

This new metric involves a term which is not proportional to ln(r/λ) but instead contains

the logarithm in its “source”, originating in a 5PN modification of the source density ρ∗.

This term, namely

∆−1

[
G2

c4
σ̂∆U ln

( r
λ

)]
=
G2

c4
σ̂

[
Gm1

|x− y1|
ln

(
|y1|
λ

)
+

Gm2

|x− y2|
ln

(
|y2|
λ

)]
, (2.21)

is crucial to take into account in the calculation with the alternative metric (2.20). When

computing the equations of motion and the associated conserved quantities, we must apply

the metric at the coordinate locations of the particles, so that ln(r/λ) becomes ln(|y1|/λ)

or ln(|y2|/λ), which play the same role as the logarithms generated in Eq. (2.21). In the

center-of-mass frame, both types of logarithms become in fine ln(r12/λ) (modulo irrelevant

constant terms), where r12 = |y1 − y2| is the coordinate separation. By contrast, in the

computation with the original metric (2.19), there is no such term as (2.21) corresponding

to a logarithmic modification of the source. Rather, all terms in Eq. (2.19) are proportional

to ln(r/λ). The two computations are however easily reconciled because the metrics (2.19)

and (2.20) only differ by a coordinate transformation x′α = xα + εα(x), namely

δg′00 = δg00 −
2

c
∂tε0 +

2

c2

[(
εk − εk1

) ∂U
∂yk1

+
(
εk − εk2

) ∂U
∂yk2

]
+O

(
1

c14

)
, (2.22a)

δg′0i = δg0i − ∂iε0 −
1

c
∂tεi +O

(
1

c13

)
, (2.22b)

δg′ij = δgij − ∂iεj − ∂jεi +O
(

1

c12

)
, (2.22c)

where εkA ≡ εk(yA, t), with explicit expression for the gauge vector

ε0 =
G2

12c3
r2 σ̂(1) ln

( r
λ

)
+O

(
1

c13

)
, (2.23a)

εi =
G2

2c2
xi σ̂ ln

( r
λ

)
+O

(
1

c12

)
. (2.23b)

The log-terms arising from the non-linear contribution in Eq. (2.22a) are exactly given by

(2.21), so that this term can be eliminated by the coordinate transformation (2.23), and the

two computations give the same gauge invariant results.
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B. Modification of the equations of motion and invariant quantities

We then compute the modification of the acceleration of one of the particles induced by

the change (2.19) in the metric. For definiteness we use the harmonic coordinate system

for this computation. Because the additional logarithmic contributions (2.19) reduce to the

mere function of time σ̂(t) at 4PN order, the modification of the acceleration occurs only at

5PN order. We find for the particle 1 (discarding uncontrolled non log-terms)

δai1 =

[
−σ̂ G

3m2

r2
12c

2
ni12 +

G2

2c2
σ̂(1) vi1 −

G2

6c
σ̂

(1)
i

]
ln
(r12

λ

)
, (2.24)

where ni12 = (yi1−yi2)/r12 and vi1 = dyi1/dt denotes the coordinate velocity. For simplicity we

no longer write the neglected 6PN remainder. We now check that this modification of the

acceleration is conservative, in the sense that it corrects the conserved energy E, angular

momentum Ji, linear momentum Pi, and center-of-mass position Gi of the binary system.

Indeed, a few calculations (see Paper II for more details) reveal that these corrections, which

all occur at 5PN order, are given by

δE =

[
−G

2

2c2
σ̂
(
m1v

2
1 +m2v

2
2

)
+
G2

6c
σ̂iM

(1)
i

]
ln
(r12

λ

)
, (2.25a)

δJi =

[
−G

2

2c2
σ̂ Ji +

G2

6c
εijkMjσ̂k

]
ln
(r12

λ

)
, (2.25b)

δPi =

[
−G

2

2c2
σ̂ M

(1)
i +

G2

6c
σ̂iM

]
ln
(r12

λ

)
, (2.25c)

δGi =

[
2G

c5
EM

(1)
i

]
ln
(r12

λ

)
, (2.25d)

where M is the monopole of the source (reducing to m = m1 +m2 at this level of approxima-

tion), Mi = m1y
i
1 +m2y

i
2 is the binary’s mass dipole, and E is the relativistic 2.5PN-accurate

binding energy satisfying the balance equation (2.14a). We now work in the center-of-mass

frame defined by Gi = 0, which gives in particular Mi = M
(1)
i = 0; hence

δE = −G
2

2c2
σ̂
(
m1v

2
1 +m2v

2
2

)
ln
(r12

λ

)
, (2.26a)

δJi = −G
2

2c2
σ̂ Ji ln

(r12

λ

)
, (2.26b)

δPi =
G2

6c
σ̂iM ln

(r12

λ

)
, (2.26c)

δGi = 0 . (2.26d)
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For circular orbits, the extra log-terms in the relative acceleration ai = ai1− ai2 reduce to

δai = −128

5

G6m6

r7c10
ν2 ni ln

( r
λ

)
, (2.27)

where at this stage we denote r ≡ r12 and ni ≡ ni12,8 and we have introduced the symmetric

mass ratio ν = m1m2/m
2, with m = m1 + m2 the total mass. The result (2.27) yields

in turn a correction in the invariant orbital frequency Ω as a function of the parameter

γ ≡ Gm/(rc2) (see Paper II for notation) given by

δΩ2 =
Gm

r3

[
64

5
ν2 γ5 ln γ

]
, (2.28)

where we have used the fact that ln(r/λ) = 1
2

ln γ (see Paper II). From Eq. (2.28) we obtain

the correction in γ as a function of the orbital frequency Ω, or rather of the dimensionless

invariant PN parameter x ≡ (GmΩ/c3)2/3, as

δγ = x

[
−64

15
ν2 x5 lnx

]
. (2.29)

It is important to realize that the results (2.27), (2.28) and (2.29) are coordinate dependent.

They are given here in the harmonic gauge defined by the metric (2.19). Finally, making

use of these last results, we find the following 5PN logarithmic corrections in the energy and

angular momentum for circular orbits in the center-of-mass frame:9

δE = −1

2
mν c2 x

[
−64

15
ν2x5 lnx

]
, (2.30a)

δJ =
Gm2 ν

c x1/2

[
32

15
ν2x5 lnx

]
. (2.30b)

These last results are coordinate invariant, and we have checked that they come out the

same with either metric (2.19) or (2.20). The corrections (2.30) are such that δE = Ω δJ ,

which is natural because they arise from terms connected to the gravitational-wave fluxes

[remember Eqs. (2.14)]. These 5PN logarithmic contributions to the energy and angular

momentum have to be added to the 4PN and 5PN terms already found in Paper II. Note

8 Note the slight inconsistency in notation here: r = r12 is the binary’s separation in (2.27), while r = |x|
represented the distance to the field point in e.g. Eqs. (2.19).

9 Beware that the notation δE and δJ here has not exactly the same meaning as in Eqs. (2.25)–(2.26).

Indeed, there are additional pieces coming from the reduction to circular orbits of the Newtonian parts of

E and J using Eqs. (2.28)–(2.29). However, because we have proved in (2.26d) that δGi = 0, there is no

additional piece coming from the passage to the center-of-mass frame. See also the discussion in Paper II.
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that these corrections are proportional to ν2 and therefore affect the results only starting at

the post-self-force level.

Next, we compute the redshift observable, which is coordinate invariant for circular orbits

under the assumption of helical symmetry [22]. In a coordinate system in which the HKV

reads Kα∂α = ∂t+Ω ∂ϕ, it is given by the time component of the four-velocity of the particle:

ut1 =

(
−gαβ(y1)

vα1 v
β
1

c2

)−1/2

, (2.31)

where vα1 = (c, vi1). Inserting the modification of the metric (2.19), together with the stan-

dard 1PN metric for consistent reduction to circular orbits making use of the results (2.28)

and (2.29), we find the 4PN+5PN corrections

δut1 =

[
−32

5
+

(
1886

105
− 608

105
∆ +

1592

105
ν

)
x

]
ν2 x5 lnx . (2.32)

We introduced the notation ∆ ≡ (m2−m1)/m =
√

1− 4ν for the relative mass difference,10

so that δut2 is simply obtained by changing ∆ into −∆. Again, the correction (2.32) occurs

at the post-self-force level, and does not affect the high-accuracy comparison between the

post-Newtonian and the perturbative self-force calculations reported in Papers I and II.

In the following it will be more convenient to work with the inverse of ut1, denoted

z1 ≡
1

ut1
=

(
−gαβ(y1)

vα1 v
β
1

c2

)1/2

, (2.33)

and which we will still refer to as the redshift observable following Ref. [22]. In terms of this

variable the correction with respect to paper II reads11

δz1 =

[
32

5
+

(
−2894

105
− 80

21
∆− 184

21
ν

)
x

]
ν2 x5 lnx . (2.34)

C. Post-Newtonian results for the conserved quantities and redshift observable

The expressions E(Ω) and J(Ω) of the PN binding energy and angular momentum for

point-particle binaries on quasi-circular orbits have been computed up to 3PN order by

different groups [26–31]. More recently, the 3PN expansion of the redshift observable z1(Ω)

10 We assume, without any loss of generality, that m1 6 m2.
11 We take into account the leading-order terms in the expansion as given by ut1 = 1+

(
3
4 + 3

4∆− ν
2

)
x+O(x2).
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was computed in Paper I, and compared to the numerical result for the gravitational SF in

linear black hole perturbation theory.

The dominant logarithmic contributions, which arise at 4PN order [32, 33], together

with the next-to-leading order 5PN contributions, were computed in Paper II. These were

assumed to only come from gravitational-wave tails, heuristically the scattering of gravi-

tational radiation by the background curvature generated by the monopole of the source.

Furthermore, we have now computed some additional 4PN and 5PN logarithmic terms which

come from the non-linear memory effect, heuristically the gravitational radiation generated

by the stress-energy distribution of linear waves. All those logarithmic contributions are

appropriate to conservative helically symmetric PN spacetimes.

Combining the result (4.12) of Paper II with the new correction (2.30a) obtained above

we obtain the 5PN-accurate expression for the binding energy:

E = −1

2
mν c2 x

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+ ν e4(ν) +

448

15
ν lnx

)
x4

+

(
−45927

512
+ ν e5(ν) +

[
−4988

35
− 656

5
ν

]
ν lnx

)
x5

}
, (2.35)

where we recall that x = (GmΩ/c3)2/3 (for simplicity we do not indicate the neglected 6PN

remainder). We introduced some unknown 4PN and 5PN coefficients e4(ν) and e5(ν), which

however are known to be polynomials in the symmetric mass ratio.12 In Sec. IV B we shall

be able to obtain precise numerical estimates of e4(0) and e5(0), which encode information

at leading order beyond the test-particle result (corrections linear in ν).

The computation of the angular momentum proceeds in the same way. We first derive

the 4PN and 5PN logarithmic terms due to gravitational-wave tails, similarly to Section IV

of Paper II, and then add the correction terms given by Eq. (2.30b). The result is

J =
Gm2 ν

c x1/2

{
1 +

(
3

2
+
ν

6

)
x+

(
27

8
− 19

8
ν +

ν2

24

)
x2

12 The latter point can be proved from the fact that the expression of E (and similarly for J and z1) for

general orbits, i.e. before restriction to the center-of-mass frame and circular orbits, must be a polynomial

in the two separate masses m1 and m2.
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+

(
135

16
+

[
−6889

144
+

41

24
π2

]
ν +

31

24
ν2 +

7

1296
ν3

)
x3

+

(
2835

128
+ ν j4(ν)− 64

3
ν lnx

)
x4

+

(
15309

256
+ ν j5(ν) +

[
9976

105
+

1312

15
ν

]
ν lnx

)
x5

}
, (2.36)

where j4(ν) and j5(ν) denote other unknown coefficients which are also polynomials in ν.

Next, combining the results (4.10) of Paper I and (5.2) of Paper II with the correction term

(2.32) found above, we obtain the 5PN-accurate expression of the redshift observable ut1, or

rather of its inverse z1 = 1/ut1, as

z1 = 1 +

(
−3

4
− 3

4
∆ +

ν

2

)
x+

(
− 9

16
− 9

16
∆− ν

2
− 1

8
∆ ν +

5

24
ν2

)
x2

+

(
−27

32
− 27

32
∆− ν

2
+

19

16
∆ ν − 39

32
ν2 − 1

32
∆ ν2 +

ν3

16

)
x3

+

(
− 405

256
− 405

256
∆ +

[
38

3
− 41

64
π2

]
ν +

[
6889

384
− 41

64
π2

]
∆ ν

+

[
−3863

576
+

41

192
π2

]
ν2 − 93

128
∆ ν2 +

973

864
ν3 − 7

1728
∆ ν3 +

91

10368
ν4

)
x4

+

(
− 1701

512
− 1701

512
∆ + ν

[
p4(ν) + ∆ q4(ν)

]
+

[
32

5
+

32

5
∆ +

32

15
ν

]
ν lnx

)
x5

+

(
− 15309

2048
− 15309

2048
∆ + ν

[
p5(ν) + ∆ q5(ν)

]
+

[
−2494

105
− 2494

105
∆− 5938

105
ν − 164

5
∆ν +

328

15
ν2

]
ν lnx

)
x6 . (2.37)

The redshift observable z2 of particle 2 can immediately be deduced from z1 by setting

∆ → −∆. Here p4(ν), q4(ν) and p5(ν), q5(ν) denote some still further a priori unknown

4PN and 5PN polynomials in the symmetric mass ratio.

Note that in each of Eqs. (2.35)–(2.37) we have added to the usual PN results, valid

for any mass ratio, the 4PN and 5PN contributions from the test-mass limit for one of the

particles, known from exact calculations for test particles in the Schwarzschild geometry:

E = mν c2

(
1− 2x√
1− 3x

− 1

)
+O(ν2) , (2.38a)

J =
Gm2 ν

c
√
x(1− 3x)

+O(ν2) , (2.38b)

z1 =
√

1− 3x+O(ν) . (2.38c)
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D. Post-Newtonian first law of black hole binaries

In this Section we shall show that the previous post-Newtonian results for the energy

E, angular momentum J , and redshift observables z1,2 of binary systems on circular orbits

satisfy a very important property called the first law of binary black hole mechanics. Here,

since we are working within the PN framework, the appropriate description of (non-spinning)

black holes is by structureless point masses; hence we shall also refer to this result as the

first law of binary point-particle mechanics.

For this study we shall introduce the total relativistic (ADM) mass of the binary system:13

M = m+ E , (2.39)

where m = m1 + m2 is the sum of the post-Newtonian individual masses, i.e. those which

enter as coefficients of Dirac delta-functions in the stress-energy tensor of point particles; cf.

Eq. (3.19) below. The various concepts of mass we use will be further specified in Sec. II E.

The ADM mass M , total angular momentum J , and redshifts z1,2, all being given by

Eqs. (2.35)–(2.37), are functions of the three independant variables of the problem, namely

the orbital frequency Ω that is imposed by the existence of the HKV, and the individual

masses m1,2 of the particles. We first find, with the above expressions, that the ADM

quantities obey the usual relation commonly used in PN theory (see e.g. Refs. [26, 34]):

∂M

∂Ω
= Ω

∂J

∂Ω
. (2.40)

This well-known relation is, for instance, extensively used in computations of the binary

evolution based on a sequence of quasi-equilibrium configurations [9, 10]. For black hole

binaries moving on quasi-circular orbits, it states that the gravitational-wave energy and

angular momentum fluxes are proportional (with Ω being the coefficient of proportionality).

Here we find that this relation is satisfied for all the terms explicitly computed up to 5PN

order, including the non trivial 4PN and 5PN logarithmic contributions.

Largely unrecognized however are the relations which tell how the ADM quantities change

when the individual masses m1 and m2 of the particles vary (keeping the orbital frequency

Ω fixed). By direct partial differentiation of the expressions (2.35)–(2.36) with respect to

13 From now on we use geometrized units G = c = 1.
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m1 and m2, and comparison with (2.37), we find

∂M

∂m1

− Ω
∂J

∂m1

= z1 , (2.41a)

∂M

∂m2

− Ω
∂J

∂m2

= z2 . (2.41b)

Again, these relations hold for all the terms we have computed, namely up to 3PN order

and including the 4PN and 5PN log-terms. Taking further partial derivatives of Eqs. (2.41)

with respect to the masses yields the simple symmetric relation

∂z1

∂m2

=
∂z2

∂m1

, (2.42)

which can be viewed as reflecting some “equilibrium” state of the binary system.

The three relations (2.40)–(2.41) can be summarized in the first law of the binary black

hole (or binary point-particle) mechanics

δM − Ω δJ = z1 δm1 + z2 δm2 . (2.43)

This first law provides the changes in the ADM mass and angular momentum in response

to infinitesimal variations of the individual masses of the point particles, weighted by their

redshift factors. As we shall prove in Sec. III A that this law should be correct at all

PN orders, its verification provides a very powerful test of the intricate post-Newtonian

calculations yielding Eqs. (2.35)–(2.37). An interesting by-product of the first law (2.43) is

the remarkably simple relation

M − 2ΩJ = m1z1 +m2z2 , (2.44)

which can be seen as a “first integral” of the differential law (2.43). It should be stressed

that the existence of such a simple, linear, algebraic relation between the local quantities

z1,2 on one hand, and the global quantities M and J on the other hand, is not trivial.14

In order to prove Eq. (2.44), we take a linear combination of the two equations (2.41),

make the change of variables (Ω,m1,m2)→ (Ω,m, ν), where we recall that m = m1 +m2 is

the total mass and ν = m1m2/m
2 the symmetric mass ratio, to get

m
∂M
∂m

= m1z1 +m2z2 , (2.45)

14 Interestingly, a result equivalent to (2.44) was implicitly derived, in the case of a specific point-particle

model, at first order in post-Minkowskian gravity: cf. Eqs. (92) and (96) of Ref. [14].
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where we introduced the convenient combination

M≡M − ΩJ , (2.46)

which can heuristically be viewed as the energy of the binary in a co-rotating frame. Next,

we notice that the ratio M/m is dimensionless and symmetric by exchange m1 ←→ m2 of

the masses. It must therefore depend on the three independant variables (Ω,m1,m2) only

through the symmetric mass ratio ν and the product mΩ. This last observation implies that

m
∂(M/m)

∂m
= Ω

∂(M/m)

∂Ω
. (2.47)

Combining (2.45) with (2.47), and making use of Eq. (2.40), we obtain the relation (2.44).

Alternatively, we can use Euler’s theorem for homogeneous functions: since, from Eq. (2.43),

the ADM mass M must be a homogeneous function of degree one in J1/2, m1 and m2, we

have15

M(J,m1,m2) = J1/2 ∂M

∂J1/2
+m1

∂M

∂m1

+m2
∂M

∂m2

, (2.48)

which combined with the first law (2.43) immediately yields the result (2.44). In Sec. III C

we provide a third derivation, based on the integration of the Einstein field equations.

Note that we have explicitly verified the partial differential equations (2.40) and (2.41),

and therefore the first law (2.43), only for those terms in the ADM quantities M , J and the

redshifts z1,2 which are known, namely for all the terms up to 3PN order and for the log-

terms occuring at 4PN and 5PN orders. Evidently we could not verify the law for the 4PN

and 5PN non-logarithmic contributions (and all 6PN and higher order terms) which are left

out in the PN calculation. However it is not difficult to find the relationships which must be

satisfied by the polynomials of the symmetric mass ratio parametrizing the unknown terms

in Eqs. (2.35)–(2.37). We find that Eq. (2.40) is exactly satisfied at 5PN order if and only

if the unknown functions j4(ν), j5(ν) in the angular momentum are given in terms of the

unknowns e4(ν), e5(ν) in the energy by

j4(ν) = −5

7
e4(ν) +

64

35
, (2.49a)

15 Here the partial derivatives are to be taken using the independent variables (J,m1,m2) instead of the

variables (Ω,m1,m2) as used in Eqs. (2.40)–(2.41). In this respect notice that

z1 =
∂M

∂m1

∣∣∣∣
J,m2

=
∂M

∂m1

∣∣∣∣
Ω,m2

− Ω
∂J

∂m1

∣∣∣∣
Ω,m2

,

together with a similar expression for z2.
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j5(ν) = −2

3
e5(ν)− 4988

945
− 656

135
ν . (2.49b)

Furthermore, we find that the first law is fully satisfied up to 5PN order if and only if the

unknowns p4(ν), p5(ν) and q4(ν), q5(ν) in the redshift (2.37) are also given in terms of the

functions e4(ν), e5(ν) in the energy, and their ν-derivatives e′4(ν), e′5(ν), by

p4(ν) =
13

14
ν e4(ν) + (1− 4ν) q4(ν)− 3969

256
− 128

35
ν , (2.50a)

p5(ν) =
5

6
ν e5(ν) + (1− 4ν) q5(ν)− 45927

1024
+

9976

945
ν +

1312

135
ν2 , (2.50b)

q4(ν) =
3

28
ν e′4(ν) +

3

14
e4(ν)− 64

35
, (2.50c)

q5(ν) =
1

12
ν e′5(ν) +

1

6
e5(ν) +

4988

945
+

328

45
ν . (2.50d)

Thus, all unknown non logarithmic terms at 4PN and 5PN orders are parametrized by only

two polynomials of the symmetric mass ratio, which can conveniently be chosen to be e4(ν),

e5(ν) introduced in the binding energy (2.35). Given the high physical significance of the

first law, as well as the general poof of it given in Sec. III (which does not rely on a PN

expansion), we shall take for granted that it is valid for all PN terms, including the unknown

ones, so the relationships (2.49)–(2.50) must be exactly satisfied. We will make further use

of these relations in Sec. IV.

In summary, we have proved by a high-order post-Newtonian calculation in this Section

(building on the results of Papers I and II), that the first law of black hole mechanics (2.43)

holds in the particular case of a binary system moving on an exact circular orbit. We shall

further demonstrate, in Sec. III, that the law (2.43) is actually a particular case, valid when

one assumes the existence of a HKV covering the entire spacetime, of the generalized law

of black hole mechanics obtained by Friedman, Uryū, and Shibata [11]. Before doing so, we

want to clarify the concepts of ADM and Bondi masses as we use them in post-Newtonian

theory, i.e. in relation to the relativistic mass M introduced in Eq. (2.39).

E. Bondi mass versus ADM mass in post-Newtonian theory

The structure of the gravitational radiation field generated by isolated systems in general

relativity was elucidated during the early sixties by Bondi, Sachs, Penrose and coworkers,

who analyzed its asymptotic structure at future null infinity. Of particular importance is the
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Bondi-Sachs mass-loss formula [35, 36], which relates the rate of change of the Bondi mass

MB(U) at a retarded instant of time U ,16 to the gravitational-wave energy flux F , through

dMB

dU
= −F(U) , (2.51)

where F =
∮

I + |N |2 dΩ is computed as a surface integral (at future null infinity) of the

News function N . Another important result was obtained later by Ashtekar and Magnon-

Ashtekar [37], who showed that (for isolated gravitating systems) the difference between the

ADM mass MADM and the Bondi mass MB(U) is equal to the mass carried away by the

gravitational radiation emitted between the infinite past and the given retarded instant:

MADM = MB(U) +

∫ U

−∞
F(U ′) dU ′ . (2.52)

Since the ADM mass is constant, dMADM/dU = 0, the mass-loss formula (2.51) immediately

follows from Eq. (2.52). More generally, similar results hold for the ADM four-momentum

Pα = (MADM, P
i) and the Bondi four-momentum Pα

B = (MB, P
i
B).

In addition to the ADM mass and the Bondi mass, many alternative notions of mass

have been introduced in general relativity (see e.g. [38] for a recent review). However, while

the definitions of MADM and MB only rely on some universal properties of spatial infinity

and future null infinity, respectively, most of these alternative notions of mass require the

introduction of one or several additional structure(s) on top of the spacetime metric gαβ; the

Komar mass MK, defined in terms of the timelike Killing vector tα of a stationary spacetime,

being one specific example (cf. Sec. III C).

In post-Newtonian theory, a background Minkowski metric ηαβ is introduced in addition

to the usual spacetime metric gαβ. While this, in effect, breaks the manifest general covari-

ance of the exact theory, the resulting field equations remain covariant under the Poincaré

group of special relativity. In particular, the PN equations of motion of compact binary

systems (in harmonic coordinates which preserve the Poincaré symmetry) are invariant un-

der time translations, spatial translations, spatial rotations, and Lorentz boosts. Noether’s

theorem then implies the existence of ten conserved quantities associated with these con-

tinuous symmetries: the post-Newtonian binding energy E, linear momentum P i, angular

momentum J i, and the vector Ki such that the center-of-mass position reads Gi = Ki+P it.

16 Here U denotes a null retarded coordinate, which differs from the shorthand u = t− r/c used in Sec. II A,

where {t, r} are harmonic coordinates.
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The problem of constructing gravitational-wave templates for circularized inspiralling

compact binary systems in the PN approximation is usually divided into two sub-problems:

(i) the computation of the center-of-mass binding energy E, using the conservative part of

the dynamics of the source, and (ii) the calculation of the gravitational-wave energy flux F ,

associated with the dissipative part of the dynamics, from the wave-zone gravitational field.

One then postulates the energy balance relation

dE

dT
= −F(T ) , (2.53)

which states that the binding energy decreases at a rate determined by the flux of energy

carried away by the gravitational radiation. The coordinate time T coincides with the proper

time of an inertial observer far away from the source, where the geometry is essentially flat.

In the case of compact binary systems whose components are modelled as point masses,

both E and F have been computed up to 3.5PN order included (see [2] for a review). One

could in principle verify the energy balance relation (2.53) explicitly from the knowledge of

all conservative and dissipative contributions to the dynamics of the binary system up to

3.5PN beyond the leading order radiation-reaction force, which is at leading 2.5PN order;

this would correspond to 6PN order beyond the Newtonian motion. Since it is, in practice,

too challenging to compute the PN equations of motion to such high orders, the relation

(2.53) has to be assumed, rather than derived. Note however that Eq. (2.53) has been proved

to hold up to the relative 1.5PN order, for a generic matter source [25, 33, 39].

The similarity between the PN energy balance equation (2.53) and the mass-loss formula

(2.51) is of course striking. However, the mathematical objects entering these two relations

are conceptually different: for asymptotically flat spacetimes, the Bondi mass MB is defined

in the exact theory as a surface integral at future null infinity, while the binding energy E is

only defined in the post-Newtonian approximation to general relativity, and its computation

involves the near-zone PN metric. Although it has not been proved rigorously that the

two notions of mass coincide, the identification of the Bondi mass with the PN binding

energy (or, rather, with M = m + E which includes the rest mass m = m1 + m2) seems

intuitively sound and natural. Henceforth, we shall thus postulate that if U = T − R is

the asymptotically null outgoing coordinate associated with an asymptotically radiative (or

Bondi-type) coordinate system {T,R}, then there exists a spacelike hypersurface T = const
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FIG. 1: A gravitationally bound isolated matter source is formed at T = T0, and starts emitting gravita-

tional radiation. The ADM mass MADM, as computed on that time slice, coincides with the binding energy

M(T0) = m + E(T0), which is itself equal to the Bondi mass MB(U0), as computed on the asymptotically

null hypersurface U = U0. At a later time T = T1, the binding energy M(T1) = MB(U1) has decreased.

The difference MADM −MB(U1) with respect to the constant ADM mass is equal to the energy taken away

from the source by the gravitational waves emitted between T = T0 and T = T1, or equivalently between

U = U0 and U = U1.

such that

MB(U) = M(T ) . (2.54)

The balance equation (2.53) can then be derived from the mass-loss formula (2.51).17 Con-

versely, if the PN energy balance is assumed to be valid, then the identification (2.54) must

hold. The Carter-Penrose diagram depicted in Fig. 1 illustrates the previous discussion.

While in the exact theory it is not possible to unambiguously split the conservative and

dissipative parts of the orbital dynamics (e.g. in the binary black hole spacetimes simulated

in numerical relativity), this can be done in approximation methods such as PN expansions

and black hole perturbation theory. For example, in post-Newtonian theory, one can discard

17 Since Eq. (2.53) is a functional equality, it can also be written as dE/dt = −F(t), where t is the harmonic-

coordinate time in the near-zone of the source.
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the purely dissipative 2.5PN and 3.5PN radiation-reaction terms, and consider only the

conservative dynamics at the Newtonian, 1PN, 2PN and 3PN orders. Since there is a one-

to-one correspondance between the near-zone radiation-reaction force affecting the dynamics

of the source and the fluxes of energy, linear momentum, and angular momentum computed

from the wave-zone radiation field (see e.g. Refs. [40, 41]), this amounts to considering non-

radiative spacetimes. From Eq. (2.52) — in which we set F = 0 — and the identification

(2.54), we find that for such PN spacetimes, all the notions of mass that we have considered

so far coincide, namely

MADM = MB = M = const . (2.55)

See Fig. 2 for an illustration. We shall also assume that a similar result holds for the angular

momenta, i.e. that the angular momentum J i computed in PN theory from the near-zone

metric coincides with the total angular momentum of the system, defined at spatial infinity.

In Sec. II D, the first law of binary point-particle mechanics, as expressed by Eq. (2.43)

and its first integral (2.44), was derived directly from PN calculations, under the assumptions

of helical symmetry and asymptotic flatness. When considering only the conservative part

of the dynamics of a point-particle binary system on a circular orbit, both conditions are

fulfilled by the post-Newtonian metric. For such orbits, the PN results in Sec. II D establish

algebraically that, for M = m + E, J and z1,2 given there, the first law is indeed satisfied

up to the PN order involved. We shall now show that this first law actually holds more

generally so that, for the system being considered, it can be expected to be satisfied at all

(conservative) PN orders.

III. THE FIRST LAW OF BINARY BLACK HOLE MECHANICS

Friedman, Uryū and Shibata [11] considered a one-parameter family of solutions of the

Einstein field equations, describing an arbitrary number of black holes with a generic distri-

bution of perfect fluid matter sources having compact support.18 A perfect fluid is entirely

characterized by its four-velocity uα, normalized to gαβu
αuβ = −1, its energy density ε(ρ, s),

and pressure P (ρ, s), both functions of the entropy per unit baryon mass s and the conserved

proper mass density ρ, such that ∇α(ρuα) = 0.

18 See Ref. [42] for the recent generalization to the magnetohydrodynamical case.
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FIG. 2: A non-radiative PN spacetime containing an ever-lasting gravitationally bound isolated matter

source of constant size R. The ADM mass MADM coincides with the binding energy M(T ) = m + E(T ),

which is itself equal to the Bondi mass MB(U), at all times.

Each member of the family of geometries {gαβ(λ), uα(λ), ρ(λ), s(λ)} is assumed to have

a globally defined Killing vector field Kα. The Noether current associated with Kα assigns

to each spacetime a conserved charge Q. The main result established in Ref. [11] relates the

Eulerian variation δQ ≡ dQ/dλ|λ=0 of the conserved charge Q to the Eulerian variations δAn

of the horizon surface areas An of the black holes, as well as to the Lagrangian variations

∆(dMb), ∆(dS) and ∆(dCα) of the fluid’s baryonic mass, entropy, and vorticity. This

generalized first law explicitly reads

δQ =

∫
Σ

[
µ̄∆(dMb) + T̄ ∆(dS) + vα∆(dCα)

]
+
∑
n

κn
8π

δAn , (3.1)

where κn are the uniform surface gravities of the black holes, T̄ = T/ut is the redshifted

temperature, and µ̄ = (h− Ts)/ut the redshifted chemical potential (or specific Gibbs free

energy), with h = (ε+P )/ρ the specific enthalpy of the fluid. The spacelike velocity field vα

measures the peculiar velocities of the fluid elements with respect to the Killing vector field

Kα, whose integral curves define some preferred worldlines; it is defined by uα = ut(Kα+vα),
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with vα∇αt = 0. The matter fields to be varied are given by

dMb ≡ ρuαdΣα , (3.2a)

dS ≡ s dMb , (3.2b)

dCα ≡ huαdMb , (3.2c)

with dΣα = −nα
√
γ d3x the volume element on the spacelike (t = const) hypersurface Σ,

covered by Cartesian coordinates {xi}, and over which the integral in Eq. (3.1) is performed;

nα is the future-pointing unit timelike vector normal to Σ, and γ = det(γij) the determinant

of the induced metric γij on Σ.

A. The first law for point-particle binaries on circular orbits

We are interested in applying the general result (3.1) to the particular case of a compact

binary system, whose components move on exactly circular orbits. For such spacetimes, the

geometry is invariant along the direction of the helical Killing vector Kα = tα + Ωφα, where

Ω is a constant, which is identified with the angular frequency dϕ/dt of the circular motion;

the vectors tα ≡ (∂t)
α and φα ≡ (∂φ)α are part of the natural basis (∂t, ∂r, ∂θ, ∂φ), with

{r, θ, φ} the spherical coordinate system associated with the Cartesian coordinates {xi} in

the usual way, i.e. x1 = r sin θ cosφ, x2 = r sin θ sinφ and x3 = r cos θ.

For asymptotically flat spacetimes, the basis vectors tα and φα are both asymptotic

Killing vectors, reflecting the invariance of Minkowski spacetime under time translations

and spatial rotations. Then, the variation δQ of the conserved charge Q associated with the

helical Killing vector Kα is given by [11]

δQ = δM − Ω δJ , (3.3)

where M is the ADM mass, and J the norm of the total angular momentum Ji of the system,

defined as a surface integral at spatial infinity, in terms of the three rotational Killing vectors

of the flat metric ηαβ (cf. Eq. (109) of Ref. [11]). The variational equation (3.3) holds in the

center-of-mass frame, in which the ADM three-momentum Pi vanishes.

As discussed in the Introduction, we shall model the compact objects (namely non spin-

ning black holes and/or neutron stars) as two point particles with “Schwarzschild” masses

m1 and m2. We therefore consider the simple case of a perfect fluid with vanishing pressure
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P , temperature T , specific entropy s, and peculiar velocity vα. The redshifted chemical

potential then simply reads µ̄ = 1/ut. Combining Eq. (3.3) with (3.1), in which we set

κn δAn = 0, the generalized first law reduces to

δM − Ω δJ =

∫
Σ

z∆(dMb) , (3.4)

where z ≡ 1/ut is the redshift factor. Now, in order to evaluate the Lagrangian variation

∆(dMb) of the baryonic mass element (3.2a), we use the explicit expression of the proper

mass density ρ for two point masses, namely

ρ(x, t) =
1√
−g

2∑
A=1

mA zA δ[x− yA(t)] , (3.5)

where yA(t) are the coordinate trajectories of the particles (A = 1, 2), δ is the usual three-

dimensional Dirac distribution, such that
∫

d3x δ(x) = 1, and g = det(gαβ) is the determi-

nant of the covariant metric gαβ. In a 3 + 1 decomposition, we have
√
−g = N

√
γ, where N

is the lapse function. Since the four-velocities uαA of the particles are tangent to the HKV

evaluated at their coordinate locations, i.e. uαA = utAK
α(yA, t), we find that (3.2a) explicitly

reads

dMb = −d3x
2∑

A=1

mA
(Kn)A
NA

δ(x− yA) . (3.6)

We have introduced the shorthands NA ≡ N(yA, t) and (Kn) ≡ Kαn
α. From the 3+1

decomposition of the time evolution vector tα in terms of the lapse N and shift Nα, namely

tα = Nnα + Nα, the HKV reads Kα = Nnα + (Nα + Ωφα). Since the shift vector Nα

and the basis vector φα are both tangent to Σ, we get Kαn
α = −N , which in turn implies

(Kn)A = −NA at the location of each particle. This simplifies the expression of the baryonic

mass element (3.6)19 which, once substituted into (3.4), yields our final result in the form20

δM − Ω δJ = z1 δm1 + z2 δm2 , (3.7)

which we recognize as our first law of binary point-particle mechanics (2.43) derived us-

ing post-Newtonian theory. This first law compares two neighbouring helically symmetric,

asymptotically flat solutions of the field equations, and tells how the changes in the “bary-

onic” masses of the bodies will affect the ADM mass and angular momentum of the binary

19 Namely, dMb = ρ∗ d3x where ρ∗ =
∑
AmA δ(x− yA) denotes the baryonic coordinate density.

20 For clarity and uniformity in notation, we have made the substitution ∆mA → δmA for the Lagrangian

variations of the individual masses m1 and m2.
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system. Alternatively, the first law of binary point-particle mechanics could be derived in

the Hamiltonian approach by varying the individual degrees of freedom of the point masses,

namely their positions, momenta and masses. Some consequences of Eq. (3.7) have already

been explored, notably the existence of the first integral given by

M − 2ΩJ = m1z1 +m2z2 . (3.8)

In Sec. II D we derived the first law (3.7) directly from post-Newtonian calculations. Here we

recovered this important relation based on first principles in general relativity; in particular

our derivation does not rely on a post-Newtonian expansion. Hence we expect the first law

(3.7), as well as all of its consequences, including Eq. (3.8), to hold at all conservative orders

in a PN expansion.

B. Analogies with single and binary black hole mechanics

In this Section we point out some interesting analogies between the result (3.7) and its

consequence (3.8) for point-particle binaries on one hand, and some well-known relations

regarding the mechanics (or thermodynamics) of single or binary black holes on the other

hand. In the particular case of an asymptotically flat vacuum spacetime with two black

holes on quasi-circular orbits, the general result (3.1) reduces to21

δM − Ω δJ = κ1
δA1

8π
+ κ2

δA2

8π
. (3.9)

This variational relation can be viewed as a generalization to the binary black hole case of

the celebrated first law of black hole mechanics δM − ΩH δJ = κ δA/(8π), which holds for

any non-singular, asymptotically flat perturbation of a stationary and axisymmetric black

hole of mass M , intrinsic angular momentum (or spin) J ≡ Ma, surface area A, uniform

surface gravity κ, and angular frequency ΩH on the horizon [43, 44]. In the binary black

hole case, the horizon angular velocity ΩH of a single rotating black hole is replaced by the

orbital frequency Ω of the binary.

The surface area A of a black hole is related to its irreducible (or Christodoulou) mass

mirr through m2
irr = A/(16π) [45, 46]. We may thus substitute κ δA/(8π) −→ (4mirr κ) δmirr

21 See Sec. I for a discussion of helical symmetry and asymptotic flatness in binary black hole spacetimes.

28



in both terms in the RHS of Eq. (3.9). Then, comparing the first law of binary black hole

mechanics (3.9) to Eq. (3.7) for the analogous binary point-particle case, we notice the

formal analogies

m←→ mirr , z ←→ 4mirrκ . (3.10)

Both analogies are rather intuitive and physically appealing. Indeed, one might expect the

irreducible mass mirr of a non-rotating black hole to be analogous to the “post-Newtonian”

mass m of a point particle.22 Furthermore, the surface gravity κ of a black hole may naturally

be related to the redshift z of the “associated” point mass, via the gravitational redshift,

or Einstein effect (cf. Detweiler’s Gedanken experiment in Sec. II C of [22]). In particular,

for two Schwarzschild black holes on quasi-circular orbits, but far enough apart so that they

can be viewed — in first approximation — as isolated, the surface gravity κ −→ (4mirr)
−1,

while for the point particles we have z −→ 1. Therefore, in that limiting case the analogies

(3.10) seem perfectly sound.

Then, following exactly the same steps as in Sec. II D, but with the irreducible masses of

the black holes playing the role of the post-Newtonian masses of the point particles, it can

easily be established that

M − 2ΩJ = κ1
A1

4π
+ κ2

A2

4π
. (3.11)

This last relation can be viewed as a generalization to the binary black hole case of Smarr’s

formula M − 2ΩHJ = κA/(4π) for a single Kerr black hole [47]. The RHS side of Eq. (3.11)

is the sum of two terms of the form κA/(4π) = 4m2
irrκ; one for each black hole. This binary

black hole expression should be compared to the RHS of Eq. (3.8) for the point-particle case.

We then find the analogy

mz ←→ 4m2
irrκ , (3.12)

i.e. precisely what is expected from the analogies (3.10), which were drawn from the differ-

ential relations (3.7) and (3.9).

22 Notice however that the assumption of helical symmetry, which is necessary to derive the first law (3.9),

requires that the two black holes are in co-rotation, and must therefore have non-zero spins [9, 11]. It

would be interesting to generalize the binary point-particle first law (3.7) by including spin effects, e.g.

using a pole-dipole model for the spinning point masses. For rotating black holes, the post-Newtonian

mass m should be identified with the total mass of the black hole, including the effect of the spin S; hence

m2 = m2
irr + S2/(4m2

irr). See e.g. Ref. [34].
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It would be interesting to investigate how far the formal analogies (3.10) can be pushed,

especially in the relevant regime where the two black holes or point masses are in co-rotation

and interact strongly with each other, namely when z 6= 1. One might for example try to

recover the point-particle results (3.7) and (3.8) starting from the black hole results (3.9)

and (3.11), by taking some suitable point-particle limit. In that respect, one might use the

method proposed in Ref. [48] to derive the gravitational self-force [49, 50] for the motion

of a point particle in some background curved spacetime, by scaling down the mass M and

size R of an extended compact object, while helding its compactness M/R fixed. Such

an analysis might improve our understanding of the validity of modelling extended objects

such as black holes by point masses in general relativity. This would be valuable because

both post-Newtonian methods and gravitational self-force calculations rely heavily on such

idealizations [2, 3]. These questions should be addressed in future work.

Finally, one can also consider the mixed case of a circular-orbit compact binary system

composed of a black hole and a point particle. This corresponds to the model usually adopted

in black hole perturbation theory and the gravitational self-force. Calculations similar to

those detailed above naturally yield the results

δM − Ω δJ = κ
δA

8π
+ z δm , (3.13a)

M − 2ΩJ = κ
A

4π
+mz . (3.13b)

C. Alternative derivation of the first integral relations

In this Section we show that the algebraic first integral relations (3.8) and (3.11) can

also be obtained by standard techniques derived from the definition of the Komar mass and

angular momentum (see e.g. [51]). We introduce a Cartesian-type coordinate system {t, xi},

as well as the associated spherical coordinate system {t, r, θ, φ}. These coordinates are

chosen such that the metric gαβ is explicitly asymptotically Minkowskian at spatial infinity,

i.e. gαβ → ηαβ when r → +∞. Performing a 3+1 decomposition of the four-dimensional

spacetime, the metric reads

ds2 = −N2dt2 + γij
(
dxi +N idt

)(
dxj +N jdt

)
, (3.14)

where N is the lapse function, N i the shift vector, and γij the three-metric of t = const

hypersurfaces. Let Σ be one such spacelike hypersurface, and S = ∂Σ be the two-sphere at
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spatial infinity representing its boundary.

The notions of Komar mass MK and Komar angular momentum JK are commonly intro-

duced for stationary and axisymmetric spacetimes [52]. Conserved currents can be built from

the Killing vectors associated with these symmetries, leading to some well-defined notions

of mass and angular momentum defined as surface integrals over these currents. However,

the Komar quantities can also be defined for more generic spacetimes, which are neither

stationary, nor axisymmetric, as long as they are asymptotically flat. For such geometries,

the Komar mass and angular momentum are defined as

MK ≡ −
1

8π
lim
r→∞

∮
Sr

∇αtβ dSαβ , (3.15a)

JK ≡
1

16π
lim
r→∞

∮
Sr

∇αφβ dSαβ , (3.15b)

where the basis vectors tα ≡ (∂t)
α and φα ≡ (∂φ)α are asymptotic Killing vectors, reflecting

the invariance of Minkowski spacetime under time translations and spatial rotations. The

integrals in Eqs. (3.15) are performed over a two-sphere Sr of coordinate radius r, which

goes to the two-sphere at spatial infinity S as the limit r → +∞ is taken at the end of the

calculation.23 The two-sphere Sr is the boundary of an hypersurface Σr, which is itself part of

the hypersurface Σ bounded by S. The surface element on Sr reads dSαβ = 2r[αnβ]

√
σ d2y,

where nα is the future-pointing unit timelike vector normal to Σ, and rα the outward-

pointing unit spacelike vector normal to Sr, and tangent to Σ. The metric induced on Σ

is γαβ = gαβ + nαnβ, and the metric induced on Sr is σαβ = γαβ − rαrβ, with determinant

σ = det(σab) in coordinates {ya} covering Sr (see Fig. 3 for notations). Note that the integral

(3.15b) for the angular momentum JK exhibits the famous “Komar anomalous factor” −1/2

with respect to the integral (3.15a) for the mass MK [53].

Although tα and φα are only asymptotic Killing vectors, our assumption of helical sym-

metry implies that Kα = tα + Ωφα is a Killing vector field over the entire spacetime. The

interesting combination of MK and JK is therefore given by

MK − 2ΩJK = − 1

8π

∮
S

∇αKβ dSαβ . (3.16)

23 For stationary and/or axisymmetric spacetimes, tα and/or φα are Killing vectors on the entire spacetime

manifold, and the integrals may as well be performed over any spacelike topological two-sphere enclosing

the matter source (where the matter stress-energy tensor Tαβ 6= 0).
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FIG. 3: A spatial slice Σ of a circular-orbit compact binary spacetime. The black hole is characterized by

its horizon area A and uniform surface gravity κ, while the point particle has a mass m and redshift factor

z = 1/ut, and is such that its four-velocity reads uα = utKα.

Because of Killing’s equation ∇(αKβ) = 0, the tensor ∇αKβ is antisymmetric. Using a

version of the Stokes theorem for rank 2 antisymmetric tensor fields, the surface integral in

Eq. (3.16) can be converted into a volume integral over the hypersurface Σ bounded by S

(and the multiple event horizons Hn for spacetimes with black holes):∮
S

∇αKβ dSαβ =
∑
n

∮
Hn

∇αKβ dSαβ + 2

∫
Σ

∇β(∇αKβ) dΣα . (3.17)

The volume element on Σ reads dΣα = −nα
√
γ d3x, with γ = det(γij) the determinant of the

spatial metric γij. Then, Killing’s equation together with the non-commutation of covariant

derivatives yields the well-known formula ∇β∇αKβ = Rα
βK

β. Using the Einstein equation

to replace the Ricci tensor Rαβ in favor of the stress-energy tensor Tαβ, we obtain

MK − 2ΩJK = − 1

8π

∑
n

∮
Hn

∇αKβ dSαβ + 2

∫
Σ

(
Tαβ −

1

2
Tgαβ

)
nαKβ√γ d3x , (3.18)

where T ≡ gαβT
αβ. Similar expressions for MK and JK (separately) can be found in text-

books, for stationary and/or axisymmetric spacetimes; see e.g. Refs. [51, 54, 55]. We shall

now successively apply the general result (3.18) to the particular cases of binary point par-

ticle and binary black hole spacetimes.
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1. Binary point-particle case

We consider first a spacetime with two point masses modelling two compact objects on

a circular orbit; hence we discard the first term in the RHS of Eq. (3.18). The stress-energy

tensor is generated by two massive worldlines, and reads

Tαβ(x, t) =
1√
−g

2∑
A=1

mA zA u
α
Au

β
A δ[x− yA(t)] , (3.19)

where yA(t) are the coordinate trajectories of the particles (A = 1, 2), with normalized four-

velocities uαA, and where zA = 1/utA are the redshift variables. The determinants g = det(gαβ)

and γ = det(γij) are related by
√
−g = N

√
γ. Now, remember that the four-velocities uαA

of the particles are tangent to the helical Killing vector Kα evaluated at their coordinate

locations; hence

uαA = utAK
α
A , (3.20)

where we introduced the shorthand Kα
A ≡ Kα(yA, t) (cf. Fig. 3). Inserting (3.19) into (3.18),

contracting the tensors, and making use of Eq. (3.20), we obtain

MK − 2ΩJK = −
2∑

A=1

mAzA
(Kn)A
NA

, (3.21)

where we recall that (Kn) ≡ Kαn
α. As we have already proved below Eq. (3.6) in Sec. III A

above, we have (Kn)A = −NA at the coordinate locations of the particles. We thus recover

an expression which is formally identical to our relation (3.8), with the Komar quantities

playing the role of the ADM mass and angular momentum, namely

MK − 2ΩJK = m1z1 +m2z2 . (3.22)

Finally, it can be shown that if the foliation (Σt)t∈R is adapted to axisymmetry at spatial

infinity (namely nαφα → 0 when r → +∞), then the Komar angular momentum (3.15b)

coincides with the total angular momentum [55]: JK = J . On the other hand, for stationary,

asymptotically flat spacetimes, if the foliation is such that the unit normal nα coincides with

the timelike Killing vector tα at spatial infinity (i.e. N → 1 and N i → 0 when r → +∞),

then the Komar mass (3.15a) coincides with the ADM mass [56, 57]. In Ref. [58], the equality

MK = M allowed the definition of a relativistic version of the classical virial theorem for

stationary, asymptotically flat spacetimes. More recently, Shibata et al. [59] have shown
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that the equality MK = M holds for a much larger class of spacetimes (in particular they

could relax the hypothesis of stationarity); see Eqs. (3.7)–(3.9) in Ref. [59] for the required

asymptotic conditions on the lapse N , shift N i, three-metric γij, extrinsic curvature Kij,

and their spatial derivatives. Assuming that our non-radiative, helically symmetric, post-

Newtonian spacetimes would satisfy these falloff conditions, we then have

MK − 2ΩJK = M − 2ΩJ , (3.23)

and we thus recover the algebraic first integral relation (3.8). From this one sees that the

curious factor of 2 in Eq. (3.8) is actually related to Komar’s anomalous factor [53].

2. Binary black hole case

We turn next to the case of a vacuum spacetime with two co-rotating black holes on

quasi-circular orbits. From the general result (3.18), in which we set Tαβ = 0, we find

MK − 2ΩJK = − 1

8π

∮
H1

∇αKβ dSαβ − 1

8π

∮
H2

∇αKβ dSαβ . (3.24)

Following Friedman et al. [11], we write the surface two-form as dSαβ = 2K [α`β]
√
σ d2y,

where `α is the unique null vector orthogonal to Hn and such that Kα`α = −1. For two

black holes in co-rotation, the helical Killing vector Kα is tangent to the null generators of

the horizons; hence the surface gravity κ is defined by the usual relation Kβ∇βK
α = κKα.

The integrand in Eq. (3.24) thus reduces to ∇αKβ dSαβ = −2κ
√
σ d2y, yielding

MK − 2ΩJK =
1

4π

∮
H1

κ dA+
1

4π

∮
H2

κ dA , (3.25)

with dA =
√
σ d2y the surface element. For a single black hole, the zeroth law of black hole

mechanics states that κ is uniform over the event horizon [43]. This result was generalized to

the binary black hole case in Ref. [11]; hence κ can be pulled out of the integrals. Combining

this with the argument (3.23), we recover the result (3.11).

On the other hand, several authors have previously established a relation similar to (3.11),

in the case of two co-rotating black holes on quasi-circular orbits, namely [6, 9]

M − 2ΩJ =
1

4π

∮
H1

∇αN dSα +
1

4π

∮
H2

∇αN dSα , (3.26)

where dSα = rα dA. We shall now derive this result from Eqs. (3.23)–(3.24), thus establish-

ing that for such binary black hole spacetimes, the radial projection of the gradient of the
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lapse, rα∇αN , essentially coincides with the surface gravity κ on each horizon, in agreement

with physical intuition. We assume that the conditions for which (3.23) holds are met.

Making use of the antisymmetry of the tensor ∇αKβ, we have

∇αKβ dSαβ = 2nβ∇αKβ dSα = −2∇αN dSα − 2Kβ∇αnβ dSα , (3.27)

where we performed an integration by parts and used the 3 + 1 decomposition Kα = Nnα +

mα, with mα = Nα + Ωφα the shift vector in a co-rotating frame. The second term in

the RHS of Eq. (3.27) can be expressed using the extrinsic curvature tensor Kαβ, via the

well-known relation ∇αnβ = −Kαβ−nα∇β lnN . Next, we notice that Kαβ is both spacelike

and symmetric, and that nαr
α = 0; hence Eq. (3.24) becomes

M − 2ΩJ =
1

4π

2∑
A=1

∮
HA

∇iN dSi − 1

4π

2∑
A=1

∮
HA

miKij dSj . (3.28)

Finally, because the HKV field Kα = Nnα +mα must become null on the event horizons of

the black holes, we have N2 = γijm
imj on H1 and H2. Following the authors of Refs. [6, 9],

we impose the usual boundary condition of vanishing lapse on the horizons, and thus find

that mi = 0 in the second term in the RHS of Eq. (3.28) (γij being positive-definite). We

thus recover the relation (3.26) established in [6, 9], based on the 3+1 decomposition of the

Einstein field equations, in the presence of a HKV.

IV. APPLICATIONS OF THE FIRST LAW

In this Section we consider a number of practical applications of our first law for compact

binaries. The first is an application when one mass is much smaller than the other, so that a

perturbative analysis is applicable. The second is an application in which numerical results

from a perturbation analysis for z1 can be combined with relationships like (2.49)–(2.50) to

determine previously unknown coefficients in the PN expressions of E and J .

A. New gauge-invariant energy and angular momentum

1. Implications of the first law for perturbation analysis

Perturbation analysis is applicable in the “two-body problem” when the mass of one of

the bodies is much smaller than the mass of the other. Typically for our purposes, the large
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mass body will be treated as a black hole of mass m2, while the small mass body may be

treated either as a point particle or as a small black hole of mass m1 � m2. In this context,

we have the usual notions of perturbative energy per unit mass and angular momentum per

unit mass of the particle m1,

E1 ≡ −u1t , (4.1a)

J1 ≡ u1ϕ , (4.1b)

where u1t and u1ϕ are covariant components of the particle’s four-velocity uα1 . It was shown

in Ref. [22] that z1 = 1/ut1 = E1 − ΩJ1. As Detweiler pointed out [22], E1 and J1 are not

separately gauge invariant, while the redshift observable z1 is. In the notation of Ref. [22],

Eqs. (22) and (23) given there are, to first order in the mass ratio q ≡ m1/m2,

E1 =
r − 2m2√
r(r − 3m2)

[
1− ūαūβhαβ

2
− r

4
ūαūβ

∂hαβ

∂r

]
, (4.2a)

J1 =
r
√
m2√

r − 3m2

[
1− ūαūβhαβ

2
− r(r − 2m2)

4m2

ūαūβ
∂hαβ

∂r

]
, (4.2b)

in which use has been made of conditions (A3) and (A4) for quasi-circular orbits, and where

ūα is a convenience introduced by Detweiler — it does not denote the four-velocity of the

particle but is defined in (A5) below; and hαβ is the regularized metric perturbation, which is

a smooth vacuum solution in the neighborhood of the particle [60].24 Making use of Eq. (28)

in [22] we obtain (see also Eq. (2.7) from Paper I)

m2

r
= y +

r(1− 3y)

6
ūαūβ

∂hαβ
∂r

, (4.3)

where we have introduced the dimensionless invariant PN parameter y ≡ (m2Ω)2/3. It will

also be convenient to define a coordinate invariant measure of the constant orbit separation,

via rΩ ≡ m2/y. Then, using (4.3), Eqs. (4.2) can be rewritten, to first order in q, as

E1 =
1− 2y√
1− 3y

[
1− ūαūβhαβ

2
− r

4
ūαūβ

∂hαβ

∂r
− r(1− 6y)

12(1− 2y)
ūαūβ

∂hαβ
∂r

]
, (4.4a)

J1 =
m2√

y(1− 3y)

[
1− ūαūβhαβ

2
− r(1− 2y)

4y
ūαūβ

∂hαβ

∂r
− r(1− 6y)

12y
ūαūβ

∂hαβ
∂r

]
, (4.4b)

24 In this Subsection, hαβ is indeed a regular metric perturbation in the Schwarzschild geometry, and not

the PN metric perturbation from flat space used in Sec. II, as defined in the first footnote in Sec. II A.
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which, as demonstrated at the end of Appendix A, are not gauge invariant. Nevertheless,

Eqs. (4.4) can be combined to give

z1 = E1 − ΩJ1 =
√

1− 3y

(
1− 1

2
ūαūβhαβ

)
, (4.5)

where the term in parenthesis is gauge invariant (see [22] and (A10) in our Appendix A).

Inspired by the present work, new definitions of energy and angular momentum (per unit

mass) of the particle can be given, which are separately gauge invariant. Indeed, Eq. (2.41a)

provokes a powerful suggestion to introduce these alternative gauge invariant quantities:25

Ẽ1 ≡
∂M

∂m1

, (4.6a)

J̃1 ≡
∂J

∂m1

. (4.6b)

Note that by definition the same combination as in Eq. (4.5) holds, namely

z1 = Ẽ1 − ΩJ̃1 . (4.7)

Furthermore, the thermodynamic relation for these quantities holds, i.e.

∂Ẽ1

∂Ω
= Ω

∂J̃1

∂Ω
. (4.8)

This follows from Eq. (2.40) and commutation of partial derivatives. Combining Eqs. (4.7)

and (4.8) yields

Ẽ1 = z1 − Ω
∂z1

∂Ω
, (4.9a)

J̃1 = −∂z1

∂Ω
. (4.9b)

The associated invariant energy and angular momentum are defined by Ẽ1 ≡ m1Ẽ1 and

J̃1 ≡ m1J̃1. Using the first integral relation (2.44), it is straightforward to verify the

following connections with the ADM mass and angular momentum:

Ẽ1 + Ẽ2 = M + Ω
∂M

∂Ω
, (4.10a)

J̃1 + J̃2 = J +
∂(ΩJ)

∂Ω
. (4.10b)

25 The partial derivatives with respect to the masses are taken with constant orbital frequency Ω. Thus we

really mean for instance Ẽ1 = (∂M/∂m1)|Ω,m2 .
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We now compute the gauge invariant quantities (4.6) or (4.9) to first order in the mass

ratio q. This readily follows from the expressions (4.9) which can be rewritten, using the

gauge-invariant result for z1 given by (4.5), as (with rΩ = m2/y)

Ẽ1 =
1− 2y√
1− 3y

[
1− ūαūβhαβ

2
− rΩ(1− 3y)

3(1− 2y)

∂(ūαūβhαβ)

∂rΩ

]
, (4.11a)

J̃1 =
m2√

y(1− 3y)

[
1− ūαūβhαβ

2
− rΩ(1− 3y)

3y

∂(ūαūβhαβ)

∂rΩ

]
, (4.11b)

where the final results here expressly hold to first perturbative order. These allow us to

show, up to terms O(q2), that we can write E1 = Ẽ1 + δE and J1 = J̃1 + δJ , where

δE =
1− 2y√
1− 3y

[
rΩ

4

(
∂(ūαūβh

αβ)

∂rΩ

− ūαūβ
∂hαβ

∂r

)
+
rΩ(1− 6y)

12(1− 2y)

(
∂(ūαūβhαβ)

∂rΩ

− ūαūβ ∂hαβ
∂r

)]
,

(4.12)

together with δJ = δE/Ω. Note that the terms in the first brackets have different meanings;

the first term means the derivative between different circular orbits, and is gauge invariant

while, as explained in Appendix A, the second term is not gauge invariant; rather, as

pointed out in Appendix A, it means the derivative of spacetime dependence of ūαūβh
αβ at

the existing quasi-circular orbit with frequency, Ω, held fixed.

It will be interesting to understand the implications of the new gauge invariant quantities

Ẽ1 and J̃1 as we proceed to calculations at second perturbative order. Even without Ẽ1 and

J̃1, the relations (2.41) have another powerful implication, namely that z1 (and hence ut1)

can be calculated directly from the post-Newtonian energy and angular momentum E and

J coming from the PN equations of motion, instead of the long PN reduction of the defining

expression (2.31) as was done in Paper I. This thus gives us a new tool through which we

will be able to compare future PN results that have been obtained in different ways.

2. Post-Newtonian expansions of the invariant energy and angular momentum

The new gauge-invariant energy Ẽ1 = m1Ẽ1 and angular momentum J̃1 = m1J̃1 of the

particle 1 (with smallest mass m1) as defined by (4.6) have been obtained at first order

in the mass ratio q in Eqs. (4.11). This result applies in the strong field regime, and is

formally valid up to any post-Newtonian order. We now present the PN expressions of Ẽ1

and J̃1, valid at a finite PN order but for any mass ratio. These can be obtained using
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Eqs. (4.9) and the PN expansion of z1 given by Eq. (2.37). To write PN expressions valid for

an arbitrary mass ratio, it is appropriate to use the variables x = (mΩ)2/3, ν = m1m2/m
2,

and ∆ = (m2 − m1)/m. We find, up to 3PN order and augmented by the logarithmic

contributions at 4PN and 5PN orders,

Ẽ1 = 1 +

(
−1

4
− 1

4
∆ +

ν

6

)
x+

(
3

16
+

3

16
∆ +

ν

6
+

1

24
∆ ν − 5

72
ν2

)
x2

+

(
27

32
+

27

32
∆ +

ν

2
− 19

16
∆ ν +

39

32
ν2 +

1

32
∆ ν2 − ν3

16

)
x3

+

(
675

256
+

675

256
∆ +

[
−190

9
+

205

192
π2

]
ν +

[
−34445

1152
+

205

192
π2

]
∆ ν

+

[
19315

1728
− 205

576
π2

]
ν2 +

155

128
∆ ν2 − 4865

2592
ν3 +

35

5184
∆ ν3 − 455

31104
ν4

)
x4

+

(
3969

512
+

3969

512
∆ + ν

[
−64

15
− 64

15
∆− 7

3
p4(ν)− 7

3
∆ q4(ν)

]
− 64

45
ν2

+

[
−224

15
− 224

15
∆− 224

45
ν

]
ν lnx

)
x5

+

(
45927

2048
+

45927

2048
∆ + ν

[
4988

315
+

4988

315
∆− 3p5(ν)− 3∆ q5(ν)

]
+

11876

315
ν2 +

328

15
∆ν2 − 656

45
ν3

+

[
2494

35
+

2494

35
∆ +

5938

35
ν +

492

5
∆ν − 328

5
ν2

]
ν lnx

)
x6 , (4.13)

together with

J̃1 =
1

Ω

{(
1

2
+

1

2
∆− ν

3

)
x+

(
3

4
+

3

4
∆ +

2ν

3
+

1

6
∆ ν − 5

18
ν2

)
x2

+

(
27

16
+

27

16
∆ + ν − 19

8
∆ ν +

39

16
ν2 +

1

16
∆ ν2 − ν3

8

)
x3

+

(
135

32
+

135

32
∆ +

[
−304

9
+

41

24
π2

]
ν +

[
−6889

144
+

41

24
π2

]
∆ ν

+

[
3863

216
− 41

72
π2

]
ν2 +

31

16
∆ ν2 − 973

324
ν3 +

7

648
∆ ν3 − 91

3888
ν4

)
x4

+

(
2835

256
+

2835

256
∆ + ν

[
−64

15
− 64

15
∆− 10

3
p4(ν)− 10

3
∆ q4(ν)

]
− 64

45
ν2

+

[
−64

3
− 64

3
∆− 64

9
ν

]
ν lnx

)
x5

+

(
15309

512
+

15309

512
∆ + ν

[
4988

315
+

4988

315
∆− 4p5(ν)− 4∆ q5(ν)

]
+

11876

315
ν2 +

328

15
∆ν2 − 656

45
ν3

39



+

[
9976

105
+

9976

105
∆ +

23752

105
ν +

656

5
∆ν − 1312

15
ν2

]
ν lnx

)
x6

}
. (4.14)

The functions p4(ν), p5(ν) and q4(ν), q5(ν) have been related to the functions e4(ν), e5(ν)

in the binding energy E by Eqs. (2.50). From these expressions it is easy to verify that

Ẽ1 − ΩJ̃1 = z1 holds, together with the thermodynamic relation (4.8) and the connections

to the ADM quantities found in Eqs. (4.10).

B. Determination of high order PN coefficients in the binding energy

Black hole perturbation theory is usually formulated as an expansion in powers of the

mass ratio q = m1/m2. However, at first order in q, the symmetric mass ratio ν = q/(1+q)2

coincides with q, i.e. q = ν+O(ν2). In the extreme mass ratio limit q � 1, we may therefore

expand the redshift observable associated with particle 1 as

z1(x, ν) = zSchw(x) + ν zSF(x) +O(ν2) , (4.15)

where we recall that x = (mΩ)2/3. The result for a test particle on a circular orbit around

a Schwarzschild black hole is known in closed form as zSchw =
√

1− 3x; see Eq. (2.38c) (for

simplicity’s sake we remove the label 1 indicating the first particle). The invariant relation

zSF(x) encoding the first order mass ratio correction was first computed numerically, in the

Regge-Wheeler gauge, in Ref. [22]. Alternative self-force (SF) calculations based on different

gauges (Lorenz gauge and radiation gauge) were later found to be in agreement within the

numerical uncertainties [61, 62].

The conservative gravitational SF effect zSF(x) has also been computed up to high orders

in the post-Newtonian approximation. From the general form of the near-zone PN metric,

the conservative SF effect on z1 reads

zSF(x) =
∑
k>0

γk x
k+1 + lnx

∑
k>4

δk x
k+1 + · · · , (4.16)

where k is a positive integer, the coefficients γk and δk are pure numbers, the first logarithms

occur at 4PN order, and the dots stand for terms involving higher powers of logarithms

(lnx)p, with p > 2, which are expected not to occur before the very high 7PN order [21].26

26 The general structure of the near-zone PN expansion is known to be of the type
∑
xn/2(lnx)p, where n

and p are positive integers [63]. For conservative effects n/2 = k is a positive integer.
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The exact values of the Newtonian, 1PN, 2PN and 3PN polynomial coefficients γ0, γ1,

γ2 and γ3, as well as those of the 4PN and 5PN logarithmic coefficients δ4 and δ5 can

immediately be derived from the result (2.37), valid for any mass ratio. These analytical

results are reported in Table I.27

Coeff. Value Coeff. Value

α0 −1 γ0 2

α1 −2 γ1
1
2

α2 −5 γ2
19
8

α3 −121
3 + 41

32π
2 γ3

1621
48 −

41
32π

2

β4 −64
5 δ4

64
5

β5
956
105 δ5 −4988

105

TABLE I: The analytically determined PN coefficients {αk, βk} for utSF(y) and {γk, δk} for zSF(x).

Then Paper II showed, for the first time, that it is possible to extract from a SF calculation

valuable information corresponding to very high orders in the PN approximation (see also

Ref. [64] for a similar analysis). Indeed, by fitting the highly accurate SF data for zSF(x)

to a PN series of the type (4.16), using the exact values of the analytically determined PN

coefficients reported in Table I, the numerical values of the 4PN, 5PN, and 6PN coefficients

γ4, γ5, γ6, and δ6 could be determined.28 These are reported in Table II. Notice in particular

how the 4PN and 5PN coefficients γ4 and γ5 could be measured with high precision. Note

27 Papers I and II actually determined the coefficients αk and βk in the post-Newtonian expansion in powers

of y = (m2Ω)2/3 of the self-force effect utSF on ut1 = 1/z1, defined by analogy with Eqs. (4.15) and (4.16):

utSF(y) =
∑
k>0

αk y
k+1 + ln y

∑
k>4

βk y
k+1 + · · · .

The two sets of coefficients {αk, βk} and {γk, δk} can very easily be related using

zSF(x) =
x√

1− 3x
− (1− 3x)utSF(x) .

For convenience, we provide the values of both sets of coefficients in Tables I and II.
28 The accuracy of the SF data used in Paper II did not allow an unambiguous distinction between the

effects of the 7PN polynomial (i.e. γ7) and logarithmic contributions (δ7) in the PN expansion of zSF(x).

However, an γ7 (and α7) coefficient is included in Table II since it was used in Paper II to ensure the

goodness of the fit that was finally obtained for the lower order coefficients. It essentially captures in a

single term, to the extent available in the data used, the additional contributions from δ7 and higher PN

order coefficients. In the remainder of the present work, we shall disregard any results beyond 6PN order,
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that γ4 and γ5 coincide with the ν → 0 limit of the polynomials p4(ν), q4(ν) and p5(ν), q5(ν)

introduced in Eq. (2.37), namely

γ4 = p4(0) + q4(0) +
1701

256
, (4.17a)

γ5 = p5(0) + q5(0) +
15309

1024
. (4.17b)

Coeff. Value Coeff. Value

α4 −114.34747(5) γ4 +53.43220(5)

α5 −245.53(1) γ5 −37.72(1)

α6 −695(2) γ6 +123(2)

β6 +339.3(5) δ6 −311.9(5)

α7 −5837(16) γ7 +4210(9)

TABLE II: The numerically determined values of higher order PN coefficients, based on a fit to

the SF data given in Paper II. The uncertainties in the last digits are indicated in parenthesis.

Extending to 6PN order the 5PN-accurate expression of the circular-orbit ADM energy

M(Ω) = m+ E(Ω) given by Eq. (2.35), we have

M = m− 1

2
mν x

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+ ν e4(ν) +

448

15
ν lnx

)
x4

+

(
−45927

512
+ ν e5(ν) +

[
−4988

35
− 656

5
ν

]
ν lnx

)
x5

+

(
−264627

1024
+ ν e6(ν) + ν eln

6 (ν) ln x

)
x6

}
. (4.18)

In addition to the 4PN and 5PN unknown coefficients e4(ν) and e5(ν), we introduced further

6PN unknown coefficients e6(ν) and eln
6 (ν), which are also polynomials in ν. We wish to

determine the zeroth order coefficients of these four polynomials in the limit ν → 0, i.e. the

because we believe that a contribution from β7 confounds α7 [65]. We expect the α7 contribution would

be substantially improved if PN values could be given for the 6PN and 7PN log coefficients.
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numerical values of e4(0), e5(0), e6(0), and eln
6 (0). To do so, we shall use the first law, more

precisely Eqs. (2.40) and (2.41a), together with the SF results for the redshift observable z1.

Since Eq. (2.41a) involves the combinationM = M−ΩJ , it will be convenient to express

M as a function of the energy M alone via the “thermodynamic” relation (2.40). Indeed

we have d(M/Ω) = Md(1/Ω), from which we deduce

M = −Ω

∫
M(Ω)

Ω2
dΩ = −3

2
x3/2

∫
M(x)

x5/2
dx , (4.19)

where M is treated as a function of Ω or, more precisely, x, holding the individual masses

m1 and m2 fixed. Introducing the PN expansion (4.18) into (4.19) and integrating yields

the 6PN-accurate expression29

M = m− 3

2
mν x

{
1 +

(
3

4
+

ν

12

)
x+

(
9

8
− 19

24
ν +

ν2

72

)
x2

+

(
135

64
+

[
−6889

576
+

41

96
π2

]
ν +

31

96
ν2 +

7

5184
ν3

)
x3

+

(
567

128
+

[
128

105
− e4(ν)

7

]
ν − 64

15
ν lnx

)
x4

+

(
5103

512
+

[
−9976

2835
− e5(ν)

9
− 1312

405
ν

]
ν +

[
4988

315
+

656

45
ν

]
ν lnx

)
x5

+

(
24057

1024
+

[
−e6(ν)

11
+

2

121
eln

6 (ν)

]
ν − eln

6 (ν)

11
ν lnx

)
x6

}
. (4.20)

In the test-particle limit, we recover the 6PN expansion of the exact result, which reads

M = m+mν
(√

1− 3x− 1
)

+O(ν2) . (4.21)

The relation z1 = ∂M/∂m1 [see Eq. (2.41a)] establishes a direct link between the redshift

z1 of particle 1, and the combination M = M − ΩJ of the ADM energy and angular mo-

mentum. Making the change of variables (Ω,m1,m2) −→ (Ω,m, ν), this equation becomes

(remember that m1 6 m2, with ∆ = (m2 −m1)/m =
√

1− 4ν)

z1 =
∂M
∂m

+
1− 4ν + ∆

2m

∂M
∂ν

. (4.22)

The analogous relation for the redshift z2 of particle 2 is obtained by changing ∆ into −∆.

We then make another change of variables, namely (Ω,m, ν) −→ (x,m, ν). Since the ratio

29 Alternatively, we could have subtracted directly the PN expansions (2.35) and (2.36) and use the relations

(2.49) linking the unknown coefficients j4(ν) and j5(ν) in the angular momentum to e4(ν) and e5(ν).
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M/m does not depend explicitly on the total mass m but only through x = (mΩ)2/3, we

have m∂M/∂m =M+ 2
3
x ∂M/∂x; therefore Eq. (4.22) can be rewritten as

mz1 =M+
2x

3

∂M
∂x

+
1− 4ν + ∆

2

∂M
∂ν

. (4.23)

We can now expand ∆ =
√

1− 4ν in powers of ν, and neglect terms O(ν2) because these

contributions are not controlled in the self-force calculation of the redshift z1. Equating the

terms O(ν) in both sides of Eq. (4.23), we obtain the algebraic relations between the known

coefficients γk and δk entering the PN expansion (4.16) of the SF effect on z1, and the ν → 0

limit of the unknown coefficients ek(ν) and eln
k (ν) entering the PN expansion (4.18) of the

energy M , which we rearrange as30

e4(0) =
7

3
γ4 +

28037

960
, (4.24a)

e5(0) = 3γ5 +
9359293

161280
, (4.24b)

e6(0) =
11

3
γ6 +

2

3
δ6 +

88209

256
, (4.24c)

eln
6 (0) =

11

3
δ6 . (4.24d)

Finally, replacing the coefficients γ4, γ5, γ6, and δ6 by their known numerical values, as given

in Table II above, we find

e4(0) = +153.8803(1) , (4.25a)

e5(0) = −55.13(3) , (4.25b)

e6(0) = +588(7) , (4.25c)

eln
6 (0) = −1144(2) . (4.25d)

Any future post-Newtonian calculation of the 4PN, 5PN, or even 6PN dynamics of point-

particle binaries will have to be compatible with these numerical values.31 In principle,

these could also be recovered from an accurate post-self-force calculation based on second

30 Alternatively, the relations (4.24a)–(4.24b) between e4(0), e5(0) and γ4, γ5 could also be obtained by

substituting the ν → 0 limit of Eqs. (2.50) into (4.17).
31 We notice that the numerical values of the coefficients e4(0) and e5(0), as predicted in Ref. [66] using the

recently computed conservative gravitational self-force correction to the Schwarzschild innermost stable

circular orbit [67], are off by ∼ 180% and ∼ 320%, respectively. This probably reflects the fact that, in

the extreme mass ratio limit, even a 5PN-accurate formula for the binding energy does not reproduce

faithfully the exact relativistic result.
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order black hole perturbation theory [68]. We now turn to some possible applications of the

numerical results (4.25).

C. Other applications left for future work

We have used the first law (2.43), together with the recently determined numerical values

of high order PN coefficients in the self-force contribution zSF to the invariant relation z1(Ω)

[see Eqs. (4.15)–(4.16)], to compute new PN coefficients in the binding energy E(Ω), at

leading order beyond the test-particle approximation. However, since the first law has been

derived in full general relativity in Sec. III A, the relations (2.40)–(2.41) are expected to hold

at all (conservative) orders in a PN expansion. Making use of these relations, together with

the numerical results for the exact conservative SF effect zSF(Ω) on the redshift observable

[22, 61, 62], one could in principle compute the fully relativistic SF contribution ESF(Ω)

to the binding energy of non-spinning compact binaries [69].32 This prospect opens up the

following applications.

1. ISCO shift induced by the conservative piece of the gravitational self-force

In the test-particle limit, the innermost stable circular orbit (ISCO) of the Schwarzschild

geometry is defined as the point of onset of a dynamical instability for circular orbits (the

circular orbit for which the radial frequency squared of an infinitesimal eccentricity pertur-

bation turns negative). The orbital frequency of the Schwarzschild ISCO naturally coincides

with the frequency obtained by minimizing the specific energy ESchw = (1−2x)/
√

1− 3x−1

of a test mass in circular orbit around a non-rotating black hole. Going beyond the test-

particle approximation, the shift of the Schwarzschild ISCO frequency induced by the conser-

vative part of the gravitational self-force has recently been computed [67, 70]. This genuine

strong field result has been used extensively as a reference point for comparison with other

analytical and numerical methods.

32 Note that in order to do so, it must be assumed that the results of a SF calculation, which involve one

point particle orbiting a Schwarzschild black hole, can be used in conjunction with the first law (2.43),

which was itself derived for two point masses in the context of PN spacetimes. From this perspective,

SF calculations would essentially be treated as post-Newtonian calculations formally including all the PN

corrections (at linear order in the mass ratio).
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In a post-Newtonian context, one can also compute an ISCO (for any mass ratio) from a

stability analysis of the conservative part of the PN equations of motion [71]. Alternatively,

the innermost circular orbit (ICO), or minimum energy circular orbit (MECO), is defined as

the minimum of the PN binding energy E(x), when it exists [34]. An extensive comparison of

the SF-induced ISCO shift to the numerous PN-based estimates of ISCO and ICO available

in the literature was performed in Ref. [66]. In particular, the standard Taylor-expanded

3PN result [71], based on a stability analysis criterion of the 3PN equations of motion was

shown to perform astonishingly well.

Now, it has been shown on very general ground that, for arbitrary mass ratio compact

binaries, the definitions of ISCO and ICO are formally equivalent [72]; this conclusion does

not rely on any PN expansion, and only requires that the conservative dynamics of the

binary system derives from a Hamiltonian.33 Hence, the exact value of the ISCO frequency

shift induced by the conservative SF could (in principle) be recovered by minimizing the

reduced binding energy E/µ = ESchw(x) + ν ESF(x) +O(ν2) [69].

2. Calibration of the potentials entering the effective-one-body metric

Within the effective-one-body (EOB) framework, the circular-orbit binding energy E(x)

is in one-to-one correspondance with the “temporal” potential A ≡ −geff
tt entering the EOB

effective metric. The knowledge of the self-force correction ESF(x) to the test-particle result

ESchw(x) thus immediately translates into the knowledge of the coefficient linear in ν in the

potential A,34 i.e. the function ASF(u) such that A = 1 − 2u + ν ASF(u) + O(ν2), where

u = m/r is the usual inverse EOB Schwarzschild-like radial coordinate.

Furthermore, by combining this result to the recent constraint obtained from a SF/EOB

comparison of the periastron advance of black hole binaries on circular orbits [23, 64], one

could also compute the SF coefficient entering the expression of the “radial” EOB potential

B ≡ geff
rr , i.e. the function BSF(u) such that B−1 = 1 − 2u + ν BSF(u) + O(ν2). This

33 In a post-Newtonian context however, the location of the ICO needs not agree with that of the ISCO,

because of the truncation at a finite PN order of the equations defining these notions [71, 73].
34 Assuming that the usual mapping between the effective and EOB Hamiltonians holds at all PN orders,

and that the non-geodesic terms occuring in the expression of the effective Hamiltonian beyond 2PN

order are proportional to the radial momentum pr, at all PN orders, thus vanishing for circular orbits.

See Refs. [23, 74] for more details.
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would complete the determination of the two potentials entering the EOB effective metric

at linear order in the symmetric mass ratio ν. Such results would obviously be very useful

for improving the calibration of EOB models [74].

3. Comparison with sequences of quasi-circular initial data in numerical relativity

The resulting expression for the binding energy E(x) could also be used to revisit compar-

isons with sequences of quasi-circular initial data in numerical relativity.35 For comparable

mass black hole binaries, previous comparisons suggested that the convergence of the PN

series may improve with respect to the extreme mass ratio limit [34, 75–77]. This could be

investigated using the fully relativistic result for E(x), keeping in mind that only the first

order correction in ν beyond the test-particle result would be under control.

However, higher-order uncontrolled terms O(νn) with n > 2 in E/µ may give only a

very small contribution to the exact result. Indeed, in a PN expansion, one can check

that the terms O(ν2) and O(ν3) in Eq. (4.18) contribute less than 1% to the total 3PN

result, up to the Schwarzschild ISCO at x = 1/6. Furthermore, a similar observation has

recently been put forward in Ref. [77], for another coordinate invariant relation, namely the

general relativistic periastron advance ∆Φ(x), in the case of non-spinning binary black holes

on quasi-circular orbits, even in the strong field regime accessible to numerical relativity

simulations.
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Appendix A: Details of the self-force analysis

1. Some relevant definitions

In Ref. [22], Detweiler defines the quantities E1, Ṙ1, and J1 in terms of the particle’s

four-velocity and four-momentum by

E1 ≡ −u1t , Ṙ1 ≡ ur1 , and J1 ≡ u1φ . (A1)

In general, they are functions of the proper time, s, and the overdot represents d/ds. In

consequence,

u1α =

(
−E1,

Ṙ1 + uβ1hβ
r

1− 2m2/r
, 0,J1

)
, (A2a)

uα1 =

(
E1 + uβ1hβt
1− 2m2/r

, Ṙ1, 0,
J1 − uβ1hβφ

r2

)
. (A2b)

For quasi-circular orbits, Detweiler assumes that E1, R1 and J1 all change slowly, so that

Ė1 ∼ Ṙ1 ∼ J̇1 ∼ O(q) , (A3)

while their rates of change vary more slowly still, so that

Ë1 ∼ R̈1 ∼ J̈1 ∼ O(q2) . (A4)

Although not entirely necessary, Detweiler found it convenient to define

ūα ≡ ūα1 =

(
E1

1− 2m2/r
, 0, 0,

J1

r2

)
, (A5)

being the non-radial part of the four-velocity of the particle, and with all hαβ terms removed

(i.e. it corresponds to the non-radial velocity in the background).

There are two extra quantities that are needed in Sec. IV A and which Detweiler intro-

duced in his Appendix A of [22]. The first is simply the contraction

ūαūβhαβ =
E1

1− 2m2/r
ūβhtβ +

J1

r2
ūβhφβ , (A6)
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that follows directly from Eq. (A5), and the second, in which Ω is held fixed, is

∂gαγ

∂r
ūγū

βhαβ = − 2m2 E1

(r − 2m2)2
ūβhtβ −

2J1

r3
ūβhφβ , (A7)

in which we depart slightly from [22], to emphasize that the derivatives do not act on E1 or

J1 which, as indicated below (A1), are functions of the proper time, s, along the orbit; rather

the derivative is simply acting on components of the metric embedded in the definition (A5).

2. Gauge transformation properties

In the application discussed in Sec. IV A, we are interested in identifying gauge invariants.

Here we discuss the transformations of ūαūβhαβ, and related quantities, under infinitesimal

gauge transformations generated by a gauge vector ξα, which leads to a metric perturbation

given by

∆hαβ = −∇αξβ −∇βξα . (A8)

In his analysis [22], Detweiler assumed equatorial symmetry, so that ξθ and all its derivatives

vanish on the equatorial plane, and the resulting metric perturbations are given in his

Eqs. (B2)–(B7). As indicated in Sec. I A, and emphasized in Sec. II A, for quasi-circular

orbits we require the gauge transformation to obey the implied Killing symmetry, so that

we must have (∂t+Ω∂φ) ξα = 0. Making use of Detweiler’s (B4)–(B6) and the HKV condition,

and discarding quantities higher than first order, we find

ūαūβ∆hαβ ≡ ūαūβ∆hαβ =
E2

1

(1− 2m2/r)2

[
2m2

r2
ξr + 2Ω∂φξt

]
− 2E1

(1− 2m2/r)

J1

r2

[
∂φξt + ∂tξφ

]
+
J 2

1

r4

[
− 2rξr +

2

Ω
∂tξφ

]
, (A9)

where the large square brackets contain only metric component transformations. We can

write this alternatively as

ūαūβ∆hαβ =
2E2

1

(1− 2m2/r)2

[
r

(
m2

r3
− Ω2

)
ξr
]

+
2E1

1− 2m2/r

(
ΩE1

1− 2m2/r
− J1

r2

)[
Ωrξr + ∂φξt

]
− 2J1

r2

(
ΩE1

1− 2m2/r
− J1

r2

)[
− rξr +

1

Ω
∂tξφ

]
, (A10)
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where, in addition, the large round brackets contain terms which vanish to O(q) at the

particle. Thus, it is clear that ūαūβ∆hαβ is gauge invariant when evaluated at the particle.

This result is needed in (4.5) to establish that z1 is gauge invariant through first order in q.

To evaluate ūαūβ∂r∆hαβ at the particle, we need differentiate only the first large round

bracket, and we obtain the equivalent of Detweiler’s equations (B14) and (B15):

ūαūβ
∂∆hαβ
∂r

=− 6E2
1

(1− 2m2/r)2

m2

r3
ξr, so that (A11a)

ūαūβ
∂∆hαβ
∂r

∣∣∣∣
•

=− 6Ω2

(1− 3y)
ξr , (A11b)

where the notation |• indicates that the RHS expression has been evaluated at the particle.

This was used by Detweiler to show that Ω [see his Eq. (28)] was indeed gauge invariant.

To evaluate ūαūβ∂r∆h
αβ, we should differentiate all large round brackets, and we find

ūαūβ
∂∆hαβ

∂r
= −6

E2
1

(1− 2m2/r)2
Ω2ξr + 6

E2
1

(1− 2m2/r)2

(
Ω2 − m2

r3

)
ξr

+
4

r

(1− 3m2/r)

(1− 2m2/r)

ΩE2
1

(1− 2m2/r)2

[
Ωrξr + ∂φξt

]
− 4

r

E1

(1− 2m2/r)

(
ΩE1

1− 2m2/r
− J1

r2

)[
Ωrξr + ∂φξt

]
(A12a)

− 4

r

(1− 3m2/r)

(1− 2m2/r)

Ω2E2
1

(1− 2m2/r)2

[
− rξr +

1

Ω
∂tξφ

]
+

4

r

ΩE1

(1− 2m2/r)

(
ΩE1

1− 2m2/r
− J1

r2

)[
− rξr +

1

Ω
∂tξφ

]
, so that

ūαūβ
∂∆hαβ

∂r

∣∣∣∣
•

= 2
(1− 6y)

(1− 2y)

Ω2

(1− 3y)
ξr +

4

r

Ω

(1− 2y)

[
∂φξt − ∂tξφ

]
, (A12b)

a result not given explicitly in [22]. Notice that neither ūαūβ∂rhαβ nor ūαūβ∂rh
αβ is gauge

invariant, even though ūαūβhαβ≡ ūαūβhαβ itself is. The terms discussed in (A11) and (A12)

both occur in (4.4). We see that under gauge transformations, E1 and J1 transform according

to ∆E1 = −Ω/
√

1− 3y × [∂φξt − ∂tξφ] and ∆J1 = −1/
√

1− 3y × [∂φξt − ∂tξφ], respectively.

They are thus radially gauge invariant, but not under Killing-compatible t and φ changes.
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[14] J. L. Friedman and K. Uryū, Phys. Rev. D 73, 104039 (2006), arXiv:gr-qc/0510002.

[15] C. Beetle, B. Bromley, N. Hernández, and R. H. Price, Phys. Rev. D 76, 084016 (2007),

arXiv:0708.1141 [gr-qc].

[16] N. Hernández and R. H. Price, Phys. Rev. D 79, 064008 (2009), arXiv:0812.4443 [gr-qc].

[17] J. Isenberg and J. Nester, in General relativity and gravitation: One hundred years after the

birth of Albert Einstein, Vol. 1, edited by A. Held (Plenum Press, 1980), p. 23.

[18] J. A. Isenberg, Int. J. Mod. Phys. D 17, 265 (2008), arXiv:gr-qc/0702113.

[19] J. R. Wilson and G. J. Mathews, in Frontiers in numerical relativity, edited by C. R. Evans,

L. S. Finn, and D. W. Hobill (Cambridge University Press, 1989), p. 306.

[20] L. Blanchet, S. Detweiler, A. Le Tiec, and B. F. Whiting, Phys. Rev. D 81, 064004 (2010),

arXiv:0910.0207 [gr-qc].

[21] L. Blanchet, S. Detweiler, A. Le Tiec, and B. F. Whiting, Phys. Rev. D 81, 084033 (2010),

arXiv:1002.0726 [gr-qc].

51



[22] S. Detweiler, Phys. Rev. D 77, 124026 (2008), arXiv:0804.3529 [gr-qc].

[23] T. Damour, Phys. Rev. D 81, 024017 (2010), arXiv:0910.5533 [gr-qc].

[24] L. Blanchet and T. Damour, Phys. Rev. D 46, 4304 (1992).

[25] L. Blanchet, Phys. Rev. D 47, 4392 (1993).
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