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By 2015 the advanced versions of the gravitational-wave detectors Virgo and LIGO will be on-
line. They will collect data in coincidence with enough sensitivity to potentially deliver multiple
detections of gravitation waves from inspirals of compact-object binaries. This work is focused on
understanding the effects introduced by uncertainties in the calibration of the interferometers. We
consider plausible calibration errors based on estimates obtained during LIGO’s fifth and Virgo’s
third science runs, which include frequency-dependent amplitude errors of ∼ 10% and frequency-
dependent phase errors of ∼ 3 degrees in each instrument. We quantify the consequences of such
errors estimating the parameters of inspiraling binaries. We find that the systematics introduced
by calibration errors on the inferred values of the chirp mass and mass ratio are smaller than 20%
of the statistical measurement uncertainties in parameter estimation for 90% of signals in our mock
catalog. Meanwhile, the calibration-induced systematics in the inferred sky location of the signal
are smaller than ∼ 50% of the statistical uncertainty. We thus conclude that calibration-induced
errors at this level are not a significant detriment to accurate parameter estimation.
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I. INTRODUCTION

The detection of gravitational waves (GWs) will give us empirical access to the genuinely strong-field dynamics of
spacetime and allow us to probe astrophysical phenomena inaccessible through electromagnetic observations alone.
Despite indirect proofs, like the shrinking of the orbit in the Hulse-Taylor binary, which is in excellent agreement
with the theoretical calculation [1], a direct detection of GWs is yet to occur. Gravitational-wave detectors based on
interferometry: the two LIGO instruments [2], VIRGO [4, 5] and GEO600 [7, 8], have collected data in coincidence
trough October 2010. The most recent published results [9, 10], which cover the period 4 November 2005 – 30
September 2007, do not claim detections. The LIGO instruments and Virgo will undergo major improvements in the
next few years, and will begin collecting data again by 2015, with an improved sensitivity [3, 6] that may allow for
frequent detections [11], ushering in the so-called advanced detector era.

Apart from the intrinsic scientific importance of a first direct detection, the advanced versions of the instruments
will open a new era of astronomy and cosmology, in which GWs will be used to test the strong-field regime of General
Relativity [13, 15–18]; to set better bounds for the values of the cosmological parameters [12, 19–26, 46]; to check the
validity of the equations of state for neutron stars [27]; to probe the astrophysics of binary evolution [14]; etc.

In order to extract as much physical information as possible, all the known sources of error must be eliminated,
reduced or quantified. Among the known sources of errors, there are calibration errors, i.e. errors on the measurement
of the transfer function, which converts the readout of the instruments to the strain used for data analysis.

These errors will have consequences for the estimation of the intrinsic and extrinsic parameters of the source of GWs,
as the data analyst will infer an incorrect data stream. Some previous works have dealt with calibration errors, in
the context of detection efficiency using template banks [39] and parameter estimation [67], but a complete treatment
requires the use of numerical methods, because the high dimensionality of the problem and the correlations between
the unknown parameters on which the GWs depend make it impossible to forecast the exact effects of calibration
errors analytically.

In this article we have used a Bayesian approach to study and quantify these effects for the first time in the
literature. We created catalogues of 250 software injections (i.e. signals of known shape added to synthetic noise)
in each of three mass bins: one for binary neutron star systems, one for binary black holes, and one for neutron
star-black hole systems. We have generated ten different sets of calibration error curves, with shapes and magnitudes
that should be representative of the errors we expect to have in the advanced detector era.

The catalogues of injections were analysed twice: first, by running a Bayesian parameter-estimation code [68, 71]
on the original injections, and then by running the same code after artificially adding, one at a time, the calibration
errors we had generated. As the presence of the errors was the only thing that had changed between one analysis and
the other, the differences observed in the recovered parameters and the Bayes factors could only have been caused by
the calibration errors, and we were able to quantify these differences and relate them to the calibration errors.

We have found that the effects are generally small, the shifts introduced in the estimated parameters being a fraction
of the statistical measurement errors due to the noise in the instruments. At the same time, the Bayes factors of the
signals are only slightly affected by the errors we have considered, the average shift being ∼ 0.9%, so that if the Bayes
factor were used as a detection statistic, in the way described in [68], there will not be signals that are going to be
missed because of the way the errors have changed their shapes.

This article is organized as follows: In section II we describe the interferometers and the process of calibration.
In section III we describe the errors associated with the calibration process, and how we model them.
In section IV we give some details about the Bayesian approach to parameter estimation and model selection, with
specific focus on gravitational-wave data analysis.
In section V we describe the method we have used to quantify the effects of calibration errors, and in the next section
VI we report the main results of our analysis.

II. CALIBRATION TECHNIQUES

Ground-based laser interferometric gravitational wave detectors operate in a Michelson interferometer type config-
uration, measuring the phase propagation difference between two perpendicular arms with a phase accuracy of λ/1012

(λ being the wavelength of the laser). In LIGO and Virgo, this is accomplished by enhancing the GW induced phase
changes using 4km long Fabry-Perot resonators in each of the interferometer arms, optimising the integration time
of the detector to GWs of a few hundreds of hertz. In order to analyse the effects of calibration errors on parameter
estimation, as we seek to do in this article, we abstract the incredibly complex interferometer to a single degree of
freedom sensor, only sensitive to differential arm length (DARM) changes, which are expected to contain the grav-
itational wave signals. In order to operate such a sensor in a continuous fashion, the DARM signals are measured
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in closed loop feedback, correcting the measured deviations and keeping the interferometer at the desired operating
point. A reduced block schematic of the feedback loop involved is shown in Fig. 1.

Figure 1. A schematic representation of the IFO with the subsystems described in the text.

The schematic immediately indicates some kind of ‘in-loop’ measurement, where any disturbance is suppressed
by the control loop, leaving the interferometer output dependent on the performance of the feedback. In order to
reconstruct the actual GW signal, we require accurate knowledge (transfer functions) of all components within the
feedback loop. It is the uncertainty in the overall loop transfer function that provides us with an error on the
calibration of our gravitational wave detector. The sensing method used provides the differential phase measurement
at the output of the interferometer and is based on the Pound-Drever-Hall (PDH) technique [28, 29], Within the
necessary bandwidth, the PDH technique provides a signal, e(f), also called the error signal, that is proportional to
the measured deviation. With reference to Fig. 1, we see that the external length perturbations, ∆Lext, transfer to
the error signal by

∆Lext(f) = R(t, f)e(f), (2.1)

where, e(f), is the error signal output coming from the interferometer and R(t, f) is the frequency dependent response
of the closed loop feedback control system (the time dependence being there to recall that the behaviour of the
instrument changes with the time, see below). Within the interferometer calibration nomenclature, R(t, f) is usually
referred to as the length response function and completely describes the transfer function between the residual change
in DARM and the digital error signal. The calibration of gravitational wave detectors is an entire study unto itself and
much is involved in extracting an accurate response for different components within the feedback loop. Evaluating
the blocks in Fig. 1 shows that calibration of the detector output involves three main subsystems. The uncertainty
in each of the subsystem’s transfer functions carries with it a source of calibration errors, which defined by

• The transfer function of the arm cavity C ′(t, f), which is also known as the sensing function and can be split
into a complex frequency dependent part and a slow varying time dependent part: C ′(t, f) = C(f)α(t).

• The digital filter D(f) is applied to the measured error signal and ‘shapes’ the feedback loop response time and
the amount of disturbance rejection from external noise.

• The actuation function A(f) transfers the ‘knowledge’ of the filtered error signal into a physical correction force
on the interferometer. This can be, for example, the force exerted by a voice coil onto the test masses in the
interferometer arms.

We can set up a set of self consistent equations that describes the the behaviour of the closed loop system. With
reference to the variables in Fig. 1 these are,

∆Lres = ∆Lext − x (2.2)

e(f) = α(t)C(f)∆Lres (2.3)

dc(f) = e(f)D(f) (2.4)

x = A(f)dc(f). (2.5)

Rearranging the equations in Eq.(2.3) to Eq.(2.5), one can find, after some algebra, the explicit expression for the
length transfer function term, R(t, f) as:

R(t, f) =
1 + α(t)G(f)

α(t)C(f)
(2.6)
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where we introduced the loop gain function, G(f) = A(f)C(f)D(f), also known as the open loop gain of the system.
The loop gain G(f) of the feedback system is obtained by breaking the loop at an arbitrary point and multiplying
all sub-systems by going round the loop once. When analysing the performance of our gravitational wave sensor it
is useful to create a measurement error budget. For the analysis of calibration errors, the error budget describes the
noise sources introduced by the various subsystems in the feedback loop. In general, the individual noise contributions
are either directly measured or inferred, using different methods. In particular, these methods are:

• The time-dependent part of the sensing function is measured by injecting digital signals of known shape, prior
to the actuation.

• The calibration of the actuation function usually yields the largest source of errors.Until the fifth LIGO science
run, the main method to measure the actuation function was the so-called free-swinging Michelson technique.
Recently, a new method, called photon calibrator (PCal) has been introduced; it uses a laser to push the end
mirrors with a known radiation pressure.

• The digital filters D(f) are very well known functions to which we do not assign errors.

A full treatment of different gravitational wave interferometer calibration techniques, with their related errors, are
described in [30, 32–34, 38]. Note that the time dependent part of R(t, f) is slowly varying, with time scales on the
order of days, while the typical signals of our interest occur on time scales of several minutes1. By pre-allocating the
errors due to the time dependence of the length response function, we will commit to a slight abuse of notation and
write R(t, f) = R(f), and include the time dependent measurement errors associated with R(t, f) to the measurement
of α(t).

The transfer function R(f) is a complex function. Hence, we can write it in polar form:

R(f) ≡ A(f)eiφ(f). (2.7)

Once the transfer function is known, the DARM can be calculated directly using Eq. (2.1) from which the strain
follows immediately:

d(f) =
∆Lext
L

(2.8)

where L is the arm length of the IFO in the absence of external solicitations.

III. CALIBRATION ERRORS

The calibration procedures are not free from systematic effects. In general the transfer function will not be known
with arbitrary precision, but it will be different from the “exact” one. These differences will be present both in
amplitude and in phase:

Rm(f) ≡ [A+ δA]ei(φ+δφ) =

[
1 +

δA

A

]
eiδφ(f)Re(f) (3.1)

Henceforth we will use an index e to denote the exact length function, and all the quantities that are built from it,
and and index m to denote quantities which are measured, and hence affected by calibration errors (CEs). The errors
are usually reported as relative errors for the amplitude δA/A and as the absolute ones for the phase (in radians or
degrees).

In the scenario where calibration errors are present and not negligible, the experimenter will be using the measured
transfer function Rm(f) and not the correct one, therefore the inferred values for the DARM and data stream will
also be different from their true value. From Eqs. (2.1), (2.8) and (3.1):

dm(f) = Rm(f)
e(f)

L
= K(f)de(f) (3.2)

1 There are other kind of longer signals, which are scientifically interesting (e.g. stochastic background, pulsars signals) but they are not
considered in this work.
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where, in order not to burden the formulae, we have introduced a function K(f) that conveys the errors for both
phase and amplitude:

K(f) ≡ [1 +
δA(f)

A(f)
]eiδφ(f) (3.3)

When a GW signal s(f) and noise n(f) are present in the data, they will be affected by the errors in the same way:

dm(f) ≡ nm(f) + sm(f) =

= K(f)de(f) = K(f) [ne(f) + se(f)] (3.4)

which straightforwardly gives:

sm(f) = K(f)se(f) (3.5)

nm(f) = K(f)ne(f). (3.6)

Note that the errors do not affect what is really happening in the IFO, which is the error signal, but only the way
in which this quantity is interpreted by the observers in terms of data stream.

The effects of CEs on detection statistics, and SNR, have been already the object of the work of several groups.
It is known that CEs do not affect the optimal SNR [46]. This is easily verified starting from the definition of the
optimal SNR ρ:

ρ2 ≡ 4

∫
df
s(f)s∗(f)

S(f)
(3.7)

where we have introduced the one-sided noise spectral density (PSD) S(f), which is the Fourier transform of the noise
autocorrelation function. There are several equivalent definitions for this quantity. The one we find the most useful
is (see [48]):

δ(f − f ′)S(f) ≡ 2 〈n(f)n∗(f ′)〉 (3.8)

where the 〈 〉 indicates an average over an ensemble of noise realizations. We can easily infer the effect of CE on the
noise PSD, using Eq. (3.6):

Sm(f) ∝ 〈n(f)n∗(f ′)〉 =

[
1 +

δA(f)

A(f)

]2

Se(f) (3.9)

which shows how only amplitude errors affect the noise PSD. From Eq. (3.7) and (3.9) the invariance of the optimal
SNR follows nearly immediately:

ρ2
m ≡ 4

[ ∫ fup

flow

df
sm(f)sm(f)

∗

Sm(f)

]
=

= 4

[ ∫ fup

flow

df
se(f)se(f)

∗
[1 + δA/A]2

Se(f) [1 + δA/A]2

]
=

= 4

[ ∫ fup

flow

df
se(f)se(f)∗

Se(f)

]
= ρ2

e. (3.10)

On the other hand, CEs do affect the actual SNR recovered by detection pipelines. In Ref. [44] it was theoretically
calculated that the effect of CEs on the recovered SNR are of second order, for small errors. This fact was then
verified experimentally, using hardware injections, during the first science run of the LIGO instruments ([66]), finding
that the recovered SNR depended quadratically on the time dependent part of the sensing function, α(t).
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Theoretical approaches to the effects of CE on signal detection and template bank searches have been pursued in
Refs. [39–41]. In [67] these studies were extended to include the effects of parameter estimation for various kind of
signals. A theoretical study that makes use of Bayesian analysis is being performed by one of the authors [43].

Without going into details, it seems clear that calibration errors have the potential to impact the measurement of
all of the source parameters – masses, sky location, distance, inclination and orientation – because of the complicated
correlations that exist between these parameters. Therefore, precisely evaluating the impact of calibration errors
requires a careful numerical analysis that coherently fits all parameters simultaneously, and this is the analysis we
present in subsequent sections.

Here we rely on approximations to crudely estimate the most significant biases due to possible calibration errors.
The intrinsic parameters (the two component masses, and potentially spins, though we do not consider these here)
leave a very strong signature on the phase evolution of the gravitational waveform, and are primarily measured through
phase rather than amplitude information. The sky location can be estimated by timing triangulation between the
arrival times of the GW signal at different detectors. The inclination and orientation angles are functions of the
relative signal amplitudes and phase shifts at the detectors, while the distance is given by the overall signal amplitude
once other parameters are known. These angles and distance are strongly correlated with each other, but relatively
weakly correlated with the intrinsic parameters.

Calibration errors can be divided into three types: timing errors, amplitude errors and frequency-dependent phase
errors, and one can estimate the permissible ranges on the three error types subject to the condition that systematic
biases must remain below statistical measurement uncertainties.

1. Timing errors. These primarily affect sky localization by influencing timing triangulation, and can be seen as a
special case of phase errors described below (phase errors with linear dependence on the frequency). A source
can be timed to a O(1/SNR) fraction of a wave cycle, with the best timing happening at the “bucket” of the
noise spectrum, around 100 Hz. Thus, we may expect timing accuracies of order a millisecond. Meanwhile, the
typical baseline (separation between detectors) is of order 10 milliseconds of light travel time, leading to statistical
measurement uncertainties of order 10 degrees for a pair of detectors. Timing errors will, therefore, become
significant relative to measurement uncertainties only if they constitute a significant fraction of a millisecond,
and calibration-induced biases should be negligible for timing errors of less than ∼ 0.1 ms. (Note, however,
that measurement errors improve with more detectors, so an expansion of the detector network will increase
constraints on timing errors.) In this work we we will not consider this kind of errors, as the actual timing
errors measured by the calibration teams [30, 32, 33] are much smaller than the values which might lead to large
biases.

2. Amplitude errors. If constant amplitude errors lead to a fixed scaling of the measured amplitude in all detectors,
they would only affect the distance estimate and none of the other parameters. Distances are not particularly
well-measured by GW networks, with typical fractional uncertainties of perhaps 300/SNR%, so for an individual
source, amplitude calibration errors of under 20% should not lead to dominant systematic errors, except for
the loudest events.2 Of course, amplitude calibration errors will not be identical in the various detectors, so
inclination and orientation will be affected along with distance, but due to the difficulty of measuring these
parameters precisely, similar constraints apply. Frequency-dependent amplitude errors should not significantly
influence parameter estimation for non-spinning signals, since estimates will primarily be sensitive to a (noise-
weighted) average amplitude; however, spin measurements are sensitive to modulations of signal amplitude which
could mimic the effects of orbital precession, hence such errors could cause more problems if spin parameters
are also being estimated.

3. Frequency-dependent phase errors. Frequency-dependent phase errors are, perhaps, the most dangerous of all,
since they can influence the measurements of the binary’s intrinsic parameters. Such errors can mimic the effects
of different post-Newtonian corrections to the phase evolution, leading to systematic biases in the measurements
of the masses. However, these phase errors are localized in frequency and do not accumulate over the inspiral.
Therefore, sensitivity to these errors is limited by the overall measurement uncertainty on the waveform phase,
which is expected to be on the order of 1/SNR of a cycle at the bucket, and worse elsewhere. Therefore,
frequency-dependent phase errors of less than ∼ 10–20 degrees should not lead to significant biases for all but
the strongest signals.

The rest of the paper is dedicated to the systematic study in the context of Bayesian inference of the combined
effects of phase and amplitude calibration errors on parameter estimation for GW signals emitted during the in-spiral
of compact binary systems whose components are not spinning.

2 It is worth pointing out, however, that if amplitude calibration errors stay constant over the run, these distance biases would be constant
unlike the randomly fluctuating measurement uncertainties, so they could have a pernicious effect on analyses that combine observations
of multiple sources to study cosmology [25, 26].
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IV. BAYESIAN MODEL SELECTION AND PARAMETER ESTIMATION

An excellent introduction to Bayesian model selection, and its application to GW detection an parameter estimation
can be found in [68]. In this paragraph we will only summarize the main results and nomenclature we will use in the
remainder of this work.

Given a set of data ~d and some prior information I, the probability for a model (or hypothesis) Hi is given by
Bayes’ theorem:

P (Hi|~d, I) =
P (Hi|I)P (~d|Hi, I)

P (~d|I)
, (4.1)

where P (Hi|I) is the prior probability for the hypothesis Hi, and P (~d|Hi, I) is the posterior probability for the data

given that the hypothesis Hi is true, also called the likelihood for the data. The factor in the denominator, P (~d|I), is
the marginal probability for the data, integrated over the different hypotheses or models.

Without enumerating all the different models, we can calculate the relative weight between two of them (the odds
ratio), using Eq. (4.1). More precisely, the odds ratio of a model Hi and a model Hj is:

Oi,j =
P (Hi|I)

P (Hj |I)

P (~d|Hi, I)

P (~d|Hj , I)
=
P (Hi|I)

P (Hj |I)
Bij , (4.2)

where we have introduced the Bayes factor Bij , or ratio of likelihoods, between model Hi and model Hj . Note that

the marginal probability for the data, P (~d|I), cancels out when the ratio is calculated.

In a typical scenario, the GW signal will depend on a set of unknown parameters ~θ that we want to estimate. These
can be both extrinsic parameters, such as the position of the GW source on the sky, and intrinsic parameters, such

as the mass of the component stars. If we indicate with Θ the parameter space in which ~θ dwells, we can obtain the
likelihood for the data given the generic model H by marginalisation of the likelihood given a particular realization

of ~θ, and obtaining the evidence ZH:

ZH = P (~d|H, I) =

∫
Θ

p(~θ|H, I)p(~d|H, ~θ, I)d~θ, (4.3)

where we have introduced the prior probability distribution p(~θ|H, I) for the parameters ~θ over the parameter space.

From the evidence, the posterior distributions for the parameters ~θ given the data are easily obtained using Bayes’
theorem:

p(~θ|~d,H, I) =
p(~θ|H, I)p(~d|, ~θ,H, I)

ZH
(4.4)

Given the high dimensionality and the analytical form of the functions involved, the integral (4.3) cannot be
calculated analytically, and one has to rely on numerical methods. For our computations, we relied on the Nested
Sampling algorithm ([47]) in the form in which it has been implemented for the LIGO Algorithm Library (LAL) [45]
by Veitch and Vecchio [68].

In what follows, we will consider two hypotheses: (i) HN will be the hypothesis according to which the data consist
solely of noise; (ii) HS will be the hypothesis that the data consist of noise plus a GW:

HN → d(f) ≡ n(f) (4.5)

HS → d(f) ≡ n(f) + s(f, ~θ) (4.6)

where we have made explicit the signal dependence on the unknown parameter vector ~θ. If we assume that the noise
in the IFO is stationary and Gaussian 3 the likelihood for the data for the two models can be written as:

3 This is not true in general, as the noise in the IFOs is a combination of smaller Gaussian fluctuations and larger non-Gaussian outliers
(“glitches” in the data). The use of coincident requirements between different sites and a whole set of data quality and vetoes procedures
help reducing the number of glitches [75–77]. New techniques are being developed to deal with residual non-Gaussianity [79]. For
simplicity, in this work we will assume that the candidates events which survive all of these checks are buried in Gaussian noise.
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p(d|~θ,HN , I) ∝ e−〈d(f)|d(f)〉/2 (4.7)

p(d|~θ,HS , I) ∝ e−〈d(f)−h(~θ)|d(f)−h(~θ)〉/2 , (4.8)

where h(f, ~θ) is the GW signal, and we have defined a noise-weighted inner product:

〈a(f), b(f)〉 ≡ 2<
[ ∫ fup

flow

df
a(f)b(f)∗ + a(f)∗b(f)

S(f)

]
Once the analysis is done for a given data stream, one is provided with two pieces of information:

• The Bayes factor between the models HS and HN (BSN for Bayes Signal vs Noise) which tells how confident
we are that there is a signal buried into the noise.

• The posterior distributions for the unknown parameter on which the signal (if present) depends, which allow
estimates for the physical and extrinsic parameters of the GW source.

The method is easily generalized to the case where a coherent analysis is being performed, using a network of several
IFOs. If we indicate with d(J)(f) the data stream in the J-th detector, the likelihood of having a signal or only noise
in the J-th detector will be exactly the same as in Eqs. (4.7) and (4.8), with d↔ d(J). If the detectors are far enough
apart that the noise in one is not correlated with the noises in the others, the likelihood for each IFO is statistically
independent of the likelihood for the other instruments, and a joint likelihood can be built just multiplying the single
IFO expressions:

p(~d|~θ,Hk, I) =
∏
(J)

p(~d(J)|~θ,Hk, I) , (4.9)

with k = N or k = S. Eq. (4.9) can be used to calculate the network evidence, and perform coherent analysis.

V. METHOD

A. Analysis and Noise Model

We have tested the effects of CE on PE using software injections, i.e. artificially adding signals of known shape
into simulated noise, for a network consisting of the two advanced versions of the LIGO and Virgo instruments. We
have used the analytical expressions for the noise spectral densities as coded in LAL [45]. The square root of S(f) for
advanced LIGO and Virgo is shown in Fig. 2.

To be more precise, for each IFO, a GW signal s(f) is added to a stream of noise generated using the designed
noise PSD for that IFO, n(J)(f) to form the data vectors

d(J)
e ≡ s(J)

e (f) + n(J)
e (f), (5.1)

that are combined to form a joint likelihood, Eq. (4.9), which is evaluated by the Bayesian pipeline. The subscript
e indicates that the transfer function used to create the stream is the exact one, Re(f). The final outcomes of this
analysis will be the BSNe (logarithmic Bayes’ factor of the signal hypothesis vs the noise hypothesis) and the posterior

distributions of all the component of ~θ, from which the mean θ̄αe , standard deviation ∆θαe , as well as the median and
higher moments of the distribution for the parameter θα can be calculated.

Once the exact analysis is completed, we proceeded with a similar analysis in which we artificially introduced
calibration errors on signal and on noise as in Eqs. (3.5) and (3.6). We then compared the BSNe and posterior
distributions obtained from our pipeline in the two cases. We kept fixed all relevant parameters of the injection and
of the noise generation. The only difference between the two datasets are the presence of calibration errors in one of
them.

In the next few subsections we will discuss in detail which GW model waveforms have been used and how the
calibration error curves have been generated.
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Figure 2. (color online) The high-power, zero-detuning noise curve for Advanced LIGO (red continuous line), and the BNS-
optimized Advanced Virgo noise curve (blue dashed)

B. Waveforms and parameter space

When software injections are used to test a parameter estimation pipeline, there are three major factors to take
into account: (i) the signal being injected, (ii) the waveform used to recover the signal (known as template), and (iii)
the noise added to the signal. The noise model we employed has been described in Sec. V A, hence in this section we
will proceed in the description of (i) and (ii).

The waveform models we used for injections belong to the Effective One Body (EOB) family [49–57].
Without entering into details, which can be found in the references above, the main idea behind the EOB approach

is to treat the two-body problem as an effective one-body problem, as if a mass equal to the reduced mass of the
system were moving in some effective space-time metric [51]. The EOB’s main ingredient is the effective Hamiltonian,
from which the evolution of the radial and angular coordinates, as well as their momenta, can be calculated using
Lagrange equations. This allows to write the GW signal, as a function of the reduced time t̂ ≡ t/M (M being the
total mass of the binary system) as:

h(t̂) = v2
ω(t̂) cos(ϕ(t̂)) (5.2)

where vω is a power of the angular velocity, obtained deriving the phase with respect to the reduced time:

vω ≡
(
dφ

dt̂

) 1
3

and ϕ(t̂) is twice the orbital phase: ϕ ≡ 2φ.
It is important to note that using a template family which is different from the injected signal’s may introduce

a bias in the recovered posteriors for the parameters [39]. However, let us remember that in this work we are not
interested in the absolute performance of the code, or in the match between the injected and recovered parameters.
What we want to measure, instead, are the effects of CEs, i.e. how much the posteriors are affected by the presence of
CEs. Now, as we are dealing with small errors, it makes sense to assume that even if a bias was introduced, it would
be the very similar while recovering se(f) or sm(f), and will become negligible when the difference θαm(f)− θαe (f) is
taken, which we use to quantify the shift introduced by the CE. With this in mind, we have chosen to use a frequency
domain template, the Taylor F2 discussed here below, because it is known analytically, and no differential equations
have to be solved, thus the performance of the code is greatly improved compared to more sophisticated models.

The TaylorF2 waveform [58] is calculated starting from the time-domain Post-Newtonian (PN) approximation of
the signal:

h(t) = v2(t) cos(ϕ(t)) (5.3)

which looks equal to eq. (5.2). The difference is that now the amplitude and the (double of the) orbital phase
are calculated starting from PN expansions of the energy flux and luminosity, and assuming that the adiabatic
approximation holds; and are known functions of the system’s parameters (see [59] and references therein). The
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Fourier transform of eq. (5.3) can be analytically calculated using the so called stationary phase approximation [60],
which consist in developing the phase of the signal around its stationary point. The final result is:

h(f) =
Q(θ, φ)M

5
6

π
2
3D

√
5η

24
f−

7
6 ei ψ(f) (5.4)

where the phase is given at the 3.5 PN order by:

ψ(f) = 2πft0 + φ0 −
π

4
+

3

128ηv5

7∑
k=0

αkv
k (5.5)

and v ≡ (πMf)
1
3 . The coefficients αi, that depend on the total and symmetrized mass, can be found in [61, 62].

The function Q(θ, φ) depends on the coordinates of the source in the detector frame. When more IFOs are used to
perform coherent analysis, one has to use a common frame, and the functions Q will depends both on the spherical
coordinates of the source in the common frame and on the Euler angles that rotate the detector frame to the common
frame [42].

The signal emitted by a binary system with zero eccentricity4 and non-spinning components will depend on nine
parameters:

• A reference time (usually the detection time, or the coalescence time) and the phase the waveform had at that
time: t0 and φ0.

• The total mass M = m1 + m2, and the symmetric mass ratio η = m1m2

(m1+m2)2 . The chirp mass M = η
3
5M is

often used instead of the total mass, as it is generally the best-determined variable.

• The luminosity distance of the system, D.

• The polarization angle, ψ [64].

• The angle formed between the line of sight and the system orbital angular momentum, ι.

• The coordinates of the sources in the common frame, right ascension (RA) and declination (dec).

The injections were collected in three catalogues, each one representative of a different kind of binary system,
composed of two neutron stars (BNS), two black holes (BBH) or a neutron star and a black hole (BHNS). We
will denote those catalogue as Ej with j=BNS, BBH, BHNS. We have assumed that a NS has a mass in the range
[1.4, 2.3]M� and BH in the range [9.0, 11.0]M�. While there are scientific reasons to believe that the mass of a NS
is in that range [63], for the BH the range of allowed masses is much broader, going from a few solar masses up to
thousands of solar masses for the black holes in the center of the galaxies. We have chosen a range centered around
10M� as that is the value most often used in the GWs data analysis literature. For each catalogue, the distances of
the signals were randomly drawn from ranges chosen in such a way that the corresponding SNR would have values
like those we expect from detections with the Advanced Interferometers. The corresponding mass for the two objects,
and the distance, for binary systems in the classes above are given in Table I.

m1 m2 D
BNS [1.4, 2.3] M� [1.4, 2.3] M� [150, 220] Mpc
BBH [9.0, 11.0] M� [9.0, 11.0] M� [700, 1000] Mpc

BHNS [1.4, 2.3]M� [9.0, 11.0] M� [300, 500] Mpc

Table I. Mass and distance ranges for the systems considered

Each catalogue was filled with 250 signals, whose corresponding masses and distances were generated by sampling
uniform distributions on the intervals indicated in Table I. The other parameters, the sky positions of the sources as
well as the polarization and inclination angles, were generated by sampling uniform distributions on the 2-sphere.

It is worth noticing that the only things that change while going from the I-th event of one catalogue to the I-th event
of another catalogue are the masses and distance, while the other parameters are the same. This implies that we can
use this work to quantify the effects of CEs on signals having comparable masses but different positions, polarization,
inclination and distances (this is done analysing each catalogue) and the effects on signals having the same positions,
polarizations and inclination, but different masses (this is done comparing a catalogue with the others).

4 By the time the system’s frequency enters the Ligo-Virgo bandwidth, most of the eccentricity will have been radiated away [35], which
is why it is usually neglected in the LIGO-Virgo literature.
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C. Generating calibration errors

It is a reasonable assumption that, at the beginning of the Advanced detectors era, the errors in the calibration
process will not be much different from what they were during the last part of the Initial detectors era [72, 73].

In order to have a good statistical sample, and take into account possible slow time variation, due to α(t), we have
generated 10 different error curves for each IFO, for both phase and amplitude.

Each of these curves was created using the following method:

• Read the typical width of the 1-sigma calibration errors curves during the last stages of the Initial detector era

• Draw 15 points in the frequency space, uniformly in log f , from Gaussian distributions with zero (one) mean
for the phase (amplitude) uncertainties

• Fit these points with a polynomial of degree 7 to obtain a smooth parametrized curve.

The aforementioned process was repeated using different seeds for the initialization of the random number generator
so to obtain different curves. An instance of the different realizations we generated is shown in Fig. 3. The interested
reader is referred to Appendix A, Figs. 13 to 21 for an overview of all the realizations. The values of the widths we
have used are given in the Table II, and refer to the values estimated during the S5 science run for LIGO and the
third science run for VIRGO [30, 31]. Adopting the LIGO-Virgo conventions, we will use the label L1 for the LIGO
instrument in Livingston, H1 for the LIGO detector in Hanford and V1 for Virgo.

Amplitude errors (%) Phase errors (Deg)
40-2000Hz 2-4KHz 4-6KHz 40-2000Hz 2-4KHz 4-6KHz

H1 10.4 15.4 24.2 4.5 4.9 5.8
L1 10.1 11.2 16.3 3.0 1.8 2.0

40-2000Hz 2-4KHz 4-6KHz 40-500Hz 500-2000 Hz 1-2.8KHz 2.8-6KHz
V1 10.0 10.0 20.0 2.29+2.87·10−3 f 0.5729 +6.3·10−3 f 6.87 2.53·10−3 f

Table II. The widths used for the error curves generation. The phase error width for Virgo depend on the frequency f [31]

We will indicate with δAi/Ai and δφi the i-th realization of the amplitude and phase errors. Note that drawing the
points uniformly in log f is equivalent to assuming that there is a correlation length between the errors at different
frequencies which increases linearly with the frequency. We will consider different possibilities in future work, even
though the consistency of the results we have obtained using the various curves in this work (see sec. VI C below)
suggests the results are not extremely dependent on the exact shape of the calibration error curve.

VI. RESULTS

A. Effects on Parameter Estimation

Because of the different ranges in which each parameter can vary, we have normalized the difference in the means or
medians of the parameters inferred from runs with and without calibration errors by their standard deviation. More
precisely, if θαe and ∆θαe are the median and standard deviation of the parameter θα we would measure for a given
signal if we knew the exact transfer function, while θαm is the median we measure when CEs are present, we can build
the quantity:

Σα ≡ θαm − θ
α
e

∆θαe
, (6.1)

the meaning of which is clear: it measures the shift introduced in the estimate of θα by the CEs in units of standard
deviations calculated from the probability distribution for the same parameter in the absence of CEs. For each
injection, say the i-th, in the catalogue Ej we can calculate the quantity (6.1):

Σαi ≡
θi
α
m
− θiαe

∆θi
α
e

, i=1..250 (6.2)
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Figure 3. (color online) The first CE realization for the amplitude (top) and phase (bottom).

where θi is the median for parameter θi. We also compute distributions for this quantity for all of the injections in the
catalogue, and for all the parameters of the model waveform. The resulting distributions will look in general similar
to Fig. 4 which shows the histogram for the chirp mass M measured using the BHNS catalogue5 and the first CE
realization.

Figure 4. (color online) The distribution of ΣM for the signal in the BHNS catalogue, using the first CE realization. The
vertical blue line correspond to a null shift.

Note that the distribution for ΣM looks quite symmetric and well centred around zero, meaning that there is not
a net bias introduced by CEs but, instead, some of the injections in the catalogue acquire a positive bias while others
a negative one. We found that this behaviour is common to all parameters except for the distance. The reason is
easy to understand: with other parameters fixed, the distance is inversely proportional to the amplitude of the signal,
and is therefore directly affected by the amplitude errors of the transfer function. As an example, in the same CEs

5 The results are similar for the three catalogues. To avoid having too many figures, we have chosen to show plots only for the BHNS
catalogue. It is understood that one would get very similar plots for the other two catalogues.
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realization, Fig. 3, the amplitude errors are positive for the three IFOs. The over-estimated amplitudes result in an
under-estimate of the distance, so the source is inferred to be closer than in the absence of CEs, Fig. 5.

Figure 5. The distribution of ΣD for the signals in the BHNS catalogue, using the first CE realization. The vertical blue line
correspond to a null shift.

As a summary for our results, we will report the mean Σ, and standard deviation ∆Σ, of the distribution for Σα,

together with the median, Σ , the 5th and 95th percentiles, for each parameter and each catalogue, averaged over the
10 CE realizations. It’s important to remember that Σs represent the effect of systematic errors and are not normally
distributed. In particular 2∆Σ does not to contain ∼ 66% of the results. The results are summarized in Tables III, IV
and V.

The distribution for Σα has been calculated using only the injections whose network SNR is greater than 8, which
we used as a proxy for the sensitivity of GW searches. It is important to note, however, that excluding those injection
(which are ≈ 20% of the total number) does not affect our analysis in a significant way. On the contrary, those weak
signals would produce posterior distributions with large standard deviations, and thus small Σs, reducing the spreads
of the Σs. It is interesting to check whether the net bias (not weighted by the standard deviation) is a function of the
SNR. At first one might think that the effect must be not dependent on the SNR, as this is the case, for example,
for the bias introduced by using wrong templates [78]. When it comes to calibration errors, however, there is an
important difference: not only the template but also the noise is affected (see eq. 3.6). This fact, together with eq. 11
of [78] makes it easy to understand that calibration errors will introduce a bias scaling like SNR−1. This is confirmed
by plots like Fig. 6 which shows ΣM for the same signals as Fig. 4 plotted against the SNR. As the random errors
decrease with the SNR, the fact that the ratio between the bias and the standard deviation (i.e. ΣM) is not increasing
with the SNR implies that the net bias is also decreasing with the SNR.

Figure 6. (color online) ΣM for the signal in the BHNS catalogue, using the first CE realization, plotted against the SNR. The
fact that the spread does not increases with the SNR implies that the net bias θMm − θ

M
e decreases with the SNR.

The Σs have means very close to zero for all the parameters, indicating that, when averaging over many events and
the many CEs realizations, there are no preferred directions for CE-induced systematic biases in parameter estimates.
When it comes to the widths of the Σ distributions, we can group the parameters into three different sets:

• For the intrinsic parameters η and M, and the distance, the width is of the order 1− 2× ∼ 10−1.

• For the arrival time, the position parameters RA and dec, and the inclination, the widths are a few times larger,
∼ 3− 5× 10−1.

• The polarization and arrival phase have very large standard deviations, so the much smaller spread in their σ
is a consequence of their large standard deviations.
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Σ ∆Σ Σ 5th 95th

M -7.29·10−3 2.07·10−1 -2.35·10−3 -2.42·10−1 2.02·10−1

η -1.62·10−2 1.92·10−1 3.20·10−3 -2.49·10−1 1.68·10−1

RA 1.21·10−2 4.96·10−1 -1.64·10−3 -3.79·10−1 4.41·10−1

dec. 1.56·10−2 4.48·10−1 -1.20·10−2 -4.61·10−1 5.11·10−1

ψ -7.57·10−4 3.51·10−2 -6.80·10−4 -5.40·10−2 5.48·10−2

φ0 -2.43·10−3 3.35·10−2 -1.28·10−3 -5.62·10−2 4.78·10−2

t0 -1.93·10−3 4.47·10−1 -3.20·10−4 -3.87·10−1 3.91·10−1

D -1.37·10−2 2.33·10−1 -4.94·10−3 -2.89·10−1 2.29·10−1

ι -1.52·10−2 4.58·10−1 -9.08·10−4 -5.98·10−1 5.35·10−1

Table III. The mean Σ, standard deviation ∆Σ, median Σ, 50th and 95th percentile of Σ for all the parameters using the BNS
catalogue. These numbers are obtained by averaging over ten CEs realizations. All the quantities are pure numbers (remember
the definition Eq. 6.2 of Σ).

Σ ∆Σ Σ 5th 95th

M 1.72·10−3 8.48·10−2 3.06·10−3 -1.18·10−1 1.20·10−1

η -1.82·10−4 1.06·10−1 2.09·10−3 -1.21·10−1 1.20·10−1

RA 6.04·10−3 3.43·10−1 1.58·10−3 -4.00·10−1 4.06·10−1

dec. -3.72·10−2 3.96·10−1 -2.19·10−2 -4.89·10−1 3.95·10−1

ψ 4.52·10−5 4.16·10−2 8.63·10−4 -5.31·10−2 5.12·10−2

φ0 -3.67·10−4 4.18·10−2 -2.26·10−4 -4.96·10−2 4.99·10−2

t0 -3.14·10−2 3.76·10−1 -7.10·10−3 -3.03·10−1 2.48·10−1

D -3.75·10−2 2.35·10−1 -1.18·10−2 -3.99·10−1 2.18·10−1

ι 9.97·10−3 3.57·10−1 -6.66·10−3 -3.42·10−1 4.94·10−1

Table IV. Same as Tab. III, but using the BBH catalogue.

The averaged numbers we gave in tables III, IV and V describe the typical scenario, as they were obtained averaging
among the 10 CE curves, reducing the impact of CE curves which had produced the largest spreads. An alternative
representation is shown in Fig. 7, where we plot the median of Σ for each parameter (except ψ and φ0, as we have
seen they are always estimated with huge errors) averaged over the 10 CE realizations, with error bars whose min
and max values are the worst 5th and 95th percentiles encountered in the 10 CE runs. These error bars yield a
conservative estimate of the impact of calibration errors when the actual CE realization and the statistics of the
injection parameters line up to produce the largest shifts in parameter estimation.

Apart from the 1D results we have reported, it is interesting to verify how the confidence in our knowledge of
the position of the source in the sky changes because of the CEs, as this will capture the joint variation of RA and
dec, taking into account their correlation. Let us call Me = (dece,RAe) the point in the unit sphere whose spherical
coordinates are given by the median value of RA and dec calculated in the exact run. Using the line element of a 2D
sphere, we can write the size of the random error in the estimation of Me as

ε2e ≡ ∆dec2
e + sin

(π
2
− dece

)2

∆RA2
e.

Adding the CEs will similarly yield the median sky location Mm=(decm,RAm), and we can measure the distance in
the unit sphere between the points Me and Mm:

Σ ∆Σ Σ 5th 95th

M 7.68·10−3 1.02·10−1 6.44·10−3 -1.33·10−1 1.51·10−1

η 7.27·10−3 1.28·10−1 8.84·10−3 -1.45·10−1 1.59·10−1

RA 1.44·10−2 3.87·10−1 8.35·10−3 -4.25·10−1 4.58·10−1

dec. -5.10·10−2 4.49·10−1 -2.43·10−2 -5.32·10−1 4.34·10−1

ψ -3.68·10−3 5.26·10−2 -2.06·10−3 -5.51·10−2 5.09·10−2

φ0 -1.07·10−3 5.16·10−2 -1.72·10−4 -5.37·10−2 5.35·10−2

t0 -2.28·10−2 4.05·10−1 -5.88·10−3 -3.33·10−1 2.96·10−1

D -5.32·10−2 2.80·10−1 -1.72·10−2 -5.14·10−1 2.43·10−1

ι -8.15·10−4 3.75·10−1 -7.51·10−3 -4.46·10−1 4.92·10−1

Table V. Same as Tab. III, but using the BHNS catalogue
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Figure 7. The median of Σ averaged among the 10 CE realizations. The lower end of the error bars corresponds to the lowest
5th percentile encountered in the various CE runs, while the upper end corresponds to the highest 95th percentile. We do not
show ψ and φ0 as those parameters are very poorly estimated. The upper panel refers to the BNS catalogue, the middle one
to the BHNS and the bottom one to the BBH catalogue.

ε2me = (decm − dece)
2 + sin

(π
2
− dece

)2

(RAm − RAe)
2

We weight the distance between the exact and measured position in the unit sphere by the size of the random error
box of the exact run:

σ ≡ εme
εe

, (6.3)

with σ = 0 implying that the shift introduced by the CEs is null, and σ > 1 that it is larger than the uncertainties
due to the noise. In Fig. 8 we show the median of σ, together with 5th and 95th percentiles, for all the CEs and the
three mass bins.

It is evident that CE curve 2 leads to average shifts which are much larger than for the other CE curves (the
median of σ is larger than 0.5 in the three catalogues), and to very large spreads (95th percentile larger than 1.6).
Note however that we are weighting the distance in the unit sphere by the width of the random error box of the exact
run. Thus a large value of σ does not imply a large shift in radians. We have indeed verified that some of the the
signals that go in the tails of the distribution of σ are high-SNR signals, for which εe is very small, and so is εme, even
though their ratio may be ∼ 2− 3.

It is known that in a three-interferometer network, if the position of the source were to be estimated using just time
triangulation, there would be a degeneracy corresponding to a reflection of the position with respect to the plane that
contains the three IFOs [65, 70]. In reality, amplitude information and correlations with the remaining parameters
also affect the sky localisation (e.g. disentanglement of the plus and cross polarization) and break this symmetry. In
this way, one of the two specular positions can be actually preferred and assigned a higher probability. Perturbations
to the phase of the injected signal, like the ones introduced by the calibration phase errors, may change the situation
and push our inference towards the reflected position.

We have found three signals (one in the BBH catalogue and two in the BHNS catalogue) for which adding the CEs
leads to the aforementioned behaviour. More precisely in two cases the signal was found in the specular position with
respect to the IFOs plane; in the third case it was found in a position belonging to the ring on the sky which assures
the same H1-L1 time delay (this is discussed for example in [74] for a network made of H1 and L1 only. Although we
are using three IFOs in this work, for the event we are discussing now, the SNR in Virgo was 4 times smaller than
the SNR in H1 and L1, which explain why the result is similar to a H1-L1 network.). This phenomenon happened
only with a few CEs curves (3 out of 10). After a thorough analysis we have concluded that this behaviour was
not solely due to the addition of CEs but also to the particular noise realizations for those events. In fact, we have
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Figure 8. The median of σ (introduced in the main text) when using the various CE curves (shown in the abscissa label) and
the three mass bins (from the top to the bottom: BNS, BHNS, BBH). The error bars show the 5th and 95th percentiles. Note
that the ordinate scale varies in the subplots.

rerun the analysis on those signals, using 100 different noise realizations, finding that only 8% of the noise streams, in
conjunction with the CEs, would lead to the aforementioned large shifts. Considering that these outliers were nine (3
signals times 3 CEs curves), over the initial set of 7500 signals, and that only 8 noise realizations over 100 produced
them, we concluded that the probability of such extreme shifts is ∼ 0.1% and we did not take them into consideration
while writing tables IV and V.

B. Effects on Bayes factors

The main outcome of the Nested Sampling code is the Bayes’ factor, a measure of the confidence in the hypothesis
that a signal is buried in the noise.

To be more precise, the evidence (eq. 4.3), and thus the Bayes’ factor, which is the ratio between the evidence of
two models (eq. 4.2), is the measure of the fit of the data to the model. Being marginalised over all the parameters, it
shows the mean match between the model and the data. Because of its huge range of variation, it is usually the log
of this quantity which is reported, logBSN. Hence we will quote the natural logarithm of the Bayes’ factor, as defined
in Eq. 4.2.

In [68] a method was described in which the logBNS could be used as a detection statistic. It was shown how, if
one assigned equal prior probability to the presence of a signal, as opposed to the presence of pure noise, a threshold
of BSN ∼ 2.8 could be set, such that the 99% of the analyses which gave a BNS > 2.8 contained a signal. A more
refined estimation, which takes into account our knowledge on the rates with which GWs should be detected, sets
this threshold to ∼ 20 [69].

It is then interesting to study, beside the systematics that CEs introduced in the estimated parameters, the effects
they might have in the estimation of the Bayes factor, as large shifts may decrease the confidence we assign to a
detection. Moreover, comparing the bayes factors with and without calibration errors is a direct measure of how
much worse the fit is overall. We have complemented our analysis by investigating this issue In Fig. 9 we show, for
all the injections in the BHNS catalogue, the difference between the average of the measured logBNS over the ten CE
realizations and the exact log Bayes factor, logBSNe: 〈logBNSm〉 − logBSNe, where we have indicated with wedge

brackets the average over the CE realizations: 〈logBNSm〉 ≡ 1
10

∑10
i=1 logBNS(i)

m , plotted against the optimal SNR 6.
We also show error bars corresponding to the spread of logBSNm amongst the CE realizations and we colored the
points according to the logBSNe of the injections.

6 As the optimal SNR is unaffected by CEs, Eq. (3.10), we are allowed in Figs. 9 to use a single x axis.
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It is evident from Fig. 9 that the higher the optimal SNR (and consequently logBSN) of the injected signal, the
bigger the impact of CEs on the logBSN. In fact, a signal with a high SNR will be “clearly” detected by the PE code,
and well matched with the right template. In this scenario, the disturbances due to CEs are more visible (i.e. the
change in logBSN larger) than in a low SNR scenario. When the signal is hardly detected, CEs add only some extra
mismatch. In general the effects are very small, the average shift in logBSN over the three mass bins and the 10 CEs
curves we have considered being 0.9%, with the binary neutron star systems being the most affected (1.8%).

We can then conclude that, if the Bayes factor was used as a complimentary piece of data in assessing the confidence
of a detection, it would represent a reliable help, being barely affected by calibration errors.

Figure 9. (color online) The difference in log Bayes factor between the exact run and the average of the runs with calibration
errors. The values in the colorbar correnspond to the BSNe produced by the injections. Generally, louder signals are affected
by larger shifts.

C. Comparing the CE realizations

The data analyst will not know the exact shape and magnitude of the CE the data are being affected from; it is
then an interesting exercise to study how the effects of the errors vary with the CE curves’ shape.

To study how parameter estimation reacts to the CE curves, we show how the median and standard deviations of
the Σs of the various parameters vary among the ten CE realizations in the three catalogues. For example, in Fig.
10 we plot the median of Ση (mass ratio) over the injections in the BHNS catalogue, together with their standard
deviations, for each CE realization (labelled in the X axis).

Figure 10. Mean of Ση with the various CE realizations for the BHNS catalogue

It is quite remarkable as all the CEs give Ση with similar averages, the largest difference being ∼ 0.07. A similar
plot is obtained for the chirp mass. In Fig. 11 we show the same plot for RA (note that the y axis scale is much
larger than in Fig. 10). For RA and dec the results of the runs with the various CEs are comparable, but the error
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bars are generally larger than for the intrinsic parameters, meaning that those parameters are more affected by the
calibration errors. Sky localization is most strongly affected by differences in amplitude calibration errors in different
interferometers at frequencies where the interferometers are most sensitive. This is particularly true for Hanford
and Livingston interferometers, which are relatively nearby and nearly aligned, meaning that any incoherence in the
recovered amplitudes can not be fit by adjusting the inclination or polarization of the source, and can influence the
recovered sky location. Therefore, it is not surprising to see much larger variations for the second and sixth CE
realizations, for which the amplitude corrections for H1 and L1 have opposite signs near 100 Hz (see Figs. 13 and
17). Meanwhile, e.g., the fifth CE realization has very comparable amplitude CEs for H1 and L1 at 100 Hz (see Fig.
16), matching up to the small range of normalized systematic biases in RA (see Fig. 10).

Figure 11. Mean of ΣRA with the various CE realizations for the BHNS catalogue

The medians of Σ for the distance, Fig. 12, are not centered around zero. This is not unexpected, as we have
pointed out earlier that the distance estimation is directly affected by the amplitude errors.

Figure 12. Mean of ΣD with the various CE realizations for the BHNS catalogue.

VII. CONCLUSIONS

In this work we have quantified in a systematic way, for the first time in the literature, the effects of calibration errors
on the estimation of parameters of gravitational waves emitted by binary systems with non-spinning components. We
have considered three mass bins, and for each bin we have created a catalogue with 250 sources, uniformly distributed
in the sky. A Bayesian parameter estimation code was run on all the injections of these catalogues, first using the
exact transfer function (i.e., without calibration errors), and then after transforming the data with one of the ten
calibration error curves we have generated. We have then compared the posterior distributions, as well as the Bayes
factors, of the runs where the errors were added with the control runs, where no errors were present.

We found that for all the error curves considered, the effects are small, the systematic shift introduced in the
estimated parameters being a fraction of the statistical measurement errors. We also considered the effect of calibration
errors on Bayes factors, finding that it is larger for louder injections, but always small enough that no signals would
be missed because of calibration errors by a putative pipeline that would rank events by Bayes factors.
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Furthermore, we have found that the different calibration error curves we considered yield compatible results,
implying that the distribution of CE-induced shifts in parameter estimates does not strongly depend on the exact
shape of the CE curves.

The inclusion of spins in the waveform model will lead to additional complications, and should be the subject of a
future investigation.
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Appendix A: Error curves

In this section we show nine of the ten calibration error curves. The remaining one was given in the main text, Fig.
3.

Figure 13. The second CE realization for the amplitude (top) and phase (bottom).
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Figure 14. The third CE realization for the amplitude (top) and phase (bottom).

Figure 15. The fourth CE realization for the amplitude (top) and phase (bottom).
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Figure 16. The fifth CE realization for the amplitude (top) and phase (bottom).

Figure 17. The sixth CE realization for the amplitude (top) and phase (bottom).
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Figure 18. The seventh CE realization for the amplitude (top) and phase (bottom).

Figure 19. The height CE realization for the amplitude (top) and phase (bottom).
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Figure 20. The ninth CE realization for the amplitude (top) and phase (bottom).

Figure 21. The tenth CE realization for the amplitude (top) and phase (bottom).
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