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General relativistic simulations of black hole-neutron star mergers:

Effects of magnetic fields
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As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a BH–
NS binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these
magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant
disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may
launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through
fully general relativistic, magnetohydrodynamic (GRMHD) BHNS simulations from inspiral through
merger and disk formation. Different initial magnetic field configurations and strengths are chosen
for the NS interior for both nonspinning and moderately spinning (aBH/MBH=0.75) BHs aligned
with the orbital angular momentum. Only strong interior (Bmax ∼ 1017G) initial magnetic fields in
the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40%
in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a
strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass
outflows or magnetic field collimation during the preliminary simulations we have performed, higher
resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may
be required to definitively assess the possibility of BHNS binaries as short-hard GRB progenitors.

PACS numbers: 04.25.D-,04.25.dk,04.30.-w

I. INTRODUCTION

With the first direct detection of gravitational waves
(GWs) expected in the next few years, numerical rela-
tivity simulations will be crucial for distinguishing dif-
ferent GW sources from one another. Mergers of black
hole-neutron star (BHNS) binaries are among the most
promising sources of gravitational waves detectable by
ground-based laser interferometers like LIGO [1, 2],
VIRGO [3, 4], GEO [5], LCGT [6], and AIGO [7], as well
as by the proposed space-based LISA-like interferome-
ters [8] and DECIGO [9] and third-generation ground-
based detectors such as the Einstein telescope [10, 11].
Analysis of gravitational waveforms from BHNS mergers
may spark new insights into the behavior of matter at
nuclear densities.
Theoretical models indicate that a neutron star-

neutron star (NSNS) [12–19] or BHNS [18, 20–26] binary
merger may result in a hot, massive disk around a black
hole, whose temperatures and densities could be suffi-
cient to trigger a short-hard gamma-ray burst (SGRB).
Indeed, SGRBs have been associated with galaxies with
extremely low star formation rates (see [27] and refer-
ences therein for a review), indicating that the source is
likely to involve an evolved population, rather than main
sequence stars. The number of detectable BHNS merg-
ers in the observable universe is still an open question,
due to uncertainties in population synthesis calculations.
The estimated event rate of BHNS mergers observable by
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an Advanced LIGO detector typically falls in the range
R ∼ 0.2–300 yr−1 [28, 29].

Motivated by the significance of BHNS binaries both as
detectable GW sources and SGRB candidates, many sim-
ulations of BHNS systems have been performed in past
years in a Newtonian or post-Newtonian framework (see,
e.g., [30–34]) and in conformally-flat relativistic gravita-
tion [20, 21]. Recently, several groups have performed dy-
namical simulations of BHNS binary inspirals and merg-
ers in full GR [22–26, 35–47].

Over the past few years, we have studied BHNS merg-
ers beginning with the construction of quasiequilibrium
circular orbit initial data [48–52] and following up with
full GR dynamical simulations [25, 26]. Our GR simula-
tions, and those by other groups, suggest that for initially
nonspinning BHs, the remnant disk mass is substantial
for q ≡ MBH/MNS

<∼ 3 and tends to increase with de-
creasing q. For a fixed q, the disk mass also increases
for smaller NS compaction and for more rapidly spin-
ning BHs aligned with the orbital angular momentum of
the binary. For sufficiently high spins, small mass ra-
tios, and/or lower NS compactions, a substantial disk
can form following the merger, favoring BHNS mergers
as plausible central engines for SGRBs. However, these
simulations have yet to account for magnetic field effects
– a crucial component in many SGRB models involving
a disk around a spinning BH (see, e.g. [53–55]).

For NS surface field strengths B <∼ 1016G, magnetic
fields are unlikely to affect the dynamics of the BHNS
inspiral and merger [56]. This was shown to be the case
for NSNS binary inspirals in [57–60]. Despite this con-
clusion, magnetic fields may significantly influence the
post-merger dynamics, as the fields are likely to be am-
plified during and after merger. Magnetic fields could
stir turbulence in the remnant disk, resulting in angular
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momentum transport and accretion onto the BH. They
could also lead to matter outflow and jets along the BH
remnant spin axis [61], another ingredient required by
most SGRB models [53–55].

In this paper, we present a new set of fully relativis-
tic BHNS simulations that probes how magnetic fields
influence the dynamics and outcome of the merger us-
ing our new adaptive mesh refinement (AMR) GRMHD
code [62, 63]. Fixing the BH:NS mass ratio at q = 3,
we consider the cases where the BH possesses no spin
(A cases) and moderate spin aBH/MBH = 0.75 aligned
with the orbital angular momentum (B cases). Since the
internal magnetic field strength and configuration in a
NS is not known, we vary the strength and geometry of
the internal fields to study their effects. We find that
for low and moderate field strengths <∼ 1016G, magnetic
fields do not significantly alter the inspiral and merger
dynamics, which is consistent with the result reported
in [42]. Here, by low and moderate magnetic fields we
mean those with field strengths small or moderate when
compared to the virial value of about 1018G; well below
this value the field is dynamically unimportant. However,
when the central field strength approaches ∼ 1017G, cor-
responding to a magnetic to gas pressure ratio of ∼ 0.5%,
the merger dynamics and remnant disk mass are affected
significantly. Yet even with such strong internal mag-
netic fields, the emitted GWs are not appreciably differ-
ent from the unmagnetized case, at least for the prelim-
inary set of models considered here. In the late inspiral
and merger phases, tidal deformation and disruption of
the NS play key roles in distinguishing GWs from BHNSs
and BHBHs.

During merger, most of the magnetized NS matter is
captured by the BH. Only when the NS interior is seeded
with strong magnetic fields (Bmax ∼ 1017G, near the
center of the NS) is a significant impact on the dynamics
observed, resulting in a disk that has up to twice the
rest mass as the corresponding unmagnetized case. In
all cases the disk accretion rate onto the BH decreases
with time immediately after merger, before settling down
to a quasistationary state. Most of the magnetic field
lines are tightly wound within the remnant disk, and no
evidence of magnetic field collimation around the final
spinning BH is observed by the time we terminate our
simulations. The remnant disk is hot (T ∼ 1MeV) and
massive (Mdisk ∼ 0.02M⊙ and ∼ 0.1M⊙ for cases A and
B, respectively).

The magnetic fields threading the remnant disk may
be amplified and tangled on a longer timescale than we
simulate, stirring up MHD turbulence. Based on extrap-
olation of the accretion rates near the end of our simula-
tions, the lifetime of the disk is roughly 0.3(M0/1.4M⊙)s.
While there is no evidence of outflows during these pre-
liminary simulations, longer disk evolutions, higher res-
olution and different B-field geometries may be required
to definitively assess the possibility of BHNS binaries as
short-hard GRB progenitors.

The following sections are organized as follows. Sec-

tions II and III review the basic equations, including
our initial data, gauge conditions, matter evolution equa-
tions, and diagnostics, as well as their implementation in
our GRMHD code. Section IV presents the results of our
magnetized BHNS merger simulations. Finally, we sum-
marize our findings and comment on future directions in
Sec. V.

II. BASIC EQUATIONS

This section introduces our notation, summarizes our
method, and points out the latest changes to our numer-
ical technique as summarized in [25, 26, 62, 63]. Ge-
ometrized units (G = c = 1) are adopted, except when
stated otherwise. Greek indices denote all four space-
time dimensions (0, 1, 2, and 3), and Latin indices label
spatial parts only (1, 2, and 3).

We use the 3+1 formulation of general relativity and
decompose the metric into the following form:

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (1)

The fundamental variables for metric evolution are the
spatial three-metric γij and extrinsic curvature Kij .
We adopt the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formalism [64, 65] in which the evolution vari-
ables are the conformal exponent φ ≡ ln(γ)/12, the con-
formal 3-metric γ̃ij = e−4φγij , three auxiliary functions

Γ̃i ≡ −γ̃ij,j , the trace of the extrinsic curvature K, and
the trace-free part of the conformal extrinsic curvature
Ãij ≡ e−4φ(Kij − γijK/3). Here, γ = det(γij). The full
spacetime metric gµν is related to the three-metric γµν
by γµν = gµν +nµnν , where the future-directed, timelike
unit vector nµ normal to the time slice can be written in
terms of the lapse α and shift βi as nµ = α−1(1,−βi).
Evolution equations for these BSSN variables are given
by Eqs. (9)–(13) in [25]. We adopt standard puncture
gauge conditions: an advective “1+log” slicing condi-
tion for the lapse and a “Γ-freezing” condition for the
shift [66]. The evolution equations for α and βi are given
by Eqs. (2)–(4) in [26], with the η parameter set to 2.2/M
for the initially nonspinning BH cases and 3.3/M for the
spinning BH cases, where M is the ADM mass of the
BHNS binary. We add a fifth-order Kreiss-Oliger dissi-
pation term to all evolved BSSN, lapse and shift variables
to reduce high-frequency numerical noise associated with
AMR refinement interfaces (see [67] for a review and ref-
erences).

The fundamental MHD variables are the rest-mass
density ρ0, specific internal energy ǫ, pressure P , four-
velocity uµ, and magnetic field Bµ = nνF

∗νµ. Here F ∗µν

is the dual of the Faraday tensor Fµν . Note that Bµ is
purely spatial (B0 = −nµB

µ/α = 0). We adopt a Γ-law
equation of state (EOS) P = (Γ − 1)ρ0ǫ with Γ = 2,
which reduces to an n = 1 polytropic law for the initial
(cold) neutron star matter. The stress-energy tensor is
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given by

Tµν = (ρ0h+ b2)uµuν +

(

P +
b2

2

)

gµν − bµbν , (2)

where h = 1 + ǫ+ P/ρ0 is the specific enthalpy and

bµ = − PµνB
ν

√
4π nνuν

(3)

is the magnetic field measured in fluid’s comoving frame,
modulo a factor of 1/

√
4π. Here Pµν = gµν + uµuν and

b2 = bµbµ. The comoving magnetic energy density is
uµuνT

µν
EM = b2/2, where T µν

EM = b2uµuν + (b2/2)gµν −
bµbν is the stress-energy tensor associated with the mag-
netic field. In the ideal MHD limit, in which the plasma is
assumed to have perfect conductivity, the Faraday tensor
can be written as Fµν =

√
4π uγǫ

γµνδbδ.
In the standard numerical implementation of the MHD

equations using a conservative scheme, it is useful to in-
troduce the “conservative” variables ρ∗, S̃i, τ̃ and B̃i.
They are defined as

ρ∗ ≡ −√
γ ρ0nµu

µ , (4)

S̃i ≡ −√
γ Tµνn

µγνi , (5)

τ̃ ≡ √
γ Tµνn

µnν − ρ∗ , (6)

B̃i ≡ √
γ Bi. (7)

The evolution equations for ρ∗, S̃i and τ̃ can be derived
from the conservation of rest mass ∇µ(ρ∗u

µ) = 0 and the
conservation of energy-momentum ∇µT

µν = 0, giving
rise to Eqs. (27)–(30) in [62].
In the ideal MHD limit, the Maxwell equation

∇νF
∗µν = 0 yields the magnetic constraint ∂jB̃

j = 0

and induction equation ∂tB̃
i + ∂j(v

jB̃i − viB̃j) = 0. As
shown in [68] and [62], these equations can be rewrit-
ten by introducing the electromagnetic 4-vector poten-
tial Aµ = Φnµ + Aµ, with nµAµ = 0. The magnetic
constraint and induction equations become

Bi = ǫijk∂jAk , (8)

∂tAi = ǫijkv
jBk − ∂i(αΦ− βjAj) , (9)

where ǫijk = nµǫ
µijk is the 3-dimensional Levi-Civita

tensor. In [62], we evolve the vector potential and choose
the algebraic EM gauge Φ = βjAj/α = −njAj . We
have found that for BHNS simulations, we can achieve
better numerical results by imposing the Lorenz gauge
∇µAµ = 0, which gives the evolution equation

∂t(
√
γ Φ) + ∂j(α

√
γ Aj −√

γ βjΦ) = 0 (10)

for Φ in place of the algebraic gauge condition [63]. Our
numerical implementation of Eqs. (8) and (9) guarantees
numerically identical Bi (see [62]) regardless of EM gauge
in simulations with a uniform-resolution grid. However,
interpolations performed on Ai at refinement boundaries
on AMR grids will modify Ai, resulting in different Bi

near these boundaries. We have shown that in the alge-
braic gauge Φ = −njAj , there exists a zero-speed mode,
which in BHNS simulations manifests itself as a trail of
nonzero Ai left behind the orbiting NS [63]. When AMR
refinement boxes tracking the motion of the NS cross this
“trail”, spurious, strong magnetic fields appear on the
refinement boundaries. On the other hand, the Lorenz
gauge exhibits no zero-speed modes. As a result, the be-
havior of the Bi fields on refinement boundaries is drasti-
cally improved [63]. We therefore adopt the Lorenz gauge
for all simulations in this paper.

III. NUMERICAL METHODS

A. Initial data

Our initial data are constructed by solving Einstein’s
constraint equations in the conformal thin-sandwich
(CTS) formalism, which allows us to impose an approx-
imate helical Killing vector by setting the time deriva-
tives of the conformally related metric γ̃ij to zero in the
frame corotating with the binary. We model the NS as
an irrotational n = 1 polytrope, and impose the black
hole equilibrium boundary conditions of Cook and Pfeif-
fer [69] on the black hole horizon. The CTS initial data
correspond to a binary in circular quasiequilibrium with
a separation chosen to be outside the tidal disruption ra-
dius. Details of this method can be found in [26, 52]. The
initial data used in this paper are the same as case A (for
an initially nonspinning BH) and case B (for an initial BH
spin JBH/M

2
BH = 0.75) described in [26].

The initial data are calculated using the Lorene spec-
tral methods numerical libraries [70]. The excised BH re-
gion is filled with constraint-violating initial data, using
the “smooth junk” technique we developed and validated
in [71] (see also [72, 73]). In particular, we extrapolate all
initial data quantities from the BH exterior into the inte-
rior with a 7th order polynomial, using a uniform stencil
spacing of ∆r ≈ 0.3rAH.
All of the NSs considered in this paper have a com-

paction of C = MNS/RNS = 0.145, where MNS is the
ADM mass and RNS is the (circumferential) radius of the
NS in isolation. Since we model the NS with an n = 1
(Γ = 2) polytropic EOS, the rest mass of the NS, M0,
scales with the polytropic constant κ as M0 ∝ κ1/2. For
a NS with compaction C = 0.145, we find the ADM mass
for the isolated NS to be MNS = 1.30M⊙(M0/1.4M⊙),
with an isotropic radius Riso = 11.2km(M0/1.4M⊙)
and circumferential (Schwarzschild) radius of RNS =
13.2km(M0/1.4M⊙). The maximum rest-mass density
of this NS is ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2.
We add a small, poloidal magnetic field via the vector

potential of the form

Ai =

(

−y − yc
̟2

c

δxi +
x− xc
̟2

c

δyi

)

Aϕ (11)

Aϕ = Ab̟
2
c max(P − Pcut, 0)

nb (12)
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FIG. 1. Magnetic field lines (white) at the time when they
are seeded into the NS for case A4. The NS density profile
is shown such that darker colors indicate higher densities.
The BH apparent horizon is shown in black, and the BH-NS
coordinate separation is 6.12M

where (xc, yc, 0) is the coordinate location of the center
of mass of the NS, ̟2

c = (x − xc)
2 + (y − yc)

2, and Ab,
np and Pcut are free parameters. The cutoff pressure pa-
rameter Pcut confines the B-field inside the neutron star
to reside within P > Pcut. The parameter nb determines
the degree of central condensation of the magnetic field.
Similar profiles of initial magnetic fields are also used
in numerical simulations of magnetized accretion disks
(see, e.g. [74, 75]) and magnetized compact binaries (see,
e.g. [42, 76–78]). We set Pcut to be 4% of the maximum
pressure and nb=1 or 2. The parameter Ab controls the
strength of the initial magnetic field, which can be char-
acterized by the maximum magnetic field inside the NS,
as well as the magnetic energy M defined as

M =

∫

nµnνT
µν
EMdV, (13)

where dV = ψ6d3x is the proper volume element on a
t = constant spatial slice. M is the EM energy measured
by a normal observer.
Since the magnetic field is expected to remain frozen

into the NS during the inspiral phase, we add the fields
immediately before tidal disruption to minimize numer-
ical error. Magnetic fields added to the NS at t = 0
maintain their original profile within the star for much
of the first orbit (t <∼ milliseconds). Table I summarizes
the initial data used in our simulations. Figure 1 shows
the magnetic field configuration for one of the cases (A4)
at t = 448.5M , the time at which the NS is seeded with
magnetic fields. The seed magnetic fields are too weak
to significantly perturb the quasiequilibrium NS, leading
to virtually no change in gravitational field constraint
violations.

B. Evolution of the metric and MHD

We evolve the BSSN equations with fourth-order ac-
curate, centered finite-differencing stencils, except on
shift advection terms, where we use fourth-order accurate

upwind stencils. We apply Sommerfeld outgoing wave
boundary conditions to all BSSN fields. Our code is em-
bedded in the Cactus parallelization framework [80], and
our fourth-order Runge-Kutta timestepping is managed
by the MoL (Method of Lines) thorn, with a Courant-
Friedrichs-Lewy (CFL) factor set between 0.0625 (in the
coarsest refinement level) and 0.5 (in the innermost 4 re-
finement levels) in all simulations. We decrease the CFL
factor in the coarse refinement levels so that we can use
a larger value for the parameter η in the shift equation
[Eq. (4) in [26]]. We use the Carpet [81] infrastructure to
implement the moving-box adaptive mesh refinement. In
all AMR simulations presented here, we use second-order
temporal prolongation, coupled with fifth-order spatial
prolongation. The apparent horizon (AH) of the BH is
computed with the AHFinderDirect Cactus thorn [82].
The GRMHD equations are evolved by a high-

resolution shock-capturing (HRSC) technique [83] that
employs PPM [84] coupled to the Harten, Lax, and
van Leer (HLL) approximate Riemann solver [85]. The
adopted MHD scheme is second-order accurate for
smooth flows, and first-order accurate when discontinu-
ities (e.g. shocks) arise. To stabilize our scheme in regions
where there is no matter, we maintain a tenuous atmo-
sphere on our grid, with a density floor ρatm set equal
to 10−10 times the initial maximum density on our grid.
The initial atmospheric pressure Patm is set equal to the
cold polytropic value Patm = κρΓatm. Throughout the
evolution, we impose limits on the atmospheric pressure
to prevent spurious heating and negative values of the
internal energy ǫ due to numerical errors. Specifically,
we require Pmin ≤ P ≤ Pmax, where Pmax = 10κρΓ0 and
Pmin = κρΓ0/2. Whenever P exceeds Pmax or drops below
Pmin, we reset P to Pmax or Pmin, respectively. Applying
these limits everywhere on our grid would artificially sap
the angular momentum in the tidally disrupted NS, al-
lowing matter to fall spuriously into the BH and thereby
suppressing disk formation [26]. To effectively eliminate
this spurious angular momentum loss, we impose these
pressure limits only in regions where the rest-mass den-
sity remains very low (ρ0 < 100ρatm) or deep inside the
AH, where ψ6 > ψ6

thr as in [26]. Here ψ = eφ and we set
ψ6
thr between 10 and 30.

C. Evolution of magnetic field

We evolve the magnetic induction equation via the 4-
vector potential using Eqs. (9) and (10). We stagger
the Ai and Bi as in [62]. We store Φ on a staggered
grid (i+, j+, k+) [all the other hydrodynamic, BSSN,
lapse and shift variables are stored at (i, j, k)], where
i+ = i + 1/2 and similarly for j+ and k+. We treat the
term −∂j(βj√γ Φ) in Eq. (10) using a second-order up-
wind scheme. We evolve Eq. (9) using the finite-volume
equations similar to Eqs. (63)–(65) in [62], modified to
take into account the second term in Eq. (9), which does
not vanish in the Lorenz gauge. The detailed implemen-
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TABLE I. Initial data for the BHNS simulations. Here aBH/MBH is the BH spin, Ω is the orbital angular frequency, Bmax is
the maximum value of magnetic field inside the NS, assuming the rest mass of the NS is 1.4M⊙; M is the energy of magnetic
field defined in Eq. (13) at the time when B-field is added; W is the gravitational potential energy of the NS in isolation defined
in Eq. (65) of [79]. All BHNS systems considered here have the BH:NS mass ratio of 3:1.

Case aBH/MBH MΩ Bmax (G) M/|W | Pc nb Time B is added

A0 0.0 0.0330 0 0 – – –

A1 1.3× 1016 3.1× 10−6 0.04 2 448.5M

A2 1.3× 1016 1.1× 10−5 0.04 1

A3 1.4× 1016 1.2× 10−5 0.001 1

A4 9.7× 1016 5.9× 10−4 0.001 1

B0 0.75 0.0328 0 0 – – –

B1a 1.3× 1016 3.1× 10−6 0.04 2 633.6M

B1b 1.2× 1016 2.9× 10−6 0.04 2 752.8M

B2 1.3× 1016 1.1× 10−5 0.04 1

B3 1.4× 1016 1.2× 10−5 0.001 1

B4 9.7× 1016 5.9× 10−4 0.001 1

tation is described in [63].
The particular staggering of the Ai and Φ variables

coupled with the particular implementation of the HRSC
scheme are designed to ensure that the resulting B field
obtained by taking the curl operator on Ai [Eqs. (60)–
(62) in [62]] is numerically identical to the standard con-
strained transport scheme based on a staggered algo-
rithm [86]. We have carefully designed an algorithm for
the extra term in Eq. (9) so that the additional terms
in the Ai evolution equations cancel exactly after taking
the curl operator. The resulting numerical values of Bi

are thus gauge-invariant in unigrid simulations. We have
confirmed numerically that this is indeed the case. How-
ever, in simulations with an AMR grid, since we perform
interpolations on Ai between refinement levels, values of
Ai are not the same in different EM gauges at the refine-
ment boundaries. The resulting B field at the refinement
boundaries is also different in general but should converge
to a unique, true solution with increasing resolution in
any gauge.
As in other numerical relativity simulations, some

gauges are better behaved than others. We have demon-
strated in [63] that the Lorenz gauge is superior to the
algebraic gauge in magnetized BHNS simulations. We
therefore adopt the Lorenz gauge in all of the magne-
tized BHNS simulations presented here.

D. Recovery of primitive variables

At each timestep, we need to recover the “primitive
variables” ρ0, P , and v

i from the “conservative” variables
ρ∗, τ̃ , and S̃i. We perform the inversion by numerically
solving two nonlinear equations via the Newton-Raphson
method as described in [87], using the code developed by
Noble et al [88].
Sometimes the “conservative” variables may assume

values which are out of physical range, resulting in un-
physical primitive variables after inversion (e.g. negative
pressure or even complex solutions). This usually hap-
pens in the low-density “atmosphere” or deep inside the
BH interior where high-accuracy evolution is difficult to
maintain. Various techniques have been suggested to
handle the inversion failure (see, e.g. [89]). Our approach
is mainly to impose constraints on the conservative vari-
ables to reduce the inversion failure.
One reason for the inversion failure comes from γij

losing positive-definiteness during the BSSN evolution
due to numerical inaccuracy, which occurs only near the
“puncture” deep inside the BH. Before performing the
inversion, we check if γij is positive-definite by finding
its eigenvalues. If γij is not positive definite, we reset
γij → ψ4fij during the inversion, where fij is the 3D flat
metric tensor.
In the absence of magnetic fields, the inversion failure

can be avoided completely by enforcing the constraints
(see [25] and Appendix A)

S̃2 ≡ γijS̃iS̃j ≤ τ̃ (τ̃ + 2ρ∗), and (14)

τ̃ ≥ 0 , (15)

which are the necessary and sufficient conditions for the
inversion to produce the primitive variables in the phys-
ical range for the Γ-law EOS with 1 < Γ ≤ 2 (see Ap-
pendix A). We enforce these constraints in regions where
there are no magnetic fields. When the second condition
is not met, we reset τ̃ = τ̃atm = 10−10τ̃0max, where τ̃0max

is the maximum value of τ̃ initially. When the first con-
dition is violated we rescale S̃i so that its new magnitude
is S̃2 = τ̃ (τ̃ + 2ρ∗).
In the presence of magnetic fields, no simple analogous

formulae are available. However, one can prove that (see
Appendix A)

τ̃ ≥ ψ−6 B̃
2

8π
(16)
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for any value of primitive variables in the physical range.
We therefore impose inequality (16) everywhere: if it

is violated, we reset τ̃ = τ̃atm + ψ−6B̃2/8π. However,
this does not guarantee that the inversion always pro-
duce physically acceptable primitive variables. If failures
occur outside the BH after imposing (16), we apply a fix,
which consists of replacing the energy equation (6) by the
cold EOS, P = Pcold(ρ0) = κρΓ0 when solving the system
of equations, where κ is the polytropic constant. One
can show that this procedure always produces physically
valid primitive variables (see Sec. A 4). However, we find
that this fix gives rise to discontinuous data deep inside
the BH and these data will eventually propagate out of
the BH horizon. Note that the success of the “smooth
junk” technique [71] requires that the constraint violat-
ing initial data filling the interior of the BH horizon be
smooth. If discontinuous data are used, then information
can leak out of the BH horizon. To avoid information
leakage outside the BH, we apply the following condi-
tions deep inside the BH:

τ̃ − ψ6

2
B̄2 − B̄2S̃2 − (B̄iS̃i)

2

2ψ6(Wm + B̄2)2
≡ τ̃m ≥ 0, (17)

and

τ̃m(τ̃m + 2ρ∗) ≥ S̃2, (18)

where B̄i = Bi/
√
4π, B̄2 = γijB̄

iB̄j , and Wm satisfies
the quartic equation

(ψ12W 2
m − ρ2∗)(Wm + B̄2)2−W 2

mS̃
2

−(B̄iS̃i)
2(B̄2 + 2Wm) = 0.

It can be shown that the inequalities (17) and (18) are
sufficient (but not necessary) conditions for the inver-
sion to yield physically valid primitive variables (see Ap-
pendix A). We therefore only use them deep inside the
BH where ψ6 > ψ6

thr. We choose the parameter ψ6
thr be-

tween 10 and 30. Since the inequalities (17) and (18) are
sufficient but not necessary conditions, we do not impose
them strictly, but adopt the procedures described at the
end of Sec. A 2. We find that this technique gives rise to
smoother data in the BH interior preventing contraint-
violating information from leaking out of the BH horizon.

E. Diagnostics

During the evolution, we monitor the Hamiltonian
and momentum constraints calculated by Eqs. (40)–(43)
of [25]. We also monitor the interior mass Mint and (z-
component of) the interior angular momentum Jint of the
system contained in the simulation domain. These quan-
tities are defined as integrals over the surface of the outer
boundary ∂V ) of the computational domain:

Mint =
1

2π

∮

∂V

(

1

8
Γ̃i − γ̃ij∂jψ

)

dΣi, (19)

Jint =
1

8π
ǫ̃kzj

∮

∂V

xj(Km
k − δmk K)dΣm, (20)

where ǫ̃ijk is the flat-space Levi-Civita tensor. As pointed
out in [26], the integrals can be evaluated more accurately
by alternative expressions via Gauss’s law [67]:

Mint =

∫

V

d3x

(

ψ5ρ+
1

16π
ψ5ÃijÃ

ij − 1

16π
Γ̃ijkΓ̃jik

+
1− ψ

16π
R̃− 1

24π
ψ5K2

)

+
1

2π

∮

S

(

1

8
Γ̃i − γ̃ij∂jψ

)

dΣi , (21)

Jint =
1

8π
ǫ̃zj

n

∫

V

d3xψ6(Ãj
n +

2

3
xj∂nK

−1

2
xjÃkm∂nγ̃

km + 8πxjS̃n)

+
1

8π
ǫ̃zj

n

∮

S

ψ6xjÃm
ndΣm , (22)

where S is a surface surrounding the BH horizon, V
is the volume between S and the outer boundary, ρ =
nµnνT

µν , and R̃ is the Ricci scalar associated with the
conformal 3-metric γ̃ij . If our outer boundary were ex-
tended to spatial infinity, these integrals would yield the
ADM mass and angular momentum of the system and
would be constant in time. While our outer boundary
∂V resides in the nearly Minkowski asymptotic regime,
it is at a finite distance from the BHNS system. Thus
the integrals are only approximately equal to the ADM
M and J at t = 0 and decreases with time, due to GWs
carrying away energy and angular momentum through
∂V .
When hydrodynamic matter is evolved on a fixed uni-

form grid, our hydrodynamic scheme guarantees that the
rest mass M0 is conserved to machine roundoff error.
This strict conservation is no longer maintained in an
AMR grid, where spatial and temporal prolongation is
performed at the refinement boundaries. Hence we also
monitor the rest mass

M0 =

∫

ρ∗d
3x (23)

during the evolution. Rest-mass conservation is also vio-
lated whenever ρ0 is reset to the atmosphere value. This
usually happens only in the very low-density atmosphere
or deep inside the AH where high accuracy is difficult to
maintain.
We measure the thermal energy generated by shocks

via the entropy parameter K ≡ P/Pcold, where Pcold =
κρΓ0 is the pressure associated with the cold EOS. The
specific internal energy can be decomposed into a cold
part and a thermal part: ǫ = ǫcold + ǫth with

ǫcold = −
∫

Pcoldd(1/ρ0) =
κ

Γ− 1
ρΓ−1
0 . (24)

Hence the relationship between K and ǫth is

ǫth = ǫ− ǫcold =
1

Γ− 1

P

ρ0
− κ

Γ− 1
ρΓ−1
0

= (K − 1)ǫcold . (25)
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For shock-heated gas, we always have K > 1 (see Ap-
pendix B of [26].
Finally, we monitor the mass and spin of the BH during

the evolution. They are computed using the isolated and
dynamical horizon formalism [90], with the approximate
axial Killing vector on the horizon computed as in [91].

F. Gravitational wave extraction

Gravitational waves are extracted using the Newman-
Penrose Weyl scalar ψ4 at various extraction radii be-
tween 50M and 130M . We decompose ψ4 into s = −2
spin-weighted spherical harmonics up to and including
l = 4 modes. At each extraction radius, the retarded time
is computed using the technique described in Sec. IIB
of [92] to reduce the near-field effect. The wavetrain h+
and h× for each mode are computed by integrating the
corresponding mode of ψ4 twice with time using the fixed
frequency integration technique described in [93].
We compute the radiated energy ∆EGW , z-component

of angular momentum ∆JGW and linear momentum
∆P i

GW using expressions equivalent to Eqs. (33), (39),
(40) and (49) of [94]. To check the violation of energy and
angular momentum conservation, we monitor the quan-
tities

δE = [M −Mint(t)−∆EGW(t)]/M , (26)

δJ = [J − Jint(t)−∆JGW(t)]/J , (27)

where J is the ADM angular momentum of the initial
binary, Mint(t) and Jint(t) are the interior mass and an-
gular momentum of the system at time t as calculated by
Eqs. (21) and (22).

IV. RESULTS

We have performed magnetized simulations of BHNS
binaries with BH:NS mass ratio 3:1 including both ini-
tially nonspinning BHs (the “A” cases) and BHs with
spin parameter set to 0.75 initially (the “B” cases). Ta-
ble II specifies the AMR grid structure used in the simula-
tions and Table III summarizes the quantitative results.
For readers interested only in a brief summary of the
most interesting results, please skip to Sec. V. Detailed
simulation results are described below.

A. Magnetic Field Study: Nonspinning Black Hole

Figure 2 shows density contours on the orbital plane at
selected times for the unmagnetized, zero BH spin case,
A0. Notice that the NS density contours in the top-left
plot are nearly unchanged after three orbits (top-center
plot), confirming that the initial data are consistent with
quasiequilibrium. After about 3.5 orbits the NS tidally
disrupts (top-right plot), and about 95% of the NS mat-
ter promptly falls into the BH. Matter in the low-density

NS outer layers far from the accreting funnel of mat-
ter forms a tidal tail that wraps around the black hole
and smashes into itself near the BH, generating a large
amount of shock heating (bottom-left plot). Meanwhile,
accretion slows considerably. After intersecting itself, the
inner regions of the tidal tail forms a disk that orbits
the BH, while the fluid velocity distribution in the outer
tail indicates slow accretion onto the disk (bottom-middle
plot). Shortly after disk formation, only about 2% of the
NS matter remains outside the BH (bottom-right plot),
and the density directly outside the AH begins to plum-
met, ultimately forming a low-density cavity around the
BH similar to the one shown more prominently in the
bottom left frame of Fig. 5. This cavity indicates the
presence of an innermost stable circular orbit (ISCO).

Figure 3 shows the accretion history for all cases in
which the BH has zero spin initially. Regardless of mag-
netic field configuration or strength, by t ≈ 570M about
95% of the NS matter – including the most strongly mag-
netized matter in the star – has been accreted by the BH.
After this violent merger, the only case that noticeably
deviates from the magnetic-free case (A0) is case A4, the
case in which the initial seed magnetic fields are both
strong (|B|max ∼ 1017G) and pushed to the NS surface
(Pc = 0.001). The disk mass in case A4 is two times
larger than any other case, but the final disk is only about
2.5% of the initial NS rest mass – much smaller than in
similar BHNS simulations with a moderate aligned BH
spin, in which disk masses of ∼ 10% are common. Case
A3 is identical to case A4, except for the fact that its
seed magnetic fields are about an order of magnitude
weaker (|B|max ∼ 1016G), and its accretion history is
virtually indistinguishable from that of case A0. Thus it
is the magnetic field strength – and not the different ge-
ometries explored here – that significantly influences the
dynamics. The final accretion rate implies a disk half-life
of between 3500–5500M or 100–150(M0/1.4M⊙)ms (de-
pending on what points are chosen to calculate the final
slope).

Figure 4 plots magnetic energy outside the AH versus
time, for all magnetized nonspinning BH cases studied.
Magnetic fields were added shortly before tidal disrup-
tion. The magnetic fields do not change significantly in
the NS prior to disruption, but at the point of disruption,
there are two competing effects that influence the mag-
netic energy. For one, the NS is being tidally disrupted,
stretching the magnetic field lines, amplifying the mag-
netic field strength and energy. On the other hand, the
magnetized fluids comprising the NS are being rapidly
accreted into the BH. Our results show that there is a
slight amplification of magnetic energy during tidal dis-
ruption, but after tidal disruption the magnetic energy is
always less than the magnetic energy in the seed magnetic
fields. The evolution is followed for ∼ 50(M0/1.4M⊙)ms
(assuming NS rest mass of 1.4M⊙) after disk formation,
but ultimately no large magnetic energy amplification is
observed. This is likely due to the fact that the magnetic
fields in the disk are mostly toroidal (see Fig. 5) and once
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TABLE II. Grid configurations. Here, NAH denotes the number of grid points covering the diameter of the (spherical) AH
initially, and NNS denotes the number of grid points covering the smallest diameter of the neutron star initially.

Case Grid Hierarchy (in units of M)(a) Max. resolution NAH NNS

A0–A4 (196.7, 98.35, 49.18, 24.59, 12.29, 6.147, 3.073, 1.414 [1.660]) M/32.5 41 85

B0–B4 (210.2, 92.49, 46.24, 23.12, 11.56, 5.780, 2.890, 1.445 [1.642], 0.7554 [N/A]) M/60.9 56 80

(a) There are two sets of nested refinement boxes: one centered on the NS and one on the BH. This column specifies the half
side length of the refinement boxes centered on both the BH and NS. When the side length around the NS is different, we
specify the NS half side length in square brackets. If there is no corresponding NS refinement box (as is the case when the NS
is significantly larger than the BH), we write [N/A] for that box.

TABLE III. Magnetized BHNS simulation results. Here Mdisk is the rest mass of the material outside the AH at the end of the
simulation, ãf = aBH/MBH is the spin parameter of the BH at late times determined by the isolated horizon formalism. The
total energy and angular momentum carried off by the gravitational radiation are given by ∆EGW and ∆JGW, respectively.
vkick is the kick velocity due to recoil. Norbits specifies the number of orbits in the inspiral phase before merger, defined as
the time at which the (2,2) mode of the GW amplitude reaches maximum. δE and δJ measure the violation of energy and
angular momentum conservation, as defined in Eqs. (26) and (27), respectively, at the end of the simulation. The error in vkick
is estimated by comparing the results obtained by several GW extraction radii between 50M–100M .

Case Mdisk/M0 ãf ∆EGW/M ∆JGW/J vkick (km/s) Norbits δE δJ

A0 0.019 0.55 0.011 0.20 40± 2 4.8 0.2% 2%

A1 0.017 0.55 0.011 0.20 40± 2 4.8 0.2% 2%

A2 0.017 0.55 0.011 0.20 40± 2 4.8 0.2% 2%

A3 0.015 0.55 0.011 0.20 40± 2 4.8 0.2% 3%

A4 0.028 0.55 0.011 0.20 40± 2 4.8 0.1% 1%

B0 0.098 0.84 0.011 0.15 67± 6 6.9 0.6% 8%

B1a 0.090 0.84 0.011 0.15 67± 6 6.9 0.6% 8%

B1b 0.090 0.84 0.011 0.15 67± 6 6.9 0.6% 8%

B2 0.090 0.84 0.011 0.15 67± 6 6.9 0.6% 7%

B3 0.090 0.84 0.011 0.15 67± 6 6.9 0.6% 7%

B4 0.117 0.85 0.010 0.14 54± 4 6.8 0.4% 7%

the disks have formed magnetic winding saturates. Am-
plification of magnetic fields by instabilities such as the
magnetorational instability (MRI) may occur, but the
resolution in our simulations may not be high enough to
resolve the small-scale turbulence associated with these
instabilities.

Notice that the magnetic energy in case A2 is about
three times that of A1, both initially and when the simu-
lation was terminated. These cases differ only in the de-
gree of central condensation of the initial magnetic field
(see Table I).

Cases A2 and A3 are identical except for the pressure
cutoff of the seed magnetic fields. In case A2 magnetic
fields are set to zero for pressures P < Pc = 0.04Pmax,
where Pmax is the maximum pressure of the NS. However,
in case A3 Pc is set to 0.001, so the seed magnetic fields
are pushed much closer to the NS surface. This results in
about a 16% amplification of initial magnetic energy in
case A3 (Fig. 4), but increases the final magnetic energy

by about a factor of 15. This is consistent with the fact
that the core of the NS is invariably accreted into the BH
during merger in these BHNS simulations, so the disk is
comprised of what were the outer layers of the NS. Thus,

the stronger the seed magnetic field in the outer layers of
the NS, the stronger and more dynamically relevant the
magnetic fields in the disk.

Cases A3 and A4 differ only in initial seed magnetic
field strength; the seed magnetic fields are uniformly
about an order of magnitude stronger in case A4. Fig-
ure 3 demonstrates that the physical extent of the disk
is very strongly influenced by the strong seed magnetic
fields of case A4. Figure 4 reinforces that observation;
though only about 1% of the NS rest mass exists in the
disk of A3, less than 0.5% of the seed magnetic energy
remains in the disk. Compare this to case A4, where the
disk mass is about twice as large, but where more than
an order of magnitude more magnetic energy remains in
the disk.

Magnetic fields play an important dynamical role in
only one nonspinning case, A4, amplifying the disk mass
by a factor of two. Figure 5 shows how the magnetic
field configuration evolves in this case, from t = 448.5M
when the magnetic fields are first seeded into the NS
(top-right), until the simulation is stopped at t = 2620M
(bottom-right). Magnetic field lines are greatly stretched
during disk formation (third row on the right), result-
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FIG. 2. Orbital-plane rest mass density contours at selected times for case A0. Contours are plotted according to ρ0 =
ρ0,max(10

−0.92j ), (j=0, 1, ... 5), with darker greyscaling for higher density. The maximum initial NS density is κρ0,max = 0.126,
or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2. Arrows represent the velocity field in the orbital plane. The black hole AH interior
is marked by a filled black circle. The ADM mass for this case is M = 2.5 × 10−5(M0/1.4M⊙)s= 7.6(M0/1.4M⊙)km.

ing in a strongly-magnetized disk. At late times, the
magnetic fields that remain in the disk are very tightly
wound. The bottom left and center frames of the figure
show that a cavity has formed around the BH near the
end of the simulation. This hollow region is indicative of
the presence of an ISCO, which is interesting because it
has been suggested that stresses in magnetized disks may
suppress the presence of an ISCO [95, 96]. However, it
may be that longer simulations are required for the disk
cavity to be filled.
The significant boost in disk mass in case A4 indicates

that with sufficiently strong NS magnetic fields, merger
dynamics may be significantly affected. Figure 6 com-
pares orbital-plane density contours in cases A0 (unmag-
netized) and A4 during the late stages of tidal disrup-
tion. Notice that the stronger magnetic pressures in case
A4 push out the outer layers of the NS during tidal dis-
ruption. Nevertheless, Fig. 7 shows that the magnetic
pressure in this matter distribution does not exceed 3%
the gas pressure at the same time as Fig. 6. Therefore,
large changes in remnant disk mass do not require huge
magnetic-to-gas pressure ratios.
Figure 8 compares A0 and A4 rest-mass density pro-

files when these simulations were stopped at t = 2620M .
The density profiles in these two cases are similar; at the
end of the simulation, low-density matter still flows into
the BH from the poles. For A4, it is clear from the b2

contour plot (bottom graph) that most of the magnetic
fields are confined inside the remnant disk near the equa-
torial plane, consistent with the magnetic field-line plots
in Fig. 5.
Compared to case A0, the final disk in case A4 is more

massive, and the accretion rate is lower (Fig. 3). Fig-
ure 9 compares the distribution of rest-mass density and
entropy (logK) in the remnant disks of cases A0 and A4,
at the time shortly after disk formation. The disk in case
A0 is of roughly uniform rest-mass density in the orbital
plane. Though the disk volume in cases A4 and A0 are
comparable, the case A4 disk is about twice as massive
as A0. Entropy in case A4 is lower, and entropy contours
fall off rapidly with density. On the other hand, the en-
tropy in case A0 is much more uniform in the disk, with
only a slight drop near the BH. Thus in the nonspinning
case, adding strong seed magnetic fields to the NS results
in colder, denser, more massive disks.
Figure 10 shows b2 profiles for case A4’s disk, plot-
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FIG. 3. Rest-mass fraction outside the AH for all cases in
which the BH is initially nonspinning.

FIG. 4. Total magnetic energy M outside the AH for all
magnetized cases in which the initial BH possesses zero spin,
normalized by the ADMmass M = 9.3×1054(M0/1.4M⊙)erg.

ted at the same time as in Fig. 9. The strong magnetic
fields in A4 enhance the final disk mass by more than a
factor of two, even though magnetic pressure never ex-
ceeds about 3% of the gas pressure, with typical values
around 0.01% (left plot)–about an order of magnitude
lower than during tidal disruption (Fig. 7, left frame).

Short-wavelength variations in b2 contours appear near
the BH only, with longer-wavelength variations outside.
This is likely a numerical artifact, since the disk spans
about four AMR refinement levels, which are centered
on the BH. Each refinement level drops the resolution by
a factor of two, meaning that matter in the outer reaches
of this disk is more poorly resolved by a factor of 16 than
the region near the BH. This filtering of wavelengths due
to AMR likely suppresses magnetic-induced turbulence
in the disk.
Figure 11 contrasts b2/(2P ) contours for cases A3 and

A4. As b2/(2P ) approaches unity, magnetic fields should
have more of a dynamical impact. Case A3 is identical
to A4, except its seed magnetic fields are weaker by an
order of magnitude. Correspondingly, typical values of
b2/(2P ) in this late-time disk are roughly 2–3 orders of
magnitude lower in case A3 than A4. This is consistent
with the finding that the remnant disk mass and accre-
tion rate are unaffected by magnetic fields in case A3;
pressure from the magnetic fields is simply too small to
be dynamically relevant. Thus, initial internal magnetic
pressures of order 0.1% of gas pressure may be required
for magnetic fields to have a significant impact on the
system’s dynamics.

B. Magnetic Field Study: Spinning Black Hole

Figure 12 outlines the basic evolution scenario for the
fiducial aBH/MBH=0.75 (henceforth “spinning”) case,
B0. Unlike the nonspinning case, the NS is slightly dis-
torted from its equilibrium shape after about three or-
bits (top-left plots, cf. top-left plots in Fig. 2). Although
the spinning cases start with the same initial orbital an-
gular frequency as the nonspinning cases, all spinning
cases require about two more orbits before an accretion
funnel forms (top-right frame). This is due to the well-
known “orbital hang-up” effect. Unlike the nonspinning
case, in which about 95% of the NS matter immediately
funnels into the BH, strong frame-dragging in the spin-
ning cases twists the accreting funnel around the BH,
promptly accreting only ∼70% of the NS matter. Ac-
cretion slows after the funnel twists around the BH and
intersects itself, generating shock heating and produc-
ing a small, dense disk-like structure that expands and
rarefies as it orbits the BH. Notice that this “disk” is
much smaller and denser than in the nonspinning cases
(bottom-left plot, cf. Fig. 2). Attached to this small
“disk”, the outer layers of the NS have formed a long tidal
tail, which is ejected to a large radius before slowly falling
back onto the expanding but accreting “disk” (bottom-
middle frame). The disk continues its expansion as much
of the tail falls into it. Near the time when the simu-
lation is stopped, we find no indication of a cavity near
the BH (bottom-right frame). Longer simulations may
be required for a cavity to appear, which might indicate
the presence of an ISCO. Note that in contrast with the
expected long-term evolution of this unmagnetized case,
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FIG. 5. Orbital-plane rest-mass density contours (left column), 3D density profiles (middle column) and 3D magnetic field lines
(right column) at four selected times for case A4. The times in the rows (top to bottom) are t/M =448.5, 515.4, 613.7, and 2620.
Density contours in the orbital plane (left column) are plotted according to ρ0 = ρ0,max(10

−0.92j), (j=0, 1, ... 5), with darker
greyscaling for higher density. The maximum initial NS density is κρ0,max = 0.126, or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2.
Arrows in density contour plots represent the velocity field in the orbital plane, and the black hole AH interior is marked by a
filled black circle. Magnetic fields are plotted as streamlines of the magnetic field vector Bi, distributed in proportion to |Bi|.
The ADM mass for this case is M = 2.5 × 10−5(M0/1.4M⊙)s= 7.6(M0/1.4M⊙)km.
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FIG. 6. Rest-mass density and velocity profile snapshots during NS tidal disruption for cases A0 (left) and A4 (right). Density
contours are plotted in the orbital plane according to ρ0 = ρ0,max(10

−0.92j), (j=0, 1, ... 5), with darker greyscaling for higher
density. The maximum initial NS density is κρ0,max = 0.126, or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2. Arrows represent the
velocity field in the orbital plane, and the black hole AH interior is marked by a filled black circle. The ADM mass for this
case is M = 2.5 × 10−5(M0/1.4M⊙) s= 7.6(M0/1.4M⊙)km.

FIG. 7. Pressure ratio b2/(2P ) (left) and magnetic pressure b2/2 (right) contours during NS tidal disruption, at the same
time as Fig. 6, plotted according to b2/(2P ) = 10−1.5(10−1.3j), (j=0, 1, ... 5), and κb2 = 10−5(10−2.2j), (j=0, 1, ... 5).
Darker greyscaling denotes higher values. Contours are only plotted for regions with densities higher than the lowest-density
ρ0 contours in Fig. 6. In cgs units, κ−1 = 6× 1036dyn cm−2(1.4M⊙/M0)

2.
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FIG. 8. Rest-mass density contours for case A0 (top), A4
(middle), and magnetic energy density b2 (bottom) profile
for A4 in the meridional plane at the end of simulations
(t = 2620M). Density contours are plotted according to ρ0 =
ρ0,max10

−7.6+0.717j , (j = 0, ..., 6), with darker greyscaling for
higher density. b2 contours are plotted according to κb2 =
10−12+0.833j , (j = 0, ..., 6). The maximum initial NS density
is κρ0,max = 0.126, or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2.
Arrows represent the velocity field in the meridional plane.
In cgs units, the ADM mass for this case is M = 2.5 ×
10−5(M0/1.4M⊙) s= 7.6(M0/1.4M⊙)km, and κ−1 = 6 ×
1036erg cm−3(1.4M⊙/M0)

2 = 7× 1015g cm−3(1.4M⊙/M0)
2.

stresses in magnetized disks may suppress the formation
of hollow regions around the ISCO [95, 96].

The corresponding accretion history for all cases in
which the BH initially has spin is shown in Fig. 13. Simi-
lar to the nonspinning cases, only the most strongly mag-
netized case, B4, has an appreciably different accretion
history. The NS in case B4 possesses the same magnetic
field geometry and strength as the NS in the (nonspin-
ning) case A4: the seed magnetic fields are both strong
(|B|max ∼ 1017G, initially) and pushed all the way to
the NS surface (Pc = 0.001). The magnetic fields in

case B4 increase the disk mass from about 10% to 14%,
a net 40% amplification in disk mass. Notice also that
BH spin alone has a very significant influence on final
disk mass; increasing initial aligned BH spin from zero
to aBH/MBH=0.75 increases the final disk mass by about
an order of magnitude (∼0.9% – ∼10%). Based on the
final accretion rate, the half-life of the disk is roughly
5000M , or ∼ 140(M0/1.4M⊙)ms.

Figure 14 plots the magnetic energy outside the AH
versus time for all spinning, magnetized cases. During
merger there are two competing effects: magnetic energy
will increase as the NS tidally disrupts and the field lines
are stretched, while magnetic energy outside the AH will
decrease as magnetized NS matter is accreted into the
BH. This major accretion event occurs at t ≈ 900M for
all spinning cases, corresponding to a spike in magnetic
energy at that time. At t = 1000M , only about 20% of
the NS matter remains outside the BH, but the magnetic
energy in all cases is higher than when the seed fields were
added to the NS, indicating that a large amplification in
magnetic field strength has occurred. Only case B4 has
sufficiently strong magnetic fields to severely impact the
disk dynamics; the disk mass is amplified by about 40%,
and the magnetic energy in this case is 1–2 orders of
magnitude stronger than any other case at all times.

To determine the sensitivity of our results on the time
at which the magnetic fields were added to the NS, two
simulations were performed: cases B1a and B1b. These
simulations are identical except the seed magnetic fields
were added to the NS about half an orbit later in case
B1b. The accretion histories of cases B1a and B1b over-
lap completely, implying that the bulk dynamics are un-
affected by when the magnetic fields were inserted into
the NS. During and directly after the merger (t ≈ 900M),
magnetic energy in cases B1a and B1b overlap. After
merger, only a tiny fraction of the fields in the outer lay-
ers of the NS remains outside the AH. Correspondingly,
the magnetic energy plummets in both cases to negligibly
small values, yet agree to within an order of magnitude
even at late times. Thus we conclude that the final re-
sult is largely insensitive to when the seed magnetic fields
were added.

Next we analyze how magnetic fields evolve over time
in case B4, starting with the time at which they were
seeded into the NS (top-right frame of Fig. 15). At the
onset of tidal disruption (second row), the magnetic field
structure has changed significantly, even within the non-
disrupted regions of the NS. Apparently the magnetic
fields have undergone some slight rearrangement since
they were added to the NS.

After the accretion funnel has wrapped around the BH
and intersected itself, it forms a small disk-like structure
around the BH (bottom frames). In this “disk” region,
the magnetic fields wind around the BH. The B4 sim-
ulation is continued for about 30(M0/1.4M⊙)ms after
tidal disruption, and then it is stopped. At this time,
the BH+disk system has drifted significantly (bottom
plots of 15), due to gauge effects and the gravitational-
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FIG. 9. Top two plots: Rest-mass density and velocity snapshots shortly after disk formation for cases A0 (left) and A4 (right).
Density contours are plotted in the orbital plane according to ρ0 = ρ0,max(10

−0.92j ), (j=0, 1, ... 5), with darker greyscaling
for higher density. The maximum initial NS density is κρ0,max = 0.126, or ρ0,max = 9 × 1014g cm−3(1.4M⊙/M0)

2. Arrows
represent the velocity field in the orbital plane. The black hole AH interior is marked by a filled black circle. The ADM mass
for this case is M = 2.5× 10−5(M0/1.4M⊙) s= 7.6(M0/1.4M⊙)km.
Bottom two plots: Snapshots of the entropy parameter K contours for cases A0 (left) and A4 (right). The light grey regions
correspond to 1.4 < log10 K < 2.6, and the dark grey region corresponds to 2.6 < log10 K < 3.8.

wave kick at merger. There is a great deal of winding
of magnetic fields threading the disk at this time (green
lines), but no strong evidence of collimation around the
BH poles or magnetic field turbulence in the disk. The
lack of magnetic field turbulence may be due to in-

sufficient resolution in the disk, which artificially sup-
presses instabilities like MRI. Insufficient resolution, cou-
pled with the termination of the simulation after only
30(M0/1.4M⊙)ms may explain why no magnetic field
collimation was observed. The bottom left and center
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FIG. 10. b2/(2P ) (left) and b2 (right) contours, at the same time as Fig. 9, plotted according to b2/(2P ) = 10−1.5(10−1.3j),
(j=0, 1, ... 5), and κb2 = 10−5(10−2.2j), (j=0, 1, ... 5). b2/(2P ) and b2 contours are only plotted for regions with densities
higher than the lowest-density ρ0 contours in Fig. 9. In cgs units, κ−1 = 6× 1036erg cm−3(1.4M⊙/M0)

2.

FIG. 11. b2/(2P ) contours for cases A3 (left) and A4 (right), plotted according to b2/(2P ) = 10−1.5(10−1.3j), (j=0, 1, ... 5).
Contours are only plotted for regions with densities above the low-density cutoff in Fig. 9.

frames of the figure show that a cavity has not formed
around the BH by the end of the simulation. This result
appears to be consistent with studies which suggest that
stresses in magnetized disks may suppress the presence
of an ISCO [95, 96]. However, longer, more accurate disk

evolutions will be necessary to fully assess the agreement
between these studies and simulations in full GR.
The strong seed magnetic fields in case B4 amplify the

disk mass significantly, similar to case A4. Figure 16
demonstrates how the NS density contours are affected
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FIG. 12. Orbital-plane density contours at selected times for case B0. Density contours are plotted in the orbital plane,
according to ρ0 = ρ0,max(10

−0.92j ), (j=0, 1, ... 5), with darker greyscaling for higher density. The maximum initial NS
density is κρ0,max = 0.126, or ρ0,max = 9 × 1014g cm−3(1.4M⊙/M0)

2. Arrows in density contour plots represent the velocity
field in the orbital plane, and the black hole AH interior is marked by a filled black circle. The ADM mass for this case is
M = 2.5× 10−5(M0/1.4M⊙)s= 7.6(M0/1.4M⊙)km.

by such strong magnetic fields, comparing case B4 (right
plot) with the unmagnetized case (left plot) shortly af-
ter tidal disruption. Although the seed magnetic fields
are the same strength and geometry as in case A4 (cf.
Fig. 6), the NS outer layers in case B4 are pushed out
much more than in case A4. The magnetic pressure in
case B4 does not rise above about 3% of the gas pres-
sure in the orbital plane, as shown in Fig. 17 (left plot).
This is consistent with case A4. Although b2/(2P ) varies
strongly throughout the NS, b2 tends to be stronger in
the densest regions of the NS (right plot), again similar
to case A4 (cf. Fig. 10).

Figure 18 contrasts the distribution of rest-mass den-
sity and entropy (logK) in the remnant disks of cases
B0 and B4, at the time in which the B4 simulation was
stopped. In the nonspinning cases A0 and A4 (Fig. 9),
the sizes of the remnant disks in the orbital plane are
remarkably similar, though the disk mass in case A4 is
about twice A0’s disk mass. The extra disk mass in case
A4 may be explained by the existence of a high-density
ring of matter in the disk. Unlike the nonspinning cases
however, the high-density regions of the remnant disks

in cases B0 and B4 are remarkably similar (upper plots).
Despite this, B4’s final disk possesses about 40% more
mass than B0. Apparently the excess mass in case B4’s
disk comes from its larger volume. The size difference be-
tween B0 and B4’s final disks is seen more clearly in the
entropy contour plots (bottom two plots), which demon-
strate the disks are hotter close to the BH and in the
lowest-density outer regions.
Magnetic field amplitude contour plots for case B4’s

disk at the same time as Fig. 18 are displayed in Fig. 19.
As in case A4, the final disk mass is greatly increased by
strong magnetic fields, even though magnetic pressure
never exceeds about 3% of the gas pressure, with typ-
ical values around 0.1% (left plot of Fig. 19). Bubbles
of enhanced b2, corresponding to order-of-magnitude in-
creases in |b|, appear in a small ring around the BH and
in the disk’s outer regions (right plot of Fig. 19).
Finally, Fig. 20 compares B0 and B4 profiles in the

meridional plane. As in the nonspinning cases, the ge-
ometry of the disk appears to be mostly unchanged by
the addition of magnetic fields. There is small amount
of material flowing into the BH from the poles, and the
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FIG. 13. Rest-mass fraction outside the AH for all
cases in which the initial BH possesses spin parameter of
aBH/MBH=0.75.

magnetic fields are mainly confined inside the disk.

C. Gravitational Waves Study

Gravitational waves are extracted at several radii be-
tween 50M and 130M . These radii are sufficiently far
from the binary for the waves to overlap very well when
plotted against retarded time, after accounting for the
amplitude fall-off with radius. The upper panel of Fig. 21
shows the dominant (2,2) mode of the gravitational wave-
form as a function of retarded time tret for case A0, and
the difference between the two data sets is displayed in
the lower panel. The difference in amplitude between
A0 and A4 waveforms is less than 3%, indicating that
magnetic fields explored here do not significantly impact
the global dynamics during BHNS inspiral and merger.
By contrast, the difference between the B0 and B4 wave-
forms during merger is substantial (Fig. 22). The more
highly spinning BHs of cases B0 and B4 possess smaller
ISCOs, enabling NS to orbit the BH more closely before
accreting, resulting in more gravitational wave cycles.
Further, at smaller separations from the BH, the effects
of frame dragging are much more pronounced, twisting
NS matter around the BH and reducing the BH accretion
rate, ultimately giving the magnetic fields more time to
amplify and affect the global dynamics of NS matter.

However, the observability of magnetic effects on grav-
itational waveforms depends on the response of the GW
detectors to the time series data. One way to assess the

FIG. 14. Total magnetic energy outside the AH for all
magnetized cases in which the initial BH possesses spin pa-
rameter of aBH/MBH=0.75, normalized by the ADM mass
M = 9.3 × 1054(M0/1.4M⊙)erg..

detectability is to compute the mismatch

MM ≡ 1− (hB0|hB4)
√

(hB0|hB0)(hB4|hB4)
, (28)

between the waveforms of B0 and B4, assuming the NS
mass is 1.4 M⊙, where

(h1|h2) = 4Re

∫ ∞

0

h̃1(f)h̃
∗
2(f)

Sh(f)
df. (29)

Here h = h+ − ih×, h̃ is the Fourier transform of h(t),
and Sh(f) is the power spectral density of the Advanced
LIGO noise. Using the Advanced LIGO broadband con-
figuration HIGH DET HIGH P, the minimum mismatch
(by varying the time and phase shifts between the two
waveforms) between B0 and B4 waveforms is only 0.004,
indicating that it may be challenging for Advanced LIGO
broadband to detect the strong internal magnetic fields
of case B4.
Complete GW spectra in the frequency domain require

the creation of hybrid waveforms, which stitch together
numerical and post-Newtonian (PN) waveforms. We gen-
erate hybrids by first computing the minimum of

∫ tf

ti

dt

√

∑

i∈{+,×}

(hNR
i − hPN

i )2 (30)

via the Nelder-Mead algorithm, using as free parame-
ters initial PN phase, amplitude, and orbital angular
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FIG. 15. Orbital-plane density contours (left column), 3D density profiles (middle column) and 3D magnetic field lines (right
column) at four selected times for case B4. The times in the rows (top to bottom) are t/M =634.8, 744.1, 931.2, and 2003.
Density contours in the orbital plane (left column) are plotted according to ρ0 = ρ0,max(10

−0.92j), (j=0, 1, ... 5), with darker
greyscaling for higher density. The maximum initial NS density is κρ0,max = 0.126, or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2.
Arrows in density contour plots represent the velocity field in the orbital plane, and the black hole AH interior is marked by a
filled black circle. Magnetic fields are plotted as streamlines of the magnetic field vector Bi, distributed in proportion to |Bi|.
The ADM mass for this case is M = 2.5 × 10−5(M0/1.4M⊙)s= 7.6(M0/1.4M⊙)km.
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FIG. 16. Density and velocity profile snapshots during NS tidal disruption for cases B0 (left) and B4 (right). Density contours
are plotted in the orbital plane according to ρ0 = ρ0,max(10

−0.92j), (j=0, 1, ... 5), with darker greyscaling for higher density.
The maximum initial NS density is κρ0,max = 0.126, or ρ0,max = 9 × 1014g cm−3(1.4M⊙/M0)

2. Arrows represent the velocity
field in the orbital plane, and the black hole AH interior is marked by a filled black circle. The ADM mass for this case is
M = 2.5× 10−5(M0/1.4M⊙) s= 7.6(M0/1.4M⊙)km.

FIG. 17. Pressure ratio b2/(2P ) (left) and magnetic pressure b2/2 (right) contours during NS tidal disruption, at the same
time as Fig. 16, plotted according to b2/(2P ) = 10−1.5(10−1.3j), (j=0, 1, ... 5), and κb2 = 10−5(10−2.2j), (j=0, 1, ... 5).
Darker greyscaling denotes higher values. Contours are only plotted for regions with densities higher than the lowest-density
ρ0 contours in Fig. 16. In cgs units, κ−1 = 6× 1036dyncm−2(1.4M⊙/M0)

2.
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FIG. 18. Top two plots: Density and velocity profile snapshots at the time in which the B0 simulation is stopped, for cases B0
(left) and B4 (right). The contours represent the density in the orbital plane, plotted according to ρ0 = ρ0,max(10

−0.92j),
(j=0, 1, ... 5), with darker greyscaling for higher density. The maximum initial NS density is κρ0,max = 0.126, or ρ0,max =
9 × 1014g cm−3(1.4M⊙/M0)

2. Arrows represent the velocity field in the orbital plane. The black hole AH interior is marked
by a filled black circle. The ADM mass for this case is M = 2.5× 10−5(M0/1.4M⊙)s= 7.6(M0/1.4M⊙)km.
Bottom two plots: Snapshots of entropy parameter K contours for cases B0 (left) and B4 (right). The light grey regions
correspond to 1.4 < log10 K < 2.6, and the dark grey region corresponds to 2.6 < log10 K < 3.8.

frequency. Here, hNR
+,× and hPN

+,× specify our numeri-
cal BHNS waveforms and the TaylorT1 PN waveforms
of [99], respectively. The integration bounds were chosen
to be ti ≈ 200M and tf ≈ 400M . The hybrid wave-
form consists of a linear combination of the PN and NR

waveforms, as in [100].

Effective GW strains of the hybrid waveforms in fre-
quency space are plotted in Fig. 23 for A0, and Fig. 24
for cases B0 and B4. Assuming the NS has a rest
mass of 1.4M⊙ and binary distance of 100Mpc, we plot
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FIG. 19. Pressure ratio b2/(2P ) (left) and magnetic pressure b2/2 (right) contours, at the same time as Fig. 18, plotted
according to b2/(2P ) = 10−1.5(10−1.3j), (j=0, 1, ... 5), and κb2 = 10−5(10−2.2j), (j=0, 1, ... 5). b2/(2P ) and b2 contours
are only plotted for regions with densities higher than the lowest-density ρ0 contours in Fig. 18. In cgs units, κ−1 = 6 ×
1036dyn cm−2(1.4M⊙/M0)

2.

these strains against the Advanced LIGO sensitivity
curve hLIGO(f) ≡

√

fSh(f). Within this distance, the
BHNS event rate is estimated to be 5 × 10−3–10 per
year, assuming an overall rate of 0.05–100 mergers per
Myr per Milky Way-equivalent galaxy (and a density of

0.1 gal/Mpc
3
) [29]. Cases A1–A4 and B1–B3 are not

shown in the figures because their effective GW strains
are almost indistiguishable from cases A0 and B0, re-
spectively. Advanced LIGO in the chosen configuration
may be able to marginally distinguish between BHNS
waveforms and those produced by BHBH mergers at high
frequencies (500–1000Hz). However, the effects of even
the strongest magnetic fields chosen here (cases A4 and
B4) on the waveforms are quite small and may be chal-
lenging for Advanced LIGO to detect in a broadband
configuration. This is consistent with the result from
the minimum mismatch calculation between B0 and B4,
as mentioned above. Nevertheless, recent innovations ex-
ploring ‘squeezed light’ effects may reduce quantum noise
and increase the sensitivity in this very domain [101].

It has been suggested that the differences between
BHNS and BHBH waveforms during late inspiral and
merger may be used to extract the tidal deformability
of the NS [102], which can in turn be used to constrain
the NS EOS. Our results suggest that seeding the NS
with magnetic fields of the configurations and strengths
explored here do not alter gravitational waveforms sig-
nificantly. Further studies at higher resolution may be
required to confirm this finding.

D. Energy and angular momentum conservation

We compute the energy ∆EGW and angular momen-
tum ∆JGW carried away by the GWs, as well as the GW
recoil velocity vkick. Violation of energy δE and angular
momentum δJ , as defined in Eqs. (26) and (27), respec-
tively, is also monitored. Results are given in Table III.
For cases A0–A4, δE ≈ 0.2% and δJ ≈ 2%. Whereas for
cases B0–B4, δE ≈ 0.6% and δJ ≈ 8%. In all cases, a
fraction of E and J are lost spuriously, and the situation
is slightly worse in spinning BH cases.

To further study the issue of E and J loss, we calculate
the angular momentum inside the computational domain,
Jint, using Eq. (22), as well as the accumulated angular
momentum carried away by the GWs, ∆JGW . Figures 25
and 26 show the evolution of Jint and ∆JGW for represen-
tative cases (A4 and B4). The corresponding plots for the
various components of energy are similar. Conservation
of angular momentum implies that Jsum = Jint+∆JGW is
constant in time and is equivalent to the ADM angular
momentum of the binary. Notice that the total angu-
lar momentum Jsum is conserved well during inspiral for
both cases (tret ≤ 500M for case A4 and tret ≤ 700M for
B4). Post-merger, ∆JGW flattens as GW emission sub-
sides in all cases. Jint also flattens after merger in case
A4, as expected. Hence the spurious loss of J (≈ 2%)
occurs primarily during merger for case A4. The same
behavior is observed in cases A0–A3 as well. However, in
cases B0–B4, Jint decreases on a secular timescale after
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FIG. 20. Rest-mass density profile for case B0 (top), B4
(middle) and magnetic energy density b2 (bottom) profiles
for B4 in the meridional plane at the end of simulation (t =
2003.2M). Density contours are plotted according to ρ0 =
ρ0,max10

−7.6+0.717j , (j = 0, ..., 6), with darker greyscaling for
higher density. b2 contours are plotted according to κb2 =
10−12+0.833j , (j = 0, ..., 6). The maximum initial NS density
is κρ0,max = 0.126, or ρ0,max = 9× 1014g cm−3(1.4M⊙/M0)

2.
Arrows represent the velocity field in the meridional plane.
In cgs units, the ADM mass for this case is M = 2.5 ×
10−5(M0/1.4M⊙) s= 7.6(M0/1.4M⊙)km, and κ−1 = 6 ×
1036erg cm−3(1.4M⊙/M0)

2 = 7× 1015g cm−3(1.4M⊙/M0)
2.

merger. The value of Jsum deviates from its initial value
by about 2% after the merger at tret ≈ 900M , but the
deviation increases slowly and reaches≈ 7% at the end of
simulation (tret = 2000M), indicating that the spurious
loss of J continues after merger in case B4.

The BH spin parameter for case B4 increases from
aBH/MBH =0.75 to ≈ 0.85 during the simulation (see
Table III). A secular decrease of total angular momen-
tum as found in case B4 is commonly observed in rapidly
spinning vacuum BH simulations (see e.g., [103]), which
find that spurious J loss is reduced with increasing reso-

FIG. 21. Upper panel: (2,2) mode of the gravitational wave
strain h+

22 (solid line) and h×
22 (dashed line) versus retarded

time tret for case A0.
Lower panel: difference in h+

22 (solid line) and h×
22 (dashed

line) between cases A0 and A4 versus tret, normalized by the
maximum value of |h+

22 − ih×
22| for case A0 over time, h22max.

lution.
Figures 25 and 26 also show the evolution of the BH’s

angular momentum JBH, computed using the isolated
and dynamical horizon formalism. JBH monotonically
increases in both A4 and B4, and is always less than
Jint. This seems to suggest that the spurious loss of J
in case B4 after merger may occur mainly in the rem-
nant disk, where a substantial amount of matter is con-
tinuously crossing the refinement levels. However, the
possibility of spurious loss of J in the strong-field region
near the BH cannot be ruled out completely. One way
to resolve the issue would be to compute the amount of
J flowing into the BH and check for the conservation of
J at the BH horizon (see e.g., Sec. 4.2 of [90]).

V. SUMMARY AND FUTURE WORK

We present preliminary results from magnetized sim-
ulations of BHNS binaries with BH:NS mass ratio
3:1. We treat both initially nonspinning (cases A) and
moderately-spinning (cases B) BHs. For those magnetic
field configurations we consider, only initial NS magnetic
fields with maximum (internal) strength of ≈ 1017G –
corresponding to average magnetic to gas pressure ratio
of 0.5% – significantly impact the inspiral and merger dy-
namics. During merger, most of the magnetized NS mat-
ter is captured by the BH. After disruption, the dynam-
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FIG. 22. Same as Fig. 21 but for cases B0 and B4.

ics are followed for about 30–50 (M0/1.4M⊙)ms. Only in
the cases in which magnetic fields are strongest are mag-
netic effects dynamically significant, increasing the final
disk mass by up to a factor of two. The strong magnetic
fields help push out the outer layers of the NS during tidal
disruption, resulting in a gravitational wave mismatch of
0.004 for the Advanced LIGO broadband configuration.
It may be challenging for the upcoming generation of
gravitational wave detectors to observe effects from such
magnetic fields. Further studies with different field ge-
ometries, black hole spins and higher resolution may be
required to confirm this finding.

Some SGRB models require a massive, hot, magne-
tized disk around a BH with collimated magnetic fields to
launch jets that generate γ-rays (see, e.g. [53, 54]). In our
BHNS simulations, the remnant disk is hot (T ∼ 1MeV)
and massive (Mdisk ∼ 0.02M⊙ and ∼ 0.1M⊙ for cases A
and B, respectively), and possesses magnetic fields that
are tightly wound. However, evidence for magnetic col-
limation around the BH or magnetic field-induced tur-
bulence in the disk is not observed. Future analyses will
focus on mode growth studies and B-field decomposition
in poloidal and toroidal components with respect to the
centre of mass of the NS, similar to previous studies of
single rotating or magnetized stars [104–106]. The lack
of collimation may be due to the short disk evolution
time before our simulation is terminated. The absence
of turbulence in the disk may be due to insufficient res-
olution in the disk, thereby suppressing instabilities like
MRI. Therefore, future work will focus on evolving the
disk at higher resolution, coupled with longer disk evolu-
tions and different initial magnetic field configurations to
more thoroughly assess the possibility of BHNS binaries

FIG. 23. Gravitational-wave power spectrum for case A0 com-
puted as in Sec. IIIF of [25]. The solid curve shows the power
spectrum of the numerical signal (dotted curve) stitched to
the post-Newtonian waveform, including only the dominant
(2, 2) and (2,−2) modes. The dashed curve shows the power
spectrum expected from BHBH binaries with the same total
mass and mass ratio as the BHNS, derived in [97] from analy-
sis of multi-orbit, non-precessing BHBH binaries. The heavy
solid curve displays the effective strain of the Advanced LIGO
detector, defined such that hLIGO(f) ≡

√

fSh(f). The noise
curve used here corresponds to the Advanced LIGO configu-
ration ZERO DET HIGH P [98]. To set physical units, a NS
rest mass ofM0 = 1.4M⊙ and a source distance ofD=100Mpc
is assumed.

as short-hard GRB progenitors.
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Appendix A: Hydrodynamic and MHD inequalities

For a given set of “primitive” variables (ρ0, P, v
i, Bi)

in the physical range (i.e. ρ0 ≥ 0, P ≥ 0 and ǫ ≥ 0),
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FIG. 24. Same as Fig. 23 but for Cases B0 and B4.

FIG. 25. Evolution of interior angular momentum Jint, angu-
lar momentum carried off by GW ∆JGW, and BH’s angular
momentum JBH for case A4. All quantities are normalized by
the ADM angular momentum of the binary J .

the corresponding “conservative” variables (ρ∗, τ̃ , S̃i, B̃
i)

must satisfy certain inequalities. In this appendix, we
derive the inequalities and provide a practical recipe to
impose these inequalities approximately to reduce inver-
sion failures, which occur mainly in regions with very
low density in the artificial “atmosphere” or inside the

FIG. 26. Same as Fig. 25 but for case B4.

BH horizon where high accuracy is difficult to maintain
but not crucial. Even when applying this recipe, inver-
sion failures sometimes occur. In that case, we employ an
alternative inversion scheme, described in Sec. A 4, that
always works. Readers who are only interested in our
recipe may jump directly to Sec. A 3 and skip the rest of
this appendix outlining the derivation.

Since the inversion between B̃i and Bi is trivial and
does not involve other primitive variables, we will treat
values of Bi as given and only consider the inversion
from (ρ∗, τ̃ , S̃i) to (ρ0, P, v

i). We assume that the EOS
P = P (ρ0, ǫ) always gives P ≥ 0 whenever ρ0 ≥ 0 and
ǫ ≥ 0. We also assume that the metric, lapse and shift are
in the physical range. In particular, we require α > 0 and
γijk

ikj > 0 for any real vector ki. The requirement α > 0
is always satisfied by our particular time slicing. How-
ever, γij may lose positive-definiteness due to numberical
error during the evolution, especially in the region deep
inside the BH, near the “puncture”. Before performing
the inversion, we check if γij is positive definite by find-
ing its eigenvalues. If γij is not positive definite, we reset
γij → ψ4fij during the inversion, where fij is the 3D flat
metric tensor.



25

1. Derivation of conservative variable inequalities:
Pure hydrodynamic case

In the absence of magnetic fields, the conservative vari-
ables are given by

ρ∗ =
√
γρ0γv (A1)

S̃i = ρ∗hui (A2)

τ̃ = h(w − ρ∗) + (h− 1)ρ∗ −
√
γ P, (A3)

where

γv = αu0 , w = γvρ∗, (A4)

and h = 1 + ǫ + P/ρ0 ≥ 1. It follows from uµu
µ = −1

that

γv =
√

1 + γijuiuj. (A5)

Since γijuiuj is positive definitive, γv ≥ 1. We therefore
conclude that

ρ∗ ≥ 0 (A6)

for ρ0 ≥ 0 and ui ∈ (−∞,∞). In addition, w = γvρ∗ ≥
ρ∗, from which we obtain

τ̃ ≥ (h− 1)ρ∗ −
√
γ P

=
√
γ[γvρ0ǫ + (γv − 1)P ] ≥ 0. (A7)

Hence we conclude that

τ̃ ≥ 0, (A8)

which is Eq. (15).
To derive the inequality (18), Eqs. (A2) and (A5) are

combined to yield

S̃2 = γijS̃iS̃j = (ρ∗h)
2(γ2v − 1) = h2(w2 − ρ2∗). (A9)

A straightforward calculation yields

(τ̃ + ρ∗)
2 = S̃2 + h2ρ2∗ −

√
γ P (2hw −√

γ P )

= S̃2 + (γv
√
γ)2[ρ20(1 + ǫ)2 − P 2]

+(
√
γ P )2 . (A10)

Since there is no upper limit on γv, the sum of the sec-
ond and third terms is always positive if and only if the
dominant energy condition – P 2 ≤ ρ20(1 + ǫ)2 – holds.
Hence we conclude that

S̃2 ≤ (τ̃ + ρ∗)
2, (A11)

if the dominant energy condition is satisfied. The in-
equality (18) is more stringent, and hence more useful.
It can be derived using Eq. (A10):

τ̃ (τ̃ +2ρ∗) = S̃2 +(γv
√
γ)2(2ρ20ǫ+ ρ20ǫ

2 −P 2)+ (
√
γ P )2.

In this case, the sum of the second and third terms is
always positive if and only if P 2 ≤ 2ρ20ǫ + ρ20ǫ

2. Hence
we have derived the inequality (Eq. 18):

S̃2 ≤ τ̃ (τ̃ + 2ρ∗) iff P 2 ≤ 2ρ20ǫ+ ρ20ǫ
2. (A12)

Whether the condition P 2 ≤ 2ρ20ǫ + ρ20ǫ
2 is satisfied de-

pends on the EOS. For the Γ-law EOS P = (Γ − 1)ρ0ǫ,
simple calulation gives

P 2 − 2ρ20ǫ− ρ20ǫ
2 = ρ20ǫ[Γ(Γ− 2)ǫ− 2]. (A13)

Hence the inequality S̃2 ≤ τ̃(τ̃ + 2ρ∗) holds iff Γ(Γ −
2)ǫ − 2 ≤ 0. Restricting to the parameter space where
the sound speed is subluminal, i.e. c2s = ΓP/(ρ0h) < 1,

we have Γ(Γ− 2)ǫ < 1. Therefore, S̃2 ≤ τ̃(τ̃ +2ρ∗) holds
for the Γ-law EOS in regions where the sound speed is
subluminal. For the Γ-law EOS it can be shown that
c2s < Γ−1 holds for any nonnegative ρ0 and P . Thus, the
sound speed will always be subluminal when 1 < Γ ≤ 2.
Thus, S̃2 ≤ τ̃ (τ̃ + 2ρ∗) is satisfied for the Γ-law EOS,
when 1 < Γ ≤ 2.

We have just proved that the inequalities ρ∗ ≥ 0, τ̃ ≥ 0
and S̃2 ≤ τ̃(τ̃ + 2ρ∗) are necessary conditions for the
primitive inversion to yield a physical solution for 1 <
Γ ≤ 2. We now want to prove that they are also the
sufficient conditions for the Γ-law EOS with Γ > 1. For
the Γ-law EOS, the enthalpy is related to the pressure P
by

h = 1 +
ΓP

(Γ− 1)ρ0
. (A14)

Combining the above equation with Eq. (A3) yields

h =
Γw(τ̃ + ρ∗)− (Γ− 1)ρ2∗

Γw2 − (Γ− 1)ρ2∗
. (A15)

It is useful to define a variable x ≡ (w−ρ∗)/τ̃ . It follows
from Eqs. (A15) and (A9) that

h− 1 =
Γτ̃ (1− x)(xτ̃ + ρ∗)

Γτ̃x(τ̃x+ 2ρ∗) + ρ2∗
(A16)

and

f(x) ≡ τ̃x(τ̃x+ 2ρ∗)−
S̃2

h2
= 0. (A17)

These two equations can be combined to yield a quartic
equation in x. However, it is easier to analyze the equa-
tions in the present form. For any given ρ∗ ≥ 0, τ̃ ≥ 0
and S̃2 ≤ τ̃ (τ̃ + 2ρ∗), when x = 0, h = 1 + Γτ̃/ρ∗ ≥ 1

and f(0) = −S̃2/h2 ≤ 0; when x = 1, h = 1 and

f(1) = τ̃ (τ̃+2ρ∗)−S̃2 ≥ 0. Hence the intermediate value
theorem implies there exists x0 ∈ [0, 1] so that f(x0) = 0.
The primitive variables are recovered from the following
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expressions

γv =
w

ρ∗
= 1 +

τ̃x0
ρ∗

, (A18)

ρ0 =
ρ∗

γv
√
γ
, (A19)

h− 1 =
Γτ̃(1 − x0)(x0 τ̃ + ρ∗)

Γτ̃x0(τ̃x0 + 2ρ∗) + ρ2∗
, (A20)

P =
Γ− 1

Γ
ρ0(h− 1), (A21)

ui =
S̃i

ρ∗h
, (A22)

vi =
α

γv
γijuj − βi. (A23)

Upon inspection, all the recovered primitive variables lie
in the physically acceptable range for x0 ∈ [0, 1] and Γ >
1.
We therefore conclude that the inequalities ρ∗ ≥ 0,

τ̃ ≥ 0 and S̃2 ≤ τ̃ (τ̃ + 2ρ∗) are both necessary and suf-
ficient conditions for the inversion to yield physically-
acceptable primitive variables for the Γ-law EOS with
1 < Γ ≤ 2. Since the Γ-law EOS with Γ = 2 is adopted
in our simulations, we impose these inequalities in regions
where there are no magnetic fields.

2. Derivation of conservative variable inequalities:
MHD case

In the presence of magnetic fields, the conservative
variables S̃i and τ̃ are given by

S̃i = S̃fluid
i + α

√
γ (b2u0ui − b0bi), (A24)

τ̃ = τ̃fluid +
√
γ

[

γ2vb
2 − b2

2
− (αb0)2

]

. (A25)

Here S̃fluid
i = ρ∗hui and τ̃fluid = h(w − ρ∗) + (h− 1)ρ∗ −√

γ P , which are the same expressions as Eqs. (A2) and
(A3). The variable ρ∗ = γv

√
γ ρ0 remains unchanged and

hence the inequality ρ∗ ≥ 0 still holds in the presence of
magnetic fields.
It is convenient to introduce the following three quan-

tities

W ≡ γ2vρ0h = wh/
√
γ =

√

S̃2
fluid + (ρ∗h)2

√
γ

, (A26)

V ≡
√

γ2v − 1/γv, (A27)

B̄i ≡ Bi/
√
4π. (A28)

Following the algebra in Sec. 3.1 of [87], one can show
that (c.f. Eqs. (26), (27) and (29) of [87])

B̄iS̃i = B̄iS̃fluid
i , (A29)

S̃2 = (
√
γ)2V 2(W + B̄2)2 − (B̄iS̃i)

2(B̄2 + 2W )

W 2
,(A30)

τ̃ = τ̃fluid +

√
γ

2
(1 + V 2)B̄2 − (B̄iS̃i)

2

2
√
γW 2

, (A31)

where B̄2 = γijB̄
iB̄j . It follows from Eq. (A29) and the

Cauchy-Schwartz inequality that

(B̄iS̃i)
2 = (γijB̄iS̃

fluid
j )2

≤ (γijB̄iB̄j)(γ
ij S̃fluid

i S̃fluid
j )

= B̄2S̃2
fluid.

Hence we obtain

S̃2
fluid ≥ ( ˆ̄BiS̃i)

2, (A32)

where ˆ̄Bi ≡ B̄i/B̄.
Using Eq. (A30), we can write

V 2 =
1

γ(W + B̄2)2

[

S̃2 +
(B̄iS̃i)

2(B̄2 + 2W )

W 2

]

, (A33)

and

S̃2
fluid = γV 2W 2 =

W 2S̃2 + (B̄iS̃i)
2(B̄2 + 2W )

(W + B̄2)2
. (A34)

Given values of S̃i and B̄
i, the only independent variable

in the above equation is W . Straightforward calculation
yields

dS̃2
fluid

dW
=

2W [B̄2S̃2 − (B̄iS̃i)
2]

(W + B̄2)3
≥ 0, (A35)

where we have applied the Cauchy-Schwarz inequality

(B̄iS̃i)
2 = (γijB̄iS̃j)

2 ≤ (γijB̄iB̄j)(γ
ijS̃iS̃j) = B̄2S̃2.

Hence the maximum value of S̃2
fluid is achieved when

W → ∞, which gives S̃2
fluid ≤ S̃2. The minimum value

of S̃2
fluid is achieved when W = Wm, where Wm is the

minimum value of W for given values of ρ∗, S̃i and B̄
i.

Hence we obtain

S̃2
m ≤ S̃2

fluid ≤ S̃2, (A36)

where

S̃2
m =

W 2
mS̃

2 + (B̄iS̃i)
2(B̄2 + 2Wm)

(Wm + B̄2)2
. (A37)

The upper and lower bounds of τ̃fluid can be derived
by first combining Eqs. (A31) and (A33):

τ̃fluid = τ̃ −
√
γ

2
B̄2 − B̄2S̃2 − (B̄iS̃i)

2

2
√
γ (W + B̄2)2

. (A38)

For fixed values of τ̃ , S̃i and B̄i, τ̃fluid increases with
increasing W . Therefore, we conclude that

τ̃m ≤ τ̃fluid ≤ τ̃ −
√
γ

2
B̄2, (A39)

where

τ̃m = τ̃ −
√
γ

2
B̄2 − B̄2S̃2 − (B̄iS̃i)

2

2
√
γ (Wm + B̄2)2

. (A40)
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To calculate Wm, we can combine the last equality in
Eq. (A26) and Eq. (A34) to obtain an implicit relation
of W = W (h). Using V ≤ 1, it is then straightforward
to show that dW/dh > 0, and hence W =Wm when h is
minimized. Given that h ≥ 1, we therefore have

Wm =

√

S̃2
m + ρ2∗√
γ

. (A41)

This equation can be combined with Eq. (A37), resulting
in a quartic equation for Wm:

(γW 2
m−ρ2∗)(Wm+B̄2)2−W 2

mS̃
2−(B̄iS̃i)

2(B̄2+2Wm) = 0,

which may be solved analytically. Alternatively,
Eqs. (A37) and (A41) may be solved using an iterative
scheme. We start by using Eq. (A32) and choose an ini-

tial guessWm = [( ˆ̄BiS̃i)
2+ρ2∗]

1/2/
√
γ. Next we compute

the initial guess S̃2
m using Eq. (A37). We then recompute

Wm using Eq. (A41) and S̃2
m using Eq. (A37). We keep

iterating until the values of S̃2
m and Wm converge.

In the previous subsection, we proved that in the ab-
sence of magnetic fields ρ∗ ≥ 0, τ̃ ≥ 0 and S̃2 ≤ τ̃ (τ̃+2ρ∗)
are the necessary and sufficient conditions for the inver-
sion to produce the primitive variables in the physical
range for the Γ-law EOS with 1 < Γ ≤ 2. In the presence
of magnetic fields, the necessary and sufficient conditions
for the Γ-law EOS with 1 < Γ ≤ 2 are replaced by the
following inequalities:

ρ∗ ≥ 0, (A42)

τ̃fluid ≥ 0, (A43)

τ̃fluid(τ̃fluid + 2ρ∗) ≥ S̃2
fluid. (A44)

Unfortunately, no simple, analytic expression for nec-
essary and sufficient conditions between the conservatives
ρ∗, S̃i, τ̃ seems to exist in the presence of magnetic fields.
However, necessary and sufficient conditions can be de-
rived separately by combining Eqs. (A42)–(A44), (A36)
and (A39). The results are as follows.
Necessary conditions for guaranteeing a physical solu-

tion:

ρ∗ ≥ 0, (A45)

τ̃ ≥
√
γ

2
B̄2, (A46)

S̃2
m ≤

(

τ̃ −
√
γ

2
B̄2

)(

τ̃ −
√
γ

2
B̄2 + 2ρ∗

)

. (A47)

Sufficient conditions for guaranteeing a physical solu-
tion:

ρ∗ ≥ 0, (A48)

τ̃m ≥ 0, (A49)

τ̃m(τ̃m + 2ρ∗) ≥ S̃2. (A50)

Both S̃2
m and τ̃m are nonlinear functions of ρ∗, S̃i, and

τ̃ . Unlike the pure hydrodynamic case, these inequal-
ities are not trivial to impose strictly, so they are im-
posed approximately as follows. First, a parameter ψ6

thr

is introduced, which determines whether the region under
consideration is deep inside the BH horizon. For regions
deep inside the BH horizon, defined by

√
γ = ψ6 ≥ ψ6

thr,
the primary goal is to keep the evolution stable and pre-
vent inaccurate data from leaking out of the BH horizon.
We find that imposing the sufficient conditions (A48)–
(A50) approximately in this region is adequate (detailed
recipe below). In regions where ψ6 ≤ ψ6

thr, the goal is
to evolve the GRMHD equations as accurately as possi-
ble, which means that imposing the sufficient conditions
is not appropriate. We instead impose two of the nec-
essary conditions (A45) and (A46) only. Since we do
not strictly impose all the inequalities, inversion failures
sometimes occur. Failures are fixed by replacing the τ̃
equation by the equation P = Pcold(ρ0). We will demon-
strate in Sec. A 4 that the set of equations ρ∗ = γv

√
γ ρ0,

Eq. (A24) and P = Pcold(ρ0) always results in the prim-
itive variables in the physical range. Our detailed recipe
is described in the following subsection.

3. Algorithm for Imposing MHD/Hydrodynamic
Inequalities

1. In any region, if ρ∗ ≤ 0, set ρ0 = ρatm, P = Patm,
ui = 0 and recompute the conservative variables.
If τ̃ ≤ √

γ B̄2/2, reset τ̃ = τ̃atm +
√
γ B̄2/2.

2. In the region where Bi = 0, if τ̃ ≤ 0, reset τ̃ = τ̃atm.
If S̃2 > τ̃ (τ̃ + 2ρ∗), replace

S̃i → S̃i

√

τ̃ (τ̃ + 2ρ∗)

S̃2
. (A51)

3. In the region where ψ6 ≥ ψ6
thr (deep inside the BH

horizon): First, estimate Wm and S2
m as follows

Wm0 = ψ−6
[

( ˆ̄BiS̃i)
2 + ρ2∗

]1/2

, (A52)

S̃2
m0 =

W 2
m0S̃

2 + ( ˆ̄BiS̃i)
2(B̄2 + 2Wm0)

(Wm0 + B̄2)2
, (A53)

Wm = ψ−6
(

S̃2
m0 + ρ2∗

)1/2

. (A54)

Next, calculate Sm and τ̃m from Eqs. (A37) and
(A40). Then check if τ̃m ≥ τ̃atm. If τ̃m < τatm reset

τ̃ (without changing Wm and S̃i) according to

τ̃ = τ̃atm +

√
γ

2
B̄2 +

B̄2S̃2 − (B̄iS̃i)
2

2
√
γ (Wm + B̄2)2

. (A55)

Then check if S̃2 ≤ τ̃m(τ̃m + 2ρ∗). If not, reset S̃i

(without changing τ̃m and ρ∗) according to

S̃i → S̃i

√

τ̃m(τ̃m + 2ρ∗)

S̃2
. (A56)
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These procedures do not strictly impose the suffi-
cient conditions (A49) and (A50), but can signifi-
cantly reduce inversion failures.

4. If the inversion still fails after going through all
the above steps, replace the τ̃ equation (A25) by
P = Pcold(ρ0) and perform the inversion. This
procedure guarantees to produce the primitive vari-
ables in the physical range, as will be shown in the
next subsection.

4. Inversion using ρ∗, S̃i and P = Pcold(ρ0)

After imposing the conservative variables inequalities
as described in the previous subsection, sometimes the
conservatives→primitives variable inversion still fails. In
this case, an alternative inversion is imposed, solving
for ρ0 and ui from the equations ρ∗ =

√
γ γvρ0, P =

Pcold(ρ0) and Eq. (A24). We will prove that this in-
version always results in the primitive variables in the
physical range.
First consider the case Bi = 0 for the Γ-law EOS with

1 < Γ ≤ 2. In this case, simple, analytic expressions for
the necessary and sufficient conditions exist, are easy to
implement (as described in Secs. A 1 & A3), and guar-
antee successful inversions. However, since the analysis
is much simpler than the general case, it is instructive
to study the alternative inversion scheme for this case
first. It follows from ρ∗ =

√
γ γvρ0, P = Pcold(ρ0) and

Eq. (A9) that

ρ0 =
ρ∗√
γ

[

1 +
S̃2

ρ2∗h
2
cold(ρ0)

]−1/2

, (A57)

where hcold = 1 + ǫcold(ρ0) + Pcold(ρ0)/ρ0 is the specific
enthalpy for the cold EOS. The above equation is an
implicit equation for ρ0. Define the function

f(ρ0) = ρ0 −
ρ∗√
γ

[

1 +
S̃2

ρ2∗h
2
cold(ρ0)

]−1/2

. (A58)

and introduce two variables

ρ1 ≡ ρ∗√
γ

(

1 +
S̃2

ρ2∗

)−1/2

, ρ2 ≡ ρ∗√
γ
. (A59)

Since hcold ≥ 1, for given values of ρ∗ > 0 and S̃i ∈
(−∞,∞), f(ρ1) ≤ 0 and f(ρ2) ≥ 0. Hence there ex-
ists ρ0 ∈ [ρ1, ρ2] that satisfies Eq. (A57) provided that

hcold(ρ0) is continuous in [ρ1, ρ2], which is true for the
Γ-law EOS. This proves that the inversion always pro-
duces ρ0, as well as P in the physical range. The value
of γv is then given by γv = ρ∗/(

√
γ ρ0). For ρ0 ∈ [ρ1, ρ2],

we have 1 ≤ γv ≤
√

1 + S̃2/ρ2∗, which is also in the

physical range. Finally, the velocity vi is recovered from
Eqs. (A22) and (A23).
Next consider the case Bi 6= 0. Equations (A26) and

(A34) yield

W =

√

S̃2
fluid + (ρ∗hcold)2

√
γ

, (A60)

S̃2
fluid =

W 2S̃2 + (B̄iS̃i)
2(B̄2 + 2W )

(W + B̄2)2
, (A61)

ρ0 =
ρ∗√
γ

[

1 +
S̃2
fluid

ρ2∗h
2
cold(ρ0)

]−1/2

, (A62)

where S̃2
fluid is regarded as an implicit function of S̃i,

B̄i, ρ∗ and ρ0 through Eqs. (A60) and (A61). Hence
Eq. (A62) is an implicit equation for ρ0. Next define

f(ρ0) = ρ0 −
ρ∗√
γ

[

1 +
S̃2
fluid

ρ2∗h
2
cold(ρ0)

]−1/2

, (A63)

where ρ1 and ρ2 are as in Eq. (A59). Section A3 proved

that ( ˆ̄BiS̃i)
2 ≤ S̃2

fluid ≤ S̃2 [Eqs. (A32) and (A36)]. It
follows that f(ρ1) ≤ 0 and f(ρ2) ≥ 0. Hence a solution
exists for ρ0 ∈ [ρ1, ρ2] as in the pure hydro case, pro-

vided that both hcold(ρ0) and S̃2
fluid(ρ0) are continuous

in [ρ1, ρ2]. The inversion thus produces ρ0 as well as P
and γv in the physical range. Applying some algebraic
manipulations to Eqs. (A24) and (3), we recover the 4-
velocity using the formula (c.f. Eq. (31) of [87])

ui =

[

S̃i +

√
γ (B̄j S̃j)

γvρ∗hcold(ρ0)
B̄i

]

[

ρ∗hcold(ρ0) +

√
γ B̄2

γv

]−1

and the 3-velocity vi from Eq. (A23).

In conclusion, when using the equations ρ∗ =
√
γ γvρ0,

P = Pcold(ρ0) and Eq. (A24), the inversion will always
produce the primitive variables in the physical range for
any ρ∗ > 0 and S̃i ∈ (−∞,∞).
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D 71, 124043 (Jun. 2005), arXiv:astro-ph/0504538.

[60] B. Giacomazzo, L. Rezzolla, and L. Baiotti, Mon.
Not. Roy. Astron. Soc. 399, L164 (Oct. 2009),
arXiv:0901.2722 [gr-qc].

[61] L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot,
C. Kouveliotou, and M. A. Aloy, Astrophys. J. Lett.
732, L6 (May 2011), arXiv:1101.4298 [astro-ph.HE].

[62] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev.
D 82, 084031 (Oct. 2010).

[63] Z. B. Etienne, V. Paschalidis, Y. T. Liu, and S. L.
Shapiro, ArXiv e-prints(Oct. 2011), arXiv:1110.4633
[astro-ph.HE].

[64] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(Nov. 1995).

[65] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (Jan. 1998).

[66] J. R. van Meter, J. G. Baker, M. Koppitz, and D.-I.
Choi, Phys. Rev. D 73, 124011 (Jun. 2006).

[67] T. W. Baumgarte and S. L. Shapiro, Numerical Rel-

ativity: Solving Einstein’s Equations on the Computer

(Cambridge University Press, 2010).
[68] T. W. Baumgarte and S. L. Shapiro, Astrophys. J. 585,

921 (Mar. 2003).
[69] G. B. Cook and H. P. Pfeiffer, Phys. Rev. D 70, 104016

(Nov. 2004).
[70] http://www.lorene.obspm.fr/.
[71] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, and

T. W. Baumgarte, Phys. Rev. D 76, 101503(R) (Nov.
2007).

[72] D. Brown, O. Sarbach, E. Schnetter, M. Tiglio, P. Di-
ener, I. Hawke, and D. Pollney, Phys. Rev. D 76, 081503
(Oct. 2007).

[73] D. Brown, P. Diener, O. Sarbach, E. Schnetter, and
M. Tiglio, Phys. Rev. D 79, 044023 (Feb. 2009).

[74] J.-P. De Villiers, J. F. Hawley, and J. H. Krolik, Astro-
phys. J. 599, 1238 (Dec. 2003).

[75] J. C. McKinney and C. F. Gammie, Astrophys. J. 611,
977 (Aug. 2004).

[76] M. Anderson, E. W. Hirschmann, L. Lehner, S. L.
Liebling, P. M. Motl, D. Neilsen, C. Palenzuela, and
J. E. Tohline, Phys. Rev. Lett. 100, 191101 (May 2008).

[77] B. Giacomazzo, L. Rezzolla, and L. Baiotti, Phys. Rev.
D 83, 044014 (Feb 2011).

[78] Y. T. Liu, S. L. Shapiro, Z. B. Etienne, and
K. Taniguchi, Phys. Rev. D 78, 024012 (Jul. 2008).

[79] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Astro-
phys. J. 398, 203 (Oct. 1992).

[80] http://www.cactuscode.org/.
[81] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quan-

tum Grav. 21, 1465 (2004), arXiv:gr-qc/0310042, http:
//arxiv.org/abs/gr-qc/0310042.

[82] J. Thornburg, Class. Quant. Grav. 21, 743 (Jan. 2004).
[83] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. C.

Stephens, Phys. Rev. D 72, 024028 (Jul. 2005).
[84] P. Colella and P. R. Woodward, Journal of Computa-

tional Physics 54, 174 (Sep. 1984).
[85] A. Harten, P. Lax, and B. van Leer, SIAM Rev. 25, 35

(1983).
[86] C. R. Evans and J. F. Hawley, Astrophys. J. 332, 659

(Sep. 1988).
[87] S. C. Noble, C. F. Gammie, J. C. McKinney, and L. Del

Zanna, Astrophys. J. 641, 626 (Apr. 2006).
[88] S. C. Noble, C. F. Gammie, J. C. McKin-

ney, and L. Del Zanna(2006), publicly available on
http://rainman.astro.illinois.edu/codelib/.

[89] K. Beckwith and J. M. Stone, Astrophys. J. Supp. 193,
6 (Mar. 2011).

[90] A. Ashtekar and B. Krishnan, Living Reviews in Rela-
tivity 7, 10 (Dec. 2004).

[91] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnet-
ter, Phys. Rev. D 67, 024018 (Jan. 2003).

[92] M. Boyle and A. H. Mroué, Phys. Rev. D 80, 124045
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