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We consider a general class of quantum gravity-inspired, modified gravity theories, where the
Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature
tensor coupled to scalar fields with standard kinetic energy. This class of theories includes Einstein-
Dilaton-Gauss-Bonnet and Chern-Simons modified gravity as special cases. We analytically derive
and solve the coupled field equations in the post-Newtonian approximation, assuming a comparable-
mass, spinning black hole binary source in a quasi-circular, weak-field/slow-motion orbit. We find
that a naive subtraction of divergent piece associated with the point-particle approximation is ill-
suited to represent compact objects in these theories. Instead, we model them by appropriate
effective sources built so that known strong-field solutions are reproduced in the far-field limit. In
doing so, we prove that black holes in Einstein-Dilaton-Gauss-Bonnet and Chern-Simons theory can
have hair, while neutron stars have no scalar monopole charge, in diametrical opposition to results
in scalar-tensor theories. We then employ techniques similar to the direct integration of the relaxed
Einstein equations to obtain analytic expressions for the scalar field, metric perturbation, and the
associated gravitational wave luminosity measured at infinity. We find that scalar field emission
mainly dominates the energy flux budget, sourcing electric-type (even-parity) dipole scalar radiation
and magnetic-type (odd-parity) quadrupole scalar radiation, correcting the General Relativistic
prediction at relative −1PN and 2PN orders. Such modifications lead to corrections in the emitted
gravitational waves that can be mapped to the parameterized post-Einsteinian framework. Such
modifications could be strongly constrained with gravitational wave observations.

PACS numbers: 04.30.Db,04.50.Kd,04.25.-g,04.25.Nx

I. INTRODUCTION

The validity of Einstein’s theory in the strong-gravity
regime will soon be put to the most stringent tests yet,
through the observation of gravitational waves (GWs)
from compact object binary inspirals [1–3]. Such waves
carry detailed information about their source and the
underlying gravitational theory in play. This informa-
tion is primarily encoded in the evolution of the GW
frequency, which in turn depends directly on the rate of
energy transport away from the binary [4]. In general
relativity (GR), this transport is performed exclusively
by GWs. In modified gravity theories, however, addi-
tional (scalar, vectorial or tensorial) degrees of freedom
can also carry energy and angular momentum away as
they propagate.
Calculating how gravitational waves are corrected in

modified gravity theories can be a gargantuan task as
the modification can increase the number of propagating
degrees of freedom and the non-linearity of the equations
that control their propagation. For example, the amount
of energy-momentum transported away from a binary
system must be computed both from the GWs excited
by the corresponding sources, as well as any additional
waves associated with extra degrees of freedom [5]. The
sources that drive such waves can depend both on deriva-
tives of the metric perturbation and the extra degrees of
freedom, which, in turn, are specified by the solution to
their own equations of motion. The situation worsens if
these are non-linearly coupled, e.g. a scalar field equation

of motion that depends on the metric tensor, whose evo-
lution in turn depends on derivatives of the scalar field.
Such calculations, however, are feasible if one treats

any GR deviations as small deformations [6], which can
be formalized through the small-coupling approximation,
a common technique in perturbation theory to isolate
physically relevant solutions in higher-derivative theo-
ries [7–9]. This is a reasonable approximation given that
GR has passed a large number of tests, albeit in the
weak-gravity regime. Even in the GW regime, signals
will slowly transition from sampling weak fields to mod-
erately strong fields during a full binary inspiral. The
strongest GW events will not be able to sample anywhere
close to the Plank regime, where one would expect com-
pletely new physics. The largest gravitational fields ex-
perienced by binaries occur when these merge, and even
then, the metric curvature cannot exceed m−2, where m
is the total mass of the binary. Earth-based detectors,
such as LIGO [10], VIRGO [11] and LCGT [12], and fu-
ture space-borne detectors, such as LISA [13], will only
be able to sample gravitational fields up to this strength.
Of the plethora of modified gravity theories, we choose

to focus on a general class that is characterized by the
addition of quadratic curvature invariants to the ac-
tion, coupled to scalar fields with standard kinetic terms
(see e.g. Eq. (1). Such theories are motivated from
loop quantum gravity [14, 15] and heterotic string the-
ory [16], arising generically upon four-dimensional com-
pactification in the low-energy limit. Disjoint sub-classes
of quadratic theories reduce to Einstein-Dilaton-Gauss-
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Bonnet (EDGB) theory [17, 18] and Dynamical Chern-
Simons (CS) modified gravity [19, 20].
From a phenomenological standpoint, such quadratic

gravity theories are also interesting as straw-men to
study small deviations from GR. This is because the
new quadratic terms are always small relative to the
Einstein-Hilbert term when considering merging bina-
ries. In such systems, the maximum radius of curvature
is always much larger than the new scale introduced by
the scalar fields. If this were not the case, astrophysical
observations would already have constrained quadratic
gravity deviations.
Quadratic gravity introduces an equation of motion

for the scalar field and modifies the metric field equa-
tions. The former is a driven wave equation, whose
sources are quadratic curvature invariants. The latter
contains new terms that depend on the product of the
scalar field and its derivatives with the Riemann tensor,
Ricci tensor, Ricci scalar and their derivatives. As such,
one might worry that higher derivative terms in the field
equations could render the system unstable. One must
remember, however, that the action is a truncation (at
quadratic order in the present case) of an effective the-

ory derived by integrating out heavy degrees of freedom
contained in a more complete theory. Since we truncate
the effective action, its validity is limited only to leading-
order in the coupling parameters. Accounting for higher-
order terms in the coupling would require the inclusion
of higher-order terms (cubic, quartic, etc.) in the ac-
tion [8]. Therefore, the modified field equations should
not be considered as an exact system, but rather as an
effective one.
Given the above and using the small-coupling approx-

imation, the field equations become driven differential
equations for the metric deformation and the scalar field.
The source of the latter depends only on derivatives of
the GR metric perturbation, while the source of the
former depends both on the GR metric perturbation
and the scalar field. We solve these equations in the
post-Newtonian (PN) limit, where in particular we con-
sider comparable-mass, spinning black hole (BH) bina-
ries (electromagnetically uncharged), spiraling in a quasi-
circular orbit. This forces the driven differential equa-
tions into driven wave equations, which can be studied
with PN techniques [21–27] and then solved via retarded
Green function methods.
A complication arises when attempting to solve these

equations, as one must choose a prescription to de-
scribe BHs and neutron stars (NSs). In standard PN
theory and up to a certain high PN order, one can
choose a point-particle prescription, essentially because
the exterior gravitational field of a compact object is
the same as that induced by a point-particle. In mod-
ified quadratic gravity, however, both non-spinning [28]
and spinning [6], strong-field BH solutions differ from
that generated by simple point particles with a mass-
monopole and a current-dipole moment; BHs in these
theories have additional scalar multipole moments. One

can take these effects into account by constructing an
effective point-particle source that reproduces known,
strong-field solutions to leading order in the weak-field
region, sufficiently far away from the compact objects.
With this effective point-particle prescription, we can
then evaluate the source of the driven wave equations
and analytically solve them to find the radiative part of
the scalar field and metric perturbation.

Executive Summary of Results

Given the length of this paper, let us summarize the
main results. We have devised a framework in the small-
coupling approximation to solve for compact binary in-
spirals in modified quadratic gravity theories. One of the
key ingredients in this framework is the calculation of ef-
fective source terms that allow us to use the point-particle
approximation even for theories where such approxima-
tion is not valid. We applied this to modified quadratic
gravity to find that both NSs and BHs have scalar hair,
which leads to dipolar emission. EDGB and CS grav-
ity are exceptions, where although BHs retain scalar
monopole and dipole charge, respectively, NSs shed the
scalar monopole charge. Therefore, BHs in EDGB gener-
ically contains dipolar GW emission, while CS gravity
leads to modified quadrupolar emission.
The presence of scalar monopole and dipole hair, and

in particular the flux of energy-momentum carried by
this hair, leads to a modification in the rate of change
of the binary’s binding energy. The even-parity sector
of the theory leads to scalar hair, which modifies the en-
ergy flux at −1PN order relative to the GR quadrupole
flux. Of course, such a modification is proportional to
the coupling parameter of the theory, which is assumed
small. The odd-parity sector leads to dipole hair for spin-
ning BH binaries, which modifies the energy flux at 2PN
relative order. If the BH binary components are non-
spinning, they have no dipole hair but the binary orbital
interaction generates a modification in the energy flux
that enters at relative 7PN order. Figure 1 shows the
energy flux carried by the even-parity scalar field (long
dashed line), odd-parity scalar field (dot-dashed for spin-
ning binaries and short dashed line for non-spinning bi-
naries), and the GR quadrupole flux (solid line) as a func-
tion of orbital velocity. Observe that when one assumes
that BHs are non-spinning, the scalar emission is greatly
suppressed.
These energy flux corrections translate into changes to

the waveform observables. We explicitly calculate these
and map them to the parametrized post-Einsteinian
(ppE) framework [29, 30]. Using the results of Cor-
nish et al. [30] we estimate that GW observations could
constrain the new length scale introduced in quadratic
gravity (related to the coupling constants of the the-
ory) to roughly the BH horizon scale. With a typi-
cal Ad. LIGO stellar-mass BH inspiral observation, one
should be able to constrain the even-parity sector to
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FIG. 1. Comparison of the energy flux carried by scalar
fields of even-parity (dashed red), odd-parity and sourced by
spinning BHs (blue dot-dashed) and odd-parity and sourced
by non-spinning BHs (short dashed) relative to the GR pre-
diction (solid black) as a function of orbital velocity. We
here consider a quasi-circular, BH inspiral with (m1,m2) =

(8, 20)M⊙, normalized spins Ŝi
1 ≡ |Si

1|/m
2

1 = −Ŝi
2 ≡

−|Si
2|/m

2

2 perpendicular to the orbital plane, |Si
A| = m2

A and
coupling constants ζ3 = 6.25× 10−3 = ζ4.

roughly O(10) km. With a typical LISA extreme-mass
ratio inspiral (EMRI) observation, one should be able to
constrain the odd-parity sector to roughly O(100) km.
Such projected constraints are much stronger than cur-
rent Solar System bounds [31–34].
This paper is organized as follows: Section II describes

the action that will be considered in this paper and re-
views the associated modified field equations and the
scalar field equation of motion. Section III expands the
field equations in the small-deformation approximation.
Sections IV and V study the scalar field and metric defor-
mation evolution, analytically solving the modified field
equations. Section VI computes the energy flux carried
by the scalar field and the metric deformation. Sec-
tion VII considers the impact that such fluxes would have
on gravitational waveform phase. Section VIII concludes
and points to future research.
We have deferred many details of the computational

techniques to the appendices. Appendix A shows the NSs
in EDGB theory have no scalar monopole charge. Ap-
pendix B discusses specific integration techniques. Ap-
pendix C estimates the order of the metric correction
from the regularized contribution for non-spinning BHs
in the odd-parity sector of the modified theory. Ap-
pendix D discusses particular integrals that appear when
solving the field equations.
Henceforth, we follow mostly the conventions of Mis-

ner, Thorne and Wheeler [5]: Greek letters stand for
spacetime indices; Latin letters in the middle of the al-
phabet i, j, . . ., stand for spatial indices only. Parenthe-
sis, square brackets and angled brackets in index lists de-
note symmetrization, antisymmetrization and the sym-
metric and trace free (STF) operator, respectively. Cap-
ital Latin letters usually refer to a multi-index, such as

xQ = xijk..., where xijk... = xixjxk . . .. Partial deriva-
tives are denoted with ∂iA = A,i = ∂A/∂xi, while co-
variant derivatives are denoted with the nabla ∇iA, for
any quantity A. Deformations are labeled with the order-
counting parameter ς . Finally, we use geometric units,
where G = c = 1, except when denoting the order of
certain terms in the PN approximation. Throughout, we
performed analytic calculations with the xTensor pack-
age for Mathematica [35, 36].

II. MODIFIED GRAVITY THEORIES

In this Section, we introduce the class of modified grav-
ity theories that we study, by writing down its action and
equations of motion. We then proceed to define the small
deformation approximation more precisely.

A. ABC of quadratic gravity

Consider the following 4-dimensional effective action:

S≡
∫

d4x
√−g

{

κR+ α1f1(ϑ)R
2 + α2f2(ϑ)RµνR

µν

+ α3f3(ϑ)RµνδσR
µνδσ + α4f4(ϑ)Rµνδσ

∗Rµνδσ

− β

2
[∇µϑ∇µϑ+ 2V (ϑ)] + Lmat

}

. (1)

Here, g stands for the determinant of the metric gµν . R,
Rµν , Rµνδσ and ∗Rµνδσ are the Ricci scalar and tensor,
the Riemann tensor and its dual [37], respectively, with
the latter defined as1 ∗Rµ

νδσ = (1/2)εδσ
αβRµ

ναβ and
with εµνδσ the Levi-Civita tensor. The quantity Lmat is
the external matter Lagrangian, ϑ is a field, (αi, β) are
coupling constants and κ = (16π)−1. This action con-
tains all possible quadratic, algebraic curvature scalars
with running (i.e. non-constant) couplings, where we as-
sumed that all quadratic terms are coupled to the same

field. All other quadratic curvature terms are linearly
dependent, such as the Weyl tensor squared.
The theory defined by the action above is different

from f(R) theories on several counts. First, f(R) the-
ories depend only on the Ricci scalar, while the action
above depends on the Ricci tensor, the Riemann tensor
and a dynamical field ϑ. Second, f(R) theories are usu-
ally treated as exact, while the action presented above is
an effective theory, truncated to quadratic order in the
Riemann tensor. The consequence of this is insisting on
the use of order-reduction in the field equations, where
we treat all quantities that depend on αi perturbatively.
Such order reduction then leads to the absence of addi-
tional polarization modes [38, 39], such as the longitudi-
nal scalar mode that arises in f(R) theories.

1 This definition is correct, in agreement with [37], and fixing an
inconsequential typo in [38].
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The field equations of dynamical quadratic gravity can
be obtained by varying the action with respect to all
fields. For simplicity, we restrict attention to coupling
functions fi(ϑ) that admit the Taylor expansion fi(ϑ) =
fi(0) + f ′

i(0)ϑ + O(ϑ2) about small ϑ, where fi(0) and
f ′
i(0) are constants, and we assume that the asymptotic
value of θ at spatial infinity vanishes. Let us further

reabsorb fi(0) into the coupling constants α
(0)
i ≡ αifi(0)

and f ′
i(0) into the constants α

(1)
i ≡ αif

′
i(0). Equation (1)

then becomes S = SGR + S0 + S1:

SGR ≡
∫

d4x
√−g {κR+ Lmat} , (2)

S0 ≡
∫

d4x
√−g

{

α
(0)
1 R2 + α

(0)
2 RµνR

µν

+ α
(0)
3 RµνδσR

µνδσ
}

, (3)

S1 ≡
∫

d4x
√−g

{

α
(1)
1 ϑR2 + α

(1)
2 ϑRµνR

µν

+ α
(1)
3 ϑRµνδσR

µνδσ + α
(1)
4 ϑRµνδσ

∗Rµνδσ

− β

2
[∇µϑ∇µϑ+ 2V (ϑ)]

}

, (4)

where clearly SGR is the Einstein-Hilbert plus matter ac-
tion. Notice that S0 defines a GR correction that is de-

coupled from θ. The term proportional to α
(0)
4 can not af-

fect the classical field equations since it is topological, i.e.
the second Chern form, so we have omitted it. Similarly,

if α
(0)
i are chosen to reconstruct the Gauss-Bonnet in-

variant, (α
(0)
1 , α

(0)
2 , α

(0)
3 ) = (1,−4, 1)αGB, then these will

not modify the field equations. On the other hand, S1

defines a modification to GR with a direct (non-minimal)
scalar field coupling, such that as the field goes to zero,
the modified theory reduces to GR. We here restrict at-

tention to the case α
(0)
i = 0. From this point forward, we

will drop the superscript from α
(1)
i .

The action above defines a class of modified gravity
theories that contains well-known GR extensions. For ex-
ample, when α4 = − 1

4αCS and all other αi = 0, quadratic
gravity reduces to dynamical CS gravity, where αCS is
the CS coupling parameter (see e.g. [37]). Alternatively,
when α4 = 0, while (α1, α2, α3) = (1,−4, 1)αEDGB,
quadratic gravity reduces to Einstein-Dilaton-Gauss-
Bonnet theory (see e.g. [18]). Both of these theories are
motivated from fundamental physics; they unavoidably
arise as low-energy expansions of heterotic string the-
ory [40–43]. Dynamical CS gravity also arises in loop
quantum gravity when the Barbero-Immirzi parameter
is promoted to a field in the presence of fermions [44–46].
Variation of the action with respect to the metric yields

the modified field equations:

Gµν +
α1ϑ

κ
H(0)

µν +
α2ϑ

κ
I(0)
µν +

α3ϑ

κ
J (0)
µν

+
α1

κ
H(1)

µν +
α2

κ
I(1)
µν +

α3

κ
J (1)
µν +

α4

κ
K(1)

µν

=
1

2κ

(

Tmat

µν + T (ϑ)
µν

)

, (5)

where we have defined the short-hands2

H(0)
µν ≡2RRµν −

1

2
gµνR

2 − 2∇µνR+ 2gµν�R , (6a)

I(0)
µν ≡�Rµν + 2RµδνσR

δσ − 1

2
gµνR

δσRδσ

+
1

2
gµν�R−∇µνR , (6b)

J (0)
µν ≡8RδσRµδνσ − 2gµνR

δσRδσ + 4�Rµν

− 2RRµν +
1

2
gµνR

2 − 2∇µνR , (6c)

H(1)
µν ≡− 4(∇(µϑ)∇ν)R− 2R∇µνϑ

+ gµν
[

2R�ϑ+ 4(∇δϑ)∇δR
]

, (6d)

I(1)
µν ≡− (∇(µϑ)∇ν)R− 2∇δϑ∇(µRν)δ

+ 2∇δϑ∇δRµν +Rµν�ϑ− 2Rδ(µ∇δ∇ν)ϑ

+ gµν
(

∇δϑ∇δR+Rδσ∇δσϑ
)

, (6e)

J (1)
µν ≡− 8

(

∇δϑ
) (

∇(µRν)δ −∇δRµν

)

+ 4Rµδνσ∇δσϑ ,

(6f)

K(1)
µν ≡− 4

(

∇δϑ
)

εδσχ(µ∇χR σ
ν) + 4(∇δσϑ)

∗R(µ
δ
ν)

σ ,

(6g)

where ∇µ is the covariant derivative, ∇µν ≡ ∇µ∇ν , and
� = ∇µ∇µ is the d’Alembertian operator. The ϑ field’s
stress-energy tensor is

T (ϑ)
µν = β

[

(∇µϑ)(∇νϑ)−
1

2
gµν

(

∇δϑ∇δϑ− 2V (ϑ)
)

]

.

(7)
Variation of the action with respect to ϑ yields the ϑ

equation of motion:

β�ϑ− β
dV

dϑ
= − α1R

2 − α2RµνR
µν

− α3RµνδσR
µνδσ − α4Rµνδσ

∗Rµνδσ . (8)

Notice that when the spacetime is curved by some mass
distribution, the right-hand side will be proportional to
this mass squared.
The parity of the field ϑ can be inferred from its equa-

tion of motion. Since terms of the form R2 are even-
parity, while terms of the form Rµνδσ

∗Rµνδσ are odd-
parity, the field ϑ is of mixed parity. Note however that
the even and odd-parity couplings tend to have different
origins from an underlying theory. In this paper we will
consider the even and odd-parity cases separately.
The inclusion of dynamics for the ϑ field in the ac-

tion guarantees that the field equations are covariantly
conserved without having to include any additional con-
straints, i.e. the covariant divergence of Eq. (5) identi-
cally vanishes, upon imposition of Eq. (8). This is a
consequence of the action being diffeomorphism invari-
ant. Such invariance is in contrast to the preferred-frame

2 This corrects an error in Eq. (5b) of [28].
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effects present in a non-dynamical theory [19], i.e. in the
theory defined by the action in Eq. (4) but with β = 0.
In the latter, the field ϑ must be prescribed a priori .
Moreover, the theory requires the existence of an ad-
ditional constraint ( ∗RR = 0), which is an unphysical
consequence of treating ϑ as prior structure [47, 48].
Before proceeding, let us further discuss the scalar field

potential V (ϑ). This potential allows us to introduce
additional couplings, such as a mass term, to drive the
evolution in Eq. (8). However, there are reasons one
might restrict such a potential. If the mass is much
larger than the inverse length scale of the system that
we concern, the effect of such a field on the dynamics of
binaries is strongly suppressed. To the contrary, if the
mass is much smaller, the presence of mass does not give
any significant effects. Therefore we cannot expect to
observe the effects of a finite mass without fine tuning.
No mass term may appear in a theory with a shift sym-
metry, which is invariance under ϑ → ϑ + const. Such
theories are common in 4D, low-energy, effective string
theories [40, 41, 43, 49, 50], such as dynamical CS and
EDGB. For these reasons, and because the assumption
makes the resulting equations analytically tractable, we
will henceforth assume V (ϑ) = 0.

B. Small deformations

The “unreasonable” accuracy of GR to explain all ex-
perimental data to date suggests that it is an excellent
approximation to nature in situations where the gravita-
tional field is very weak and velocities are very small rela-
tive to the speed of light. GW detectors will be sensitive
to events in situations where the field is stronger than
ever previously sampled. This, however, does not im-
ply that GWs will ever sample the Planck/string regime,
where one could expect large deviations from GR.
We will here be interested in binary compact object

coalescences up until the binary reaches the innermost
stable circular orbit (ISCO). Even during merger, the
largest curvature that GWs will sample will be limited to
the scale determined by the horizon sizes, proportional
to m−2. Such scales are far removed from high-energy
ones, like the electroweak one, as GW detectors will not
be sensitive to mergers of compact objects with masses
below a solar mass. Even then, however, GWs can and
will probe the strong field , which has not been tested
before. One is then justified in modeling GWs that may
contain deviations from GR as small deformations .
The small deformation scheme is also appealing for

theoretical reasons. As mentioned earlier, the theories
we consider are effective, valid only up to the truncation
order. There are higher-order terms that we have here
neglected in the action, such as cubic and quartic cur-
vature combinations. Thus, one should not treat these
theories as exact nor insist on solving the equations of
motion to higher orders in αi. If this is desired, then

higher-order curvature terms should also be included in
the action.
One might be worried that such effective theories are

unstable, since they lead to field equations with deriva-
tives higher than second order. Such derivatives could
lead to instabilities or ghost modes if the Hamiltonian is
not bounded from below. Linearization in the coupling
parameter, however, has the effect of recasting the field
equations in Einstein form with an effective stress-energy
tensor that depends on the GR solution, thus stabiliz-
ing the differential equations [7]. Linearization removes
modes besides the two that arise in GR [38, 39].
Small deformations can be treated similarly to how one

models BH perturbations. That is, we expand the metric
as

gµν = gGR

µν + ς hµν +O(ς2) , (9)

where the GR superscript is to remind us that this quan-
tity is a GR solution, while hµν is a metric deformation
away from GR. The order-counting parameter ς is kept
around only for book-keeping purposes and is to be set
to unity in the end.
Applying such an expansion to Eq. (8), one finds

β�ϑ = −αi S(R2
GR

) +O(ς) , (10)

where S(R2
GR

) stands for all source terms evaluated on
the GR background gGR

µν . The solution to this equation
will obviously scale as ϑ ∝ αi/β. Applying the decom-
position and expansion of Eq. (9) to Eq. (5) in vacuum,
one finds

Gµν [hµν ] = −αi

κ
Cµν [ϑ, g

GR

µν ] +
1

2κ
T (ϑ)
µν [ϑ] , (11)

where the O(ς0) terms automatically vanish, as gGR

µν sat-
isfies the Einstein equations, and we have grouped mod-

ifications into the tensor Cµν . This tensor and T
(ϑ)
µν are

to be evaluated on the GR metric and act as sources
for the metric deformation. Notice that, as a differential
operator acting on hµν , the principal part of these dif-
ferential equations continues to be strongly hyperbolic,
as it is still given by the Gµν differential operator, with

the higher derivatives in Cµν and the T
(ϑ)
µν acting as

sources. Given this, the metric deformation is propor-
tional to ξi ≡ α2

i /(βκ), which is our actual perturbation
parameter.
Proper perturbation or deformation parameters should

be dimensionless, but the ξi are dimensional. The dimen-
sions of α and β, of course, depend on the choice of di-
mensions for the scalar field. We here take the viewpoint
that ϑ is dimensionless, which then forces β to be dimen-
sionless as well as κ, and α to have dimensions of length
squared. Then, the deformation parameter ξ has units of
length to the fourth power, which is why we define the
dimensionless

ζi ≡ ξi/m
4 = O(ς) , (12)
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as our proper deformation parameter. One could choose
different units for the scalar field, but in all cases one
arrives at the conclusion that ζi is the proper deformation
parameter [6].

III. EXPANSION OF THE FIELD EQUATIONS

Let us decompose the GR metric tensor into a flat
background plus a metric perturbation:

gGR

µν = ηµν + hµν . (13)

We emphasize here that throughout this paper, hµν de-
notes the metric perturbation in GR while hµν is the
metric deformation away from GR.
In expanding the modified field equations, we will also

find it useful to define the standard trace-reversed metric
perturbation in GR as

h̄µν ≡ ηµν −√−gGRg
µν
GR

. (14)

In particular, notice that when the background is flat
h̄µν = hµν − 1

2hηµν and hµν = h̄µν − 1
2 h̄ηµν to linear

order in GR. We also define the deformed trace reversed
metric perturbation as

h̄µν ≡
(

ηµν −√−ggµν
)

− h̄µν . (15)

The harmonic gauge condition reduces to h̄µν
,ν = 0 and

h̄µν ,ν = 0. Throughout this paper, we only study the GR
deformation up to O(αi/β) for ϑ and O(ζi) for hµν .

A. Scalar field

The evolution equation for the scalar field at leading
order in the metric perturbation becomes

�ηϑ=−
α1

β

(

1

2κ

)2

T 2
mat −

α2

β

(

1

2κ

)2

T µν
matT

mat
µν

−2α3

β
(hαβ,µνh

α[β,µ]ν + hαβ,µνh
µ[ν,α]β)

−2α4

β
ǫαβµνhαδ,γβhν

[γ,δ]
µ , (16)

with relative remainders of O(h). Here, ǫµνδσ is the Levi-
Civita symbol with convention ǫ0123 = +1, and we have
used the harmonic gauge condition.

B. Metric perturbation

Let us now perturb the metric field equations [Eq. (5)]
about ς = 0. The deformed metric wave equation at
linear order in hµν becomes

κ

2
�ηhµν =α1ϑH̃(0)

µν + α2ϑĨ(0)
µν + α3ϑJ̃ (0)

µν

+ α1H̃(1)
µν + α2Ĩ(1)

µν + α3J̃ (1)
µν + α4K̃(1)

µν

− 1

2
δTmat

µν − 1

2
T (ϑ)
µν , (17)

where the tensors on the right-hand side are given by

H̃(0)
µν = − 4

(

hρ
[σ,ρ]

σµν − ηµν�ηhρ
[σ,ρ]

σ

)

, (18)

Ĩ(0)
µν =�ηhν[ρ,µ]

ρ −�ηh
ρ
[ρ,µ]ν − 2hρ

[σ,ρ]
σµν + ηµν�ηhρ

[σ,ρ]
σ , (19)

J̃ (0)
µν =4

(

−�ηhν[µ,ρ]
ρ −�ηh

ρ
[ρ,µ]ν − hρ

[σ,ρ]
σµν

)

, (20)

H̃(1)
µν = − 8hρ

[σ,ρ]
σ(µϑ,ν) − 4hρ

[σ,ρ]
σϑ,µν + 4ηµν

(

2hρ
[σ,ρ]

σδϑ
,δ + hρ

[σ,ρ]
σ�ηϑ

)

, (21)

Ĩ(1)
µν = − 2hρ

[σ,ρ]
σ(µϑ,ν) − 2

(

hδ
[ρ,(ν]µ)

ρ − hρ
[ρ,(ν]µ)

δ
)

ϑ,δ − 2
(

h(ν[µ),ρ]δ
ρ + hρ

[ρ,(µ]ν)δ

)

ϑ,δ

− 2
(

hδ
[ρ,(µ]

ρϑ,ν)δ − hρ
[ρ,(µ]

δϑ,ν)δ

)

+ ηµν

{

2hρ
[σ,ρ]

σδϑ
,δ +

(

hσ [ρ,δ]
ρ − hρ

[ρ,δ]σ
)

ϑ,σδ

}

+�ηϑ

(

h(µ
δ
,ν)δ −

1

2
�ηhµν − 1

2
h,µν

)

, (22)

J̃ (1)
µν = − 8

(

hδ
[ρ,(ν]µ)

ρ + hρ
[ρ,(ν]µ)

δ − 1

2
h,µν

δ +
1

2
�ηhµν

,δ

)

ϑ,δ + 4
(

hσ[µ,δ]ν − hν[µ,δ]σ

)

ϑ,σδ , (23)

K̃(1)
µν =ϑ,δ

,σηναε̄
ασβγ

(

hµ[γ,β]δ + hδ[β,γ]µ

)

− 2ϑ,δǫδσχµh
σ
[α

,αχ
ν] + (µ ↔ ν) , (24)

where�η is the d’Alembertian of flat spacetime, h = hµ
µ,

and T
(ϑ)
µν is given as

T (ϑ)
µν = β

(

ϑ,µϑ,ν − 1

2
ηµνϑ,δϑ

,δ

)

. (25)

The quantity δTmat

µν stands for the perturbation to the
energy-momentum tensor for matter. Even when dealing
with BHs, δTmat

µν 6= 0 because we treat BHs as distribu-
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tional point particles and their trajectories are generi-
cally modified at O(ς). However, in this paper we con-
centrate on the dissipative sector of the theory only, and
not on modifications to the shape of the orbits (conser-
vative dynamics). The latter does modify the GW phase
evolution [6, 28], as we discuss in Sec. VIII.
The evolution equation for the metric perturbation

takes on the same form (a sourced wave equation) as
that for the scalar field. The source terms in both of
these equations depend on the GR metric perturbation,
which we here assume to be that of a compact binary
quasi-circular inspiral in the PN approximation, i.e. mov-
ing at small velocities relative to the speed of light and
producing weak gravitational fields. We provide explicit
expressions for the GR metric perturbation in the subse-
quent subsection.

C. Post-Newtonian metric and trajectories

In this subsection, we provide explicit expressions for
the linear metric perturbation in GR that we use to eval-
uate all source terms. We are here interested in a binary
system, composed of two compact objects with masses
m1 and m2 and initially separated by a distance r12 ≡ b.
The objects’ trajectories can be parameterized via

x1 ≡ xi
1=+

m2

m
b [cosωt, sinωt, 0] , (26)

x2 ≡ xi
2=−

m1

m
b [cosωt, sinωt, 0] , (27)

where m ≡ m1+m2 is the total mass and where we have
assumed they are located on the x–y plane. Throughout
this paper, vectors are sometimes denoted with a bold-
face. We also define

x12 ≡ xi
12 = xi

1 − xi
2, (28)

n12 ≡ ni
12 = (xi

1 − xi
2)/b, (29)

nA ≡ ni
A = (xi − xi

A)/rA, (30)

where we follow the conventions of [27], with

rA ≡ |xi − xi
A|. (31)

We further assume these objects are on a quasi-
circular orbit with leading-order angular velocity ω =
(1/b)(m/b)1/2 and orbital velocity v = (m/b)1/2. The
orbital separation b is assumed constant, as its time-
evolution is driven by GW emission at high-order in v/c.
The GR spacetime metric for such a binary is expanded

as in Eq. (13). In the near zone, the metric perturbation
is given by

h00=2U1 + (1 ↔ 2) +O(v4) , (32)

h0i=−4V1i + (1 ↔ 2) +O(v5) , (33)

hij=2U1δij + (1 ↔ 2) +O(v4) , (34)

where O(vA) stands for an (A/2)PN remainder, i.e. a
term of O((v/c)A), and the notation +(1 ↔ 2) means

that one should add the same terms with the labels 1
and 2 interchanged. The potentials UA and VAi with
A = (1, 2) are defined as

UA =

∫

ρ′A
|x− x′|d

3x′ , VAi =

∫

ρ′Av
′
Ai

|x− x′|d
3x′ , (35)

where ρA and viA ≡ ẋi
A are the density and the center of

mass velocities of the respective objects, with the over-
head dot standing for time differentiation. Field variables
associated with a prime, e.g. ρ′A, are to be evaluated at
x
′. In the point-particle limit, the metric becomes

h00=
2m1

r1
+ (1 ↔ 2) , (36)

h0i=−
4m1

r1
vi1 + (1 ↔ 2) , (37)

hij=
2m1

r1
δij + (1 ↔ 2) , (38)

with remainders of relative O(v2). We have kept the PN
leading terms in the metric that are proportional to mA

only, but higher-order terms can be found in [51], while
terms proportional to the spin of each BH can be found
in [52].

IV. SCALAR FIELD EVOLUTION

In this section, we solve the evolution equation for the
scalar field both for field points in the far and near-zones,
as defined in Sec. IVA. The former will allow us to eval-
uate the energy flux carried by the scalar field at infinity,
while the latter will be essential to find effective source
terms that reproduce the known strong field solutions
and to solve the evolution equations for the metric defor-
mation.

A. Zones

As shown in Fig. 2, let us decompose the geometry into
three regions: an inner zone (IZ), a near zone (NZ) and
a far zone (FZ); see e.g. [53–55] for further details. The
IZs are centered at each object with radii RIZ. These
radii are defined as the boundary inside which either
Tmat

µν 6= 0 or the usual PN approximation breaks down
due to strong-gravity effects. We here take them to be
sufficiently larger than mA and much less than b. The
NZ is centered at the binary’s center of mass with radius
RNZ and excluding the IZs. This radius is defined as
the boundary outside which time-derivatives cannot be
assumed to be small compared with spatial derivatives
due to the wave-like nature of the metric perturbation.
We here take this boundary to be roughly equal to λGW,
where λGW denotes the GW wavelength. The FZ is also
centered at the binary’s center of mass, but it extends
outside RNZ.
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FIG. 2. We consider three zones, inner zone (IZ), near zone
(NZ) and far zone (FZ). The IZs are centered at each object
and their radii RIZ satisfy RIZ ≪ b. The NZ is centered at the
center of mass of the two bodies and the radius RNZ satisfies
RNZ ∼ λGW, where λGW is the GW wavelength.

One can only apply the PN formalism when the grav-
itational field is weak and velocities are small. When we
deal with strong field sources like BHs and NSs, there-
fore, one can use the PN scheme in the NZ and FZ only.
In the IZs, one may not be able to use PN theory, since
the gravitational field may be too strong. In this case,
we have to asymptotically match our PN solution in the
NZ with the strong field solutions valid in the IZs, inside
some buffer regions that overlap both NZ and each IZ
(see Refs. [21, 56, 57] for a description of how to carry
this out in GR). The strong field solution for BHs was
found in Refs. [28] and [6] in the class of theories consid-
ered here.

B. Near zone solutions

Since the NZ is in the weak field regime, we can apply
the PN formalism to compact binary systems. Let us
consider the even and odd-parity sectors separately.

1. Even-parity sector

The evolution equation for the even-parity sector is

�ηϑ =− 64π2α1

β
ρ2 − 64π2α2

β
ρ2

− 2α3

β

(

hαβ,µνh
α[β,µ]ν + hαβ,µνh

µ[ν,α]β
)

, (39)

with ρ ≡ ρ1 + ρ2 and remainders of O(h3).
First, let us consider weakly-gravitating objects,

i.e. not BHs or NSs, in which case the PN expansion
is valid also in the IZ. By substituting the GR PN met-
ric of Eqs. (32)-(34), the NZ solution to the above wave

equation at leading PN order becomes

ϑ=16π
α1

β

∫

M

ρ′2
d3x′

|x− x′| + 16π
α2

β

∫

M

ρ′2
d3x′

|x− x′|

+
1

π

α3

β

∫

M

(

2U ′
,ijU

′
,ij +�ηU

′�ηU
′
) d3x′

|x− x′| , (40)

again with remainders of O(h3), with U ≡ U1 + U2 and
M denoting the constant-time, NZ+IZ hypersurface. We
can safely neglect the contribution from the FZ, since the
fall-off of the source term is sufficiently fast.
The solution in Eq. (40) can be simplified by integrat-

ing by parts several times and using that �U = −4πρ
and �|x− x

′|−1 = −4πδ(3)(x− x
′) to obtain

ϑ=16π
α1

β

∫

M

ρ′2
d3x′

|x− x′| + 16π
α2

β

∫

M

ρ′2
d3x′

|x− x′|

+48π
α3

β

∫

M

ρ′2
d3x′

|x− x′|

−8
α3

β

∫

M

ρ′U ′
,i

(

1

|x− x′|

)

,i

d3x′

−4
α3

β

∫

M

U ′
,iU

′
,iδ

(3)(x− x
′)d3x′ . (41)

Expanding this solution in terms of particles 1 and 2, we
arrive at

ϑ = ϑself + ϑcross , (42)

with

ϑself=
16π

β
(α1 + α2 + 3α3)

∫

M

ρ′21
d3x′

|x− x′|

−8
α3

β

∫

M

ρ′1U
′
1,i

(

1

|x− x′|

)

,i

d3x′

−4
α3

β
U1,iU1,i + (1 ↔ 2) , (43)

and

ϑcross = −8
α3

β

[

∫

M

(

ρ′1U
′
2,i + ρ′2U

′
1,i

)

(

1

|x− x′|

)

,i

d3x′

+U1,iU2,i

]

. (44)

ϑself is the part of ϑ that can be evaluated by considering
a single object only, while ϑcross is the part that depends
on the fields of both bodies.
The integrals that define both ϑself and ϑcross have sup-

port in the IZs only, and thus, the NZ integral operator
is homogeneous (source-free). When we discuss the NZ
behavior of fields associated with compact objects, such
as BHs or NSs, we cannot directly evaluate such IZ inte-
grals. These are derived under the assumption that the
PN expansion is valid everywhere, which fails for com-
pact objects in the IZs. Instead, we need to determine
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these homogeneous solutions through asymptotic match-
ing. Before doing so, it is helpful to study the meaning
of each term for weakly-gravitating objects.
Neglecting the size of the weakly-gravitating objects,

the first term in Eq. (43) in the NZ is evaluated as
∫

M

ρ′1
2 d3x′

|x− x′| ≈
1

r1

∫

M

ρ′1
2d3x′ , (45)

with remainders of relative O(m/r), while the second
term becomes
∫

M

ρ′1U
′
1,i

(

1

|x− x′|

)

,i

d3x′ ≈ ni
1

r21

∫

M

ρ′1U
′
1,id

3x′

=−ni
1

r21

∫

M

ρ1(x
′)

(
∫

M

ρ1(y)
x′i − yi

|x′ − y|2 d
3y

)

d3x′

=0 . (46)

The last equality can be shown by exchanging the inte-
gration variables3. Thus, one can approximate ϑself as

ϑself =
q1
r1

− 4
α3m

2
1

βr41
+ (1 ↔ 2) , (47)

with the scalar monopole charge defined by

qA ≡ 16π

β
(α1 + α2 + 3α3)

∫

IZ

ρ′A
2d3x′ , (48)

with A = (1, 2). Here we put “IZ” to the integral to
emphasize that the integration can be restricted to both
IZs because the integrand is localized.
The first term in Eq. (47) represents the monopole field

around object 1. These monopole fields give the leading
PN contribution in the NZ unless both monopole charges
q1 and q2 vanish. This is indeed the case in EDGB the-
ory, where (α1, α2, α3) = (1,−4, 1)αEDGB. We will later
show that this cancellation does really survive even if
we consider NSs. If this cancellation occurs, the higher
order terms of O(m2/r2) in the expansion of Eq. (45) be-
come the dominant contribution to ϑ. The second term
in Eq. (47) is much higher PN order compared with the
first term and hence sub-dominant in the NZ.
Let us now consider ϑself for compact objects, where

the IZ integrals must be treated carefully. Since the PN
expansion is no longer valid in the IZ, one cannot use the
simple extrapolation of the above result. In Sec. IVC, we
match the NZ solution to the one obtained for isolated
BHs in the strong-field [6, 28]. We will not discuss the
matching for NSs in this paper, but the order of magni-
tude estimate

qA =

3
∑

i=1

qi,A =

3
∑

i=1

αi

β
O
(

m2
A

R3
A

)

(49)

3 In fact, this integral vanishes to all orders in x. This is because
(ρ1U1,i),i is spherically symmetric, and thus, when it acts as a
source to a wave equation, the solution should either scale as 1/r
or it should vanish identically. We have here shown that there is
no 1/r part.

should still be valid, where RA is the radius of the Ath
NS. When α1 + α2 + 3α3 = 0, the cancellation observed
in the weakly gravitating objects may still persist even
for NSs. However, the cancellation will not in general be
exact, except for the EDGB subcase. In EDGB theory,
the NS scalar monopole charge vanishes independently
of the equation of state. Mathematically speaking, this
is because the monopole charge is given by the integral
of the Gauss-Bonnet invariant RGB ≡ R2 − 4RµνR

µν +
RµνρσR

µνρσ , which vanishes for any simply-connected,
asymptotically flat geometry. A more explicit proof is
given in Appendix A.
Let us now return to the ϑcross contribution and

consider first weakly-gravitating objects. To evaluate
Eq. (44), one can use point-particle expansions of the
potentials and the density, i.e. ρA = mAδ

(3)(x−xA) and
UA = mA/rA. Simple substitution leads to

ϑcross≈8
α3m1m2

βm4

[

m4

(

nj
1

r21

nj
2

r22
+

nj
12

b2
nj
2

r22

− nj
12

b2
nj
1

r21

)

+O
(

m5

r5

)

]

. (50)

The first term in parentheses comes from the term
U1,iU2,i in Eq. (44). The remaining two terms come from
the integral in Eq. (44). The second and third terms
in parentheses look like scalar dipole moments for bod-
ies 2 and 1 respectively. However, a Taylor expansion
about the center of mass of each body, shows that the
1/r2A piece of ϑcross cancels, which implies that there is
no scalar dipole.
Let us now consider ϑcross for compact objects. As

discussed in the previous paragraph, one might expect a
scalar dipole charge induced by the acceleration of object
1 due to the gravitational field of object 2 (∝ U2,i(x1)).
In GR, however, acceleration is understood as geodesic
motion in a perturbed geometry. The deviation of the
local geometry from the unperturbed isolated geometry
originates due to tides, and this is a relative 4PN effect.
This is much smaller than the scalar monopole charge
contribution from ϑself.
To summarize, the dominant contribution to ϑ comes

from the monopole charge associated with each object,
which depends on its internal structure.

2. Odd-parity sector

In the odd-parity case, the scalar field evolution equa-
tion is

�ηϑ = −2α4

β
ǫαβµνhαδ,γβhν

[γ,δ]
µ , (51)

plus terms of O(h3). Again, we first consider weakly
gravitating objects. At leading PN order, the above equa-
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tion becomes

�ηϑ=
2α4

β
ǫijk(h00,mihk0,jm + h0l,jmhkl,im)

= −32
α4

β
ǫijkU,imVk,jm , (52)

with remainders of relative O(v2). As in the even-parity
case, we write the solution to this wave equation as

ϑ = ϑself + ϑcross , (53)

where

ϑself =
8

π

α4

β
ǫijk

∫

M

U ′
1,imV ′

1k,jm

d3x′

|x− x′| + (1 ↔ 2) ,

(54)
and

ϑcross =
8

π

α4

β
ǫijk

∫

M

U ′
1,imV ′

2k,jm

d3x′

|x− x′| + (1 ↔ 2) .

(55)
Let us first consider self-interaction terms ϑself. Inte-

grating by parts several times, we find

ϑself=−16
α4

β
ǫijk

[
∫

M

ρ′1V
′
1k,j

(

1

|x− x′|

)

,i

d3x′

+

∫

M

U ′
1,iρ

′
1v

′
1k

(

1

|x− x′|

)

,j

d3x′

+

∫

M

U ′
1,iV

′
1k,jδ

(3)(x− x
′)d3x′ + (1 ↔ 2)

]

, (56)

where we have used the relations �U1 = −4πρ1, �V k
1 =

−4πρ1v
k
1 and �|x− x

′|−1
= −4πδ(3)(x− x

′). The third
term vanishes when we take the point-particle limit4,
i.e. ρA = mAδ

(3)(x − xA), UA = mA/rA and VAi =
mAvAi/rA.
Let us evaluate the first and the second terms in the

NZ. Keeping only the leading PN term in the NZ, we find

ϑself=16
α4

β
ǫijk

n1,i

r21

∫

M

ρ′1(V
′
1k,j − U ′

1,jv
′
1k)d

3x′ + (1 ↔ 2)

=
n1,i

r21
µ
(1)
i + (1 ↔ 2) , (57)

where we have defined

µ
(A)
i ≡ 32

α4

β
ǫijk

∫

IZ

ρ′AV
′
Ak,jd

3x′ . (58)

This leading-order PN term in ϑself represents a magnetic-
type dipole.

4 The vanishing of this term is a general consequence of the sym-
metry of the system. The source term contains an ǫijk symbol,
which must be contracted with other vectors to produce a scalar.
We here have only two possible vectors to contract with, i.e. the
velocity vi

1
and the unit vector ni

1
from object 1. Hence, any

contraction with the Levi-Civita symbol should vanish.

As in the even-parity case, to extend this result to com-

pact objects we have to determine the value of µ
(A)
i by

matching the NZ solution in Eq. (57) to a strong field
solution. This will be carried out in Sec. IVC for the
BH case. For NSs, we just present an order of magni-
tude estimate based on a simple extrapolation of weakly-
gravitating results:

µi
(A) =

α4

β
O
(

mAS
i
A

R3
A

)

, (59)

where Si
A is the spin angular momentum of the object.

Following the procedure in Appendix A, we can show
that NSs cannot have scalar monopole charge in the dy-
namical CS case.
Next, we consider the cross term ϑcross in the weakly-

gravitating case. Integrating by parts several times, we
find

ϑcross=−16
α4

β
ǫijk

[
∫

M

ρ′1V
′
2k,j

(

1

|x− x′|

)

,i

d3x′

+

∫

M

U ′
1,iρ

′
2v

′
2k

(

1

|x− x′|

)

,j

d3x′

+

∫

M

U ′
1,iV

′
2k,jδ

(3)(x− x
′)d3x′ + (1 ↔ 2)

]

.

(60)

One can take the point-particle limit of this expression
without any trouble to obtain

ϑcross=−16
α4m1m2

βm4
ǫijkv12k

[

m4

(

ni
12n

j
1

r21b
2

+
ni
12n

j
2

r22b
2

+
ni
1n

j
2

r21r
2
2

)

+O
(

m5

r5

)

]

. (61)

These terms are of relative O(v5) compared to the
leading-order term of ϑself.
As for compact objects, the results found in the even-

parity case also apply here. Terms proportional to 1/r2A
in the above expression suggest that each object has a
dipole component induced by the companion. When we
expand this expression around rA ≪ b, however, the
terms proportional to 1/(r2Ab

2) cancel each other, as in
the even-parity case, leading to no induced dipole mo-
ment. Even if this were not the case, however, the cor-
rections to the dipole moment would be higher order than
the contributions from ϑself.
To conclude, the dominant contribution to ϑ is clearly

that of ϑself given in Eq. (61), which again depends on the
structure of the source and thus violates the effacement
principle.

C. Matching near zone and strong-field solutions

and finding the effective source terms

In alternative theories of gravity, the point-particle
limit is not always valid and the multipole moments of
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compact objects may depend on the internal structure of
the source. In the previous subsections, we found that
the dominant contributions to the scalar field come from
self-interaction terms, which in turn depend on certain
structure constants. In this subsection, we determine
these constants by matching the ϑ solution to that of an
isolated BH.

1. Even-parity sector

In the even-parity case, the monopole charges q1 and
q2 in Eq. (47) must be determined by matching to a BH
solution. An isolated BH sources a scalar field [28], whose
leading PN behavior is

ϑYS =
2α3

βm2
A

mA

rA
. (62)

Matching this solution to the NZ solution of Eq. (47) we
obtain

qA =
2α3

βmA
. (63)

Notice that this monopole charge does not depend on
(α1, α2), as for pure BH spacetimes, these coupling con-
stants appear in combination with the Ricci scalar and
tensor, which vanishes. This is to be contrasted with the
NS case, in which qA depends on α1 and α2 as well as α3

and vanishes in EDGB theory. Interestingly, BHs do not
have scalar hair in more traditional (Brans-Dicke type)
scalar-tensor theories, while NSs do possess them. This
situation is reversed in EDGB theory.
The matching carried out above dealt with the

monopole part of ϑ. That is, we have ignored any tidal
deformation of either BH induced by its binary com-
panion. In BH perturbation theory, one can calculate
the deformation of the isolated BH metric to find that
it depends on the sum of electric and magnetic tidal
tensors, leading to a metric deformation that scales as
(r1/b)

2(m2/b) for r1 ≪ b [53–55, 58–60]. Thus, in the
IZ of object 1, tidal deformations lead to corrections of
O(m3/b3), which are much smaller than the effects con-
sidered here. Therefore, it suffices in this section to con-
sider an isolated BH when matching the scalar fields.
With this at hand, we can now treat BHs in even-

parity, quadratic modified gravity as delta function
sources of matter energy density, and with effective scalar
density

ρϑ = qAδ
(3)(x− xA). (64)

In the PN expansion such sources reproduce the BH so-
lution found by Yunes and Stein [28] at leading order.
Let us make a few observations about the effective

source term approach. First, notice that the scalar field
diverges as mA → 0, which violates the small-coupling
approximation. This is related to the fact that as one
shrinks a BH, the radius of curvature at the horizon also

goes to zero, probing increasingly shorter length scales.
When the small-coupling approximation is violated, one
can no longer neglect the scalar field’s stress-energy ten-
sor and the (Hµν , Iµν ,Jµν ,Kµν) tensors that would dom-
inate over the Einstein tensor. Of course, one cannot
take this limit seriously, as we are considering here a low-
energy effective theory, which is missing higher-curvature
terms that would need to be included. Notice also that
this is different from the behavior of scalar fields in tra-
ditional scalar-tensor theories, where the scalar field van-
ishes in the mA → 0 limit.

2. Odd-parity sector

In the odd-parity case, the dipole charges of the respec-
tive objects in Eq. (57) are to be determined by matching
against the appropriate BH solutions. An isolated non-
spinning BH in the odd-parity case does not support a
scalar field. By contrast, a spinning BH does, and in the
slow-rotation limit, neglecting higher order PN correc-
tions, it is given by [6]

ϑYP = −5

2

α4

βr2A
ni
Aχ

i
A , (65)

where χA ≡ Si
A/m

2
A is the normalized spin angular mo-

mentum vector of the Ath BH. Matching this solution to
the NZ ϑself in Eq. (57), we obtain

µi
A =

5

2

α4

β
χi
A . (66)

With this at hand, we can now treat BHs in odd-parity,
quadratic modified gravity as distributional sources of
matter energy density and effective scalar density

ρϑ = −µi
Aδ

(3)(x− xA),i .

In the PN expansion, such sources reproduce the BH so-
lution found by Yunes and Pretorius [6] at leading order.
Let us make a few observations about this solution.

First, notice that the pseudo-scalar dipole charge is well
behaved in the limit mA → 0, because there is a max-
imum BH spin |χi

A| < 1. Second, notice that in the
|χi

A| → 0 limit, this dipole charge vanishes, which is a
consequence of Birkhoff’s theorem holding in CS grav-
ity [37, 47, 48]. Namely, non-spinning BHs in CS the-
ory are the same as BHs in GR (i.e. Schwarzschild
BHs). Therefore, in this case the point-particle limit is
well-justified and the metric deformation or the scalar
field does not depend on the internal structures of non-
spinning sources.

D. Far-zone field point solutions

Let us assume that we have the wave equation

�ηϑ = τ(t, x) , (67)
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where τ denotes the source term. The far-zone field point
solution to this wave equation is given as [61, 62]

ϑFZ = − 1

4π

∞
∑

m=0

(−1)m

m!
∂M

[

1

r

∫

M

τ(u, x′i)x′M

]

, (68)

with u ≡ t−r. By using u,i = −ni and by keeping only
terms proportional to 1/r, the above solution reduces to

ϑFZ = − 1

4π

1

r

∞
∑

m=0

1

m!

∂m

∂tm

∫

M

τ(u, x′i)
(

njx
′j
)m

d3x′ .

(69)
Here, the region M denotes the hypersurface of t− r =
const. In the following, we apply these formulas to the
even and odd parity cases separately.

1. Even-parity sector

Following the discussion in Sec. IVB, the evolution
equation for the scalar field is dominantly

�ηϑ = −4πq1δ
(3)(x− x1) + (1 ↔ 2) . (70)

From Eq. (69), this wave equation can be solved as

ϑFZ =
1

r

∑

m

1

m!

∂m

∂tm

∫

M

q1δ
(3)(x′ − x1)(nj x

′j)md3x′

+ (1 ↔ 2) . (71)

The m = 0 term gives

ϑFZ =
q

r
, (72)

where we have defined the total scalar monopole charge
q ≡ q1 + q2. Recall that this monopole charge q refers
to the scalar field, and not to an electromagnetic one.
For a BH binary or a NS binary in a quasi circular orbit,
q only changes during merger, as mass is carried away
in radiation. Thus, monopole radiation is inefficient and
suppressed.
For the m = 1 case, we find

ϑFZ =
Ḋin

i

r
, (73)

where we have defined the total scalar dipole moment as

Di ≡ q1x
i
1 + q2x

i
2 . (74)

When we evaluate this for circular orbits, we find

ϑFZ =
1

r

(

q1
m2

m
− q2

m1

m

)

v12in
i , (75)

where we have defined the relative velocity vk12 ≡ vk1 −vk2 .
The m = 1 term clearly leads to dipole radiation in the

FZ, which is less relativistic than GR quadrupole radia-
tion, becoming stronger at smaller velocities. Of course,

this term is proportional to the coupling constants of
the theory, which are assumed much smaller than one. .
Reference [28] failed to recognize such dipolar emission
because they considered the motion of test particles that
had no scalar charge. We cannot think of any mechanism
that would suppress such dipolar radiation.

2. Odd-parity sector: spinning bodies

As in the previous Section, the evolution equation for
the scalar field is dominantly

�ηϑ = 4πµi
1δ

(3)(x− x1),i + (1 ↔ 2) . (76)

By using Eq. (68), the far-zone field point solution is
obtained as

ϑFZ = −
∞
∑

m=0

(−1)m

m!
∂M

[

1

r

∫

M

µi
1δ

(3)(x′ − x1),ix
′Md3x′

+ (1 ↔ 2)

]

. (77)

When m = 0 there is obviously no contribution to the
scalar field. When m = 1,

∫

M

δ(3)(x− x1),ix
jd3x = −δij , (78)

and thus

ϑFZ =
µin

i

r2
+

µ̇in
i

r
, (79)

with µi ≡ µ1i + µ2i. Notice that we recover the solution
of Yunes and Pretorius [6] for the first term of the above
equation with µi

A given as in Eq. (66). These terms will
not strongly radiate because µ̇i is non-vanishing only for
spin-precessing systems. Even then, such radiation would
be suppressed by the ratio of the orbital timescale to the
precession timescale.
The m = 2 contribution, by contrast, depends on the

much shorter orbital timescale. We look for terms of
O(r−1) since they are the only ones that contribute to
the energy flux at infinity. Keeping in mind that the
function being differentiated depends on retarded time,
we can rewrite Eq. (77) as

ϑFZ = − 1

r

∑

m

1

m!

∂m

∂tm

∫

M

µi
1δ

(3)(x′ − x1),i(nk x
′k)md3x′

+ (1 ↔ 2) . (80)

When m = 2, we have that

µi
1

∫

M

δ(3)(x− x1),ix
pxqd3x+ (1 ↔ 2) = −2µpq , (81)

where the pseudo-tensor quadrupole moment (not to be
confused with µiµj) is defined as

µij ≡ x
(i
1 µ

j)
1 + x

(i
2 µ

j)
2 . (82)



13

The m = 2 contribution becomes

ϑFZ =
1

r
µ̈ijn

ij = −1

r
ω2µijn

ij , (83)

where the final equality is evaluated on a circular orbit.
Notice that such a scalar field will strongly radiate be-
cause µij depends on the orbital timescale.

3. Odd-parity sector: non-spinning bodies

When both objects are non-spinning, the self-
interaction terms produced by the effective source iden-
tically vanish. One is then left with the source term
constructed from the product of the gravitational fields
of objects 1 and 2. These terms will be proportional to
m1m2. As we will see, there are many contributions that
turn out to vanish upon NZ integration. For pedagogi-
cal reasons, we will show here explicitly how this happens
and eventually arrive at contributions that do not vanish.
The evolution equation for the scalar field to leading

PN order is

�ηϑFZ = −32
α4

β
ǫijkm1m2v12k

(

1

r1

)

,im

(

1

r2

)

,jm

, (84)

where we substituted the NZ metric components in the
point-particle approximation. The leading order term of
the solution to this differential equation, i.e. the m = 0
term in the sum of Eq. (69), is evaluated as

ϑFZ=
8

π

α4

β
m1m2ǫijk

vk12
r

∫

M

(

1

r1

)

,im

(

1

r2

)

,jm

d3x

=−16
α4

β
m1m2ǫijk

vk12
r

∂
(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m Y = 0 . (85)

Here we integrated over the NZ+IZ hypersurface M
without taking any care of the strong gravity region in
the IZs. One can easily show that the contribution from
the IZs is not large in the present case. In the second
line, we replaced partial derivatives with respect to xi

acting on 1/rA with (minus the) particle derivatives with
respect to xi

A:

∂

∂xi
→ − ∂

∂xi
A

≡ −∂
(A)
i , (86)

with A = (1, 2). We commuted these particle derivatives
with the integral, and finally obtained a typical NZ inte-
gral, discussed in Appendix B. From Eq. (B4), we know
that Y = b, and by taking all particle derivatives, the
last equality is established.
We could have inferred that the m = 0 term in the

sum does not contribute for non-spinning BHs without
any explicit calculations. The argument here is similar
to that in footnote 4. Possible vectors to contract with
the Levi-Civita symbol include the velocities viA and the
unit vectors ni

A, but not spin vectors Si
A, as we here con-

sider non-spinning BHs. In particular, for the m = 0

case, there cannot be any FZ vectors ni present. Thus,
all vectors that can be contracted onto the Levi-Civita
symbol must lie in the same orbital plane and this obvi-
ously vanishes. This argument should be true at all PN
orders5.
Let us then consider the next-order term. This will

arise from the leading-order source term [right-hand side
of Eq. (84)] with m = 1 in the NZ sum:

ϑFZ=
8

π

α4

β

m1m2

r
npǫijkv

k
12

× ∂

∂t

∫

M

(

1

r1

)

,im

(

1

r2

)

,jm

xpd3x

=−16
α4

β

m1m2

r
npǫijkv

k
12

∂

∂t
∂
(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m Yp ,

(87)

where we have used Eq. (B3), which defines Yp. By direct
evaluation, one can show that this term also identically
vanishes. The first non-vanishing contribution coming
from an m = 1 term must then be O(v3) smaller than
the ordering of the m = 0 term.
Finally, let us consider the (next)2-order term. This

can arise only from the leading-order source term with
m = 2 in the NZ sum:

ϑFZ=
4

π

α4

β

m1m2

r
npqǫijk

∂2

∂t2
vk12

×
∫

M

(

1

r1

)

,im

(

1

r2

)

,jm

xpxqd3x

=−8
α4

β

m1m2

r
npqǫijk

∂2

∂t2
vk12∂

(1)
i ∂

(2)
j ∂(1)

m ∂(2)
m

×
(

Y〈pq〉 +
1

3
δpqS

)

, (88)

which simplifies to

ϑFZ = 16
α4

β

1

r

ηmδm

b
ǫijknipω

2vk12n
jp
12 , (89)

where we have defined the mass difference δm ≡ m1−m2

and the symmetric mass ratio η ≡ m1m2/m
2. We have

here used Kepler’s law and expanded the STF tensors.
This is the dominant FZ behavior of the scalar field,
which as we see is much suppressed relative to the odd-
parity solution we found for spinning BHs.

E. Summary of this section

Let us summarize the results found so far for later use.
In the even-parity case, generically at least one of the

5 One may think that one can construct a vector that does not lie
in the orbital plane by taking the cross product of two vectors
that lie on this plane, e.g. n12 × v12. However, since GR is
parity even, such a vector cannot be present in the PN metric.
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A B C a b c d

Even-P q1 0 Ḋin
i 1 0 − −

Odd-P, Spins µi
1n

i
1 0 µ̈in

ij 2 0 − −

Odd-P, No Spins σpq
NZn

p
12
nq
1

1

2
σpq

NZn
p
1
nq
2
σpq

FZn
pq 2 2 2 2

TABLE I. Scalar field parameters, as defined in Eqs. (90)
and (92). The quantities q1 and µi

1 are defined in Eqs. (63)
and (66), while σpq

NZ is defined in Eq. (91). The quantities Di

and µi are defined in Eqs. (74) and (77), while σpq
FZ is given

in Eq. (93).

binary component objects will have a scalar monopole
charge. Since the scalar field excitation due to the in-
duced monopole is dominant, we neglect all the other
less important contributions. Weakly gravitating objects
need not have a scalar monopole charge if α1+α2+3α3 =
0, and BHs have no scalar monopole charge if α3 = 0.
In EDGB theory, NSs have no scalar monopole charge.
In the odd-parity case, the dominant contribution is the
magnetic-type scalar dipole moment induced by spins.
Generically, astrophysical objects will possess spin, but
we will continue to include non-spinning results to com-
pare with previous work.
In the NZ, we can parametrize the leading PN terms

of the scalar field as

ϑNZ =
A

ra1b
b
+

B

rc1r
d
2

+ (1 ↔ 2) , (90)

where (A,B, a, b, c, d) are given in Table I and for com-
pactness of the Table we define

σpq
NZ

≡ −16
α4

β
ηm2ǫpqsv

s
12 . (91)

In the FZ, we can parametrize the scalar field as

ϑFZ =
C

r
, (92)

where C is also given in Table I and we define

σpq
FZ

≡ 16
α4

β
ηmδm

ω2

b
ǫqjkv

k
12n

jp
12 , (93)

V. METRIC EVOLUTION

In this section, we solve the evolution equations for
the metric deformation in the FZ, so that we can calcu-
late the gravitational energy flux at infinity. Note that
throughout, we use the Newtonian relationship v2 = m/b
(and similarly for the acceleration). This relationship
must be corrected at higher PN order or at O(ς). As we
mentioned earlier, here we do not take into account the
corrections to the orbital motion due to the conservative
force at O(ς). These conservative effects do not interfere
at O(ς) with the radiative effects that we are concerned

with in this paper. Therefore the corrections to the GW
waveform become a simple summation of these two dif-
ferent types of effects.
For the FZ field points, the solution to the metric de-

formation equation of motion [Eq. (17)] can be read from
Eq. (69):

hij = −8

r

∞
∑

m=0

1

m!

∂m

∂tm

∫

M

C̃ij (nkx′k)md3x′ +O
(

r−2
)

,

(94)
where we have defined the source term as

C̃ij =α1

(

ϑH̃(0)
ij + H̃(1)

ij

)

+ α2

(

ϑĨ(0)
ij + Ĩ(1)

ij

)

+ α3

(

ϑJ̃ (0)
ij + J̃ (1)

ij

)

+ α4K̃(1)
ij − 1

2
T

(ϑ)
ij . (95)

Notice that this corresponds to an IZ+NZ integration for
FZ field points, where we have neglected the FZ integra-
tion because it is subdominant.
The integrals presented above have to be carried out

also in the IZ, where the PN expansion is not valid any-
more. In GR, however, such divergences can be ignored,
using a regularization scheme. Since both the true so-
lution and an appropriately regularized solution satisfy
the field equations in the NZ, their difference due to the
IZ contribution is only through a homogeneous solution.
Such homogeneous solutions are regular in the NZ and
FZ, but can be divergent in the IZ. They are character-
ized by the multipole moments of the respective objects,
which can be determined by studying tidal perturbations
around a strongly gravitating object. One can then per-
form matching of the metric solution, as for the scalar
solution, but the metric matching is beyond the scope of
this paper. In what follows, we only consider the regular-
ized contribution, following Hadamard partie finie (FP)
regularization [63]. We comment more on the divergent
contribution at the end of this Section.

A. Even-parity sector

Let us focus on the metric perturbation in the even-
parity sector first. The leading order term both in the
PN and 1/r expansion at infinity is formally given by

hij = hTij + hJij , (96)

hTij ≡
4

r

∫

M

T
(ϑ)
ij d3x , (97)

hJij ≡ −8α3

r

∫

M

J̃ijd
3x , (98)

where we have defined J̃ij ≡ ϑJ̃ (0)
ij + J̃ (1)

ij . The source

terms H̃µν and Ĩµν do not contribute to this expression
since they identically vanish in the NZ where Rµν = 0.
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We can estimate the order of magnitude of both hJij
and hTij as follows:

hTij ∼ O
(

β
m

r
v−2ϑ2

)

= ζ3
m

r
v2 ×O (1) , (99)

hJij ∼ O
( α3

m2

m

r
v4ϑ
)

= ζ3
m

r
v2 ×O

(

v4
)

. (100)

Here we factored out v2 in the final expressions, since the
GR leading quadrupolar field is also proportional to v2.
Clearly, the dominant contribution comes from Eq. (99).
Let us now make this computation more precise. The

stress-energy tensor will contain self-interactions of the
form ϑA,iϑA,j and cross terms of the form ϑ1,iϑ2,j. The
former case leads to divergent integrals, which must be
determined by strong-field matching, so we do not con-
sider them here. Let us concentrate on the latter, which
take the form

T
(ϑ)
ij = β

(

ϑ,iϑ,j −
1

2
δijϑ,µϑ

,µ

)

(101)

≈ βq1q2

[

2

(

1

r1

)

,(i

(

1

r2

)

,j)

− δij

(

1

r1

)

,k

(

1

r2

)

,k

]

,

(102)

which sources the metric perturbation

hij=
4

r

∫

M

T
(ϑ)
ij d3x ,

=−4π

r
βq1q2

(

2∂
(1)
i ∂

(2)
j b− δij∂

(1)
k ∂

(2)
k b
)

+ (1 ↔ 2) ,

=−16π

r
β
q1q2
b

nij
12 , (103)

where we used an integration formula for the triangle
potential given in Appendix B. We can see that this cor-
rection is 0PN relative to the radiative metric perturba-
tion in GR, just as we predicted in Eq. (99). However,
this correction turns out to be still smaller in the energy
flux than the dipole scalar radiation, which gives a -1PN
correction.

B. Odd-parity sector

We now focus on the odd-parity sector, for which
the solution is given by the term proportional to α4 in
Eq. (94), namely

hij=hTij + hKij , (104)

hKij ≡ −8α4

r

∫

M

K̃(1)
ij d3x . (105)

The stress-energy contribution hTij is the same as in
Eq. (101).

The K contribution to Eq. (104) is more involved. The
leading-order behavior of the K tensor is

K̃(1)
ij =ϑ̇,kǫjklh00,il + ϑ̇,kǫjlm(him,lk + hlk,im)

+ϑ,klǫjlm(hi0,mk + hmk,i0 − hk0,im − him,k0)

−ϑ,kǫikl(2h0[m,j]lm − 2ḣl[j,m]m − ḣ00,jl)

−2ϑ̇ǫiklhk[j,m]lm + (i ↔ j) . (106)

Other terms are of higher PN order. By applying the
Lorenz or harmonic gauge condition hµν

,ν = 0, substi-
tuting hij = h00δij into Eq. (106), and using ǫjklh

µν,kl =
ǫjklϑ,kl = 0, we get

K̃(1)
ij =2ϑ̇,kǫjklh00,il − 2ϑ,kmǫjklh0[m,i]l

− 2ϑ,kǫjklh0[m,i]lm + 2ϑ,kǫjklḣ00,il + (i ↔ j) .

(107)

The K̃ij term in Eq. (104) is then a sum of four terms,
namely

hKij =
4
∑

n=1

h
(n)
ij , (108)

where we have defined

h
(1)
ij = − 16α4

r

∫

M

ϑ̇,kǫjklh00,ild
3x+ (i ↔ j) , (109)

h
(2)
ij = +

16α4

r

∫

M

ϑ,kmǫjklh0[m,i]ld
3x+ (i ↔ j) , (110)

h
(3)
ij = +

16α4

r

∫

M

ϑ,kǫjklh0[m,i]lmd3x+ (i ↔ j) , (111)

h
(4)
ij = − 16α4

r

∫

M

ϑ,kǫjklḣ00,ild
3x+ (i ↔ j) . (112)

When we substitute the PN metric into the above
terms, the right-hand sides depend on the velocity vectors
viA (which depend on time only). The field ϑ is given in
Eq. (90) and its derivative can be computed simply from
that equation. Since this field is a NZ one, it depends on
time through the positions of the objects, which implies
that its time derivative can be converted into a spatial
derivative via ∂tf(r1) = −vi1∂if(r1).
Let us begin by making a simple order of magnitude

estimate of how large the regularized contribution is. For
this, it suffices to look at Eqs. (99) and (109):

hTij∼O
(

β
m

r
v−2ϑ2

)

, (113)

hKij∼O
( α4

m2

m

r
v5ϑ
)

. (114)

The ϑ field here is that of the NZ, and hence

hTij∼ζ4
m

r
v2 ×O

(

χ2v4 + ηχv9 + η2v14
)

, (115)

hKij∼ζ4
m

r
v2 ×O

(

χv7 + ηv12
)

, (116)
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where χ stands for the magnitude of χi
1 and χi

2. From this
analysis, hTij is clearly larger for rapidly spinning objects,
leading to a 2PN effect.
For the non-spinning case, one might expect the K

contribution to lead to a 6PN effect, but as we explain
in Appendix C, these leading-order effects actually van-
ish. This cancellation can also rather easily be seen by
integrating by parts in Eqs. (109)-(112). After discard-
ing boundary terms (taking into account the boundary
term is equivalent to adding homogeneous solutions, cor-
responding to deformed multipole moments of compact
objects), we obtain expressions of the form ǫjkl ϑh00,kl...,
which obviously vanishes by the antisymmetry of the
Levi-Civita tensor. We carry out a more careful analysis
in Appendix C, where we explicitly show that the leading
and first sub-leading order terms vanish6. The first non-
vanishing term is then of O(v2) smaller than the order
of magnitude estimates in Eqs. (115) and (116), leading
to 7PN and 4.5PN contributions at O(χ0) and O(χ1),
respectively.
Since the largest contribution seems to arise for spin-

ning BHs from the hTij term, let us consider this in more
detail. Two possible contributions are generated here:
one that depends only on self-interaction terms, and one
that depends on the cross-interaction. The former leads
to divergent integrals, which need to be matched from
strong-field solutions, and we do not consider these here.
The latter leads to the metric deformation

hTij=−
4π

r
βµk

1µ
l
2

(

2∂
(1)
ik ∂

(2)
jl Y − δij∂

(1)
pk ∂

(2)
pl Y

)

+ (1 ↔ 2)

=
8πβ

rb3

{

2µ
(i
1 µ

j)
2 − 12n

(i
12µ

j)
1

(

nk
12µ2k

)

+ 3nij
12

[

5
(

nk
12µ1k

) (

nl
12µ2l

)

− µ1kµ
k
2

]

}

+ (1 ↔ 2) ,

(117)

which is clearly of the order predicted in Eq. (115),
i.e. 2PN order relative to GR. This is of the same order
as the energy flux correction carried by the pseudo-scalar
radiation.

C. Multipole moments

In this Subsection, we discuss the additional contribu-
tion from the IZs, which enter as additional homogeneous
solutions in the NZ and FZ, These contributions are ho-
mogeneous in the sense that they arise from sources that
have support only in the IZs, and thus they vanish in
the NZ and FZ (see e.g. the discussion prior to Eq. (45)).
The homogeneous solutions are characterized by the mass
and current multipole moments of the strong-field bodies,
which must be determined by matching to strong gravity

6 In Appendix C, we only show this for non-spinning BHs, but a
similar calculation can be performed for spinning BHs to O(χ).

solutions in the IZ. When we solve the non-linear equa-
tions of motion iteratively, the source terms in general
can be classified into two pieces: a self-interaction part
and a cross-interaction part, as in the case of ϑ in Sec. IV.
The cross-interaction part is sourced by the companion,
while the self-interaction part is not.
The self-interaction part is rather easy to handle be-

cause matching involves only a single isolated object. As
described in Sec. IVB, these self-interaction terms can be
thought of as homogeneous solutions that have support
only in the IZ. As such, in the small-coupling approxima-
tion, they satisfy homogenous field equations that take
Einstein form. If the spin of the object is neglected, the
only possible linear perturbation to such a homogeneous
solution that is compatible with asymptotic flatness is
a shift of the body’s mass (in the 1/r piece of the (t, t)
and diagonal parts of the metric). In essence, this is a
consequence of Birkhoff’s theorem, which holds for ho-
mogeneous solutions. Such a shift is consistent with the
strong-field, non-spinning BH solution in EDGB theory
found in [28]. In that case, the mass shift is simply
mA → (49/80)ζ3mA.
For spinning objects, one expects there to be higher

multipole moments in the strong-field solution. However,
one should be able to absorb current dipole moment mod-
ifications by a redefinition of the spin parameter, while
the mass dipole moment will be absorbed by the redef-
inition of the position of the center of mass. Therefore,
the leading-order corrections that survive are the mass
quadrupole moment, which produces a metric perturba-
tion in the NZ proportional to 1/r3. As we will see, when
we consider FZ solution, there is an additional factor of
v2 that enters.
Therefore, contributions to the energy flux from the

quadrupole or higher multipole moments are at least 3PN
order relative to that from the GR quadrupole formula.
We will later find that corrections to the energy flux due
to scalar radiation appear at -1PN and 2PN relative order
for the even and odd-parity cases, respectively. Hence,
the contributions from the multipole moments that we
discussed here are definitely smaller than those intro-
duced by scalar radiation in the even-parity case, and
at most, the same order in the odd-parity case.
Let us take a look at spinning BHs in the odd-parity

sector in more detail. At O(χ) there is freedom in adding
a homogeneous solution proportional to 1/r2 in the h0i

component. This corresponds to a freedom in shifting
the Kerr parameter measured at infinity. Reference [6]
set this homogeneous solution to zero so that there is
no shift in the Kerr parameter. At O(χ2), there should
be corrections proportional to 1/r3 in hij which shifts
the quadrupole moment. Since there is no parameter
in the Kerr geometry that can absorb this correction in
the quadrupole moment, this 1/r3 correction cannot be
eliminated.
The effective source term that reproduces this correc-
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tion should look like

�hij = −4πQ1uiuj(δkl − 3Ŝ1,kŜ1,l)δ
(3)(x− x1),kl

+(1 ↔ 2) , (118)

where QA = O(ζ4mAa
2
A) and ŜA,k ≡ Si

A/m
2
A is a unit

spin angular momentum vector. The solution of this wave
equation at O(1/r) is given by

hij=
1

r

∞
∑

m=0

1

m!

∂m

∂tm
uiuj(δkl − 3Ŝ1,kŜ1,l)Q1

×
∫

M

δ(3)(x− x1),kl(n · x)md3x+ (1 ↔ 2) .

(119)

The leading-order contributions at m = 0 (2PN) and
m = 1 (2.5PN) vanish, leading to the first non-zero con-
tribution at m = 2

hij = O
(

1

r
Qω2v2

)

= ζ4
m

r
v2 ×O

(

χ2v6
)

, (120)

which is 3PN relative to GR. Therefore, the self-
interacting correction in the metric at O(χ2) is smaller
compared to the corrections in the energy flux carried
by the scalar field and the metric field with regularized
modification.
The cross-interaction part is more complicated. In this

case, we have to consider the induced multipole moments
due to the presence of the secondary object. Thus, even
if we consider non-spinning objects, higher multipole mo-
ments might be induced. Another important difference is
that neither the mass monopole nor the spin dipole can
be simply absorbed by a redefinition of the mass and spin
of each object. This is because the shifts of these mul-
tipole moments depend on the orbital parameters, such
as separation b. Notice, however, that the effects of the
secondary object propagate only through the scalar field
or the gravitational tidal force.
The order of magnitude of the former scalar field ef-

fect is more complicated to estimate and it depends on
the situation. In the even-parity case, ϑ sourced by the
secondary body at the position of the primary body is
proportional to 1/b. In EDGB theory, since ϑ has shift
symmetry within the context of the classical theory, the
effects are suppressed by the gradient of the field, i.e. they
are proportional to 1/b2. In the odd-parity case, there
is again shift symmetry and the monopole scalar charge
is absent. Because of these two reasons, the suppression
is proportional to 1/b3 in CS theory. These suppressions
will be sufficient to conclude that the effects are relatively
at least 1PN and 3PN in the even and odd-parity cases
respectively, which is smaller than the effects induced by
scalar radiation.
In the odd-parity non-spinning case, the latter gravi-

tational tidal force dominates over the scalar propaga-
tion effect. To calculate this tidal force properly re-
quires asymptotic matching between the IZ solution and
a strong-field, perturbed Schwarzschild solution in CS

gravity. Perturbations of the Schwarzschild spacetime
can be decomposed as a sum over electric and mag-
netic tidal tensors (see e.g. [59]). The former scale
as 1/b3(1 + v + v2 + . . .), while the latter scales as
v/b3(1 + v + v2 + . . .) [55]. Such tidal deformations will
induce gravitational waves that will scale as the second-
time derivatives of the electric and magnetic quadrupole
deformations, i.e. they will scale as ω2/b3(1+v+v2+ . . .)
and ω2v/b3(1 + v + v2 + . . .). In GR, the leading order
effect is induced by the electric quadrupole moment and
it scales as ω2/b3, a 5PN order effect. In CS, we expect
the magnetic quadrupole moment to provide the leading-
order deformation, and the results of Pani, et al. [64]
suggest that this scales as a 6PN order effect.

VI. ENERGY FLUX

The inspiral of a compact binary system is controlled
by the system’s change in binding energy and angular
momentum. The binding energy changes according to
the dissipation of energy carried by all dynamical fields,
which here includes the metric perturbation and the
scalar field. The stress-energy tensor (SET) associated
with each field quantifies the density and flux of energy
and momentum. The energy loss is calculated as the in-
tegral of the energy flux through a 2-sphere of radius r
in the limit r → ∞ and in the direction of the sphere’s
outward unit normal ni. That is, for some field ϕ (be it

hij , hij , or ϑ) with SET T
(ϕ)
µν ,

Ė(ϕ) = lim
r→∞

∫

S2
r

〈

T
(ϕ)
ti ni

〉

ω
r2dΩ , (121)

where the angle brackets with subscript ω stand for orbit
averaging.
The total energy flux can be ordered in powers of ς as

Ė = ĖGR + ς δĖ +O(ς2) . (122)

The GR energy flux ĖGR is given by the GR metric per-
turbation only, without any contributions from the scalar
field at O(ς0), as there is no scalar field in GR. For cir-
cular orbits, this is

ĖGR = −32

5
η2v10 . (123)

The O(ς) correction, δĖ, can be decomposed into

δĖ = δĖ(ϑ) + δĖ(h) , (124)

where the first term is the scalar field contribution and
the second term is the contribution of the deformed met-
ric perturbation.
The scalar field contribution is calculated with the SET

given by Eq. (7):

δĖ(ϑ) = β lim
r→∞

∫

S2
r

〈

ϑ̇ ni ∂iϑ
〉

ω
r2dΩ . (125)
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Since we are taking the r → ∞ limit, ϑ must be that
valid in the FZ.
The metric deformation contribution to the energy flux

is slightly more subtle. This modification to the GR flux
can have three distinct sources: (i) the effective SET in
terms of hij and hij may be functionally different, but as
shown in [39], this is not so for the class of theories we
consider here7; (ii) The orbital equations of motion, and
the associated relations m/b = v2 and ω = v3/m, might
be modified at O(ς), as was partially calculated in [28];
(iii) The generation mechanism of the FZ metric pertur-
bation is modified, i.e. the radiative part of the metric
perturbation is deformed. We consider here only the dis-
sipative modifications introduced by (iii), as (ii) would
require an analysis of the equations of motion, which is
beyond the scope of this paper8.
Letting Hαβ = hαβ + ςhαβ +O(ς2), the effective SET

of GWs is given by [39]

T (H)
µν =

1

32π

〈

HTT

αβ,(µH
αβ
TT ,ν)

〉

λ
, (126)

where the angle brackets with a subscript λ stand for
a quasi-local average over several wavelengths and TT
stands for the transverse-traceless projection

HTT

ij = Λij,klHkl , Λij,kl = PikPjl −
1

2
PijPkl , (127)

with Pij = δij −nij the projector onto the plane perpen-
dicular to the line from the source to a FZ field point.
Expanding this SET in orders of ς , the O(ς0) part leads

to ĖGR, while the O(ς) part is

T (h)
µν =

1

16π

〈

hTT

αβ,(µh
αβ
TT ,ν)

〉

λ
, (128)

which leads to

δĖ(h) =
1

16π
lim
r→∞

∫

S2
r

〈〈

hTT

αβ,(th
αβ
TT ,i)

〉

λ
ni
〉

ω
r2dΩ .

(129)
As before, the hαβ and hαβ are those valid in the FZ.

7 Reference [39] showed that the TT gauge exists in quadratic grav-
ity as r → ∞. Any non-TT propagating mode that is sourced
in the NZ vanishes in the FZ at all orders. This is in contrast
to scalar-tensor theories in the Jordan frame, where the scalar
“breathing” mode is present in the metric. This difference comes
from the way the metric deformation and the scalar field couple
in the field equations. In the quadratic gravity case, ϑ does not
multiply Gµν in the field equations (the Einstein-Hilbert sector
of the action is unmodified), while the opposite is true in scalar-
tensor theories in the Jordan frame. Therefore, in the former
hµν and ϑ decouple in the r → ∞ limit and there is no breath-
ing mode. In contrast, in the latter the coupling between hµν
and ϑ remains in the limit r → ∞, leading to a non-vanishing
breathing mode and a modification to the effective SET.

8 The distinction between (ii) and (iii) can be ambiguous at higher
PN order, because how the orbital parameters are modified de-
pends on the gauge choice. However, as long as we impose the
harmonic gauge condition on both GR and the deformed metric
perturbations, we do not have to worry about this gauge issue
at least up to next-to-leading PN order.

A. Scalar field correction to the energy flux

1. Even-parity sector

In the even-parity case, ϑFZ is dominated by the dipole
component [Eq. (73)], which we repeat here for conve-

nience: ϑFZ = Ḋin
i/r, where Di is the NZ dipole given

in Eq. (74). This is inserted into the energy loss formula,
Eq. (125). Since the FZ scalar field depends on retarded
time, both time and spatial derivatives can be written as
time derivatives of the NZ moments. This gives

δĖ(ϑ) = −β

∫

S2
∞

〈

D̈iD̈jn
ij
〉

ω
dΩ = −4π

3
β
〈

D̈iD̈i

〉

ω
,

(130)
which for circular orbits gives

δĖ(ϑ) = −4π

3
βω4|D|2 = −4π

3

β

m4
(m2q1 −m1q2)

2v8 .

(131)
Note that here, as before, the m → 0 limit diverges,
because the effective theory breaks down on short length
scales and ς ≪ 1 is violated.
When the compact bodies are BHs, their scalar

monopole charges are given by Eq. (63), qA =
2α3/(βmA), which then leads to

δĖ(ϑ) = −1

3
ζ3

1

η2
δm2

m2
v8 . (132)

Comparing this with the GR energy flux, we find

δĖ(ϑ)

ĖGR
=

5

96
ζ3

1

η4
δm2

m2
v−2 , (133)

a relative -1PN effect. That is, the energy lost to the
scalar field due to dipole radiation would enter as a lower-
order in v effect than the energy loss in GR. If one takes
the limit m2 → ∞ while keeping (m1, v) fixed, then the
above ratio scales as m−4

1 ; i.e. the energy flux ratio is
sensitive to the smallest horizon scale of the system. The
effect is of a similar size for comparable stellar-mass bi-
nary and EMRI system. A SMBH-SMBH binary experi-
ences the smallest effect.

2. Odd-parity sector: spinning bodies

The scalar field ϑFZ is here dominated by the
quadrupole component [Eq. (83)], which we repeat here
for convenience ϑFZ = µ̈ijn

ij/r = −ω2µijn
ij/r, where

the quadrupole tensor µij is defined in Eq. (82). Insert-
ing this into the energy loss formula [Eq. (125)] gives

δĖ(ϑ) = − β

∫

S2
∞

〈...
µ ij

...
µkln

ijkl
〉

ω
dΩ ,

= − 4π

15
β

〈[

2
...
µ ij

...
µ ij +

(...
µ i

i

)2
]〉

ω

. (134)
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Let us evaluate this for quasi-circular orbits with
non-precessing spins. The third time derivative of the
quadrupole tensor µij becomes

...
µ ij = b−3

(

m1v
(i
12µ

j)
2 −m2v

(i
12µ

j)
1

)

, (135)

and the total energy flux is

δĖ(ϑ) = − 5

48
ζ4
[

∆̄2 + 2
〈

(∆̄ · v̂12)2
〉

ω

]

v14 , (136)

where v̂12 is the unit vector in the direction of the relative
velocity and the dimensionless quantity ∆̄ is defined as

∆̄i ≡ m2

m
χ1Ŝ

i
1 −

m1

m
χ2Ŝ

i
2 . (137)

Notice that δĖ(ϑ) in Eq. (136) is finite in the EMRI limit.
Note also that when both spins are perpendicular to the
orbital plane, ∆̄ is as well, and the second term of δĖ(ϑ)

vanishes. Comparing Eq. (136) with GR,

δĖ(ϑ)

ĖGR
=

25

1536
ζ4

1

η2
[

∆̄2 + 2
〈

(∆̄ · v̂12)2
〉

ω

]

v4 , (138)

hence scalar radiation in the odd-parity sector is clearly
a relative 2PN effect. This effect was not included in the
work of Pani et al. [64], who found a 7PN correction,
since their simulations did not include spins. If one takes
the limit m2 → ∞ while keeping (m1, v) fixed, then the
above ratio scales asm−2

1 m−2
2 ; i.e. the energy flux ratio is

sensitive to the geometric mean of the two horizon scales
in the system. This implies that the effect is greatest for
comparable stellar-mass binaries.

3. Odd-parity sector: non-spinning bodies

The odd-parity ϑFZ in Eq. (89) can be used to evaluate
the energy loss in Eq. (125):

δĖ(ϑ) = − 256κζ4δm
2η2

(m

b

)8
∫

S2
∞

dΩ
[

∂t

(

ǫijknipvk12n
jp
12

)]2

= − 256κζ4η
2 δm

2

m2

(m

b

)10
∫

S2
∞

dΩ
(

ǫijknipvkp12n
j
12

)2

= − 64

15
ζ4η

2 δm
2

m2

(m

b

)12

. (139)

Compared to the GW radiation in GR [Eq. (123)], this
scalar radiation becomes

δĖ(ϑ)

ĖGR
=

2

3

δm2

m2
ζ4 v14 , (140)

which shows that this is a relative 7PN effect. In contrast
with the cases of even-parity and odd-parity with spins,
this effect is dominantly controlled by the total mass,
rather than the mass ratio. The effect is greatest for a
system of stellar-mass BHs.
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FIG. 3. Comparison of Eq. (140) to the numerical results of
Pani et al. [64]. The latter can be mapped to the generic
quadratic gravity action of Eq. (4) by letting α4 = −αCS/4,
which then implies that ζ4 = −ζCS/16. We here used ζ4 =
6.25×10−3 , which is equivalent to their parameter ζCS = 0.01.
Observe that at low velocities, in the regime where the PN
approximation is valid, the two curves agree.

The above result can be compared to numerical cal-
culations recently performed by Pani et al. [64]. They
estimated the effect of scalar radiation in dynamical CS
gravity [37] for non-spinning, circular EMRIs. They nu-
merically solved the master perturbation equations on a
Schwarzschild background to obtain the time evolution
of the scalar field and the metric perturbation, caused by
a non-spinning point particle. Figure 3 compares their
results to ours, found in Eq. (140). Observe that the nu-
merical results of Pani et al. are in excellent agreement
with our post-Newtonian calculation, which extends it to
comparable mass-ratios (notice the factor of δm/m).

B. Metric deformation correction to the energy

flux

For the even-parity case, the correction to the energy
flux that arises from the deformation to the gravitational
metric perturbation is at least of 0PN order relative to
GR. This is higher PN order compared to the scalar
dipole radiation found in Sec. VIA1, and thus, we will
not consider it further.
For the odd-parity case with spinning BHs, one of the

leading contribution comes from the metric correction

sourced by T
(ϑ)
ij , which is given in Eq. (117). Inserting

this metric perturbation into Eq. (129), the energy flux
correction relative to GR becomes

δĖ(h)

ĖGR
=

75

16

ζ4
η
χ1χ2

〈

Ŝi
1Ŝ

j
2

(

2v̂12ij − 3n12
<ij>

)

〉

ω
v4 ,

(141)

which is of relative 2PN order, just as the contribution
due to scalar radiation in Eq. (138). Notice that both
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the metric deformation and scalar field corrections to the
energy flux are of O(χ2), but the latter is larger by a
factor of O(η−1).
We expect O(χ) corrections to the energy flux due to

the metric deformation to be higher PN order. For very
slowly spinning binaries, however, they may give larger
corrections compared to the O(χ2) 2PN ones presented
here.
In the odd-parity sector with non-spinning objects, the

regularized contributions to the metric deformation can
only provide energy flux corrections of at least 7PN order.
However, as explained in Sec. VC, we expect that match-
ing strong-field solutions to the non-regular NZ ones may
generate 6PN corrections in the energy flux, similar to
those found by Pani et al. [64].

VII. IMPACT ON GRAVITATIONAL WAVE

PHASE

How do all these modifications to the energy flux af-
fect the GW observable? To answer this question, we
compute the Fourier transform of the phase of the GW
response function in the stationary phase approximation
(SPA), where we assume the GW phase changes much
more rapidly than the GW amplitude [65].
We begin by parameterizing all the corrections to the

energy flux that we have studied so far via the following
power law:

Ė = ĖGR(1 +Ava) , (142)

where (A, a) are summarized in Table II for the four dif-
ferent sectors considered.
With the generic energy flux parameterization, the or-

bital phase for a quasi-circular inspiral becomes

φ(F )=

∫ F dE

dω

(

dE

dt

)−1

ωdω

=φGR(F )

[

1 +
5

a− 5
A(2πmF )a/3

]

, (143)

where F and ω = 2πF are the linear and angular or-
bital frequency, φGR = −1/(32η)(2πmF )−5/3 is the GR
orbital phase and E(ω) = −(µ/2)(mω)2/3 is the binary’s
binding energy to Newtonian order. Recall here that
m = m1 + m2 is the total mass of the binary, while
µ = m1m2/m is the reduced mass and η = µ/m is the
symmetric mass ratio. Equation (143) is not valid when
a = 5 (a 2.5PN correction), as then the integrand be-
comes proportional to ω−1, which leads to a log term.
Before we compute the Fourier phase, we must first de-

fine t0, the time at which the stationary phase condition
is satisfied F (t0) = f/2, where f is the GW frequency.
This condition can be solved to yield

t0 = t0,GR

(

1− 8

8− a
A(πmf)a/3

)

, (144)

Sector A a

Even-Parity 5

96
ζ3

1

η4
δm2

m2 −2

Odd-P, Spins (ϑ) 25

1536
ζ4

1

η2

[

∆̄2 + 2
〈

(∆̄ · v̂12)
2
〉

ω

]

+4

Odd-P, Spins (h) 75

16
ζ4

1

η
〈Si

1S
j
2

(

2v̂12ij − 3n12

<ij>

)

〉ω +4

Odd-P, No Spin 2

3
ζ4

δm2

m2 +14

TABLE II. Coefficients of the relative energy flux.

where t0,GR is the GR t0. Again, this expression is not
valid at a = 8, because once more the correction to t0(f)
would be a log term.
With this at hand, we can now compute the Fourier

phase in the SPA:

ΨGW =2φ(t0)− 2πft0

=ΨGR

[

1− 40

(a− 5)(a− 8)
Aη−a/5(πMf)a/3

]

,

(145)

where ΨGR ≡ (3/128)(πMf)−5/3, and where M =
η3/5m is the chirp mass. Again, these expressions are
not valid when a = 5 or a = 8, for the reasons described
above.
The corrections to the GW phase found here map

directly to the parameterized post-Einsteinian (ppE)
framework [29]. In that framework, one postulates that
modified gravity theories affect the Fourier phase of the
GW response function in the SPA via

ΨppE

GW
= ΨGR + βppE (πMf)

bppE , (146)

where (βppE, bppE) are ppE parameters. We see that this
is identical to the corrections introduced by a change in
the energy flux, with the mapping

βppE = −15

16

A

(a− 5)(a− 8)
η−a/5 , bppE =

a− 5

3
.

(147)
This is not surprising, as the ppE framework was in part
motivated by studying power-law (in velocity) modifica-
tions to the energy flux and the binding energy [29].
We have then found that a large number of energy

flux corrections associated with extra gravitational and
scalar field emissions can be mapped to the ppE frame-
work. In the even parity case, the leading-order fre-
quency exponent bppE = −7/3, while in the odd-parity
case bppE = −1/3, unless the binary is non-spinning in
which case bppE = +3.
The results found in this paper could help in the gen-

eralization of the ppE framework to more generic quasi-
circular inspirals. The original framework considered
only non-spinning, equal mass inspirals, while recently
Cornish et al. [30] generalized it to non-spinning, unequal
mass systems through A → Aηc. In this paper we have
found that A does not only depend on a simple power law
of η, but also on the mass difference δm/m =

√
1− 4η
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and on combinations of the spins. For single detections,
however, such a generalization is not needed as one only
measures a single number, βppE, and one cannot extract
the dependencies on η, δm/m, and the spins.
Although we currently lack any GW detections, we

can still estimate the projected constraints that such de-
tections would place on quadratic gravity. According to
Table II, the even-parity sector leads to the strongest
deviations from GR, since a is the most negative.
Therefore, we consider EDGB theory, (α1, α2, α3, β) =
(1,−4, 1, α−1

EDGB)αEDGB, as a simple sub-case of the even-
parity sector. Let us first imagine that we have detected
a GW with Ad. LIGO and signal-to-noise ratio (SNR)
of 20 that is consistent with GR and that originates
from a non-spinning BH binary with masses (m1,m2) =
(6, 12)M⊙. Given such a detection, Cornish et al. [30]
estimated the projected bound |βppE| . 5 × 10−4 for

bppE = − 7
3 , which implies |αEDGB|1/2 . 4 × 105 cm.

Let us now assume that we have detected a GW with
LISA classic with and SNR of 879 and still consistent
with GR, but that originates from a non-spinning BH bi-
nary with masses (m1,m2) = (106, 3× 106)M⊙ at z = 1.
Given such a detection, Cornish et al. [30] estimated a
bound on |βppE| . 10−6 for the same value of bppE as

before, which leads to α
1/2
EDGB . 1010 cm. In both cases,

notice that these projected bounds are consistent with
the small-coupling requirement ζi ≪ 1; i.e. saturating
the projected Ad. LIGO and LISA constraints we have
ζAd. LIGO ∼ 3 × 10−2 and ζLISA ∼ 10−5 for those par-
ticular binary systems, which is clearly much less than
unity.
Comparing these results with the current constraint

obtained by the Cassini satellite, |αEDGB|1/2 < 1.3 ×
1012cm [34], we see that Ad. LIGO and LISA could
constrain αEDGB much more strongly. Unfortunately, it
seems difficult to put constraints on EDGB with binary
pulsar observations, since NSs have no scalar monopole
charge in this theory. We emphasize again that this is
opposite to the expectation from scalar-tensor theories,
in which NSs have scalar monopole charges while BHs do
not. Finally, one cannot estimate the bounds one could
place on dynamical CS gravity, since one would have to
properly account for modifications to the conservative
equations of motion, which we have not calculated here.

VIII. CONCLUSIONS AND DISCUSSIONS

We have studied the binary inspiral problem in a wide
class of quadratic gravity theories in the slow-motion,
weak-gravity regime. The structure of a compact object
in such theories affects the exterior scalar field sourced
by the object. Despite this, we can model a compact
object by an effective scalar field source characterized
by its scalar monopole and dipole moments. The scalar
monopole charge is enhanced inversely proportional to
the mass of the object, while the dipole charge is inde-
pendent of the mass for a fixed dimensionless spin pa-

rameter. With this effective source, we then derived and
solved the modified field equations for the scalar field and
metric deformation.
We find that the scalar field generically emits dipole

radiation in the even-parity sector, and quadrupole radi-
ation in the odd-parity sector. Such radiation affects the
rate of change of the binary energy at relative −1PN or-
der in the even-parity case and relative 2PN order in the
odd-parity case. The quadrupole contribution depends
quadratically on the BH spins, and thus it is suppressed
for non-spinning binaries. In that case, the odd-parity
contribution becomes of relative 7PN order, as found nu-
merically in [64]. We have found excellent agreement
between their numerical results and our analytical calcu-
lations.
We have also calculated the metric perturbation in the

FZ and its associated energy flux. In the even-parity
sector, the dominant metric contribution leads to a 0PN
relative correction in the energy flux, which is smaller
than the -1PN correction induced by scalar dipolar radi-
ation. In the odd-parity sector and for spinning BHs, the
metric perturbation leads to a 2PN modification to the
energy flux, which is of the same order as that induced
by quadrupolar scalar radiation. In the odd-parity sec-
tor and for non-spinning BHs, we expect the energy flux
correction due to the metric deformation is suppressed to
at least of 6PN order, as found by Pani et al. [64].
Whether these corrections can be measured or con-

strained depends on whether they are degenerate with
GR terms in the physical observable, i.e. the waveform.
A −1PN effect cannot be degenerate, as there are no such
terms predicted in GR. A 2PN effect, however, could be
degenerate with a spin-spin interaction for quasi-circular
inspirals with aligned or counter-aligned spin compo-
nents. That is, a renormalization of the spin magnitudes
of both bodies can eliminate this 2PN effect, assuming
one truncates the waveform at that order. If higher-order
PN waveforms are used, or if the orbit is more generic
(i.e. if there is precession or eccentricity), then this de-
generacy can be broken.
We also calculated the effects of such energy flux mod-

ifications on the gravitational waveform. The waveform
phase depends sensitively on the rate of change of the
orbital frequency, which in turn is governed by the rate
of change of energy. We calculated the corrections that
would be induced in the waveform and mapped them
to the ppE framework. We then used a recent ppE
study [30] to estimate the constraints that Ad. LIGO and
LISA could potentially place on quadratic gravity theo-
ries. Given a GW detection, we found that the magnitude
of the new length scale introduced by quadratic gravity
theories (associated with a ratio of their coupling con-
stants) could constrain at a level controlled by the small-
est length-scale probed in the inspirals, i.e. the size of the
smallest compact object’s event horizon or surface. The
best projected bounds achievable with Ad. LIGO will
thus come from stellar-mass BH or NS inspirals, while
LISA will benefit the most from EMRIs. Since NSs have
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no scalar monopole charge in EDGB theory, this theory
cannot be constrained from binary pulsar observations.
This property is diametrically opposite to scalar-tensor
theories where BHs have no hair.
There are several possible avenues for future work.

Since we here mainly considered corrections due to the
dissipative sector of the theory, one possibility is to cal-
culate the non-dissipative corrections that would modify
the binding energy and the equations of motion. There
are two effects that should be accounted for: new scalar-
scalar forces and metric deformations. Let us consider
the former first. In the even parity case, compact ob-
jects have an associated scalar monopole charge, and
thus, there is an additional scalar force with a 1/r poten-
tial that should lead to a relative 0PN correction in the
equations of motion. Similarly, in the odd-parity case, a
spinning compact body possesses a current dipole charge,
and hence, dipole-dipole interactions should arise. Since
the dipole potential is proportional to 1/r2, while the
dipole charge couples to the first derivative of the po-
tential, the equations of motion should be corrected at
relative 2PN order.
Another non-dissipative modification is induced by de-

formations of the background metric tensor. In the even-
parity sector, such corrections enter at relative 0PN or-
der, as found by Yunes and Stein [28]. In the odd-parity
sector, there is no metric deformation for isolated non-
spinning BHs, but for spinning ones there is a correction
proportional to r−4 to the (t, i) components [6], which
then leads to a 4.5PN correction in the equations of mo-
tion when we consider boosted BHs. This then implies
the following: (i) in the even-parity case, the conservative
corrections to the equations of motion do not affect the
leading-order modification to the waveforms, since this
is dominated by the −1PN scalar radiation effect; (ii)
in the odd-parity case, the conservative corrections from
the metric deformation can be neglected, but those due
to the scalar-scalar force will contribute at the same order
as the effect calculated here. A complete analysis of the
waveform observable would thus require the calculation
of such a scalar-scalar, conservative effect.
Another possibility could be to study modified

quadratic gravity in the context of BH perturbation the-
ory. This would be a tremendous effort that would have
to be split into separate parts. First, one would have
to find an analytic, strong-field solution for arbitrarily-
fast rotating BHs in quadratic gravity. This has only
been found in the slow-rotation limit both in the even-
parity [28] and odd-parity sectors [6]. Once this is ac-
complished, one would have to study the evolution of
metric perturbations away from this solution. Such evo-
lution equations would have to be decoupled in terms
of some master function to derive Teukolsky-like master
equations. Finally, with these equations at hand, one
would have to solve them numerically, when the pertur-
bations are sourced by a small object in a tight orbit.
Such an analysis would be interesting because one would
be able to derive not only the corrections to the energy

flux carried out to infinity, but also that which is ab-
sorbed by the BH horizons and which we ignored in this
paper.
A final follow-up would be to study how NS solutions

are modified in quadratic gravity [66] and how the energy
flux from NS binaries is modified. This could then lead to
direct constraints on quadratic gravity theories from dou-
ble binary pulsar observations. Such constraints could be
stronger , relative to current Solar System constraints,
as they could potentially provide constraints of roughly
the order of magnitude of the NS radius. Of course, in
the case of EDGB theory or dynamical CS gravity, these
constraints might not be stronger as NSs have no scalar
monopole charge in such theories.
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Appendix A: The Balding of Neutron Stars in

EDGB Gravity

In this appendix, we consider the scalar field equation
in EDGB gravity for isolated NSs. Integrating the evo-
lution equation, we find

∫ √−g�ϑd4x ∝
∫ √−gR2

GBd
4x , (A1)
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where we have defined the Gauss-Bonnet invariant
R2

GB ≡ R2 − 4RµνR
µν + RµνδσR

µνδσ. Since the Gauss-
Bonnet combination is a topological invariant, the right-
hand side identically vanishes for any simply-connected,
asymptotically flat spacetime. Moreover, since we are
considering isolated NSs, these must be stationary, and
so the time integration can be removed.
With all of this and using Stokes’ theorem, Eq. (A1)

becomes
∫ √−g(∂iϑ)n

idS =

∫ √−g(∂rϑ)dS = 0 , (A2)

where ni is the radial unit vector and the integral is per-
formed over the 2-sphere at spatial infinity. Notice that√−g ∼ r2, while the scalar field must decay at infinity
for it to have a finite energy.
Equation (A2) does not vanish at spatial infinity for

all scalar field solutions, i.e. if we model ϑ = ϑn/r
with ϑn a constant, then Eq. (A2) leads to the unique
solution ϑn = 0. This is a physicists’s proof that the
EDGB scalar field cannot have scalar monopole charge
for a spherically symmetric NS. Similarly, one can show
that NSs cannot have scalar monopole charge in dynam-
ical CS gravity; the proof laid out above carries through
with the replacement R2

GB → ∗RR, since ∗RR is also a
topological invariant.

Appendix B: Integration techniques

In this appendix, we provide some useful integration
techniques. When computing near-zone integrals, we are
faced many times with integrals of the form

∫

d3x
x〈L〉

r1r2
. (B1)

When the point-particle approximation is valid, such
near-zone integrals can be Hadamard regularized by
keeping only the finite part. Let us then define [67]

Y〈L〉(x1,x2) = − 1

2π
FP
B=0

∫

d3x|x̃|B x〈L〉

r1r2
, (B2)

to be evaluated in the near-zone and where FPB=0 stands
for the finite part operator (in the limit B → 0) and |x̃|
is an analytic continuation factor [67]. The solution to
this integral is

Y〈L〉 =
b

l + 1

l
∑

q=0

x
〈L−Q
1 x

Q〉
2 . (B3)

The first few Y〈L〉 are simply

Y0 =Y = b , Yi =
b

2

(

xi
1 + xi

2

)

, (B4)

Y〈ij〉 =
b

3

(

x
〈ij〉
1 + x

〈i
1 x

j〉
2 + x

〈ij〉
2

)

, (B5)

Y〈ijk〉 =
b

4

(

x
〈ijk〉
1 + x

〈ij
1 x

k〉
2 + x

〈i
1 x

jk〉
2 + x

〈ijk〉
2

)

.

(B6)

The solution to the Y〈L〉 integral can also be derived
by using certain Poisson integral identities [62]:

P (f,ig,i) = −1

2
[fg + P (fg,ii) + P (gf,ii)− Bp(fg)] ,

(B7)
where we have defined

P (f) ≡ 1

4π

∫

M

f(t, x′)

|x− x′|d
3x′ , (B8)

and the boundary term is

Bp(g) ≡
1

4π

∮

∂R

[

g(t, x′)

|x− x′|∂
′
r ln [g(t, x

′)|x− x
′|]
]

r′=R

R2dΩ′ .

(B9)
As usual, we retain only those terms that are independent
of the boundary R.
Finally, there is yet another type of integral that com-

monly appears in near-zone integration:

∫

M

d3x′

|x′ − x1||x′ − x2||x′ − x| . (B10)

Let us then define the so-called triangle potential [68]

G(x1,x2,x3) ≡
1

4π

∫

M

d3x′

|x′ − x1||x′ − x2||x′ − x3|
.

(B11)
It is a bit of a miracle that the above integral has the
closed-form solution G(xA,xB,xC) = 1 − ln∆(ABC),
with ∆(ABC) ≡ |xA − xB|+ |xB − xC |+ |xC − xA|.
One can show that the triangle potential satisfies a set

of relations, including [68]

∂
(1)
i ∂

(2)
i G(x1,x2,x)=

1

2

[

1

b

(

1

r1
+

1

r2

)

− 1

r1r2

]

,

∂
(1)
il ∂

(2)
jl G(x1,x2,x)=−

1

2

[

ni
1n

j
2

r21r
2
2

+
ni
12n

j
2

b2r22
− nj

12n
i
1

b2r21

+ 3
n
〈ij〉
12

b3

(

1

r1
+

1

r2

)

]

, (B12)

and more generally

∂
(B)
i ∂

(C)
j G(ABC) =

1

∆(ABC)2
(ni

AB − ni
BC)(n

j
AC + nj

BC)

+
1

rBC∆(ABC)
(δij − ni

BCn
j
BC) ,

(B13)

where G(ABC) ≡ G(xA,xB,xC).

Appendix C: Odd-Parity, Non-Spinning,

Regularized Contribution in the Metric Correction

We consider here the odd-parity sector for non-
spinning binaries, where, for the scalar field, the
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magnetic-type dipole moment vanishes, µi
A = 0, since

χA = 0. For the regularized contribution, we only need
to consider the cross-interaction terms since the isolated
non-spinning BH solution in the odd-parity case is sim-

ply the Schwarzschild metric. The K̃
(1)
ij source term gives

the largest contribution and one is then left only with the
pseudo-scalar generated by interaction terms, as given in
Eq. (61).
The metric deformation is given by Eq. (94), them = 0

piece of which can be split as in Eqs. (109)-(112). Before
tackling each of these terms separately, let us point out
that many of them identically vanish. For example, one
of the contribution in Eq. (109) is proportional to

Iijqn ≡m1ǫjkl

∫

M

∂
(1)
qnk

(

1

r1

)

∂
(1)
il

(

1

r1

)

d3x

+m2ǫjkl

∫

M

∂
(1)
qnk

(

1

r1

)

∂
(2)
il

(

1

r2

)

d3x

= − 2πm1ǫjkl lim
2→1

∂
(1)
qnk∂

(2)
il Y (x1,x2)

− 2πm2ǫjkl∂
(1)
qnk∂

(2)
il Y (x1,x2) = 0 . (C1)

It is critical in this calculation and in the calculations
that follow to replace the xi derivatives by particles
derivatives, i.e. derivatives with respect to xi

1 and xi
2.

Let us then tackle the first contribution to the dissipa-
tive metric deformation. Equations (109)-(112) can then
be rewritten as

h
(1)
ij =2048π

α2
4

β

m2
1m2

r

[

bω2 (I1ij + I2ij)

− v1n(I3ijn + I4ijn)− v2n(I5ijn + I6ijn)

+ (i ↔ j)
]

+ (1 ↔ 2) , (C2)

h
(2)
ij = − 4096π

α2
4

β

m2
1m2

r
v1[n

[

I3i]jn + I4i]jn

+ I5i]jn + I6i]jn + (i ↔ j)
]

+ (1 ↔ 2) , (C3)

h
(3)
ij =4096π

α2
4

β

m2
1m2

r
v1[n

×
[

I7i]jn + I8i]jn + (i ↔ j)
]

+ (1 ↔ 2) , (C4)

h
(4)
ij = − 2048π

α2
4

β

m2
1m2

r
v1n

×
[

I7ijn + I8ijn + (i ↔ j)
]

+ (1 ↔ 2) , (C5)

where we have defined

I1ij ≡ ǫjklǫpqsn12sJ
(1)
pk,q,il ,

I2ij ≡ ǫjklǫpqsn12sJ
(1)
p,qk,il ,

I3ijn ≡ ǫjklǫpqsv12sJ
(1)
pkn,q,il ,

I4ijn ≡ ǫjklǫpqsv12sJ
(1)
pn,qk,il ,

I5ijn ≡ ǫjklǫpqsv12sJ
(1)
pk,qn,il ,

I6ijn ≡ ǫjklǫpqsv12sJ
(1)
p,qkn,il ,

I7ijn ≡ ǫjklǫpqsv12sJ
(1)
pk,q,iln ,

I8ijn ≡ ǫjklǫpqsv12sJ
(1)
p,qk,iln ,

(C6)

and

J
(p)
A,B,C = lim

3→p
∂
(1)
A ∂

(2)
B ∂

(3)
C G(ABC) , (C7)

with A,B,C denoting the multi-index lists. We provide
a more detailed discussion of J tensors in Appendix D.
One can then show through explicit computation that the
two terms combine to give I1ij + I2ij = 0, I3ijn + I4ijn =
0, I5ijn + I6ijn = 0, and I7ijn + I8ijn = 0. Therefore

h
(1···4)
ij = 0 at leading order.
Let us now look at contributions that are smaller by

O(v). Such a correction can arise from two different
terms: (i) the O(v) correction to the source term with
m = 0 in the sum of Eq. (94), or (ii) the O(v0) correction
to the source term with m = 1 in the sum of Eq. (94).
For case (i), the next-order terms consist of two time
derivatives and one factor of h0i (or three time deriva-
tives and one factor of hij), which when combined are
O(v2) smaller than the O(v0) contribution shown to van-
ish previously. Also, the next-order terms in the PN met-
ric appears at O(v2) higher relative to the leading-order
terms. Finally, ϑNZ in Eq. (55) expanded as in Eq. (2.27)
of [61] with m = 1 in the sum, gives an O(v) relative
contribution to ∂kϑ, but explicit calculation shows that

ϑNZ=
8

π

α

β
m1m2ǫijk

∂

∂t

[

v12k

∫

M

(

1

r1

)

,il

(

1

r2

)

,jl

d3x

]

=
8

π

α

β
m1m2ǫijk

∂

∂t

[

v12k∂
(1)
il ∂

(2)
jl

∫

M

1

r1

1

r2
d3x

]

=16
α

β
m1m2ǫijk

∂

∂t

[

v12k∂
(1)
l ∂

(2)
ijl b

]

= 0 . (C8)

For case (ii), the resulting ḣij contains one n
i vector. The

correction to the energy flux consists of ḣij multiplied by
hTT

ij and averaged over a 2-sphere. However, since the

leading contribution in hTT

ij contains even numbers of ni

vectors, the correction only contains angular integrals of
odd numbers of ni’s which vanish exactly upon integra-
tion.
Since there is no O(G3, v) relative contribution to

∂thij , the first, non-vanishing contribution must be at
leastO(v2) smaller than what we computed in Eqs. (C2)-
(C5), which amounts to a 7PN correction to the energy
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flux carried by the metric deformation, in the odd-parity,
non-spinning case.

Appendix D: Evaluating J tensors

Recall that the definition of the J tensors is

J
(p)
A,B,C = lim

3→p
∂
(1)
A ∂

(2)
B ∂

(3)
C G(ABC) . (D1)

The limit 3 → p which appears must be taken with care.
There may be terms proportional to

lim
3→p

1

rp3
, (D2)

which have no finite part. In the evaluation of the J
tensors, only the finite part of the limit is kept. That
is, a function can be expanded as a Laurent series about
these points, and the finite part scales as (rp3)

0 in the
limit as 3 → p.
Another type of problematic limit is

lim
3→p

ni
p3 or lim

3→p
nij
p3 , (D3)

which does not formally exist, since it depends on the
path taken as we describe below. Parameterize the path
that particle 3 takes to the location of particle p by the
continuously differentiable path γ(λ), with λ a parameter
of path length and λ = 0 the location of particle p. There
are an infinite number of paths one could choose, and

each can be parameterized in two senses. Taking the
limit along this path “from below” (i.e. from smaller
values of λ to larger values) yields

lim
3→p, γ−

ni
p3 → −v̂iγ(0) , (D4)

where v̂γ is the tangent vector to the curve γ. Taking the
limit from above, we find

lim
3→p, γ+

ni
p3 → +v̂iγ(0) . (D5)

The limit depends on the path’s tangent at the point of
particle p, and the direction in which the limit is taken.
Clearly, the final answer must be unique, which implies
the limit must vanish.
A unique prescription to this problem is formalized as

Hadamard regularization [69]. This can be summarized
as follows. All possible paths are considered, with tan-
gent vectors v̂γ . The average is then taken by integrating,
e.g.

lim
3→p

· · ·nij
p3 · · · =

∫

dΩ(v̂γ)

4π
· · · v̂ijγ · · · . (D6)

The first few such limits, for example, are

lim
3→p

ni
p3 =0 , (D7)

lim
3→p

nij
p3 =

1

3
δij . (D8)
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