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Two-point functions, mean-squared fluctuations, and the vacuum expectation value of the energy-
momentum tensor operator are investigated for a massive scalar field with an arbitrary curvature
coupling parameter, subject to a spherical boundary in the background of de Sitter spacetime. The
field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary
conditions on the sphere. Both the interior and exterior regions are considered. For the calculation
in the interior region, a mode-summation method is employed, supplemented with a variant of
the generalized Abel-Plana formula. This allows us to explicitly extract the contributions to the
expectation values which come from de Sitter spacetime without boundaries. We show that the
vacuum energy-momentum tensor is non-diagonal with the off-diagonal component corresponding
to the energy flux along the radial direction. With dependence on the boundary condition and the
mass of the field, this flux can be either positive or negative. Several limiting cases of interest are then
studied. In terms of the curvature coupling parameter and the mass of the field, two very different
regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation
values, respectively, far from the sphere. The decay of the boundary-induced expectation values at
large distances from the sphere is shown to be power-law (monotonic or oscillating), independent
of the value of the field mass. The expressions for the Casimir densities in the exterior region are
generalized for a more general class of spherically-symmetric spacetimes inside the sphere.

PACS numbers: 04.62.+v, 03.70.+k, 11.10.Kk

I. INTRODUCTION

De Sitter (dS) spacetime is one of the simplest and
most interesting spacetimes allowed by general relativ-
ity. Quantum field theory in this background has been
extensively studied during the past two decades. Much
of the early interest was motivated by the questions re-
lated to the quantization of fields on curved backgrounds.
dS spacetime has a high degree of symmetry and nu-
merous physical problems are exactly solvable on this
background. The importance of this theoretical work in-
creased by the appearance of the inflationary cosmology
scenario [1]. In most inflationary models, an approxi-
mately dS spacetime is employed to solve a number of
problems in standard cosmology. During an inflationary
epoch, quantum fluctuations in the inflaton field intro-
duce inhomogeneities which play a central role in the
generation of cosmic structures from inflation. More re-
cently, astronomical observations of high redshift super-
novae, galaxy clusters, and cosmic microwave background
[2] indicate that at the present epoch the universe is accel-
erating and can be well approximated by a world with a
positive cosmological constant. If the universe would ac-
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celerate indefinitely, the standard cosmology would lead
to an asymptotic dS universe. Hence, the investigation of
physical effects in dS spacetime is important for under-
standing both the early universe and its future. Another
motivation for investigations of dS-based quantum theo-
ries is related to the holographic duality between quan-
tum gravity on dS spacetime and a quantum field theory
living on a boundary identified with the timelike infinity
of dS spacetime [3].

In dS spacetime, the interaction of fluctuating quan-
tum fields with the background gravitational field gives
rise to vacuum polarization. The Casimir effect presents
another type of vacuum polarization induced by the pres-
ence of boundaries. This effect is among the most striking
macroscopic manifestations of non-trivial properties of
the quantum vacuum. It has important implications on
all scales, from subnuclear to cosmological. The reflect-
ing boundaries alter the zero-point modes of a quantized
field and shift the vacuum expectation values of quanti-
ties, such as the energy density and stresses. As a result,
forces arise acting on constraining boundaries. The par-
ticular features of these forces depend on the nature of
the quantum field, the type of spacetime manifold, the
boundary geometry, and the specific boundary conditions
imposed on the field. Since the original work by Casimir
many theoretical and experimental works have been done
on this problem (see, e.g., Ref. [4] and references therein).

In the present paper we consider a problem with both
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types of vacuum polarization. Namely, we evaluate the
vacuum expectation values for the field squared and the
energy-momentum tensor of a scalar field with general
curvature coupling parameter induced by a spherical
boundary on the background of (D + 1)-dimensional dS
spacetime. Historically, the investigation of the Casimir
effect for a spherical shell was motivated by the Casimir
semiclassical model of an electron. In this model Casimir
suggested [5] that Poincaré stress, to stabilize the charged
particle, could arise from vacuum quantum fluctuations
and the fine structure constant could be determined by
a balance between the Casimir force (assumed attrac-
tive) and the Coulomb repulsion. However, as has been
shown by Boyer [6], the Casimir energy for a perfectly
conducting sphere is positive, implying a repulsive force.
This result was later reconsidered by a number of authors
[7]. More recently new methods have been developed for
the investigation of the Casimir effect including direct
mode summation techniques and the zeta function reg-
ularization scheme [8], semiclassical methods [9] in the
framework of the Gutzwiller trace formula, the optical
approach [10], worldline numerics [11], the path integral
approach [12], methods based on scattering theory [13],
numerical methods based on evaluation of the stress ten-
sor via the fluctuation-dissipation theorem [14] (for a re-
view see Refs. [4, 15]). The Casimir effect for a spherical
shell in an arbitrary number of dimensions is analyzed in
Refs. [16, 17] for a massless scalar field satisfying Dirich-
let and a special type of Robin (corresponding to the
electromagnetic TM modes) boundary conditions using
the Green’s function method and in Refs. [18, 19] for the
electromagnetic field and massless scalar and spinor fields
with various boundary conditions on the basis of the zeta
regularization technique. The case for a massive vector
field has been discussed in Ref. [20].

The investigation of the energy distribution inside a
perfectly reflecting spherical shell was made in Ref. [21].
The distribution of the other components for the energy-
momentum tensor of the electromagnetic field inside and
outside a shell and in the region between two concen-
tric spherical shells is studied in Refs. [22, 23] (see also
Ref. [24]). The investigation of the electromagnetic en-
ergy density near a conducting boundary was first carried
out by DeWitt [25]. The vacuum expectation values for
the energy-momentum tensor of a massive scalar field
with general curvature coupling parameter and obeying
the Robin boundary condition on spherically symmetric
boundaries in (D + 1)-dimensional spacetime are inves-
tigated in Ref. [26]. The Casimir densities for spherical
boundaries in the background of global monopole and
Rindler-like spacetimes have been discussed in Refs. [27]
and [28] respectively.

Previously, the Casimir stresses for spherical bound-
aries on the background of dS spacetime have been in-
vestigated in Ref. [29] for a conformally coupled mass-
less scalar field. In this last case the problem is confor-
mally related to the corresponding problem in Minkowski
spacetime and the vacuum characteristics are generated

from those for the Minkowski counterpart, just by mul-
tiplying with the conformal factor. As it has been shown
in Refs. [30] for the geometry of flat boundaries, qualita-
tively new features arise in the case of non-conformally
coupled fields (for the case of a minimally coupled mass-
less field see Ref. [31]). (For flat backgrounds, see also
Ref. [32].) The curvature of the background spacetime
decisively influences the behavior of boundary-induced
vacuum expectation values at distances larger than the
curvature scale. Recently, the topological Casimir effect
in dS spacetime with toroidally compactified spatial di-
mensions has been investigated in Ref. [33].
We have organized the paper as follows. In the next

section the Wightman function is evaluated inside a
spherical boundary in dS spacetime for a scalar field with
general curvature coupling parameter and with Robin
boundary condition on the sphere. Among the most
important quantities describing the local properties of
a quantum field and the corresponding quantum back-
reaction effects are the expectation values of the field
squared and of the energy-momentum tensor. These
quantities in the interior of a sphere will be investigated
in Secs. III and IV. The Wightman function for the re-
gion outside a spherical boundary is considered in Sec. V.
The vacuum expectation values of the field squared and
the energy-momentum tensor in this region are discussed
in Sec. VI. Sec. VII generalizes the results for the
exterior region to a more general class of spherically-
symmetric spacetimes inside a spherical boundary. Sec-
tion VIII contains a summary of the work. In Appendix
A the expression for the Wightman function in boundary-
free dS spacetime is derived by making use the corre-
sponding mode sum. In Appendix B, for the Wightman
function, we explicitly demonstrate the limit to the ge-
ometry of a spherical boundary in Minkowski spacetime.
Appendix C sketches the corresponding calculation of the
Green’s function for this problem.

II. WIGHTMAN FUNCTION INSIDE A

SPHERE

We consider a quantum scalar field ϕ(x) on a (D+1)-
dimensional dS spacetime background described in infla-
tionary coordinates. The latter are most appropriate for
cosmological applications. The spatial part of the line
element we will write in terms of the hyperspherical co-
ordinates (r, ϑ, φ) ≡ (r, θ1, θ2, . . . θn, φ), n = D − 2:

ds2 = dt2 − e2t/α(dr2 + r2dΩ2
D−1), (2.1)

where dΩ2
D−1 is the line element on a (D−1)-dimensional

sphere with unit radius. In what follows, in addition to
the synchronous time coordinate, t, we will also use the
conformal time, τ , defined as τ = −αe−t/α, −∞ < τ < 0.
In terms of this coordinate the line element takes the
conformally flat form:

ds2 = α2τ−2
(

dτ2 − dr2 − r2dΩ2
D−1

)

. (2.2)
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Note that the parameter α is related to the cosmological
constant Λ through the expression α = D(D − 1)/(2Λ).
The dynamics of a massive scalar field are governed by

the equation [34]

(∇l∇l +m2 + ξR)ϕ = 0, (2.3)

where ∇l is the covariant derivative operator, R =
D(D + 1)/α2 is the Ricci scalar for dS spacetime, and ξ
is the curvature coupling parameter. The special values
of this parameter ξ = 0 and ξ = ξD ≡ (D − 1)/4D cor-
respond to minimally and to conformally coupled fields.
The importance of these two special cases comes from
the fact that, in the massless limit, the corresponding
fields mimic the behavior of gravitons and photons, re-
spectively. Our main interest in this paper is the study
of the changes in the vacuum expectation values (VEVs)
of the field squared and the energy-momentum tensor in-
duced by a spherical shell with radius a centered at the
origin in dS spacetime. We assume that on the sphere
the field obeys Robin boundary condition

(Ã+ B̃∂r)ϕ(x) = 0, r = a, (2.4)

with constant coefficients Ã and B̃, in general, different
for the inner and outer regions. The results for Dirichlet
and Neumann boundary conditions are obtained as spe-
cial cases. Robin boundary conditions are an extension
of the ones imposed on perfectly conducting boundaries
and may, in some geometries, be useful for depicting the
finite penetration of the field into the boundary with the
“skin-depth” parameter related to the Robin coefficient
[35]. These types of conditions naturally arise for scalar
and fermion bulk fields in braneworld models.
As the first step in the investigation of the VEVs

we will evaluate the Wightman function W (x, x′) =
〈0|ϕ(x)ϕ(x′)|0〉, where |0〉 stands for the vacuum state
(for the Wightman function in the geometry of spheri-
cal boundaries in the background of a constant negative
curvature space see Ref. [36]). In order to do that we
employ the mode sum formula

W (x, x′) =
∑

σ

ϕσ(x)ϕ
∗
σ(x

′), (2.5)

with {ϕσ(x), ϕ
∗
σ(x)} being a complete set of solutions to

the classical field equation, specified by a set of quan-
tum numbers σ, satisfying the boundary condition (2.4).
In accordance with the spherical symmetry of the prob-
lem under consideration, the angular dependence of the
mode functions is given by the spherical harmonic of de-
gree l (see Ref. [37]), Y (mp;ϑ, φ), where mp = (m0 ≡
l,m1, . . . ,mn), l = 0, 1, 2, . . ., and m1,m2, . . . ,mn are in-
tegers such that

0 6 mn−1 6 mn−2 6 · · · 6 m1 6 l,

−mn−1 6 mn 6 mn−1. (2.6)

Presenting the mode functions in the form ϕσ(x) =
T (τ)R(r)Y (mp;ϑ, φ), from the field equation (2.3) it fol-
lows that the time and the radial coordinate dependences

are given in terms of cylinder functions as:

R(r) = r1−D/2 [b1Jµ(λr) + b2Yµ(λr)] ,

T (τ) = ηD/2
∑

j=1,2

cjH
(j)
ν (λη), η = |τ |, (2.7)

where Jµ(z) and Yµ(z) are the Bessel and Neumann func-

tions respectively, H
(j)
ν (z), j = 1, 2, are the Hankel func-

tions (we use the notations from Ref. [38]). The orders
of the cylinder functions in Eq. (2.7) are defined as:

µ = l +D/2− 1,

ν =
[

D2/4−D(D + 1)ξ −m2α2
]1/2

. (2.8)

Note that ν is either real and nonnegative or purely imag-
inary. For a conformally coupled massless field ν = 1/2
and the Hankel functions in Eq. (2.7) are expressed in
terms of elementary functions.
Different choices of the coefficients cj in the expres-

sion for the function T (τ) correspond to different choices
of the vacuum state in dS spacetime. The choice of the
vacuum state is among the most important steps in con-
struction of a quantum field theory in a fixed classical
gravitational background. dS spacetime is a maximally
symmetric space and it is natural to choose a vacuum
state having the same symmetry. In fact, there exists
a one-parameter family of maximally symmetric quan-
tum states (see, for instance, Ref. [39] and references
therein). Here we will assume that the field is prepared
in the dS-invariant Bunch-Davies vacuum state [40] for
which c2 = 0. Among the set of dS-invariant quantum
states the Bunch-Davies vacuum is the only one for which
the ultraviolet behavior of the two-point functions is the
same as in Minkowski spacetime.
First we consider the region inside the spherical shell.

From the regularity condition at the origin it follows that
for this region b2 = 0 and the mode functions realizing
the Bunch-Davies vacuum state are written in the form

ϕσ(x) = Cσ
ηD/2

rD/2−1
H(1)

ν (λη)Jµ(λr)Y (mp;ϑ, φ). (2.9)

From the boundary condition (2.4), it follows that the
eigenvalues for λ have to be solutions to the equation

AJµ(λa) +BλaJ ′
µ(λa) = 0, (2.10)

where the prime means the derivative with respect to
the argument of the function. In Eq. (2.10) and in what
follows we use the notations

A = Ã+ (1−D/2) B̃/a, B = B̃/a. (2.11)

For real A, B and µ > −1, all roots of Eq. (2.10) are
simple and real, except the case A/B < −µ when there
are two purely imaginary zeros (see, e.g., Ref. [41]). We
will denote by z = λµ,k, k = 1, 2, . . . , the zeros of the
function AJµ(z) + BzJ ′

µ(z) in the right half-plane, as-
suming that they are arranged in ascending order. So,
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for the eigenvalues of λ one has λ = λµ,k/a. Now we
see that the set of quantum numbers σ is specified to
σ = (k, l,m1, . . . ,mn). Note that for Dirichlet boundary
condition A = 1, B = 0, and for Neumann boundary
condition A = (1 −D/2)B.
The coefficient Cσ in Eq. (2.9) is determined from the

orthonormalization condition [34]

−i
∫

dDx
√

|g|g00ϕσ(x)
←→
∂ τϕ

∗
σ′(x) = δσσ′ , (2.12)

where the integration goes over the region inside the
sphere and δσσ′ is the Kronecker delta. Substituting the
functions from Eq. (2.9), the integration over the angular
variables is performed by making use of the normaliza-
tion integral for the spherical harmonics:

∫

|Y (mk;ϑ, φ)|2 dΩ = N(mk), (2.13)

where the explicit form for N(mk) can be found in
Ref. [37]. By using also the relation (for ν purely real
or imaginary)

H
(2)
ν∗ (x)H(1)′

ν (x) −H(1)
ν (x)H

(2)′
ν∗ (x) =

4i

πx
ei(ν

∗−ν)π/2,

(2.14)
for the normalization coefficient we get

C2
σ =

πλTµ(λa)e
i(ν−ν∗)π/2

2N(mk)aαD−1
, (2.15)

with the notation

Tµ(z) =
z

(z2 − µ2)J2
µ(z) + z2J ′2

µ (z)
. (2.16)

Substituting the eigenfunctions into the mode sum for-
mula (2.5), for the Wightman function one gets (n =
D − 2)

W (x, x′) =
πei(ν−ν∗)π/2

2αD−1nSDa2
(ηη′)

D/2

(rr′)n/2

∞
∑

l=0

(2l + n)

×Cn/2
l (cos θ)

∞
∑

k=1

zTµ(z)H
(1)
ν (zη/a)H

(2)
ν∗ (zη′/a)

×Jµ(zr/a)Jµ(zr′/a)
∣

∣

z=λµ,k
. (2.17)

Here Cq
p(x) is the Gegenbauer or ultraspherical polyno-

mial of degree p and order q, SD = 2πD/2/Γ(D/2) is the
surface area of a unit sphere in D-dimensional space, and
θ is the angle between the directions (ϑ, φ) and (ϑ′, φ′).
In deriving Eq. (2.17), we have used the addition theo-
rem [37] for the spherical harmonics:

∑

mp

Y (mp;ϑ, φ)

N(mp)
Y ∗(mp;ϑ

′, φ′) =
2l + n

nSD
C

n/2
l (cos θ),

(2.18)
where the sum is taken over the integer values mp, p =
1, 2, . . . , n, in accordance with Eq. (2.6).

Before proceeding to the evaluation of the Wight-
man function, we comment about the realizability of the
Bunch-Davies vacuum state. It is well known that in dS
spacetime without boundaries the Bunch-Davies vacuum
state is not a physically realizable state for Re ν > D/2.
The corresponding Wightman function contains infrared
divergences arising from long-wavelength modes. As it
has been shown in Ref. [42], these divergences lead to
inconsistencies with Einstein equations and they cannot
arise through dynamical evolution from a state which
is initially free of such divergences. In the presence
of boundaries, the boundary condition imposed on the
quantized field may exclude these modes and the Bunch-
Davies vacuum becomes a realizable state. An example
is provided by a spherical boundary described above. In
the region inside the spheres and for boundary conditions
with Ã 6= 0, there is a minimum value for λ, λ > λn/2,1/a,
and the two-point function (2.17) contains no infrared di-
vergences.

The eigenvalues λµ,k are given implicitly and the
Wightman function in the form (2.17) is not convenient
for the further evaluation of the VEVs. In order to sum
over these eigenvalues we use the summation formula [43]

2

∞
∑

k=1

Tµ(λµ,k)f(λµ,k) =

∫ ∞

0

f(x)dx

+
π

2
Resz=0f(z)

Ȳµ(z)

J̄µ(z)
− 1

π

∫ ∞

0

dx
K̄µ(x)

Īµ(x)

×[e−µπif(xeπi/2) + eµπif(xe−πi/2)], (2.19)

where f(z) is an analytic function on the right half-plane
and, for a given function F (z), the barred notation is
defined as:

F̄ (z) ≡ AF (z) +BzF ′(z). (2.20)

Formula (2.19) can be generalized for the case of the ex-
istence of purely imaginary zeros of the function J̄ν(z)
by adding the corresponding residue term and taking the
principal value of the integral on the right (see Ref. [43]).
In what follows we assume values of A/B for which all
roots λµ,k are real.

As a function f(z) in Eq. (2.19) we take

f(z) = zH(1)
ν (zη/a)H

(2)
ν∗ (zη′/a)Jµ(zr/a)Jµ(zr

′/a).
(2.21)

By making use of the properties of the cylinder func-
tions, after the application of Eq. (2.19), the Wightman
function is presented in the decomposed form:

W (x, x′) =WdS(x, x
′) +Wb(x, x

′). (2.22)

Here, the first term in the right-hand side corresponds to
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the first integral on the right of Eq. (2.19),

WdS(x, x
′) =

πei(ν−ν∗)π/2

4αD−1nSD

(ηη′)
D/2

(rr′)n/2

∞
∑

l=0

(2l+ n)

×Cn/2
l (cos θ)

∫ ∞

0

dλλH(1)
ν (λη)H

(2)
ν∗ (λη′)

×Jµ(λr)Jµ(λr′), (2.23)

and

Wb(x, x
′) = − α

1−D

πnSD

(ηη′)
D/2

(rr′)n/2

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∫ ∞

0

dz z
K̄µ(za)

Īµ(za)
Iµ(zr)Iµ(zr

′)

×[Iν(zη′)Kν(zη) + I−ν(zη)Kν(zη
′)]. (2.24)

The term (2.23) does not depend on the radius of the
sphere whereas the second term on the right-hand side
vanishes in the limit a → ∞. From here it follows that
WdS(x, x

′) is the Wightman function for a scalar field in
boundary-free dS spacetime. In Appendix A we show
this by direct evaluation. The second term in the right-
hand side of Eq. (2.22) is induced by the presence of
the spherical shell. In the limit α→∞ with fixed t, the
line element (2.1) goes to the Minkowskian line element
in spherical coordinates. In Appendix B it is shown that
in this limit, from Eq. (2.24), the Wightman function is
obtained for a scalar field inside a spherical boundary
in Minkowski spacetime. In Appendix C we derive the
corresponding causal Green’s function.
In a similar way we can evaluate the Wightman func-

tion in a general state described by the modes (2.7) with-
out the specification of the coefficients in the linear com-
bination of the Hankel functions. After the normaliza-
tion of the corresponding mode functions, we obtain a
set of quantum states determined by the ratio c2/c1. In
general, the latter may depend on l and λ. After the
application of the generalized Abel-Plana formula, the
boundary-induced part in the corresponding Wigthman
function is presented in a form similar to Eq. (2.24) where
now, instead of the combination of functions in the square
brackets, a more general bilinear combination of the mod-
ified Bessel functions appears.

III. VEV OF THE FIELD SQUARED INSIDE A

SPHERE

Given the Wightman function, we can proceed to the
evaluation of the VEV of the field squared. This VEV
is among the most important quantities in discussing the
phase transitions in the early universe and the generation
of the cosmic structures from inflation. The VEV of the
field squared is obtained taking the coincidence limit of
the arguments. In this limit the Wightman function is
divergent and some renormalization procedure is needed.
The important point here is that for points away from the

sphere the divergences are the same as those for dS space-
time without boundaries. As we have already extracted
the part WdS(x, x

′), the renormalization is reduced to
the renormalization of the VEV in the boundary-free dS
spacetime, which is already done in the literature. In this
way, the renormalized VEV of the field squared inside a
sphere is presented in the decomposed form

〈ϕ2〉 = 〈ϕ2〉dS + 〈ϕ2〉b, (3.1)

where 〈ϕ2〉dS is the VEV in the boundary-free dS space-
time and the term 〈ϕ2〉b is induced by the sphere. Due
to the maximal symmetry of the Bunch-Davies vacuum
state the VEV 〈ϕ2〉dS does not depend on the spacetime
point.
The boundary-induced part is directly obtained from

the corresponding part in the Wightman function, given
by Eq. (2.24). By taking into account that

C
n/2
l (1) =

Γ(l + n)

Γ(n)l!
, (3.2)

we get

〈ϕ2〉b = − ηDα1−D

πSDrD−2

∞
∑

l=0

Dl

∫ ∞

0

dxx
K̄µ(ax)

Īµ(ax)
I2µ(rx)

×Kν(xη) [Iν(xη) + I−ν(xη)] . (3.3)

In Eq. (3.3),

Dl = (2l +D − 2)
Γ(l +D − 2)

Γ(D − 1) l!
(3.4)

is the degeneracy of the angular mode with given l. The
integral representation (3.3) is valid for Re ν < 1. For
large values of x, the integrand in Eq. (3.3) behaves
as e−(a−r)x. The presence of the spherical boundary
breaks the dS-invariance and the mean-squared fluctu-
ation of the field depends on time. As is seen from
Eq. (3.3), this dependence appears through the ratios
a/η and r/η. The latter property is a consequence of
the maximal symmetry of the Bunch-Davies vacuum in
the absence of the sphere. Note that a/η and r/η are
the proper radius of the sphere and the proper distance
from the sphere center measured in units of the dS cur-
vature scale α. The influence of the gravitational field on
boundary-induced quantum effects appears through the
function Kν(z) [Iν(z) + I−ν(z)]. The latter is a mono-
tonically decreasing function of z for ν2 > 0 and exhibits
an oscillatory behavior for ν2 < 0 and z . |ν|. As it will
be seen below, this feature leads to interesting physical
consequences.
For a conformally coupled massless scalar field, ξ = ξD,

m = 0, one has ν = 1/2 and

K1/2(x)
[

I1/2(x) + I−1/2(x)
]

= 1/x. (3.5)

In this case, from Eq. (3.3), we find

〈ϕ2〉b = (η/α)D−1〈ϕ2〉M, (3.6)
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where

〈ϕ2〉M = −r
2−D

πSD

∞
∑

l=0

Dl

∫ ∞

0

dx
K̄µ(ax)

Īµ(ax)
I2µ(rx), (3.7)

is the corresponding VEV inside a spherical boundary in
Minkowski spacetime [26]. Of course, this result could be
obtained directly by using the conformal relation between
the problems in dS and Minkowski spacetimes.
Now let us consider the asymptotics of the boundary-

induced VEV. Near the center of the sphere the dominant
contribution comes from the mode with the lowest orbital
momentum l = 0 and in the leading order we find

〈ϕ2〉b ≈ −
(2α)1−D

πD/2+1Γ(D/2)

∫ ∞

0

dxxD−1 K̄D/2−1(ax/η)

ĪD/2−1(ax/η)

×Kν(x) [Iν(x) + I−ν(x)] . (3.8)

The behavior of the field squared for large values of the
sphere proper radius, a/η ≫ 1, assuming that r/η is
fixed, is obtained from Eq. (3.8) expanding the function
Kν(x) [Iν(x) + I−ν(x)] for small values of the argument.
For x≪ 1 in the leading order one has

Kν(x) [Iν(x) + I−ν(x)] ≈ σνRe
[

22ν−1Γ(ν)

Γ(1− ν)x2ν
]

, (3.9)

where σν = 1 for positive ν and σν = 2 for imaginary
ν. The case ν = 0 should be considered separately. The
behavior of the VEV is qualitatively different for these
two cases. For positive ν, one gets

〈ϕ2〉b ≈ −
(2α)1−D

πD/2+1

(η/a)D−2ν

Γ(D/2)
b(ν), (3.10)

with the notation

b(ν) =
22ν−1Γ(ν)

Γ(1− ν)

∫ ∞

0

dxxD−1−2ν K̄D/2−1(x)

ĪD/2−1(x)
. (3.11)

In this case the boundary-induced VEV monotonically
decreases with increasing proper radius of the sphere. For
imaginary values of ν, the leading term is in the form

〈ϕ2〉b ≈ −
2(2α)1−D

πD/2+1

(η/a)D

Γ(D/2)
c(ν) cos[2|ν| ln(a/η) + φ(ν)],

(3.12)
where c(ν) and φ(ν) are defined by the relation b(ν) =
c(ν)eiφ(ν). In this case the VEV exhibits a damped os-
cillatory behavior.
The VEV of the field squared diverges on the bound-

ary. Surface divergences are well known in quantum field
theory with boundaries and they have been investigated
for various geometries. Near the sphere the dominant
contribution in Eq. (3.3) comes from large values of x
and l. By taking into account that for large x and for
fixed ν one has Kν(x) [Iν(x) + I−ν(x)] ≈ 1/x, we con-
clude that near the boundary, to the leading order, one

has 〈ϕ2〉b ≈ (η/α)D−1〈ϕ2〉M. By using the asymptotic
expression for 〈ϕ2〉M, we get

〈ϕ2〉b ≈ −
(η/α)D−1Γ((D − 1)/2)

(4π)(D+1)/2(a− r)D−1
κB, (3.13)

where

κB = 2δ0B − 1. (3.14)

In deriving Eq. (3.13) we have assumed that (a − r) ≪
η/(mα) which corresponds to small proper distances from
the sphere compared with the Compton wavelength of the
scalar particle. As the boundary-free part in the VEV is
constant everywhere, we conclude that near the sphere
the total VEV is dominated by the boundary-induced
part. The factor κB in Eq. (3.13) indicates that the sign
of the surface divergence is reversed for Dirichlet as op-
posed to any other Robin boundary condition.

IV. VACUUM ENERGY-MOMENTUM TENSOR

INSIDE A SPHERE

Another important quantity characterizing the prop-
erties of the quantum vacuum is the VEV of the energy-
momentum tensor. In addition to describing the physi-
cal structure of the quantum field at a given point, the
energy-momentum tensor acts as the source of gravity in
the Einstein equations. It therefore plays an important
role in modelling a self-consistent dynamics involving the
gravitational field. (For the renormalization of the Ein-
stein equations in the presence of energy-momentum ten-
sor divergences, see Ref. [44]; the demonstration that the
finite and divergent parts of the Casimir energy obey the
equivalence principle appears in Refs. [45, 46].) Similar
to the field squared, the VEV of the energy-momentum
tensor is decomposed as

〈Tik〉 = 〈Tik〉dS + 〈Tik〉b, (4.1)

where the boundary-free part is presented in the form
〈Tik〉dS =const·gik. The latter property is a direct con-
sequence of the maximal symmetry of the Bunch-Davies
vacuum state. In particular, for D = 3 dS spacetime the
renormalized boundary-free part is given by the expres-
sion [40, 47] (see also Ref. [34])

〈Tik〉dS =
gik

32π2α4
{m2α2(m2α2/2 + 6ξ − 1)

×[ψ(3/2 + ν) + ψ(3/2− ν)− ln(m2α2)]

−(6ξ − 1)2 + 1/30 + (2/3− 6ξ)m2α2}, (4.2)

where ψ(x) is the logarithmic derivative of the gamma-
function. For mα ≫ 1, to the leading order, 〈Tik〉dS ≈
Cgik/(384π

2m2α6), where the coefficient C depends on
the curvature coupling parameter only. For minimally
and conformally coupled fields we have C = 7 and C =
−1/5 respectively.
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For the evaluation of the boundary-induced part in the
VEV of the energy-momentum tensor, we use the formula

〈Tik〉b = lim
x′→x

∂i∂
′
kWb(x, x

′) + [(ξ − 1/4)gik∇l∇l

−ξ∇i∇k − ξRik]〈ϕ2〉b, (4.3)

where Rik = Dgik/α
2 is the Ricci tensor for dS space-

time. By taking into account Eqs. (2.24) and (3.3), after
long but straightforward calculations, the VEVs for the
diagonal components are presented in the form (no sum-
mation over i)

〈T i
i 〉b = − r2−Dη2

2πSDαD+1

∞
∑

l=0

Dl

∫ ∞

0

dxx3−D K̄µ(ax)

Īµ(ax)

×
{

Gi
i[Iµ(rx)]Fν (xη) + 2I2µ(rx)F

i
i (xη)

}

, (4.4)

where we have introduced the notation

Fν(z) = zDKν(z) [Iν(z) + I−ν(z)] . (4.5)

Other functions in Eq. (4.4) are defined in accordance
with (no summation over k)

F 0
0 (y) =

(

1

4
∂2y −D

ξ + ξD
y

∂y − 1

+
D2ξ +m2α2

y2

)

Fν(y),

F k
k (y) =

[(

ξ − 1

4

)

∂2y + (ξ(2−D) +DξD)
1

y
∂y

−ξD
y2

]

Fν(y), (4.6)

for k = 1, 2, . . . , D, and

G0
0 [f(y)] = (1− 4ξ)

[

f
′2(y)− D − 2

y
f(y)f ′(y)

+

(

1 +
µ2

y2

)

f2(y)

]

,

G1
1 [f(y)] = f ′2(y) +

ξ1
y
f(y)f ′(y)

−
[

1 +
(D/2− 1)ξ1 + µ2

y2

]

f2(y), (4.7)

Gk
k [f(y)] = (4ξ − 1) f ′2(y)− ξ1

y
f(y)f ′(y)

+

[

4ξ − 1 +
(D/2− 1)ξ1 + µ2(1 + ξ1)

(D − 1)y2

]

f2(y),

for k = 2, . . . , D, where

ξ1 = 4(D − 1)ξ −D + 2. (4.8)

In addition, the boundary-induced VEV has also
nonzero off-diagonal component

〈T 1
0 〉b =

ηα−D−1

πSDrD−1

∞
∑

l=0

Dl

∫ ∞

0

dxx1−D K̄µ(ax)

Īµ(ax)
Iµ(rx)

×[2rxI ′µ(rx) − (D − 2)Iµ(rx)]

×[(ξ − 1/4) η∂η + ξ]Fν(xη), (4.9)

which corresponds to the energy flux along the radial di-
rection (see below). Note that in the formulas above, the
components of the energy-momentum tensor are written
in the coordinates (τ, r, ϑ, φ). The components in the
system (t, r, ϑ, φ) with the synchronous time coordinate
will be denoted by 〈T k

(s)i〉b. We have the relations (no

summation over i)

〈T i
(s)i〉b = 〈T i

i 〉b, 〈T 1
(s)0〉b = (η/α)〈T 1

0 〉b. (4.10)

As an additional check of the expressions for the VEV
of the energy-momentum tensor, it can be seen that the
boundary-induced parts fulfill the trace relation

〈T l
l 〉b =

[

D(ξ − ξD)∇l∇l +m2
]

〈ϕ2〉b. (4.11)

In particular, the boundary-induced part in the VEV of
the energy-momentum tensor is traceless for a confor-
mally coupled massless scalar field. The trace anomaly
is contained in the boundary-free part only. In addi-
tion, the VEVs obey the covariant conservation equation
∇k〈T k

i 〉b = 0. For the geometry of interest, this equation
is reduced to two equations:

(

∂η −
D

η

)

〈T 0
0 〉b − ∂r〈T 1

0 〉b

+
1

η
[〈T 1

1 〉b + (D − 1)〈T 2
2 〉b] = 0,

(

∂η −
D + 1

η

)

〈T 0
1 〉b −

(

∂r +
D − 1

r

)

〈T 1
1 〉b

+
D − 1

r
〈T 2

2 〉b = 0. (4.12)

For a conformally coupled massless field one has ν =
1/2 and Fν(z) = zD−1. With this it is easily seen that the
off-diagonal component vanishes and F 0

0 (y) = −yD−1,
F k
k (y) = 0 for k = 1, 2, . . . , D. As a result we find (no

summation over i)

〈T i
i 〉b = (η/α)

D+1 〈T i
i 〉M, (4.13)

where 〈T i
i 〉M is the corresponding VEV for a sphere in

Minkowski spacetime [26]. Again, the result (4.13) di-
rectly follows from the conformal relation between the
problems in dS and Minkowski spacetimes. The electro-
magnetic field is conformally invariant in 4-dimensional
spacetimes. Hence, the electromagnetic Casimir densities
for a conducting spherical shell on background of D = 3
dS spacetime are obtained from those in Minkowski
spacetime by using Eq. (4.13).

Let us denote byE
(b)
V the boundary-induced part of the

vacuum energy in the spatial volume V with a boundary
∂V :

E
(b)
V =

∫

V

dDx
√
γ〈T 0

(s)0〉b, (4.14)

where γ is the determinant of the spatial metric tensor
γβδ with gik = (1,−γβδ) and with the Greek indices run-
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ning over 1, 2, . . . , D. Now, from the covariant conserva-
tion equation ∇k〈T k

(s)i〉b = 0 with i = 0, it follows that

∂tE
(b)
V = −

∫

∂V

dD−1x
√
hnβ〈T β

(s)0〉b

+
1

α

∫

V

dDx
√
γ〈T β

(s)β〉b, (4.15)

where nβ, γ
βδnβnδ = 1, is the external normal to the

boundary ∂V and h is the determinant of the induced
metric hβδ = γβδ − nβnγ . The first term in the right-
hand side of Eq. (4.15) describes the energy flux through
the boundary ∂V . In particular, for a spherical bound-
ary with radius r0 < a and with the center at r = 0
one has nβ = (α/η)δ1β and the flux term is given by

−(αr0/η)D−1SD(α/η)〈T 1
(s)0〉b. Now, by taking into ac-

count that the proper surface area of the sphere with
radius r0 is given by (αr0/η)

D−1SD, we conclude that
the quantity 〈T 1

0 〉b = (α/η)〈T 1
(s)0〉b, given by Eq. (4.9),

is the energy flux density per unit proper surface area.
By using the expression (4.4) for the energy density, for

the boundary-induced vacuum energy inside the sphere
with radius r0 one gets

E
(b)
r6r0

= − (r0/η)
D−2

2πα

∞
∑

l=0

Dl

∫ ∞

0

dxx1−D

×K̄µ(ax/r0)

Īµ(ax/r0)

{

(1− 4ξ)Fν(xη/r0)Iµ(x)

×
[

xI ′µ(x) − (D/2− 1)Iµ(x)
]

− F 0
0 (xη/r0)

×
[

x2I ′2µ (x)− (x2 + µ2)I2µ(x)
] }

. (4.16)

In deriving Eq. (4.16) we have used the formula for the
integral involving the square of the modified Bessel func-
tion [48]. Related to the surface divergences in the vac-
uum energy density (see below), the integrated energy

E
(b)
r6r0

diverges in the limit r0 → a. In order to obtain
a finite result for the vacuum energy inside the sphere,
an additional renormalization procedure is needed. Our
main interest in the present paper are local characteris-
tics of the vacuum away from the boundary. As we have
noted before, the renormalization of the latter is reduced
to that for the boundary-free dS geometry.
The general expressions (4.4) and (4.9) are simplified

at the sphere’s center and near the sphere. Near the cen-
ter, the dominant contribution to the boundary-induced
VEVs comes from the modes with l = 0 and l = 1. To
the leading order, for the diagonal components we get
(no summation over i)

〈T i
i 〉b ≈ −

2−Dα−D−1

πD/2+1Γ (D/2)

∫ ∞

0

dxx

{

K̄D/2(ax/η)

ĪD/2(ax/η)

×Gi
(1)Fν(x) +

K̄D/2−1(ax/η)

ĪD/2−1(ax/η)

×[Gi
(0)Fν(x) + 2F i

i (x)]

}

, (4.17)

where we have defined

G0
(0) = 1− 4ξ, Gk

(0) =
4(D − 1)ξ

D
− 1,

G0
(1) = D

1− 4ξ

2
, Gk

(1) = 4(D − 1)ξ −D + 2,(4.18)

for k = 1, 2, . . . , D. The first and second terms in the
figure braces of Eq. (4.17) come from the modes l = 1 and
l = 0, respectively. As we could expect, the stresses are
isotropic at the center. For the off-diagonal component
of the VEV one has the following leading term:

〈T 1
0 〉b ≈

21−Dα−D−1ηr

πD/2+1Γ (D/2 + 1)

∫ ∞

0

dxx

×
[

K̄D/2−1(ax)

ĪD/2−1(ax)
+
K̄D/2(ax)

ĪD/2(ax)

]

× [(ξ − 1/4) η∂η + ξ]Fν(xη). (4.19)

The first and second terms in the square brackets are
the contributions of the modes l = 0 and l = 1. The
off-diagonal component vanishes at the center. The be-
havior of the energy-momentum tensor components for
large values of the sphere proper radius, a/η≫ 1, assum-
ing fixed values of r/η, is obtained from Eqs. (4.17) and
(4.19) by expanding the function Fν(z) for small values of
the argument. By using Eq. (3.9), similar to the case of
the field squared, it can be seen that for positive values
of ν the VEVs decay monotonically like (a/η)2ν−D−2.
For imaginary ν, the behavior of the VEVs is damped
oscillatory with the amplitude decaying as (a/η)−D−2.
For points near the surface of the sphere, the dominant

contribution to the boundary-induced VEVs comes from
large values of l and x. By using the uniform asymptotic
expansions for the modified Bessel functions, it can be
seen that the leading terms in the diagonal components
for a scalar field with non-conformal coupling (ξ 6= ξD)
are related to the corresponding terms for a spherical
boundary in Minkowski spacetime by (no summation
over i) 〈T i

i 〉b ≈ (η/α)D+1〈T i
i 〉M. These leading terms

are given by the expressions (no summation over k)

〈T k
k 〉b ≈

DΓ((D + 1)/2)(ξ − ξD)κB
2Dπ(D+1)/2[α(a− r)/η]D+1

,

〈T 1
1 〉b ≈

(D − 1)Γ((D + 1)/2)(ξ − ξD)κB
2Dπ(D+1)/2a(a− r)D(α/η)D+1

, (4.20)

for k = 0, 2, . . . , D, and κB is defined in Eq. (3.14). For
the off-diagonal component we have

〈T 1
0 〉b ≈

DΓ(D/2) (ξ − ξD) κB
2DπD/2+1α[α(a − r)/η]D . (4.21)

The leading terms do not depend on the mass and have
opposite signs for Dirichlet and non-Dirichlet boundary
conditions. In particular, for a minimally coupled Dirich-
let scalar field the energy density near the sphere is nega-
tive and the energy flux is directed away from the bound-
ary.
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In Fig. 1, for D = 3 dS space, we have plotted the
boundary-induced part in the VEV of the energy density
for a scalar field with the Dirichlet boundary condition as
a function of the proper distance form the center of the
sphere measured in units of the dS curvature scale α. (In
figures below we plot the VEVs for both interior and ex-
terior regions. The calculations for the exterior region are
presented in Sect. VI.) For the sphere’s proper radius
(in units of α) we have taken the value a/η = 1. The
left/right panel corresponds to comformally/minimally
coupled scalar fields. The numbers near the curves are
the values of the parameter mα. These values are chosen
in a way to have cases of both real and purely imaginary
ν. For a minimally coupled field the dependence of the
VEVs on the mass is weak for points near the sphere.
This follows from the asymptotic (4.20). For a confor-
mally coupled field the leading term vanishes and the
subleading terms in the asymptotic expansions depend
on the mass. Note that for conformally and minimally
coupled fields the graphs have different scales. For non-
Dirichlet boundary conditions, the VEV of the energy
density near the boundary has opposite sign compared
with the Dirichlet case.

Fig. 2 displays the dependence of the boundary-
induced part in the energy density, for a fixed proper
distance from the center of the sphere with the Dirichlet
boundary condition, as a function of the mass measured
in units of the dS energy scale. As in Fig. 1, the left and
right panels are for D = 3 conformally and minimally
coupled fields respectively and the sphere radius is taken
a/η = 1. The numbers near the curves are the values of
the ratio r/η. For large values of mα the VEVs exhibit
an oscillatory behavior.

Fig. 3 shows the energy flux as a function of the proper
distance from the center of the sphere with the radius
a/η = 1 for D = 3 conformally and minimally coupled
fields with the Dirichlet boundary condition. Again, for
a minimally coupled scalar field the dependence on the
mass is weak, which directly follows from the asymptotic
expression (4.21). For both cases of minimally and con-
formally coupled fields the energy flows out of the sphere.
For non-Dirichlet boundary conditions the energy flux
has the opposite sign.

The dependence of the energy flux on the mass of the
field is depicted in Fig. 4 for a fixed value of the proper
distance from the sphere’s center. As before, the case of a
D = 3 scalar field with the Dirichlet boundary condition
is considered. For a conformally coupled massless field
the energy flux vanishes

In this section, we have investigated the VEV of the
bulk energy-momentum tensor inside a spherical bound-
ary. For a scalar fields with Robin boundary conditions,
it was shown in Ref. [49] that in the discussion of the
relation between the mode sum energy, evaluated as the
sum of the zero-point energies for each normal mode of
frequency, and the volume integral of the renormalized
energy density it is necessary to include in the energy a
surface term concentrated on the boundary (see also Ref.

[50]). An expression for the surface energy-momentum
tensor for a scalar field with a general curvature coupling
parameter in the general case of bulk and boundary ge-
ometries is derived in Ref. [51]. By making use of this
expression and the mode functions from Eq. (2.9), we can
evaluate the mode sum for the surface energy-momentum
tensor. The latter is located on the sphere and, in ad-
dition to the divergences of the boundary-free dS space-
time, contains surface divergences. The corresponding
renormalization procedure is similar to that for the total
Casimir energy and will be discussed elsewhere.

V. WIGHTMAN FUNCTION IN THE

EXTERIOR REGION

Now we turn to the evaluation of the VEVs in the re-
gion outside a spherical shell with radius a. The bound-
ary condition for a scalar field is in the form (2.4). As we
did for the interior region, first we consider the Wightman
function. This function is evaluated by using the mode
sum formula (2.5). In the exterior region, r > a, the ra-
dial parts of the mode functions are given by Eq. (2.7),
where the ratio of the coefficients in the linear combi-
nation of the Bessel and Neumann functions is deter-
mined from the boundary condition (2.4). Note that the
boundary condition can be written in the covariant form
(1 + βnl∇l)ϕ = 0, with nl being the outward normal
(with respect to the region under consideration) to the
boundary normalized as giln

inl = −1. For the interior
and exterior regions we have nl = (η/α)δl1 and nl =
−(η/α)δl1, respectively. Comparing with the boundary

condition in the form (2.4), we see that B̃/Ã = (η/α)β

for the interior region and B̃/Ã = −(η/α)β for the exte-
rior one. Hence, when we impose Robin boundary con-
dition with the same coefficient β then the ratio B̃/Ã
has opposite sign for the exterior and interior region. In
general, β could be different for these regions.
In the exterior region, for the mode functions realizing

the Bunch-Davies vacuum state, one finds

ϕσ(x) = Cσ
ηD/2

rD/2−1
H(1)

ν (λη)gµ(λa, λr)Y (mk;ϑ, φ),

(5.1)
where we have defined

gµ(λa, λr) = Ȳµ(λa)Jµ(λr) − J̄µ(λa)Yµ(λr), (5.2)

with 0 6 λ < ∞ and with the barred notation (2.20).
The normalization coefficient is determined from the con-
dition (2.12), where now the integration goes over the ex-
terior region and in the right-hand side the delta symbol
for λ is understood as the Dirac delta function δ(λ−λ′).
In evaluating the normalization integral over the radial
coordinate we note that this integral is divergent for
λ = λ′ and, hence, the dominant contribution comes
from large values of r. By making use of the asymp-
totic formulas for the Bessel and Neumann functions for
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FIG. 1: The boundary-induced part in the VEV of the energy density as a function of the proper distance from the center
of the sphere for conformally (left plot) and minimally (right plot) coupled D = 3 scalar fields with the Dirichlet boundary
condition. The numbers near the curves are the corresponding values of the parameter mα and for the sphere’s proper radius
we have taken a/η = 1.
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FIG. 2: The boundary-induced part in the VEV of the energy density as a function of the field mass for a fixed proper distance
from the center of the sphere in D = 3 dS spacetime. The left and right panels correspond to conformally and minimally
coupled fields. The numbers near the curves are the values of the proper distance from the sphere’s center in units of α.

large arguments, from Eq. (2.12) one gets

C2
σ =

πλei(ν−ν∗)π/2

4αD−1N(mk)

[

J̄2
µ(λa) + Ȳ 2

µ (λa)
]−1

, (5.3)

where we have used Eq. (2.14).

Substituting the functions (5.1) into the mode sum

(2.5), for the Wightman function we find the expression:

W (x, x′) =
πei(ν−ν∗)π/2

4αD−1nSD

(ηη′)
D/2

(rr′)n/2

∞
∑

l=0

(2l + n)

×Cn/2
l (cos θ)

∫ ∞

0

dλλ
gµ(λa, λr)gµ(λa, λr

′)

J̄2
µ(λa) + Ȳ 2

µ (λa)

×H(1)
ν (λη)H

(2)
ν∗ (λη′). (5.4)

Similar to the case for the interior region, this function
can be written in the decomposed form (2.22). In order to
extract the boundary-induced part explicitly, we subtract
from Eq. (5.4) the function WdS(x, x

′), written in the
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FIG. 3: The energy flux as a function of the proper distance from the center of the sphere for D = 3 conformally and minimally
coupled scalar fields (left and right plots respectively) with the Dirichlet boundary condition. The numbers near the curves
correspond to the values of the parameter mα.
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FIG. 4: The energy flux as a function of the mass for a fixed proper distance from the center of the sphere with the proper
radius a/η = 1. The left and right panels are for D = 3 conformally and minimally coupled fields with the Dirichlet boundary
condition. The numbers near the curves are the values of the ratio r/η (proper distance from the sphere’s center in units of α).

form (2.23). For the further evaluation of the difference
we use the relation

gµ(λa, λr)gµ(λa, λr
′)

J̄2
µ(λa) + Ȳ 2

µ (λa)
− Jµ(λr)Jµ(λr′)

= −1

2

∑

j=1,2

J̄µ(λa)

H̄
(j)
µ (λa)

H(j)
µ (λr)H(j)

µ (λr′).(5.5)

As a result, the boundary-induced part is presented in

the form

Wb(x, x
′) = −πe

i(ν−ν∗)π/2(ηη′)D/2

8αD−1nSD(rr′)n/2

∞
∑

l=0

(2l+ n)

×Cn/2
l (cos θ)

∑

j=1,2

∫ ∞

0

dλλ
J̄µ(λa)

H̄
(j)
µ (λa)

×H(j)
µ (λr)H(j)

µ (λr′)H(1)
ν (λη)H

(2)
ν∗ (λη′). (5.6)

Assuming that the function H̄
(1)
µ (z), (H̄

(2)
ν (z)) has no

zeros for 0 < arg z 6 π/2 (−π/2 6 arg z < 0), we rotate
the integration contour by the angle π/2 for the term
with j = 1 and by the angle −π/2 for j = 2. Introducing
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the modified Bessel functions, for the boundary-induced
part of the Wightman function in the exterior region we
get the expression

Wb(x, x
′) = − α

1−D

πnSD

(ηη′)D/2

(rr′)n/2

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∫ ∞

0

dxx
Īµ(ax)

K̄µ(ax)
Kµ(rx)Kµ(r

′x)

× [Iν(xη
′)Kν(xη) + I−ν(xη)Kν(xη

′)] .(5.7)

Comparing with Eq. (2.24), we see that the expressions
for the boundary induced parts in the exterior and inte-
rior regions are related by the interchange Kµ ⇄ Iµ.

VI. VACUUM EXPECTATION VALUES IN THE

EXTERIOR REGION

A. Field squared

First we consider the VEV for the field squared. It
is presented in the decomposed form (3.1), with the
boundary-induced part given by

〈ϕ2〉b = − α1−D

πSD(r/η)D−2

∞
∑

l=0

Dl

∫ ∞

0

dxx1−D

× Īµ(ax/η)

K̄µ(ax/η)
K2

µ(rx/η)Fν (x), (6.1)

where Fν(x) is defined by Eq. (4.5). The time dependence
in this expression appears through the proper radius of
the sphere and the proper distance from the center. For
a conformally coupled massless field one has the relation
(3.6), where the expression for 〈ϕ2〉M is obtained from
Eq. (3.7) by the interchange Kµ ⇄ Iµ. For points near
the sphere the leading term in the asymptotic expansion
over the distance from the sphere is in the form (3.13)
with (a− r) replaced by (r − a). In particular, near the
sphere the VEV has the same sign for the interior and
exterior regions.
Now we turn to the asymptotic behavior of the

boundary-induced VEV at large distances from the
sphere, assuming that r/η ≫ 1 for fixed a/η. In this
limit, the dominant contribution to the integral in Eq.
(6.1) comes from the region near the lower limit of the
integration, x . η/r, and we can use the relation

Īµ(z)

K̄µ(z)
≈ 2

A+ µB

A− µB
(z/2)2µ

µΓ2(µ)
, (6.2)

for z ≪ 1. By using also Eq. (3.9), the integral in
Eq. (6.1) involving the square of the Macdonald function
is evaluated with the help of a formula from Ref. [48].
The dominant contribution comes from the mode with
l = 0. The behavior of the boundary-induced VEV at
large distances is qualitatively different for positive and

imaginary values of the parameter ν. In the first case,
the leading term is given by the expression

〈ϕ2〉b ≈ −
2α1−D

πSD

Γ(ν)Γ (n/4 + 1− ν)
nΓ2(n/2)Γ(1− ν)

A+ nB/2

A− nB/2

×Γ (3n/4 + 1− ν) (a/η)D−2

(r/η)2D−2ν−2
, (6.3)

and the VEV is a monotonically decreasing function of
the radial coordinate.
At large distances from the sphere and for imaginary

ν, ν = i|ν|, the VEV behaves as

〈ϕ2〉b ≈ −
C0(ν)α

1−D

πD/2+1Γ(D/2− 1)

A+ nB/2

A− nB/2

× (a/η)D−2

(r/η)2D−2
cos[2|ν| ln(r/η) + φ0], (6.4)

where the coefficient C0 and the phase φ0 are defined by
the relation

C0(ν)e
iφ0 =

Γ(ν)

Γ(1 − ν)Γ (3n/4− ν + 1)Γ (n/4− ν + 1) .

(6.5)
In particular, for D = 3 one has

C0(ν) = π
√
2
|3/16− ν + ν2|
|ν| cosh1/2(2π|ν|)

. (6.6)

As is seen, for imaginary ν the behavior of the boundary-
induced VEV is damped oscillatory. For a fixed value of
r, the VEV behaves as 〈ϕ2〉b ∼ e−Dt/α cos(2|ν|t/α+φ′0),
where φ′0 = 2|ν| ln(r/α) + φ0. The oscillation frequency
is increasing with increasing mass of the field.
It is of interest to compare the behavior of the VEV

at large distances to the corresponding behavior for a
spherical boundary in Minkowski spacetime. In the lat-
ter case, for a massless field the decay is of power-law:
〈ϕ2〉M ∼ aD−2/r2D−3. For a massive field, assuming that
mr≫ 1, the VEV behaves as

〈ϕ2〉M ≈ −
√
π

4SDrD−1

e−2mr

√
mr

∞
∑

l=0

Dl
Īµ(am)

K̄µ(am)
, (6.7)

and it is exponentially suppressed. In the case of dS
spacetime, for a fixed value ofmα . 1, the decay at large
distances is of power-law (monotonic or oscillatory) for
both massless and massive fields. So, we conclude that
the curvature of the background spacetime essentially
changes the behavior of the VEVs at distances larger
than the curvature radius of the background spacetime.

B. VEV of the energy-momentum tensor

Now we turn to the VEV of the energy-momentum
tensor outside the sphere. This VEV is presented in the
decomposed form (4.1). By using the formula (4.3) and
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Eq. (6.1) for the VEV of the field squared, the diagonal
components of the boundary-induced part are presented
in the form (no summation over i)

〈T i
i 〉b = − r2−Dη2

2πSDαD+1

∞
∑

l=0

Dl

∫ ∞

0

dxx3−D Īµ(ax)

K̄µ(ax)

×
{

Gi
i[Kµ(rx)]Fν (xη) + 2K2

µ(rx)F
i
i (xη)

}

,(6.8)

where the functions F i
i (y) and Gi

i [f(y)] are defined by
Eqs. (4.6) and (4.7). For the off-diagonal component we
have the expression

〈T 1
0 〉b =

ηα−D−1

πSDrD−1

∞
∑

l=0

Dl

∫ ∞

0

dxx1−D Īµ(ax)

K̄µ(ax)
Kµ(rx)

×
[

2rxK ′
µ(rx) − (D − 2)Kµ(rx)

]

× [(ξ − 1/4) η∂η + ξ]Fν(xη). (6.9)

These components are written in the coordinate system
(τ, r, ϑ, φ). They are related to the components in the
system (t, r, ϑ, φ) by Eq. (4.10).
The vacuum energy in the region r > r0 > a is given

by the expression (4.14) with the integration over this re-
gion. Making use of the expression for the energy density
from Eq. (6.8), one finds the formula

E
(b)
r>r0

=
(r0/η)

2−D

2πα

∞
∑

l=0

Dl

∫ ∞

0

dxx1−D

× Īµ(ax/r0)

K̄µ(ax/r0)

{

(1− 4ξ)Fν(xη/r0)Kµ(x)

×
[

xK ′
µ(x) − (D/2− 1)Kµ(x)

]

− F 0
0 (xη/r0)

×
[

x2K ′2
µ (x) − (x2 + µ2)K2

µ(x)
] }

. (6.10)

This energy is related to the energy flux and to the vac-
uum stresses in the exterior region by Eq. (4.15). Similar
to the interior region, the integrated energy diverges in
the limit r0 → a.
Let us consider the asymptotics for the VEV of the

energy-momentum tensor. For points near the sphere, in
a way similar to that for the interior region we find for
r → a (no summation over k)

〈T k
k 〉b ≈

DΓ((D + 1)/2)(ξ − ξD)κB
2Dπ(D+1)/2[α(r − a)/η]D+1

,

〈T 1
1 〉b ≈ −

(D − 1)Γ((D + 1)/2)(ξ − ξD)κB
2Dπ(D+1)/2a(r − a)D(α/η)D+1

,(6.11)

for k = 0, 2, . . . , D, and

〈T 1
0 〉b ≈ −

DΓ(D/2) (ξ − ξD)κB
2DπD/2+1α[α(r − a)/η]D . (6.12)

As we see, for a scalar field with non-conformal coupling
the components 〈T k

k 〉b, k = 0, 2, . . . , D, have the same
sign near the sphere for exterior and interior regions,
whereas the radial stress and the off-diagonal component
change signs.

Now we consider the limit of large distances from the
sphere, assuming that r/η ≫ 1 for fixed a/η. Similar to
the case of the field squared, discussed in the previous
subsection, for positive values of ν to the leading order
we get:

〈T k
i 〉b ≈

(η/r)D−2ν+1−δki (a/r)D−2

2πD/2+1Γ(D/2− 1)αD+1

ÃBk
i (ν)

Ã+ (D − 2) B̃/a
.

(6.13)
In this expression,

B0
0(ν) =

DΓ(ν)

Γ(1 − ν)

[

(D + 1− 2ν) ξ − D − 2ν

4

]

×Γ (3n/4 + 1− ν) Γ (n/4 + 1− ν) , (6.14)

and (no summation over k)

Bk
k(ν) =

2ν

D
B0

0(ν), k = 1, 2, . . . , D,

B1
0(ν) = −2D− 1− ν

D
B0

0(ν). (6.15)

In this case the boundary-induced VEV decays monoton-
ically with increasing proper distance from the sphere.
At large distances the vacuum stresses are isotropic. If
we denote the corresponding effective pressure by Pb,
Pb = −〈T 1

1 〉b, then the equation of state is of the
barotropic type: Pb = −(2ν/D)〈T 0

0 〉b.
At large distances from the sphere and for imaginary

ν, the leading term in the asymptotic expansion is in the
form

〈T k
i 〉b ≈

(η/r)D+1−δki (a/r)D−2Ck
i (ν)

πD/2+1Γ(D/2− 1)αD+1

× Ã cos[2|ν| ln(r/η) + φki ]

Ã+ (D − 2) B̃/a
, (6.16)

where Ck
i (ν) and the phases φki are defined by the relation

Bk
i (ν) = Ck

i (ν)e
iφk

i . (6.17)

As in the previous case, to the leading order the vacuum
stresses are isotropic. The oscillations in the energy den-
sity and the stresses are shifted by the phase π/2. For a
fixed comoving radial distance r, the VEVs oscillate like

〈T k
i 〉b ∼ e−(D+1−δki )t/α cos(2|ν|t/α + φk′i ). For the Neu-

mann boundary condition, the leading terms, given by
Eqs. (6.13) and (6.16), vanish and it is necessary to take
the next terms in the asymptotic expansions. As a result
the asymptotic expressions for the Neumann boundary
condition contain an additional factor (a/r)2 compared
with non-Neumann boundary conditions. In Figs. 1–4,
the boundary-induced part of the energy density and the
energy flux in the exterior region are depicted as func-
tions of the proper distance from the sphere center and of
the mass, for D = 3 minimally and conformally coupled
fields with the Dirichlet boundary condition and for the
sphere’s proper radius corresponding to a/η = 1. Both
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cases of real and imaginary ν are considered. The os-
cillatory behavior at large distances in the latter case is
plotted separately in the inset. The first zero decreases
with increasing mass, whereas the oscillation frequency
increases.

VII. FURTHER GENERALIZATIONS

The approach described above may be used for the
evaluation of the Casimir densities for more general back-
ground geometries, in particular, in models where the
spherical boundary separates spacetime regions with dif-
ferent geometries. Here, as an example, we consider a
model in which the spacetime is described by two dis-
tinct metric tensors in the regions outside and inside the
spherical boundary with radius a. The line element in
the exterior region will be taken in the form (2.2). We
will assume that inside the sphere the spacetime geome-
try is regular and is described by the general spherically
symmetric line element

ds2 = α2τ−2[e2u(r)dt2 − e2v(r)dr2 − e2w(r)dΩ2
D], (7.1)

where the functions u(r), v(r), w(r) are continuous at
the core boundary:

u(a) = v(a) = 0, w(a) = ln(a). (7.2)

Here we assume that there is no surface energy-
momentum tensor located at r = a and, hence, the
derivatives of these functions are continuous as well. Note
that by introducing the new radial coordinate r̃ = ew(r)

with the sphere’s center at r̃ = 0, the angular part of the
line element (7.1) is written in the standard Minkowskian
form. With this coordinate, in general, we will obtain a
non-standard angular part in the exterior line element
(2.2). From the regularity of the interior geometry at the
sphere center one has the conditions u(r), v(r) → 0, and
w(r) ∼ ln r̃ for r̃ → 0.
The curvature scalar for the metric corresponding to

(7.1) is presented in the form

R = (α/η)−2 Ř +D(D + 1)α−2e−2u(r), (7.3)

where

Ř = −2e−2v
[

u′′ + u′2 − u′v′ + (D − 2)(D − 1)w′2/2

+(D − 1)
(

w′′ + w′2 + w′u′ − w′v′
)]

+(D − 2)(D − 1)e−2w (7.4)

is the curvature scalar for the static metric corresponding
to the line element inside the square brackets in (7.1).
Explicitly writing the field equation (2.3) for the metric
(7.1), it can be seen that the time and radial variables
are separated in two special cases: for u(r) = 0 or for
a massless field. We will consider the first case. The
discussion for the second case is similar.

Taking u(r) = 0 and assuming the Bunch-Davies vac-
uum state, the mode functions in the region inside the
sphere, r < a, are written in the form

ϕσ(x) = ηD/2H(1)
ν (λη)fl(r)Y (mp;ϑ, φ), (7.5)

where the radial function is a solution of the equation

f ′′
l (r) + [(D − 1)w′ − v′]f ′

l (r) + e2v[λ2 − ξŘ
−l(l+D − 2)e−2w]fl(r) = 0. (7.6)

and

Ř = −2(D − 1)e−2v
(

w′′ +Dw′2/2− w′v′
)

+(D − 1)(D − 2)e−2w. (7.7)

The solution of the radial equation (7.6) regular at
the origin we will denote by Rl(r, λ). Near the center
this solution behaves like r̃l. Note that the parameter λ
enters in the radial equation in the form λ2. As a result
the regular solution can be chosen in such a way that
Rl(r,−λ) = const · Rl(r, λ). Now for the radial part of
the eigenfunctions one has

fl(r) =

{

Rl(r, λ) for r < a
r1−D/2 [AlJµ(λr) +BlYµ(λr)] for r > a

.

(7.8)
The coefficients Al and Bl are determined by the condi-
tions of continuity of the radial function and its derivative
at r = a:

Al =
π

2
aD/2−1Rl(a, λ)Y̌µ(λa),

Bl = −π
2
aD/2−1Rl(a, λ)J̌µ(λa), (7.9)

with the notation, for a cylinder function F (z),

F̌ (z) ≡ zF ′(z)−
[

D

2
− 1 + a

R′
l(a, z/a)

Rl(a, z/a)

]

F (z), (7.10)

where R′
l(a, λ) = ∂rRl(r, λ)|r=a. Due to our choice of the

function Rl(r, λ), the logarithmic derivative in formula
(7.10) is an even function of z. Hence, in the region
r > a the radial part of the mode functions becomes

fl(r) =
π

2
(a/r)D/2−1Rl(a, λ)hµ(λa, λr), (7.11)

with the notation

hµ(λa, λr) = Y̌µ(λa)Jµ(λr) − J̌µ(λa)Yµ(λr). (7.12)

The normalization condition (2.12) is written in terms
of the radial eigenfunctions as

∫ ∞

r0

dr
√

|gr|fl(r, λ)fl(r, λ′) =
πδ(λ− λ′)

4N(mk)αD−1
ei(ν−ν∗)π/2,

(7.13)
where r0 is the value of the radial coordinate r corre-
sponding to the sphere center and gr is the radial part of
the determinant g. As the integral on the left is divergent
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for λ′ = λ, the main contribution in the coincidence limit
comes from large values r. By using the expression (7.11)
for the radial part in the region r > a and replacing the
Bessel and Neumann functions by the leading terms of
their asymptotic expansions for large values of the argu-
ment, it can be seen that from (7.13) the following result
is obtained:

R2
l (a, λ) =

a2−Dα1−Dλei(ν−ν∗)π/2

πN(mk)
[

J̌2
µ(λa) + Y̌ 2

µ (λa)
] . (7.14)

By taking into account relation (7.14), the mode func-
tions in the exterior region are presented in the form

ϕσ(x) = cσ
ηD/2

rD/2−1
H(1)

ν (λη)hµ(λa, λr)Y (mk;ϑ, φ),

(7.15)
where

c2σ =
πλei(ν−ν∗)π/2

4αD−1N(mk)

[

J̌2
µ(λa) + Y̌ 2

µ (λa)
]−1

. (7.16)

Now comparing with (5.1), we see that the mode func-
tions (7.15) are obtained from the corresponding func-
tions for the sphere with Robin boundary condition by
the replacement

A

B
→ −D

2
+ 1− aR

′
l(a, λ)

Rl(a, λ)
. (7.17)

As a result, the Wightman function in the exterior region
is given by expression (5.4) with this replacement.
Further evaluation of the Wightman function and the

Casimir densities is the same as in the case of the Robin
sphere, described in Sections V and VI. The Wightman
function in the region r > a is presented in the decom-
posed form (2.22), where now the part induced by the
geometry (7.1) with u(r) = 0 in the region r < a is given
by (5.7) with

A

B
= −D

2
+ 1− aR

′
l(a, xe

πi/2)

Rl(a, xeπi/2)
. (7.18)

The factor eπi/2 in the argument of the function Rl is
related to the complex rotation we have used after for-
mula (5.6). Similarly, the expressions for corresponding
parts in the VEVs of the field squared and the energy-
momentum tensor are presented as (6.1) and (6.8) with
the ratio of the coefficients from (7.18).

VIII. CONCLUSION

In this paper, we have investigated the Casimir den-
sities induced by a spherical boundary in dS spacetime
for a massive scalar field with general curvature coupling
parameter. On the sphere the field obeys Robin bound-
ary condition with coefficients, in general, different for
the interior and exterior regions. We have assumed that

the field is prepared in the Bunch-Davies vacuum state
which is dS-invariant in the boundary-free spacetime. In
free field theories all properties of a quantum field are
encoded in two-point functions. We have computed the
Wightman function and the Green’s function both in the
region interior to the sphere and in its exterior. The
VEVs for the field squared and the energy-momentum
tensor are obtained from these two-point functions in
the coincidence limit. In addition, the Wightman func-
tion determines the response of particle detectors of the
Unruh-DeWitt type. In a similar way other two-point
functions can be investigated.

For the evaluation of the Wightman function we have
employed the mode summation method. In the region
inside the spherical boundary, the mode functions for a
scalar field, realizing the Bunch-Davies vacuum state, are
given by Eq. (2.9). The eigenvalues for λ are quantized
by the boundary condition on the sphere and they are the
solutions of Eq. (2.10). The corresponding mode sum for
the Wightman function is given by Eq. (2.17) and con-
tains the summation over these eigenvalues. The latter
are given implicitly and Eq. (2.17) is not convenient for
the further evaluation of the VEVs in the coincidence
limit. In order to obtain a more workable form, we have
used the generalized Abel-Plana formula for the summa-
tion over the eigenvalues of λ. This allowed us (i) to
extract explicitly the boundary-free Wightman function
and (ii) to present the sphere-induced part in terms of an
integral rapidly convergent in the coincidence limit (for
points away from the boundary). The local geometry
away from the sphere is the same as in the boundary-free
dS spacetime and the renormalization for the VEVs of
the field squared and the energy-momentum tensor is re-
duced to that for the boundary-free dS spacetime. The
latter is well investigated in the literature. In the same
way we can evaluate the Wightman function in a gen-
eral vacuum state corresponding to the mode functions
(2.7) with a linear combination of Hankel functions. The
corresponding expression for the boundary-induced part
has the form similar to Eq. (2.24) with a more general
bilinear combination of the modified Bessel functions of
order ν.

By using the representation of the Wightman func-
tion, the VEVs of the field squared and the energy-
momentum tensor are decomposed into the boundary-
free and boundary-induced parts. For the region inside
the sphere the latter are given by Eqs. (3.3), (4.4), and
(4.9), for the field squared and the energy-momentum
tensor, respectively. An important feature is that the
vacuum energy-momentum tensor has an off-diagonal
component (4.9) which describes energy flux along the
radial direction. With dependence on the boundary con-
dition and the mass of the field, this flux can be either
positive or negative. The boundary induced VEVs for
both field squared and the energy-momentum tensor de-
pend on time through the proper radius of the sphere
and the proper distance from the sphere’s center. This
property is a consequence of the maximal symmetry of
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the Bunch-Davies vacuum state.

We have explicitly checked that the boundary-induced
part in the VEV of the energy-momentum tensor obeys
the trace relation (4.11) and the covariant conservation
equation. In particular, the energy-momentum tensor is
traceless for a conformally coupled massless field. The
trace anomaly is present in the boundary-free part only.
For a conformally coupled massless scalar field the flux
vanishes. In this case we have simple relations, Eqs.
(3.6) and (4.13), between the boundary-induced VEVs
for spherical boundaries in dS and Minkowski spacetimes.
The latter are consequences of the conformal relation be-
tween the problems in Minkowski and dS spacetimes. Di-
vergences are found in the VEVs as the surface of the
sphere is approached. The leading terms in the corre-
sponding asymptotic expansions in terms of the distance
from the boundary are given by Eqs. (3.13), (4.20) and
(4.21). Written in terms of the proper distance from
the boundary, for a non-conformally coupled field these
leading terms coincide with the corresponding terms for
a spherical boundary in Minkowski spacetime. This is a
consequence of the fact that for points near the boundary
the dominant contribution to the VEVs comes from the
modes with small wavelengths which are not influenced
by the gravitational field.

In the region outside a spherical shell, the eigenvalues
for the quantum number λ are continuous and the modes
of the field realizing the Bunch-Davies vacuum state are
given by Eq. (5.1). We have explicitly extracted from the
Wightman function the part corresponding to dS space-
time without boundaries. The boundary-induced part is
given by Eq. (5.7) for the Wightman function and by
Eqs. (6.1) and (6.8), (6.9) for the field squared and the
energy-momentum tensor, respectively. General formu-
las are simplified in the asymptotic regions. For points
near the boundary the leading terms in the expansions
over the distance from the sphere are given by expres-
sions (6.11) and (6.12). In this region the energy density
and the azimuthal stresses have the same sign for the ex-
terior and interior regions, whereas the radial stress and
the energy flux have opposite signs. In particular, for
a minimally coupled scalar field the energy flows away
from the boundary for Dirichlet boundary condition and
toward the boundary for non-Dirichlet boundary condi-
tions.

Most interesting is the behavior far from the sphere;
qualitatively different behavior occurs depending on the
sign of ν2 = D2/2 − ξD(D + 1) − m2α2, where D is
the number of spatial dimensions, ξ is the conformal
parameter, m is the mass of the scalar field, and α is
the curvature scale. When ν is positive, the mean field
squared and the energy-momentum tensor fall off as a
power, while when ν is imaginary, the large distance be-
havior is damped oscillatory with the amplitude decay-
ing as (η/r)2(D−1) for the field squared and the diago-
nal components of the energy-momentum tensor. For a
scalar field with Neumann boundary condition the VEVs
at large distances are suppressed by an additional factor

(η/r)2 compared with the case of non-Neumann bound-
ary conditions. Note that the behavior of the VEVs at
distances larger than the curvatures scale of the back-
ground spacetime is completely different from the case
of a spherical boundary in Minkowski spacetime. In the
latter case and for a massive field the boundary-induced
VEVs at distances larger than the Compton wavelength
of the scalar particle are exponentially suppressed by the
factor e−m(r−a). For the problem in dS spacetime, un-
der the condition m . α−1, the decay of the VEVs is
power-law. Exponential damping can occur only in an
intermediate region α≫ r ≫ 1/m.

In Section VII we have generalized the expressions of
the Casimir densities in the exterior region for a class
of spherically-symmetric metrics in the region r < a de-
scribed by the line element (7.1). The geometry in the
exterior region is given by the dS line element (2.2). A
special case with u(r) = 0 is considered when the time
and radial variables in the field equation are separated.
The VEVs in the exterior region are decomposed as the
sum of pure dS part and the part induced by the geome-
try in the interior region. We have shown that the expres-
sions for the latter are obtained from the corresponding
expressions outside the Robin sphere, investigated in Sec-
tions V and VI, taking the ratio of the Robin coefficients
in the form (7.18), where Rl(r, λ) is the solution of the
interior radial equation regular at the origin.

At the end, we would like to emphasize that the main
subject of the present paper is the investigation of the lo-
cal characteristics of the vacuum, the VEVs for the field
squared and the energy-momentum tensor, at the points
away from the boundaries. They do not contain sur-
face divergences and are completely determined within
the framework of standard renormalization procedure in
quantum field theory without boundaries. We expect
that similar results would be obtained in the model in
which instead of externally imposed boundary condition
the fluctuating field is coupled to a smooth background
potential that implements the boundary condition in a
certain limit [52].
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Appendix A: Boundary-free part of the Wightman

function

For the further evaluation of the boundary-free part,
given by Eq. (2.23), firstly we apply Gegenbauer’s addi-
tion theorem for the Bessel functions (see, for instance,
Ref. [38]) to the series over l. This gives the following
expression for the Wightman function:

WdS(x, x
′) =

πei(ν−ν∗)π/2

Γ(n/2)nSD

2−n/2−1α1−D (ηη′)
D/2

(r2 + r′2 − 2rr′ cos θ)
n/4

×
∫ ∞

0

dz zn/2+1H(1)
ν (zη)H

(2)
ν∗ (zη′)

×Jn/2(z
√

r2 + r′2 − 2rr′ cos θ). (A1)

As the next step, we write the product of the Hankel
functions in terms of the Macdonald function:

ei(ν−ν∗)π/2H(1)
ν (zη)H

(2)
ν∗ (zη′) =

4

π2
Kν(−izη)Kν(izη

′),

(A2)
and use the integral representation [41]

Kν(Z)Kν(z) =
1

4

∫ +∞

−∞

dy

∫ ∞

0

dw

w
e−νy−Zzw−1 cosh y

× exp

(

−w
2
− Z2 + z2

2w

)

(A3)

for the product of the Macdonald functions. Substituting
Eqs. (A2) and (A3) into Eq. (A1), we first integrate over
x and then with respect to w, with the result

WdS(x, x
′) =

α1−D

2πSD

∫ ∞

0

dz
zν+D/2−1

[z2 − 2u(x, x′)z + 1]D/2
,

(A4)
where

u(x, x′) = 1 +
(η − η′)2 − r2 − r′2 + 2rr′ cos θ

2ηη′
. (A5)

In deriving Eq. (A4) we have assumed that |u| < 1. The
integral in Eq. (A4) is expressed in terms of the associ-

ated Legendre function P
(1−D)/2
ν−1/2 (u(x, x′)) (see Ref. [53]).

Expressing this function through the hypergeometric
function, after some transformations, we get the final
expression for the Wightman function in dS spacetime
(for two-point functions in boundary-free dS spacetime
see Ref. [47]):

WdS(x, x
′) =

α1−D

(4π)(D+1)/2

Γ(D/2 + ν)Γ(D/2 − ν)
Γ((D + 1)/2)

× 2F1

(

D

2
+ ν,

D

2
− v; D + 1

2
;
1 + u(x, x′)

2

)

.(A6)

Note that, if we denote by X(x) the coordinates in the
higher-dimensional embedding space for dS spacetime,
then one can write u(x, x′) = 1+ [X(x)−X(x′)]2/(2α2).
The property that the Wightman function depends on
spacetime points through [X(x)−X(x′)]2 is related to the
maximal symmetry of the Bunch-Davies vacuum state.

Appendix B: Minkowski spacetime limit

In this appendix, for the boundary-induced part in the
Wightman function, we explicitly demonstrate the limit-
ing transition to the geometry of a spherical boundary in
Minkowski spacetime. In the Minkowski spacetime limit
one has α → ∞ and the modulus of the order of the
modified Bessel functions in Eq. (2.22) is large, ν ≈ iσ,
σ = mα ≫ 1. In addition, we have η ≈ α − t. We make
use of the uniform asymptotic expansions for the mod-
ified Bessel functions for imaginary values of the order
with large modulus. For z < 1, the leading terms in these
expansions have the form (see, for example, Ref. [54])

Kiσ(σz) ∼
√

2π

σ
e−σπ/2 cos[σf(z)− π

4
],

Iiσ(σz) + I−iσ(σz) ∼ −
2eσπ/2√
2πσ

sin[σf(z)− π

4
],(B1)

where

f(z) = ln

(

1 +
√
1− z2
z

)

−
√

1− z2. (B2)

In the case z > 1 one has the asymptotics

Kiσ(σz) ∼
√

π

2σ

e−σπ/2−σg(z)

(z2 − 1)1/4
,

Iiσ(σz) + I−iσ(σz) ∼
2√
2πσ

eσπ/2+σg(z)

(z2 − 1)1/4
, (B3)

with

g(z) = −arcsec z +
√

z2 − 1, g′(z) =
1

z

√

z2 − 1. (B4)

From Eqs. (B1) and (B3) it follows that the dominant
contribution to the boundary-induced part of the Wight-
man function in Eq. (2.24) comes from the integration
range x > m. In this range we have

Iν(xη
′)Kν(xη) + I−ν(xη)Kν(xη

′)

≈ cosh {mα [g(z)− g(z′)]}
mα(z′2 − 1)1/4(z2 − 1)1/4

, (B5)

where z = xη/mα and z′ = xη′/mα. By taking into
account that η/α ≈ 1 − t/α and η′/α ≈ 1 − t′/α, it can
be seen that

g(z)− g(z′) ≈
√

(x/m)2 − 1 (t′ − t) /α. (B6)

Now, combining this with Eq. (B5), we get

Iν(xη
′)Kν(xη) + I−ν(xη)Kν(xη

′) ≈ cosh(∆t
√
x2 −m2)

α
√
x2 −m2

,

(B7)
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with ∆t = t′ − t. Substituting this into the expression
for the boundary-induced part of the Wightman function,
Eq. (2.24), to the leading order one finds

Wb(x, x
′) ≈ − (rr′)−n/2

πnSD

∞
∑

l=0

(2l+ n)C
n/2
l (cos θ)

×
∫ ∞

m

dxx
K̄µ(xa)

Īµ(xa)
Iµ(xr)Iµ(xr

′)

×cosh(∆t
√
x2 −m2)√

x2 −m2
. (B8)

The expression in the right-hand side coincides with the
Wightman function inside a spherical boundary in the
Minkowski bulk [26]. The Minkowski space limit for the
Wightman function in the exterior region is considered
in a similar way.

Appendix C: Green’s function

In the text, we computed the Wightman function in
order to calculate the VEVs of the field-squared and the
energy-momentum tensor. Of course, these quantities
can equally well be computed from the Green’s function
for this problem. The calculation of the latter is similar
to that given for the Wightman function, but there are
some points of interest, so we sketch the derivation here.
Because the nontrivial structure in the dS geometry lies

in the time dependence, it is natural to isolate that by
constructing a reduced Green’s function in the variable
η, η′ (n = D − 2):

G(x, x′) =
α1−D

nSD(rr′)n/2

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∑

λ

2λ

a
Tµ(λa)Jµ(λr)Jµ(λr

′)f(η, η′). (C1)

Here the notation is as in Sec. II, and in particular, the
eigenvalues λ are the roots of Eq. (2.10). The reduced
Green’s functions satisfies
[

∂2

∂η2
+

1−D
η

∂

∂η
+
α2m2 + ξD(D − 1)

η2
+ λ2

]

f(η, η′)

= −
( η

α

)D−1

δ(η − η′). (C2)

The solution of this equation corresponding to the
Bunch-Davies vacuum (the analog of outgoing wave so-
lutions) is

f(η, η′) =
π

4i
eiπ(ν−ν∗)/2(ηη′)D/2H(1)

ν (λη>)H
(2)
ν∗ (κη<),

(C3)
which uses the Wronskian (2.14) and η> (η<) is the
greater (lesser) of η, η′.
To resolve the difficulties with oscillatory integrals and

an implicit equation for the eigenvalues, we can again use
the generalized Abel-Plana formula (2.19), which leads
to the breakup of the Green’s function into a free part
referring only to the dS background, and a term which
exhibits the effect of the sphere:

G(x, x′) = GdS(x, x
′) +Gb(x, x

′), (C4)

where

GdS(x, x
′) = − π

4i

eiπ(ν−ν∗)/2

αD−1nSD

(ηη′)D/2

(rr′)n/2

∞
∑

l=0

(2l + n)

×Cn/2
l (cos θ)

∫ ∞

0

dλλJµ(λr)Jµ(λr
′)

×H(1)
ν (κr>)H

(2)
ν∗ (λr<), (C5)

and

Gb(x, x
′) =

1

πi

α1−D

nSD

(ηη′)D/2

(rr′)n/2

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∫ ∞

0

dλλ
K̄µ(λa)

Īµ(λa)
Iµ(λr)Iµ(λr

′)

× [Kν(λη>)I−ν(λη<) +Kν(λη<)Iν(λη>)] . (C6)

There is, in fact, no discontinuity associated with the last
factor, since the quantity in square brackets here is

π/2

sinπν
[I−ν(λη)I−ν (λη

′)− Iν(λη)Iν (λη′)] . (C7)

Of course, Gb(x, x
′) is simply iWb(x, x

′) given in
Eq. (2.24).
The calculation of the Green’s function for the exte-

rior region proceeds similarly. Again, if we impose the
boundary condition at the smallest value of r in the re-
gion, here at r = a, we have the radial function gµ given
in Eq. (5.2), which have continuum normalization

∫ ∞

a

dr r gµ(λr)gµ(λr
′) =

1

λ
δ(λ− λ′)[J̄2

µ(λa) + Ȳ 2
µ (λa)].

(C8)
Thus the exterior Green’s function is

G(x, x′) =
iπ

4

eiπ(ν−ν∗)/2

αD−1nSD

∞
∑

l=0

(2l + n)C
n/2
l (cos θ)

×
∫ ∞

0

dλ
λgµ(λr)gµ(λr

′)

J̄2
µ(λa) + Ȳ 2

µ (λa)

×H(1)
ν (λη>)H

(2)
ν∗ (λη<). (C9)

This evidently leads to the boundary-dependent part
given by Eq. (5.7) multiplied by i.
Incidentally, we might record here the imaginary rota-

tions of the Hankel functions, since these are not given
in the standard tables:

H
(2)
ν∗ (eπi/2x) = 2

[

eiν
∗π/2Iν∗(x) +

i

π
e−iν∗π/2Kν(x)

]

,

H(1)
ν (e−πi/2x) = 2

[

e−iνπ/2Iν∗(x)− i

π
eiνπ/2Kν(x)

]

.

for real or imaginary ν, which terms are related by evi-
dent complex conjugation.
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