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Abstract

In this paper we introduce a simple discrete stochastic model of eternal inflation
that shares many of the most important features of the continuum theory as it is
now understood. The model allows us to construct a multiverse and rigorously an-
alyze its properties. Although simple and easy to solve, it has a rich mathematical
structure underlying it. Despite the discreteness of the space-time the theory ex-
hibits an unexpected non-perturbative analog of conformal symmetry that acts on
the boundary of the geometry. The symmetry is rooted in the mathematical prop-
erties of trees, p-adic numbers, and ultrametric spaces; and in the physical property
of detailed balance. We provide self-contained elementary explanations of the un-
familiar mathematical concepts, which have have also appeared in the study of the
p-adic string.

The symmetry acts on a huge collection of very low dimensional “multiverse
fields” that are not associated with the usual perturbative degrees of freedom. They
are connected with the late-time statistical distribution of bubble-universes in the
multiverse.

The conformal symmetry which acts on the multiverse fields is broken by the
existence of terminal decays—to hats or crunches—but in a particularly simple way.
We interpret this symmetry breaking as giving rise to an arrow of time.

The model is used to calculate statistical correlations at late time and to discuss
the measure problem. We show that the natural cutoff in the model is the analog
of the so-called light-cone-time cutoff. Applying the model to the problem of the
cosmological constant, we find agreement with earlier work.



1 Introduction

Our purpose in this paper is to present a model of eternal inflation which is simple enough

to be completely tractable, but which has enough of the structure of the real thing that

we can address some of the hard problems. The model is a stripped down version of

a generalization of the Mandelbrot percolation model that was first applied to eternal

inflation in [1], has been used in a number of subsequent studies, notably [2], and was

employed in a recent global discussion of the phase structure [3].

Before we describe the model we will make some remarks of a general nature that the

reader may want to come back to after reading the rest of the paper. Let’s consider a

statistical system that is so simple that at first sight it seems to have nothing that could

possibly interest us. The system consists of an infinite number of disconnected points. The

points start out being colored red. We then go through the collection, and with probability

γ we re-color each point black. The decision as to whether we leave the points red or color

them black is done independently for each point. What can we say about the system?

First of all we know that if, in an unbiased way, we take a large but finite sample of N

points, a fraction γ will be black. We also know that there will be a statistical dispersion

of order
√
N. In fact we know the entire probability distribution for every subset of points.

All of these statistical quantities will be smooth functions of γ : there will be no phase

transitions even in the infinite limit. But now let’s take the same model except that we

place the points on a two-dimensional square lattice. The fact that we did so will make

no difference to the questions we previously discussed. It is still true that if we pick any

subset N, the average number of black points will be γN. But now there are some new

questions we can ask. For example, what is the distribution of sizes of percolation clusters?

At what value of γ does the system undergo a percolation transition? How many different

percolation phases does the system have and what is the order of the transitions between

them? To go a step further, take the points and put them on a D-dimensional cubic lattice.

The same kinds of percolation questions can be asked but the answers are D-dependent

even though it is exactly the same set of points with exactly the same statistical rule for

coloring them. By adding the structural relations implicit in the lattice we have made

a very dull model interesting. Notice that the original statistical model had nothing in

it which told us whether points are distributed on a lattice; or, if they are, what is the

dimension of the lattice.

The model of eternal inflation we are going to study is in some ways similar to this

simple example—not the interesting lattice version, but rather the dull version—which has
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so little structure that one cannot say how many dimensions it represents. The features

that it exhibits are those that are common to every dimensionality. We will argue though,

that as simplistic as the stripped down model may be, it still has enough complexity to

address many of the subtle problems of eternal inflation. Conformal symmetry is still

present in the stripped down version, and non-terminal bubbles don’t disrupt it. Terminal

bubbles break the symmetry, but in a very simple way. And most notably, crucial elements

for studying the measure problem have not been eliminated by the stripping down.

The reason that we can profitably consider so unstructured a model is that the large

scale properties—super-horizon properties—of eternal inflation are dominated by the fact

that different causal patches have passed out of causal contact and do not interact with

each other. That is the main feature of the model we study; it is a model of causal patches

that reproduce and fall out of contact.

The model described in this paper shares many features with the model proposed by

Freivogel and Kleban in [4]. Other notable work on this subject includes [5].

In the remainder of the paper we give a systematic discussion of the model. After

concluding we present two appendices. The first reviews the properties of eternal inflation

that parallel the cellular model, and the second gives a few brief remarks on some aspects

of dS/CFT and FRW/CFT motivated by this model.

2 The Cellular Model

2.1 The Model

We will start with a stochastic [6] model which seems complicated enough to have a

definite dimensionality. We began studying this model as an approximate discretization of

the standard bubble-nucleation [7] picture of eternal inflation. However, we soon came to

realize that the cellular model is not so much an approximation to the continuum theory,

as it is a mathematically distinct structure which exhibits remarkable parallels with eternal

inflation.

We first describe a version of the model assuming a landscape containing only de Sitter

vacua. We do not derive the landscape from string theory or from a model of scalar fields:

we simply postulate a discrete collection of vacua labeled by an index n called the color

of the vacuum. In addition to the color label, each vacuum has a cosmological constant

proportional to the square of its expansion rate Hn. We will also attribute to it an entropy,

Sn ∼
1

H2
nG

. (2.1)
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The entropy counts the number of microstates that are lumped into a single macroscopic

state n. Later we will include terminal vacua with zero or negative cosmological constant .

The model can be constructed in any number of spatial dimensions but for definiteness

we will work with 3+1 dimensional spacetime. There are two versions of the model which

we will call the compact and noncompact cases. The compact case begins with a single

cell, while the non-compact case begins with an infinite cubic lattice of cells. The two

cases represent the global slicing of de Sitter space by compact spatial 3-spheres, and the

non-compact flat-space slicing of de Sitter space. In either case we pick an initial condition

[8] in which each cell is painted with a color. In the non-compact case the colors can vary

from place to place but for simplicity we take the initial state to be uniformly colored.

Inflation is represented by dividing the cells in half, along each direction of space, so

that every cell is replaced by 8 = 23 smaller cubes without changing the color. This

represents a single 2-folding (we use the term 2-folding in the same sense as e-folding) of

inflation. If we endlessly repeat the doubling procedure without changing the colors of

the cells, the process models the exponential expansion of de Sitter space. However, the

actual procedure defining the model is more complicated.

After doubling the lattice (multiplying the number of cells by 23), color the boxes by

going through the finer lattice and, with probability γnm � 1, repainting each m-colored

cell with color-n. The symbol γnm represents the rate of nucleation of bubbles of type n in

a vacuum of type m. This procedure is iterated ad infinitum in the obvious way. At each

step the cells are divided into 23 equal cells, which are then re-colored with probabilities

γnm. This procedure is illustrated for the 1+1 dimensional case in figure (1).

u

Figure 1: Three steps of the 1+1 dimensional cellular model. Note that transitions in both
directions are allowed.

After u steps the number of cells is N(u) = 23u and the number of cells of color n is

Nn(u). The fraction of cells with color n can be thought of as the probability that a uth
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generation cell has color n,

Pn(u) ≡ Nn(u)

N(u)
=
Nn(u)

23u
. (2.2)

The probabilities Pn(u) are governed by rate equations similar to those introduced for

bubble nucleation in eternal inflation by Garriga, Schwartz-Perlov, Vilenkin and Winitzki

[9]. In going from step u to u+ 1 the probabilities change according to

Pm(u+ 1) = Pm(u)−
∑
n

γnmPm(u) +
∑
n

γmnPn(u). (2.3)

The negative term on the right side represents the depletion of the mth color by transitions

to other colors. The final term is the increase due to transitions from other colors. Note

that (2.3) guarantees probability conservation:∑
m

(Pm(u+ 1)− Pm(u)) = 0.

We can also write the equations in matrix form. Let P be a column vector with entries

Pn.

P (u+ 1) = GP (u) (2.4)

with the matrix G having the form

Gmn = δmn −
∑
r

γrmδmn + γmn. (2.5)

2.2 Detailed Balance

Although the rate equations make sense without any restriction on the symmetry of the

matrix γnm, in what follows the property of detailed balance will play an important role.

One can justify detailed balance in a number of ways, the most relevant one for our

considerations being that it is true for Coleman De Luccia tunneling rates. Detailed

balance says that γnm and γmn differ only in that the transition rate is larger in the direction

that increases the number of microstates. More precisely, it assumes that the transition

rates between between microstates are symmetric. The detailed balance condition is

γnm
γmn

= eSn−Sm . (2.6)

This rule can be expressed in terms of a real symmetric matrix Mmn = Mnm:

γnm = Mnme
Sn . (2.7)
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Note that according to this rule transitions between vacua can proceed in both directions—

from smaller to larger S, or from larger to smaller— although the probability for a transi-

tion that decreases the entropy is much smaller than then the transition that goes in the

other direction. The motivation for allowing upward transitions comes from considering

the thermodynamics of a static patch of de Sitter space [10, 11, 12].

The matrix G in (2.5) is not symmetric but it does have a complete set of eigenvectors

with real eigenvalues. To see this define1 a diagonal matrix Z

Zmn = δmne
Sn/2 (2.8)

and a new matrix S by

S = Z−1GZ. (2.9)

Plugging in the value of (2.5) and (2.7) one sees that the matrix S is symmetric. It thus

has a complete orthonormal set of eigenvectors, which we denote by∑
n

Smn(I)n = λI(I)m. (2.10)

These satisfy

(I) · (J) =
∑
m

(I)m (J)m = δIJ (2.11)

and ∑
I

(I)m (I)n = δmn. (2.12)

The eigenvectors of G are then given by

P {I}m = eSm/2(I)m. (2.13)

2.3 Statistical Equilibrium

The following facts are easy to prove.

• The sum of the Pm is conserved. To interpret Pm as a probability we normalize the

sum to 1.

• There is exactly one eigenvector with unit eigenvalue. We call it (0)m

• All other eigenvalues have magnitude less than one.

1This was pointed out to us by Yasuhiro Sekino.
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• The eigenvector (0)m has the form

(0)m =
eSm/2√∑

n e
Sn
. (2.14)

The interpretation of (2.14) is most obvious when it is expressed in terms of the prob-

abilities Pm:

P {0}m =
eSm∑
n e

Sn
. (2.15)

Since all other eigenvalues have magnitude less than one, a generic initial condition

for Pn will evolve to become asymptotically proportional to (2.15). In other words the

system evolves to an equilibrium fixed-point, in which the population of vacua is simply

proportional to the number of microstates of each vacuum. As we will see this result is

entirely expected from a local perspective.

Let us consider the approach to the fixed-point. The transient behavior is determined

by the remaining eigenvalues of S which are all less than one in magnitude. In particular

the largest eigenvalue not equal to one is called λ1. It determines the leading transient.

The corresponding eigenvector is P
{1}
m = eSm/2(1)m. The leading transient will have the

form

P = P 0
m + cλu1P

{1}
m . (2.16)

Initial conditions are easy to formulate in terms of the eigenvectors P
{I}
m . The general

solution of the rate equations is

Pm =
∑
I

cIP
{I}
m λuI . (2.17)

2.4 Terminals and the Dominant Vacuum

Terminal vacua play a very important role in eternal inflation. A terminal vacuum is one

from which no further transitions take place. Vacua with vanishing cosmological constant

are terminal. Vacua with negative cosmological constant are usually assumed to also be

terminal.

When there are terminal vacua the situation is somewhat different. For simplicity

suppose there is one terminal vacuum labeled by m = 0.2 By definition the rate for a

terminal to make a transition to any other vacuum is zero. Therefore γn0 = 0 for all

2It is trivial to include more than one terminal, one just changes γm below to
∑

i γim where i runs over
all terminals.
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n. Formally this is what would happen if S0 were infinite. In that case the eigenvector

P {0} would be trivial; it would have support only on the terminal entry. The equilibrium

fixed-point would degenerate so that only the terminal vacuum would have non-vanishing

weight.

We can eliminate the terminal vacuum from the rate equation altogether. Defining

γm ≡ γ0m, the population of non-terminal vacua is controlled by the rate equation

Pm(u+ 1) = Pm(u)−

(∑
n

γnm + γm

)
Pm(u) +

∑
n

γmnPn(u). (2.18)

Here m,n are non-terminal and γm is the transition rate from color m to the terminal

vacuum. These equations no longer satisfy probability conservation for the simple reason

that probability leaks into the terminal vacuum. The matrix G is now given by

Gmn = γmn + δmn(1− γn −
∑
r

γrn). (2.19)

The matrix S = Z−1GZ is still symmetric and its eigenvectors still form an orthonormal

basis, now with all eigenvalues less than one in magnitude.

The largest eigenvalue of this G determines the asymptotic late-time population of non-

terminal vacua. Call it and its corresponding eigenvector λD and (D)m. We also define

P
{D}
m through equation (2.13). The statistical ensemble of vacua with relative probabilities

P
{D}
m is called the dominant eigenvector [9].

It is widely expected that decay rates γ are very dissimilar to one another since they

are exponentials of Coleman De Luccia instanton actions. Generically this leads to a

situation in which one vacuum—the dominant vacuum—has a much longer lifetime that

any other. The dominant eigenvector will then have entries which are very small except

for the dominant vacuum. In what follows we will not make use of the assumption that

only one vacuum dominates P {D}.

2.5 Series and Parallel

There are two ways to follow the evolution of the model. The first is global. In the global

view, at any given time the system consists of 23u cells which all split simultaneously with

each tick of the clock, i.e., each integer step of u. . The number of cells of color n is Nn(u).

Some patches reach terminal status and stop reproducing, but eternal inflation continues.

The second way of thinking about the model is completely local and does not require

any global considerations. Imagine yourself in one of the cells. When the cell splits, pick
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one of its descendant cells—it does not matter which—and imagine transiting into that

cell. At each stage you are following a branching tree along a route from its trunk to one

of its branches. If at any given time you are in a cell of color n then you may stay in the

same color, or with probability γmn transition to color m. Following the process locally, the

probability of finding yourself in a given color satisfies the rate equation (2.3). In this form

the evolution refers to a single causal patch, and it terminates when a terminal vacuum is

reached.

The relation explained above, between the parallel and series views, is at the heart of

the “global-local duality” described in [13].

Consider, from the local perspective, the case with no terminal bubbles. This is the

analog of studying de Sitter space in the causal patch formulation. What one expects

is that the patch eventually comes to thermal equilibrium. Thermal equilibrium does

not mean the system is static: fluctuations continually take place between configurations,

with the statistical distribution of vacua (local minima of the landscape-potential) being

proportional to (2.15).

From the local perspective the probability Pm(u) is nothing but the probability for the

observer to observe color m at time u. If the observer’s measurements are conditioned on

u being large then Pm(u) will either be governed by the fixed point (2.15) if there are no

terminals, or by the dominant eigenvector if there are terminals.

Of course the observer has no way of knowing how large u is. If it is not large the

observer will experience transients which depend on the initial condition. Such a behavior

would be surprising from the global view since the overwhelming majority of branches are

very high up on the tree.

3 The Tree-like Geometry of the Model

3.1 Why Trees?

In this section we are going to strip away some superstructure of the cellular model. The

superstructure is roughly the analog of adding a lattice to the simple statistical model in

the introduction. Eliminating it would be the wrong thing to do if we were interested in

percolation, but if our interest is only in the population-statistics of black and red points,

the lattice may be confusing. In the model of colored points there is no geometric or

topological structure left after we throw away the lattice, but the stripped-down cellular

model has an interesting geometry that survives. Moreover, for the questions that we
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will be concerned with; namely, questions of statistics and correlations of populations, the

lattice superstructure is irrelevant. That’s not to say that there are no questions for which

it is relevant.

One of the chief advantages of eliminating the superstructure is that it obscures a

powerful symmetry of the model. The surprising exact symmetry closely parallels the full

symmetry of de Sitter space, including the conformal symmetry of its boundary.

The important fact in stripping away the excess structure is that two cells, which are

created at the same instant, never talk to each other afterwards; they branch and evolve

completely independently. This is so, not only for cells which are distant on the lattice, but

also for adjacent cells. The really important notion of proximity is not how close points

are on the lattice, but how far back into the past you have to go before the two cells are

found within a common ancestor cell. We discuss this in greater detail in section 5.

Given that once cells form, they never interact, it is obvious that the structure of the

model is tree-like. Tree graphs are composed of nodes and links (often called edges) and

have no closed loops. The tree representing the compact version of the cellular model

begins with a single link which then branches out to eight links. Each new link then

branches to eight more ad infinitum.

Once we strip away the lattice superstructure there is nothing special about the number

eight: we may consider tree models which at each stage branch to two, three, or any

number of branches. Very little of what we say depends on that number, but for one or

two technical points involving the symmetry of trees, the mathematics is simplest if at

each step an incoming branch splits into a prime number of outgoing branches.3

The simplest of all is a tree in which each branch splits into two branches. We will

mostly consider the general prime case, often illustrating it with the binary case as in

figure (2). We will use the letter p to denote the number of outgoing branches: the binary

case is p = 2.

Before discussing the tree further, let us recall some concepts about the causal structure

and geometry of Lorentzian space-times and de Sitter space in particular. The discussion

is not intended to be complete.

• In a Lorentzian space-time there is a causal relation between any pair of points a and

b. The point a is said to be in the future of b if there is a future directed time-like

or light-like trajectory from b to a. For simplicity we will just say time-like. We may

3Our computations of correlation functions can be easily generalized to arbitrary branching number,
but the description of the symmetry of the tree becomes more complicated if it is not prime.
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Figure 2: The causal tree for three steps of the p = 2 cellular model.

also say that b is in the past of a. The set of points in the future of a defines the

causal future of a. The set of points in the past of a defines its causal past.

• Two points will be said to be out of causal contact if there is no third point in the

causal future of both of them. In other words they are out of causal contact if they

cannot send messages to the same point.

• If a is in the past of b then the intersection of the causal future of a and the causal

past of b is called the causal diamond of a, b.

• A causal structure is homogeneous if any two points are related by a mapping of the

geometry that preserves the causal structure.

De Sitter space has a particular causal structure that satisfies the following postulates:

• de Sitter space has a homogeneous causal structure. There are symmetries which

map any point to any other point.

• A special feature of inflating spaces is that future directed world lines can fall out of

causal contact. This is described by saying that for any point a, there exist points b

and c in the causal future of a, that are out of causal contact with each other.

Now let us return to the tree geometry of the cellular model.

• Every node influences all the links that grow out of it in the future direction. The

set of nodes and links that can be influenced by a given node is called the causal

future of the node. It is itself a sub-tree and it plays the role of the interior of the

future light-cone of the node.
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Figure 3: The causal future of a and the causal past of b on the p = 2 tree.

• The causal past of a node a is the set of all points whose causal futures contain a. In

other words the causal past of a is the set of points that can influence a, or that can

be seen from a. The causal past plays the role of the interior of the past light-cone

of a. Figure (3) shows the causal future and past of two points, a and b respectively,

as pink subsets of links.

• Given two nodes a and b with a in the causal future of b, we define their causal

diamond as the intersection of the causal future of a and the causal past of b

• It is not obvious in what sense the tree is homogeneous and in fact it is not in the

compact case. But as we will see, the non-compact case has a large symmetry that

makes it homogeneous. The symmetry will be called p-conformal symmetry.

• It is obvious by inspection that for any point a, there exist points b and c in the

causal future of a, that are out of causal contact.

We can also introduce a metrical structure for the tree. The simplest metrical structure

is to assume every edge is of the same length. We will call that notion of distance, the

graph-distance. But in the cellular model there is another, fluctuating metric. Recall

that each cell is endowed with a color n and Hubble constant Hn which are determined

probabilistically. The Hubble constant of an edge provides a unit that allows a definition

of proper time.

• The proper time between two successive nodes is given by

∆τ = H−1
n (3.1)
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where the n is the color of the link connecting the points. More generally, if b is in

the causal future of a then the proper time between the two nodes is

τab =
∑
n

H−1
n . (3.2)

So far the tree picture has been described assuming no terminals. The existence of

terminals is a straightforward modification. If a terminal branch grows out of the tree it

simply gets pruned after one link. The main effect of the terminals is to make the total

number of branches grow slightly slower than pu.

Figure 4: The pruned tree of a landscape with terminals.

3.2 The Future Boundary

In the theory of de Sitter space, and also eternal inflation, the future boundary plays a

very important role [14, 15, 16]. The future boundary is not a part of the original bulk

geometry. It is a set of added points that close the geometry. It may be defined in the

following way. Consider the set of infinitely extended time-like world-lines. These world-

lines form equivalence classes. We will say that two such world-lines are in the same class

if they never fall out of causal contact. In other words for any point on one world-line

some part of the other world-line is in its causal future. Each equivalence class defines a

single point on the future boundary of de Sitter space. Note that by definition, any two

distinct boundary points are out of causal contact.

One can define the causal past of a boundary point in an obvious way. The causal past

of a boundary point is called a causal patch. Now let us turn to the tree.

The red line at the top of the infinite tree in Figure (5) is the future boundary of the

tree. It is defined in much the same way as in the continuum case. Take any infinite future

directed sequence of links. Two distinct sequences will always fall out of causal contact,
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so each equivalence class contains only a single world-line in the tree case. The endpoint

of each infinite world-line defines a point on the boundary. The world-line itself defines a

causal patch.

Figure 5: The future boundary of the infinite tree for the p = 2 model.

One can regulate the tree by terminating it after a given number of steps, i.e., after

u0 units of discrete time. The regulated version of the boundary is composed of a set of

points which grows exponentially with u0. The regulator time u0 eventually tends to ∞.
The boundary has its own geometry which is not the geometry inherited from the

bulk. Consider two points x, y, on the boundary. The boundary-distance between x and

y is defined in what may appear to be an odd way. We consider the unique path from

each point x, y, that proceeds toward the past. Eventually those paths will intersect at

some value of the discrete time ui(x, y) (the index i indicates intersection). The distance

between the points x, y is be defined to be

|x− y|p = p−ui(x,y). (3.3)

At the moment the left-hand side of this equation is just a symbol, but we will see

below that it is p-adic distance defined on the boundary. Note that in this form there is

no reference to the regulator u0.

The distance defined by (3.3) has an unusual property. Pick any three points x, y, z on

the regulated boundary. It is always the case that two of the three distances |x− y|p, |x−
z|p, |z − y|p are equal. The third one is either shorter than, or equal to the other two. In

other words every triangle is either equilateral or “tall-isosceles”. The term for geometries

with this property is ultrametric [17]. This is equivalent to a strong form of the triangle

inequality:

|x− y|p ≤ max { |x− z|p, |z − y|p } (3.4)
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It should be noted that the ultrametric boundary distance has nothing to do with

the bulk metric defined by (3.2). The bulk metric can be thought of as fluctuating since

the colors are determined by probabilistic rules, while the boundary ultrametric is a fixed

property of the tree.4

3.3 The p-adic Boundary

The boundary of de Sitter space is an ordinary Euclidean geometry. The boundary of the

tree is less familiar and is described in terms of the p-adic numbers. If the noncompact tree

is defined so that each incoming branch splits into p outgoing branches then the boundary

of the tree is the space of p-adic numbers which we will define shortly5.

The p-adic numbers (and also the N-adics) are well known to have an ultrametric

structure. In this section we will give an elementary account of p-adic numbers and their

relation to trees. For an especially clear review we recommend [18]. These concepts have

been used in the study of the p-adic string [19]. Here the string world sheet is the tree

[18]. On a formal level p-adic string correlators are a special case of those discussed here.

We first consider the case in which the tree grows out of a single branch as in Figure (5).

This case is simpler because only the p-adic integers, denoted Zp, are needed to describe

the boundary. Our description will often specialize to p = 2 but the generalizations are

straightforward. We will write numbers in base p. Begin at the decimal point and work to

the left as in the usual theory of integers. For example 100101100. is the binary expansion

of 300. Now, unlike the ordinary integers, p-adic integers are defined as being unending

sequences of this type: unending to the left! Thus 300 is written

...00000100101100.

As long as the non-zero part of the string is finite the number is an ordinary integer. But

in the theory of p-adic numbers we allow arbitrary infinite strings, most of which would

have no meaning in ordinary arithmetic.

4This structure should be closely related to the ultrametric structure in perturbative de Sitter fluctu-
ations found by Anninos and Denef in [20].

5If the number of outgoing branches is not equal to a prime, then much of the discussion is unchanged
if we substitute the N-adic numbers. The p-adic number systems are special however in that they are
algebraic fields. This is not true for arbitrary N , for example in the 10-adic numbers one can find two
nonzero elements whose product is zero. These elements cannot have multiplicative inverses, so it is not
always possible to divide one N-adic number by another. That such division is possible for p-adics will be
important in our discussion of symmetry below.
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100. 010. 110. 001. 101. 011.

Figure 6: The tree structure of the 2-adic integers. Note that although elements appear
multiple times in the tree, for example we have written zero three times, they only appear
once at a given level and the boundary counts each p-adic integer only once.

We may formally represent the p-adic integers as infinite sums of the form

x =
∞∑
u=0

x(u)pu (3.5)

where u runs over nonnegative integers and the coefficients x(u) are integers chosen from

{0, 1, ... p− 1}. In other words the p-adic integers are just the usual expansion of integers

in base p, but with one difference: they are allowed to go on forever. Of course most of

these numbers would be infinite with the usual notions of magnitude but we won’t let that

stop us. To keep the discussion as concrete as possible we will occasionally introduce a

cutoff by bounding u. The maximum value of u is called u0. In the end, u0 will be allowed

to tend to infinity.

The p-adic integers can be organized in terms of a tree. The root of the tree is the

decimal point at u = 0. Next we move up to u = 1 where we create the first branching by

writing either 0, 1, ..., p− 1 to the left of the decimal point. For the illustrative case of the

2-adic numbers the two branches are 0. and 1. We iterate the procedure: at u = 2 each

branch splits by writing either a 0 or 1 to the left. Thus the branch 0. splits into 00. and

10. while the branch 1. splits into 01. and 11. In Figure (6) a few layers of the p = 2 tree

are shown, ending at u0 = 7.6

The p-adic integers are defined by letting u0 →∞, with different choices of branching

corresponding to different p-adic integers. Choices which terminate, that is whose entries

6For general N at each node of the tree the incoming branch splits into N branches obtained by writing
0, 1, ... or N − 1 to the left of the number associated with that node.
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are all zero beyond some value of u, are ordinary integers. But whether it is an ordinary

integer or not, a p-adic integer is best thought of as an entire infinite trajectory on the

tree. In other words is is exactly what we earlier called a causal patch. Each causal patch

is a point in the ultrametric space of p-adic integers.

There is a natural ultrametric distance defined on the p-adic integers. Say that u is

the highest power of p that the difference between two p-adic integers x and y is divisible

by.7 The p-adic distance between x and y is defined as p−u. What this means in terms

of the base-p decimal expansions is as follows: starting at the decimal point find the first

value of u for which the entries of x and y differ. For example, for 7-adic integers in base

7 if

x = ....2363624653412.

y = ....1332124653412. (3.6)

then the first difference shows up at u = 8. The p-adic distance is defined as p−u, which

is 7−8 in this example. We can define the magnitude of an p-adic integer is its distance

from zero, that is from ....0000000. Note that in p-adic arithmetic the number 1, 000, 000

is very small. 1, 000, 000, 000 is even smaller. By inspecting figure (6) it is clear that this

notion of distance coincides with our previous definition (3.3).

The space Zp of p-adic integers is a compact space. One indication of the compactness

is that the largest distance between p-adic integers is 1. We have seen that Zp is the

boundary of the compact version of the cellular model. For the non-compact case we must

generalize to the full p-adic number system Qp. The p-adic numbers are defined by allowing

a finite number the places to the right of the decimal point to be occupied. For example

....10010.1101 is a 2-adic number. Any p-adic number Q can be written in the form

x =
∞∑

u=−n

x(u)pu (3.7)

with n some finite nonnegative integer.

The space Qp is non-compact. We can define the same distance and magnitude as for

Zp, with the only difference being that u can now be negative. The further the non-zero

string extends to the right, the larger the magnitude of x is. Qp is the appropriate space

for the boundary of the non-compact version of the cellular model. From the cosmological

point of view the space Qp is the future boundary in an analog of the flat slicing of de

Sitter space.

7Divisible here means that you can find an p-adic integer z such that x− y = puz.
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Qp can be thought of in terms of trees which extend into the infinite past. Moreover,

if an infinite element is added the corresponding tree is identical to a regular tree with

every node having p + 1 “edges” coming out of it. Any two nodes are connected by a

unique curve formed from the edges, and such curves can be extended to infinity in both

directions to connect pairs of boundary points. We illustrate this in figure (7).

Figure 7: The infinite tree for p = 2 model. The 2-adic numbers parametrize the red line.

The p-adic number system is a very rich structure that allows many generalizations

from ordinary numbers. The arithmetic processes of addition, subtraction, multiplication

and division are all defined. Functions of p-adics can be defined. The concept of limits

and continuity are simply generalized as is integration. Integration over p-adics is most

easily explained by first regulating the theory with a maximum value u0 of u. If one has

a function on the endpoints—the “leaves”—of the tree, integration is defined by simply

adding the value of the function on every leaf. As in ordinary integration we divide by the

number of leaves, pu0 , to keep the answer finite,∫
p−adic

F (x)dx = lim
u0→∞

p−u0
∑
leaves

F (leaf). (3.8)

3.4 p-Conformal Symmetry

The symmetry of de Sitter space is O(4, 1) which acts on the bulk geometry as an isometry,

i.e., it preserves the distance between any pair of points. The action of the group also
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induces a group of transformations on the future boundary which is well known to be

conformal transformations [14, 15, 16]. For the most part the conformal symmetry has been

studied only in the perturbative theory of de Sitter space, in other words, without bubble

nucleation. One of the main lessons of this paper is that the symmetry has significance

beyond perturbation theory. The work of Freivogel and Kleban [4] leads to the same

conclusion using a related but distinct framework.

The boundary of de Sitter space can be provided with a metric, for example in flat

slicing the natural boundary metric is flat. The O(4, 1) conformal transformations of

the boundary are not isometries; the distance between two boundary points transforms

covariantly.

We will now show that the non-compact version of the cellular model has a remarkable

symmetry which parallels the symmetry of de Sitter space. We begin with the case p = 2

in which the tree splits into two new branches at each node.

So far we have thought of the edges of the tree as being directed. Each edge has a

future directed orientation which in our illustrations is upward. The symmetry that we

will explore is not a symmetry of a directed tree: it is a symmetry only if we remove

the orientation of each edge. We will see in the next section that for the calculation of

correlation functions, the orientation of the tree is irrelevant, as a consequence of detailed

balance.

Let us consider the unoriented tree associated with the 2-adic rationals. That tree is a

graph with every node has three edges coming out of it and there are no closed loops. Such

a graph is called a Bethe tree. It is completely homogeneous. For every pair of nodes,

a and b there is a unique path connecting them. We define the graph-distance d(a, b)

between a and b to be the number of edges between the two points. A transformation of

the tree which preserves all graph-distances is an isometry of the tree.

The infinite Bethe tree in shown Figure (8) A. We have arbitrarily located one of the

nodes, ν0, at the center of the figure. The symmetry includes an obvious subgroup, namely,

the permutations among the edges emanating from ν0. This symmetry is the analog of the

rotation symmetry of the Poincare disc with fixed point at the origin.

The next symmetry is obtained by considering an infinite trajectory through the tree

(as in Figure (8) B), connecting two points on the boundary of the tree. Think of that

trajectory as the trunk of the tree. Define a bush to be a tree that begins with a single link

and then branches out as in Figure (8)C. The full tree consists of the trunk with bushes

periodically growing out of it. It is obvious that the tree is symmetric under discrete

translation along the trunk. Thus there is a symmetry for which the fixed points are any
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Figure 8: Bethe Trees.

pair of boundary points. That is the analog of the non-compact transformations that hold

two points fixed on the boundary of the disc. When combined with the permutations, a

large group is generated.

The general p-adic case is similar, the only difference being that a bush is defined to

begin with p− 1 edges.

As in the continuum case, the symmetry transformations induce transformations of the

boundary. These transformations act on the space Qp. The full symmetry group of the tree

is quite large; we will be particularly interested in a subgroup PGL(2, Qp) whose action

on the boundary is as the set of fractional linear transformations of a p-adic variable x.8

We can parametrize this as

x′ =
αx+ β

γx+ δ
α, β, γ, δ ∈ Qp, (3.9)

which is obviously projective. It is not to hard to see how these transformations can be

extended to isometries of the tree. Begin by observing that any pair of boundary points (p-

adic numbers) xa and ya define a node a of the tree. The node is the point of intersection

of the causal pasts of xa and ya. Now consider a second node, b, defined by boundary

points xb and yb. The graph-distance between a and b can be written in terms of the x.

8We thank Brian Conrad for a very helpful discussion of these symmetries, in particular for pointing
out the relevance of PGL(2, Qp) as opposed to SL(2, Qp).
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The result is

p−d(a,b) =
|xa − ya|p |xb − yb|p
|xa − yb|p |xb − ya|p

. (3.10)

This expression is the norm of the p-adic cross ratio of the four x values. It is a familiar fact

in ordinary arithmetic that cross ratios are invariant under fractional linear transformations

of the form (3.9). The same is true for the p-adic numbers. This proves that graph-

distances on the tree are invariant under the PGL(2, Qp) group.

By contrast, the ultrametric distance between boundary points is not invariant under

PGL(2, Qp) group. Since the ultrametric distance between boundary points is expressed

in terms of the time u of their common ancestor, u is also not invariant. The time u

transforms covariantly and not invariantly under PGL(2, Qp). One may wonder whether

this fact creates ambiguities when light-cone time is used as a cutoff for purposes of defining

a measure. We will see in section 6 that no such ambiguity occurs.

The action of PGL(2, Qp) is also transitive, meaning that it can send any point on the

tree to any other. In boundary language we can see this by observing that we can send any

particular pair of p-adic numbers to any other by acting with an element of PGL(2, Qp).

Thus this subgroup of the full symmetry is already enough to describe the homogeneity of

the tree.

In the next section we will compute correlation functions in the cellular model. We

will find that the asymptotic correlation functions on the future boundary transform co-

variantly under this p-conformal symmetry in a way that closely parallels the conformal

symmetry of correlators on the future boundary of de Sitter space. We will also find

that the existence of terminals breaks that symmetry in a way that is reminiscent of the

persistence of memory effect found in [8].

3.5 Boundary Volume and the Meaning of the Clock

Consider a subset of the compact future boundary with regulator time u0. The volume of

the entire future boundary will be normalized to unity. The total number of points is pu0

so each point can be considered to occupy volume p−u0 . Now consider any subset of the

boundary, the number of whose points grow as

pu0V.

Then the volume of the set is defined to be V. Note that since the whole volume is nor-

malized to unity, V ≤ 1. We may also write this as∫
Zp

1dx = 1 (3.11)
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where the integral is over the p-adic integers.

The cellular model makes use of a discrete time variable u which activates a p-folding

of the number of causal patches at every integer tick of the clock. There are many time

variables that are made use of in eternal inflation. A sample is proper time, scale factor

time, and light-cone time. At first sight it might seem that u should be identified with

scale-factor time. However that is incorrect.9 Consider a node a at time ua. The causal

future of the node defines a set of points on the future boundary. The volume of this set

is is related to the time ua by

ua = − logp Va. (3.12)

Apart from the fact that the logarithm is base-p, this formula is precisely the tree analogue

of the definition of light-cone time [21] introduced by Bousso, Freivogel, Leichenauer, and

Rosenhaus in [22].

The authors of [22] give two definitions of the volume Va in the continuum theory,

but as they argue, the difference is unimportant for many questions. Let’s quickly review

one of the definitions: Va can be defined in terms of a congruence of timelike geodesics

constructed to be orthogonal to some initial surface. In [22] Va is defined to be the volume

on the initial surface of the subset of the geodesics which enter the causal future of a. More

details are provided in appendix A.

This version of light-cone time has an analogue in tree language. For simplicity consider

the compact version which begins with a single node representing the initial condition.

Imagine that the initial edge contains pu0 geodesics all bundled together (as usual u0 is the

cutoff). Every time the geodesics come to a node they evenly divide so that eventually,

there is one geodesic per node at the cutoff. We can obviously identify Va with the number

of geodesics entering the causal future of a. If we prefer to use the non-compact version of

the model we can define Va as the fraction of geodesics entering the causal future of a.

We can see the analogy of the cellular time to light-cone time in another way. It is

evident that as we move up the tree, the number of cells grows as a pure exponential.10 As

we have seen, two distinct nodes at the same level of the tree are unable to communicate in

the future. In de Sitter space this is true for any two points that are not in the same horizon

volume, so the natural analogues of the cells in the cellular model are horizon volumes.11

9We thank B. Freivogel for explaining this point to us.

10When terminals are present this is not strictly true, since the pruned branches in figure (4) no longer
grow exponentially. Our argument here is simplest applied to a landscape with no terminals.

11Another way to see this is to observe that, in the model, a single nucleation means a single color
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Light-cone time can be usefully characterized as the time for which the number of horizon

volumes exponentially grows. More precisely, under a set of assumptions which we review

in Appendix A, the total number of horizon volumes of vacuum m in the stochastic picture

of eternal inflation obeys a continuous-time rate equation (A.13) under which the total

number of horizon volumes increases as a pure exponential [13]. We will from here on

sometimes refer to the u of the cellular model as light-cone time.

4 Correlation Functions

4.1 The Two-point Function

In this section we will compute correlation functions evaluated in the equilibrium state of

the cellular model. Write the rate equation (2.3) in the form

Pm(u+ 1) = GmnPn(u). (4.13)

If the rate equation satisfies detailed balance, which we will assume for the rest of the

section, we can write

Gmn = eSm/2Smne
−Sn/2 (4.14)

with Smn a symmetric matrix. We can diagonalize S by a basis of orthonormal eigenvectors

(I)n, where I labels the eigenvector and n labels the color component. The associated

eigenvalue is λI , which we will also write as p−∆I

Gmn (I)n = λI (I)m = p−∆I (I)m. (4.15)

To make the computation simple, it is convenient to define a quantity that we will call

a propagator12. Suppose a cell is known to have color r at time ui. The propagator is the

probability that a descendant of that cell will have color n at time ui + u. It is given by

the u-th power of the matrix G:

Pnr(u) ≡ (Gu)nr = (I)n λ
u
I (I)r e

Sn−Sr
2 . (4.16)

Now let us consider the colors on the cutoff surface at u0. The correlation function

Cnanb
(a, b) is defined as follows: Let a and b be two cells at time u0. Cnanb

(a, b) is the joint

probability that cell a has color na and cell b has color nb.

change. As we review in appendix A, a bubble nucleation effectively replaces a single horizon volume in
the ancestor at the time of nucleation, thus the cells should be horizon size.

12The propagator defined here is not the analog of the Feynman propagator which is non-vanishing
outside the light cone. Its closest field theory analog is the causal commutator.
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To compute Cnanb
(a, b) we begin by tracing back along the causal pasts of both points

until we reach the common ancestor cell r. Let us suppose that this occurs at time ui and

that the color of the ancestor cell is nr. Then the probability for the colors at a and b to

be na and nb is

Pnanr(u0 − ui)Pnbnr(u0 − ui).

But to compute the correlation function in the equilibrium state we need to multiply this

by the fixed point probability P
{0}
nr = 1

N e
Snr that the ancestor cell had color nr and then

sum over nr. The normalization factor is N ≡
∑

m e
Sm .

Cnanb
(a, b) =

1

N
∑
nr

eSnr Pnanr(u0 − ui)Pnbnr(u0 − ui). (4.17)

Now using (4.16) for the propagators, we get

Cnanb
(a, b) =

1

N
∑
nr,I,J

eSnr (I)na λ
u0−ui
I (I)nr e

Sna−Snr
2 (J)nb

λu0−uiJ (J)nr e
Snb

−Snr
2

=
1

N
∑
I

λ
2(u0−ui)
I (I)na (I)nb

e
Sna+Snb

2 . (4.18)

In the last step, we used the orthonormality of the eigenvectors to set I = J . One can

also write the correlation function in the I, J basis in which it is diagonal and extremely

simple,

CIJ(a, b) ≡ N
∑
nanb

Cnanb
(a, b) (I)na (J)nb

e−
Sna+Snb

2 = δIJλ
2(u0−ui)
I . (4.19)

As a final step, we would like to extrapolate this correlator to the future boundary. This

can be done by pushing the points a, b up the tree, and stripping off vanishing factors.

Mathematically, we let the level u0 run to infinity, and define sequences {au0}, {bu0} in the

causal futures of a and b respectively. These sequences define p-adic numbers x and y. To

keep the result finite, we will multiply by a wave function renormalization factor of λ−u0I

for each external leg. The result is

〈OI(x)OJ(y)〉 ≡ lim
u0→∞

CIJ(au0 , bu0)λ
−u0
I λ−u0J = δIJλ

−2ui
I . (4.20)

Recalling that λI = p−∆I and recognizing p−ui as the p-adic distance |x− y|p, we have

〈OI(x)OJ(y)〉 =
δIJ

|x− y| 2∆I
p

. (4.21)
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The correlator has the precise form of a two-point function of primary operators in

a conformal field theory. The fact that the correlation function has an overall scaling

behavior is not surprising. It follows from the scale invariance of the fixed point. The

unexpected property is the diagonal nature of 〈OI(x)OJ(y)〉. In a conformal field theory

this property is a consequence of invariance under the special conformal transformations

which have x and y as fixed points. In the cellular model it is a consequence of the

orthogonality of the eigenvectors which, in turn, followed from detailed balance.

4.2 The Three-point Function

The agreement of the 2-point function with the rules of conformal field theory is not a

fluke. Let us move on to the 3-point function. Let the three points be denoted a, b, and c,

and let them have colors na, nb, and nc. Recalling that triangles in ultrametric geometry

are always tall isosceles, we take the short edge to be between a and b. Tracing back to

their common ancestor cell d, we label that cell with color nd. a,b, and c are located on

the cutoff surface u0 and d is at time ud. The common ancestor of all three points is called

e.

Finally, define

u0 − ud ≡ u

ud − ue ≡ v. (4.22)

The 3-point function is given by

Cnanbnc(a, b, c) =
1

N
∑
nd,ne

eSnePndne(v)Pncne(v + u)Pnand
(u)Pnbnd

(u). (4.23)

To compute this correlation function we insert (4.16) and use the orthonormality of the

eigenvectors. As above, that the answer simplifies somewhat in the eigenvector basis. After

a straightforward computation, one finds

CIJK(a, b, c) ≡ N 3/2
∑
nanbnc

Cnanbnc(a, b, c) (I)na (J)nb
(K)nc e

−
Sna+Snb

+Snc
2

= N 1/2
∑
n

e
−Sn
2 (I)n (J)n (K)n p

−(∆I+∆J−∆K)u−2∆K(u+v). (4.24)

The factor p−(∆I+∆J−∆K)u−2∆K(u+v) may look unfamiliar, but after stripping off external

leg factors as for the two point function, and taking the limit to the future boundary, the

result can be expressed in terms of the p-adic distances in a completely symmetric way.
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〈OI(x)OJ(y)OK(z)〉 ≡ lim
u0→∞

CIJK(au0 , bu0 , cu0)λ
−u0
I λ−u0J λ−u0K (4.25)

=
CIJK

|x− y|∆I+∆J−∆K
p |x− z|∆I+∆K−∆J

p |z − y|∆K+∆J−∆I
p

. (4.26)

Here the structure constants are

CIJK = N 1/2
∑
n

e
−Sn
2 (I)n (J)n (K)n. (4.27)

This three-point function has the exact form of a correlation function of three scalar

operators of dimension ∆I,J,K in a conformal field theory, except expressed in terms of

p-adic distance (3.3).

The CIJK are the analog of the operator product coefficients. They obey the basic

associativity relation

∑
H

CIJHCHKL =
∑
H

CIKHCHJL, (4.28)

guaranteed by orthonormality of the eigenvectors.

4.3 General correlators and PGL(2,Qp)

A computation similar to the above can be done for higher point functions. The result in

the eigenvector basis can be compactly summarized for any correlation function. Begin

with the portion of the tree containing all points in the correlator and their common

ancestors. Mask all links that aren’t necessary to connect the correlator insertions (as

shown in Fig (9)). Now apply a one-step propagator to each unmasked link, and assign

structure constants to the vertices.

These rules uniquely determine the correlation functions at finite points on the tree.

To compute boundary correlators, we take points to infinity, where they define p-adic

numbers. Stripping off factors of λu0I makes the resulting expression a function of the

p-adic distances between the points.

To show that the conformal properties of the two- and three-point functions persist

to higher multiplicity, we will show that the extrapolated functions are covariant under

PGL(2, Qp) transformations. PGL(2, Qp) acts on the tree as a group of isometries, leaving

the number of links between points unchanged. Since the graphical rules depend only on

these distances, the correlation functions at finite points on the tree are invariant under
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Figure 9: Masking unnecessary links (top) gives the diagram from which the correla-
tor is computed using graphical rules (bottom). The result for the example shown is∑

H CHIJCHKLλ
5
Iλ

3
JλHλ

2
Kλ

2
L.

the group action. The extrapolated correlators are not invariant, though, since the level

u0 transforms under PGL(2, Qp), and consequently the stripping factors p−∆Iu0 change.

Let’s evaluate this change. Any vertex in the tree can be defined as the most recent

common ancestor of two points x, y on the boundary, with the level u given by p−u =

|x− y|p. The action of PGL(2, Qp) on the boundary now conveniently defines the action

on the tree. Let {yk} be a sequence of p-adics converging appropriately to x. Then {(x, yk)}
define a sequence of tree vertices with increasing level, approaching the future boundary

at point x. We can use this sequence to evaluate the asymptotic ratio of p−u before and

after the PGL(2, Qp) transformation f as a limit

lim
k→∞

|f(x)− f(yk)|p
|x− yk|p

= |f ′(x)|p. (4.29)

As a result, the new stripping factor for OI(x) after the PGL(2, Qp) transformation is

|f ′(x)|∆I times the old one: extrapolated operators transform covariantly, in a manner

precisely analogous to conformal primaries in CFT.

Before moving on, we will make a few comments.

• Detailed balance was crucial in establishing the conformal properties of the corre-

lators. Without it, the graphical rules depend on orientation of links. Since ori-

entations are not preserved by the action of PGL(2, Qp) on the tree, the resulting

correlators aren’t invariant.
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• The rules for building correlation functions have an equivalent OPE description

OI(x)OJ(y)→
∑
K

OK(y)CKIJ |x− y|∆K−∆I−∆J
p , (4.30)

applicable whenever y is the closest insertion to x and vice versa. O0 acts as the

identity in this operator algebra. As usual, factorization on O0 gives clustering.

• The four-point function can be written in terms of ∆ =
∑

i ∆i and the cross-ratio

x = x12x34
x14x23

as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∏
i<j

|xij|∆/3−∆i−∆j
p

∑
H

CH12CH34|x|∆H−∆/3
p (4.31)

where we’ve assumed that x1 is the closest insertion to x2 and vice versa. When x1

is equidistant from x2 and x3 there are two different ways to evaluate this correlator.

That they agree follows from the associativity of structure constants (4.28).

If p > 2, it is possible for the masked tree to have vertices with, say, four lines coming

out of them. These are treated as coincidence limits of two three-way vertices, with

a zero length propagator in between. Of course, there are multiple ways to contract

the indices in this limit. Equation (4.28) ensures that they all agree.

• The correlation functions become very non-gaussian if the differences in entropies

are large, in the sense that some CIJK ’s are parametrically larger than 1.

• The model can alternatively be formulated as a generalized Ising model on the tree,

where the spin variable runs over colors. The Boltzmann weights on the links are

determined by Snm, and those on the nodes by Znn.

This is a generalization of the free scalar field construction in [18] and the Ising

model calculations in [23].

5 Time’s Arrow, Terminals, and Fractal Flows

The arrow-of-time question—Why does time have a direction?— is one of the grand ques-

tions of cosmology. It is also the problem of why the history of the universe is not a

Boltzmann fluctuation13. It troubled Boltzmann himself, and in its modern de Sitter ver-

sion it was raised in [10]. In a thermodynamically closed universe (the causal patch of de

13A colorful name for the same difficulty is the problem of Boltzmann Brains. But even if one believed
that life requires a universe more or less similar to our own, the problem of Boltzmann fluctuations is still
a paradox.
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Sitter space is thermodynamically closed) there are just too many ways to make a universe

in which life can exist—too many trajectories in phase space—and if all micro-states are

equally likely, the probability that world resembles ours is exponentially negligible.

The arrow-of-time problem is often stated as a problem of initial conditions: why did

the universe begin in a state of very low entropy?14 However, there is more to it than

that. If a closed system starts in a state of low entropy, there will be a transient behavior,

with a time-arrow, during which conventional cosmology may occur before thermal equi-

librium is achieved. However, after thermal equilibrium, there will be an infinite future

without a time-arrow, in which repeated Boltzmann fluctuations and Poincare recurrences

produce an endless sequence of inhabited worlds, the overwhelming majority of which

are inconsistent with observation. Eternal inflation without terminals cannot solve this

problem.

Consider the description along a single causal patch. According to our assumptions

thus far, if there are no terminals, the causal patch tends to an attractor with uniform

probability for every microstate. Detailed balance insures that within such a patch there

will be no time-arrow. Indeed, it is exactly the lack of a time-arrow that makes the

attractor conformally invariant in the bigger global picture. A conformally invariant fixed

point is not a good feature; it is a disease.

It has been understood for a while that the existence of terminal vacua changes the

story in a very positive direction[24, 25, 26], and the sharpest statement of these ideas

is in a recent paper by Bousso [27]. The relevant mechanism is simply illustrated in the

cellular model. The conformally invariant fixed point in the theory without terminals is

replaced by a new kind of attractor that does have a time-arrow.

In the presence of terminal vacua, the co-moving coordinate volume eventually becomes

solidly dominated by terminals. Eternal inflation does not end, but it is restricted to a

fractal of coordinate volume that decreases like λuD ( λD being the dominant eigenvalue

of the rate equation 2.18). Despite the fact that the coordinate volume goes to zero, it is

still possible to define a collection of non-trivial conditional correlation functions on future

infinity:

Cna(a)

Cnanb
(a, b)

14This formulation is usually attributed to Penrose. Other more recent discussions include [28, 29].
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Cnanbnc(a, b, c)

............ (5.32)

The one-point function Cna(a) is defined to be the probability that the vacuum at

point a has color na, given that a has not been swallowed by a terminal bubble. It can be

identified with the dominant eigenvector P
{D}
m . Similarly Cnanb

(a, b) is the joint probability

that a and b have color na, nb, given that neither point has been swallowed by terminals,

and so on. These conditional correlation functions define a new kind of non-conformal

attractor that is not a conventional field theory. We will explore its properties.

Let’s return to the two point function. Equations (4.16) and (4.17) are unchanged

by the effects of terminals with one exception. The factor P 0
n = eSn

N represented the

probability that the color of the common ancestor is n in the equilibrium state. When

there are terminals the equilibrium state should be replaced by the dominant eigenvector

with non-normalized probabilities15

P {D}n = e
Sn
2 (D)n p

−∆Dui (5.33)

Thus

Cnanb
(a, b) =

∑
nr

p−∆Duie
Snr
2 (D)nrPnanr(u0 − ui)Pnbnr(u0 − ui), (5.34)

which can be written,

Cnanb
(a, b) =

∑
I,J

{∑
n

e
−Sn
2 (D)n (I)n (J)n p

(∆J+∆I−∆D)ui

}[
(I)na (J)nb

e
Sna+Snb

2 p−(∆I+∆J )u0
]
.

(5.35)

The factors in the square brackets are removed by going to the eigenvector basis and

extrapolating to the boundary, which gives

〈OI(x)OJ(y)〉 =
∑
n

e
−Sn
2 (D)n (I)n (J)n

(
1

|x− y|p

)(∆J+∆I−∆D)

. (5.36)

This formula has an interesting structure. 〈OI(x)OJ(y)〉 has the form of a limit of a

three point function in which one of the points is at p-adic infinity. In other words the effect

15Since the sum of these probabilities is not conserved there is no natural normalization, any particular
choice just sets an initial time where volume started leaking into terminals.
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of terminals resembles the insertion of an additional operator with dimension ∆D. This

insertion breaks the p-conformal symmetry. It is expected that the existence of terminals

causes this breaking [8], but that it does so in such a simple way is surprising. Moreover the

higher point correlators can still be computed using an OPE, but in a theory where OD has

a one-point function and no operator of dimension zero ever appears. Because of this the

correlators do not cluster in the conventional sense. At long distances between groups of

operators correlation functions reduce to correlators of OD. Therefore they cannot define

field theories of any conventional kind. We will call this unusual structure a fractal flow.

The breaking of the conformal symmetry in a fractal flow is a useful feature. Without

it the time variable u is not unique; it transforms under p-conformal transformations. But

once the extra insertion is introduced the only remaining symmetry transforms the surfaces

of fixed u into themselves.

The fractal flow depends on the existence of an initial condition but not on its details.

The only important feature of the initial condition is that it allows eternal inflation to take

place. There are initial conditions that would preclude eternal inflation; for example an

initial condition in which all space is occupied by aomw terminal vacuum. The theory of

fractal flows cannot tell us why the initial condition is not of this type. But what it does

imply, is that if eternal inflation occurs, the final attractor will have an arrow of time.

6 Multiverse Fields

As with all models, there are those things which generalize to the phenomena that we are

trying to model, and those that do not. From the former we can learn lessons. The latter

can mislead us. Separating the good from the bad always involves a bit of guesswork.

First of all, the cellular model is not an approximation to continuum eternal inflation

in the same way that lattice gauge theory is an approximation. It is a distinctly different

structure which does not approach the continuum theory in any limit. The situation is

more like modeling 3 + 1 dimensional gauge theory by lower dimensional versions. Some

things will be totally wrong—the propagation of signals for example—but other things like

the existence of a confining phase will be right.

One thing which is totally wrong about the original lattice-version of the cellular model

is its notion of spatial proximity. One might expect that if two cells of the lattice are

neighboring, then the correlations between them will be strong. But two cells can be

adjacent, and still very distant, in the sense that you have to go a long way back to find

a common ancestor cell. Such cells are weakly correlated. On the other hand, the idea
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that correlations between causally disconnected points are due to the past overlap of their

causal pasts is common to both theories.

The thing that we stripped away when we went from lattice to tree version was the

concept of space-like separation between out-of-causal-contact points. From the point

of view of continuum de Sitter space it may seem an unreasonable thing to eliminate.

The truth however, is that there is no clear meaning to out-of-causal-contact space-like

separation in de Sitter space. In de Sitter space, there are no space-like geodesics between

distant points, which can be used to define space-like geodesic distance. As we will describe

below, the best definition of distance parallels the definition ultrametric distance on the

tree.

The correlation function for a scalar field f in de Sitter space can be calculated by

analytic continuation from the Euclidean sphere. On the sphere it is obvious that the

correlation function depends only on the geodesic distance, between the points. Consider

that continuation to de Sitter space in flat-slicing coordinates in which the metric has the

form

H2ds2 = −dω2 + e2ωdxi dxi. (6.1)

The two points a and b are spatially separated by a fixed coordinate separation and

the time coordinates ω are asymptotically large. This implies that the points are out of

causal contact.

In continuing from the Euclidean sphere we immediately encounter the problem that

there is no geodesic connecting such points. However the formula for the geodesic distance

between the points can be continued, although it becomes complex. One easily finds (see

appendix B of [30]) that for large ω and fixed x the complex proper time between the

points, in units of H−1, has the form

τ = iπ + ωa + ωb + 2 log |x| (6.2)

where |x| is the coordinate distance between the points. For a light scalar field the corre-

lation function has the form

〈f(a)f(b)〉 ∼ e−∆τ (6.3)

which gives the usual power law in |x|.
But now let us look more closely at the geometric meaning of 6.2. The two points a, b

are out of causal contact, but if we run them backward toward the past at fixed x they will

eventually be within distance H−1. In other words they were once within the same causal
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patch. This occurs where the causal pasts of the two points first intersect in a common

ancestor patch. The time of this intersection is

ωi = − log |x|. (6.4)

Now consider the proper time between a and the intersection time. Call it τa.

τa = ωa − ωi

= ωa + log |x|. (6.5)

Similarly for b,

τb = ωb + log |x|. (6.6)

Thus we see that the real part of 6.2 is just proportional to the sum of the two proper

times between the common ancestor causal patch and the points a, b. The imaginary part

of 6.2 is the space-like distance between the points at the time ωi. Evidently one can think

of the complex geodesic between a and b as consisting of three segments: two time-like

segments from the points to the common ancestor, and a short space-like distance in the

ancestor patch.

It is clear from this construction that the only correlation between a and b is due to

the same mechanism as in the cellular model: correlation due to the fact that the points

were once in the same causal patch. In one case the mechanism leads to conventional de

Sitter correlators: in the other case the same mechanism leads to ultrametric correlators.

The cellular model is really about phenomena that take place on scales so large that

they involve points which are out of causal contact. It is also about a sector of the theory,

that from the boundary point of view, involves fields of extremely small dimension ∆� 1.

From the bulk point of view these fields only vary between different Hubble patches. One

of the lessons of the cellular model is that the number of such fields is enormous.

To see this, consider the fields that project onto particular colors, whose correlators we

computed in the previous section. There is such a field for each color n in the landscape.

The fields associated with the eigenvectors of the rate matrix (I) are equal in number. A

brief look at the rate equations shows that the dimensions ∆I are of the same order of

magnitude as the rates γ. Assuming that the vacua are much longer lived than the Hubble

times, the dimensions are much less than one. The cellular model describes the sector of

these very low dimensional operators, which from the bulk point of view means fields that

vary on scales larger than the horizon. These fields could be called multiverse fields.
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The multiverse fields are extremely non-gaussian. We can see that from the correlation

functions of section 3. If we normalize the two point functions canonically, then large

differences in entropies make the three point functions very large. This is not particularly

surprising; bubble nucleation is expected to create non-gaussian effects.

Does the non-gaussian behavior of multiverse fields ever lead to observable effects? The

answer may be yes. If cosmological parameters are in a lucky window, bubble collisions may

be visible on the sky. These bubble collisions would have the same kind of non-gaussian

behavior as multiverse fields. But probably more interesting is the role of multiverse fields

in determining the statistics of vacua: in other words the measure.

7 The Measure Problem

There have been a number of recent studies of the so-called measure problem16 that suggest

that some promising progress has been made. Here is a partial list: [31][26][22]. Each

proposal is based on a preferred time variable which is used to regulate the infinities implicit

in an eternally inflating multiverse. For example [31] uses scale-factor time which is defined

in such a way that the volume of a comoving region grows exponentially. Reference [22]

uses light-cone time defined so that the number of causal patches grows exponentially.

The results are not too different and have a common feature. In all these “geometric”

measures, the probability for a given value of the cosmological constant is dominated (for

large values) by a factor

exp (−3Hτobs) (7.1)

where τobs is the ordinary FRW time at which observations are made.17 The implication

is that the typical value of H is no larger than ∼ τ−1
obs . We may consider this to be an

explanation of the so-called coincidence problem.

Different proposals [31][26][22] differ in the details of the measure at small values of

Hτobs where all kinds of details are involved, but they all agree on (7.1) for large H.

There is one feature of the light-cone proposal which is particularly intriguing, namely,

it is precisely equivalent to the causal patch measure which is defined in terms of local

observations within a single causal patch [21][13].

In this section we will see that the stripped down version of the cellular model retains

exactly the right features to explain (7.1) and the local-global duality of [21][13]. In what

16An original reference on the measure problem is [32]. For a review with further references, see [33].

17This is the same factor that leads to the “Guth-Vanchurin Paradox” [34].
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follows we will derive the relative probabilities for vacua of different Hubble rates Hn in

the cellular model.

We will need to incorporate a few additional ingredients into the cellular model. The

new ingredients concern the existence of observers, although they do not depend on any

detailed assumptions about the nature of life or intelligence. First, the usual assumption of

typicality: the probability of an observation of a given type is proportional to the number

of such observations made under the cutoff surface. It is not our purpose to justify this

assumption but only to show how the geometry and causal structure of the multiverse

influence the answer.

The possibility of observers in terminals is a confusing issue which we will not address

in this paper. The tree model is not well suited to discussing the interior of terminals, and

in more detailed work on the issue [24, 31, 26, 22] their importance has depended on the

detailed choice of measure. For simplicity we will just assume that observers do not exist

in terminals and accordingly we prune the tree.

Next, we need to define the concept of nucleation of a bubble of a given vacuum type

n. Consider a node of type n somewhere on the tree. The causal past is defined by tracing

back along a unique series of edges of the tree. Eventually as one works backward, a point

will occur where the color is no longer n. That point is the nucleation point an. If all rates

γ are very small, then what grows out of the nucleation point will be mostly of type n.

Another standard assumption is that observers in the type n environment can exist

for a limited range of proper time, subsequent to the nucleation event. For simplicity we

take that period to be concentrated around a proper time τobs. This proper time can be

translated to a number of links. In the n-vacuum the proper time of a segment composed

of L links is

τ =
L

Hn

. (7.2)

Setting this equal to τobs gives the number of links uobs from the nucleation point to the

place where observations take place,

uobs = Hnτobs. (7.3)

Let us also assume that when the nucleation of a bubble of type n takes place, or

shortly thereafter, an amount of matter is created that will eventually be assembled into

a number of observers νn. It is generally a function of the vacuum type, but we make the

reasonable assumption that it is independent of Hn and of τobs for Hnτobs ∼ 1, which we

will see below is where the measure is concentrated.
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Finally, to regulate the inevitable infinities of eternal inflation we introduce a cutoff

time u0. However, the p-conformal symmetry raises a question: since u transforms non-

trivially, might there be a danger that the measure will depend on a choice of frame? Let

us proceed, ignoring the question for the moment.

In principle we would like to count all observations that occur below the cutoff surface,

but because populations exponentially increase, in an eternally inflating world it is suffi-

cient to count observations that take place at the cutoff. Thus one defines the the measure

M(n) to be proportional to number of observations occurring at time u0, in bubbles of

type n, anywhere in the multiverse. At the end of the calculation, u0 is allowed to tend

to infinity. This choice of cutoff is natural in the model and in particular respects the

symmetries but it is not the only possible choice.

There are several factors that go into M(n). The first and most obvious is νn, the

number of observers that form in a single bubble of type n.

The next relevant consideration is the color m of the immediate ancestor of the bubble.

If the ancestor color is assumed to be m then we must include a factor of the probability

for color m in the statistical ensemble. Assuming the statistical ensemble is given by the

dominant eigenvector gives a factor PD
m . In addition we must include the probability γnm

that the vacuum m decays to n. Summing over the possible ancestor vacua leads to the

factor ∑
m

νn PD
m γnm.

The final and most important factor comes from the fact that if the observations take

place at time u0, the bubbles must nucleate at time u0−uobs. Consider the total number of

sites available on the tree at time u0. That number is 8(u0−uobs). With this factor included,

the measure becomes proportional to

M(n) ∼ νn
∑
m

γnm PD
m 8(u0−Hnτobs) (7.4)

Now we see the possible danger: the answer appears to depend on the cutoff surface u0

through the factor 8u0 . But this factor represents the exponential growth of all populations

and should be factored out of relative probabilities. The relative probabilities are not only

independent of the value of u0. All dependence on the specific choice of conformal frame

has canceled out. Thus there is no ambiguity due to the fact that u transforms covariantly.

After dropping the cutoff dependent factor the remaining measure is

M(n) ∼ νn
∑
m

γnm PD
m 8−Hnτobs . (7.5)
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The factor that interests us most is the one containing the hubble constant Hn,

M(n) ∼ 8−Hnτobs (7.6)

In the literature on the subject it is generally assumed that the remaining factors are not

statistically correlated with Hn. In that case (7.6) provides a measure for the cosmological

constant. As already emphasized in earlier papers the formula in (7.6) leads to a highly

successful correlation between the value of the cosmological constant and the time of

observation.

Finally, we note that the local-global duality of [21] [13] is also manifested in the

cellular model. Consider following a causal patch from its beginning until it either reaches

the boundary of the tree or runs into a terminal vacuum. Along the way the patch will

make transitions to different colors and the question is how many observers are encountered

in each vacuum type. In this form, the question does not depend on the existence of a

cutoff u0. Let us suppose the causal patch makes a transition to vacuum type n at time

u. The material for the νn observers that is created shortly after the nucleation will be

distributed among the branches that grow out of the nucleation point. By the time the

observations take place the number of branches has grown from one to 8uobs = 8Hnτobs .

Thus the relative number of observations that takes place in the causal patch is given by

(7.6).

The local-global duality of [21] [13] is an attractive feature of the light-cone measure

that is not shared by other measure proposals.

8 Conclusion

de Sitter space, and the cellular model without terminals, are two realizations of a common

set of definitions and postulates. The postulates begin with the existence of a transitive

relation which allows us to define the concepts of causal future and past; causal diamonds;

and causal contact or the lack of it; and eventually causal patches. To these we added

the postulates: world-lines eventually fall out of causal contact: spacetime is causally

and metrically homogeneous. (An interesting question is whether there are any other

realizations, apart from trivial generalizations such as products of de Sitter space and

homogeneous spaces?) Both structures possess powerful symmetries—conformal symmetry

in the de Sitter case: p-conformal symmetry in the cellular model—which control the

behavior of correlation functions.
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Generic initial conditions break this symmetry, both in the model and in de Sitter

space. In the model without terminals, we found that detailed balance is enough to restore

the symmetry to the late-time correlation functions. We suspect that a similar condition

holds in de Sitter space, since detailed balance is required for the droplet-within-droplet

symmetry of field configurations demanded by conformal inversions (see section 7 of [35]).

Terminal vacua, which play a very important role in the theory of eternal inflation,

can be added to the cellular model, resulting in the breaking of conformal or p-conformal

symmetry. The model is analytically tractable and we find a very simple effect of the

terminals; the correlators still factorize with a local OPE but the conformal symmetry is

broken and the identity is removed from the operator algebra. We call this structure a

fractal flow. No analogous analysis has been done in the continuum theory, but given the

similarity of the two we are led to conjecture that the effect of terminals on correlators is

the same.

The cellular model concentrates on the large scale behavior of multiverse fields as

defined in section 4. The behavior on scales smaller than a causal patch is lumped up

into the eS microstates in each vacuum of the landscape. These multiverse fields define a

sector comprising a huge discretuum of extremely low dimension operators with highly non-

gaussian correlations. The dimensions are determined by the eigenvalues of rate equations

that parallel the equations of the continuum theory, with the exception that in the cellular

model the equations are rigorous. The multiverse fields describe the statistics of how the

landscape is populated.

The time variable of the cellular model is the exact analog of the light-cone time in

the continuum theory, and provides a natural cutoff. By adding a few additional bits to

the model it can be applied to the measure problem. We find that the resulting measure

is essentially the light-cone measure of [21]. It is interesting that the model exhibits the

same type of global-local duality that was found in [13].

We will conclude by mentioning a number of puzzling questions. The questions are not

new: they are shared by many of the current continuum descriptions of eternal inflation.

• The most glaring problem is that the model is not quantum mechanical. It is based

on classical stochastic evolution. A quantum mechanical version of it in which decay

probabilities are replaced by amplitudes, and paths are coherently summed, may be

possible. This would have to be done at the level of microstates; not the macroscopic

states n, each of which represents eSn microstates. Such a description could be made

to resemble a Wheeler DeWitt formulation but it seems likely that when the Sn are
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large, quantum interference may be quantitatively unimportant.

• Even if such a quantum version of the model can be formulated, it is not clear that

it is really consistent with quantum mechanics. For example, the local form of the

model in which we follow a single causal patch will not be information-conserving.

Decoherence will happen every time a branch splits off the causal patch. That may

be acceptable—perhaps even a good thing [36]—but it cannot be called conventional

quantum mechanics.

• In the global picture the quantum mechanical model would also not be quantum

mechanics: the dimensionality of the Hilbert space would grow exponentially with

u. Again, this may be acceptable but it is outside the usual rules.

• We have made a point of the p-conformal symmetry and its similarity to the symme-

try of de Sitter space. But the operational meaning of correlation functions between

different causal patches is no clearer than in the continuum theory.

• The choice of the light-cone time variable is extremely natural in the cellular model.

However, it is still possible to choose other time variables for the purpose of cutting

off the divergences and defining a measure. For example proper time can be defined

along every causal patch. Equation (3.2) defines the proper time between two nodes.

It also allows us to define the proper time measured from the initial condition of the

cellular model. A proper time cutoff would be defined by terminating the tree along

each path at the point where
∑
H−1
n becomes equal to the cutoff value. The proper

time measure would be defined by counting observations below that cutoff. When

applied to the cosmological constant, the proper time cutoff leads to the well known

youngness disaster. Scale-factor time [31] can also be defined here, by jumping the

clock forward by logHnew/Hold at each node.

As natural as the light-cone time may be, it still seems that additional principles are

needed to pick it out from all the other possibilities for defining a cutoff.

• Finally, the role of terminals may be more complicated and interesting than we have

allowed. For one thing, hats may play an important role in formulating a precise

holographic quantum theory of eternal inflation [30]. For another, the problem of

counting the number of observers in vacua with negative cosmological constant is

as obscure in the cellular model as it is in continuum theories.
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In short, the cellular model is a simple and tractable model that exhibits many of the

features, both good and bad, of conventional eternal inflation.
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A Light-cone Time in the Square Bubble Approxi-

mation

This appendix reviews the key results in eternal inflation that motivate the cellular model.

The goals are to explain, in the context of Bousso’s light-cone time [21], why the hyperbolic

geometry of bubble nucleation can be sensibly replaced by simple square cells and to derive

the rate equations governing the distribution of vacua. These results are directly used in

the main text of the paper only in the claim in section 3.5 that the natural clock of the

cellular model is analogous to light-cone time. The main points are standard results in

the eternal inflation literature, but we do present a new relatively simple derivation of the

relationship of light-cone time to FRW time in a thin-wall CDL bubble.18

18DH is especially grateful to M. Salem for a series of discussions on the issues in this appendix. Our
computation in section A.3 is closely related to his analysis with Vilenkin of the CAH+ measure in [37].
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A.1 Preliminaries

Light-cone time is defined in the following way: begin with some initial spacelike surface

Σ0 and draw a congruence of timelike future-directed geodesics orthogonal to the surface.

Now say P is an event lying in the future of Σ0. Consider the subset of geodesics which

intersect the future lightcone of P . If we call the physical volume these geodesics occupy

in the initial surface VP , then the “light-cone time of P” is19

u(P ) = −1

3
log
[
(H0)3VP

]
. (A.1)

Here H0 is some arbitrary scale, which we can for example choose to be Planck units. We

can interpret this as defining the volume at future infinity of the lightcone of P as H3
0VP

in equation (3.12). To get some intuition, consider the case of a single de Sitter space with

metric

ds2 = −dt2 +
1

H2
e2Ht(d~x)2. (A.2)

For an initial surface choose t = t0. The congruence of geodesics are comoving. To compute

the lightcone time of a point P at time t1, we note that its future lightcone at time t has

comoving radius

r = e−Ht1
(
1− e−H(t−t1)

)
, (A.3)

which for t � t1 asymptotes to e−Ht1 . In computing the light-cone time of P we should

therefore include geodesics in the comoving region r < e−Ht1 , which has volume 4π
3H3 e

3H(t0−t1).

This then gives20

u(P ) = H(t1 − t0) +
1

3
log

3H3

4πH3
0

. (A.4)

A more difficult computation is to find the light-cone time in a Coleman-De Luccia

bubble. We will work exclusively in the thin-wall approximation, for which the metric

inside of the bubble is

ds2 = −dτ 2 + h−2 sinh2(hτ)
[
dξ2 + sinh2 ξdΩ2

2

]
. (A.5)

We tackle the geometry of the light-cone time slices inside this bubble in section A.3. Our

result, for a domain wall with zero tension, an internal Hubble h which is much smaller

19In this appendix we will work in 3+1 dimensions.

20We will not discuss scale-factor time in detail in this appendix, but we observe that this expression
puts light-cone time in the same general family of slicings as scale-factor time, which would have given
usf = H(t1 − t0). The H-dependent shift between them leads to slightly different phenomenology when
these slicings are used as cutoffs for the measure problem of eternal inflation.
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than the ancestor Hubble H, and for FRW times larger than h, is that

u− unuc = hτ + f(ξ), (A.6)

where f(ξ) is an h-independent function that approaches an O(1) constant for small ξ

and becomes linear at large ξ. For points in the center of the bubble we also produce an

exact expression that makes none of these approximations, but this result will already be

sufficient for our statements in the main text of this paper.

A.2 The Rate Equation

In this section we derive the light-cone time rate equation (A.13) for volume measured in

Hubble units. In keeping with the literature on this subject we will make the plausible

first assumption that the time scales of interest for decays are much longer than all Hubble

constants, and also that the ratio of Hubble constants in any particular decay is far from

unity. Consider the change dVm in the volume of vacuum m in a small step dt of proper

time. The exponential expansion of dS space will produce a contribution 3Hmdt = 3du,

and there will also be a positive contribution from bubbles of m being nucleated in other

vacua. Similarly there will be a subtraction for bubbles of other vacua nucleating in m.

We first consider the negative contribution from m decaying to n. Say a bubble of n

nucleates in vacuum m at time tnuc. From the point of view of vacuum m it will rapidly

expand to a comoving radius of e−Hmtnuc , after which the physical volume it occupies in

m will be

V =
4π

3H3
m

e3Hm(t−tnuc) =
4π

3H3
m

e3(u−unuc). (A.7)

Since we have assumed that decay rates are slow compared to Hm, we can approximate

this process by simply removing a cube of proper volume Vout ≈ 1
H3

m
at time tnuc. We drop

the order one factor since we will not keep track of it in other terms. This is called the

“square bubble approximation” [38], and it produces a contribution to dVm of the form

dVm ⊃ −
∑
n

Γnm
1

H3
m

dt = −
∑
n

Γnm
1

H4
m

du. (A.8)

Here Γnm is the proper decay rate from m→ n.

The positive contribution to dVm coming from bubble nucleation into m from other

vacua is more challenging to compute. Using equation (A.6) we can compute the induced

metric on the cutoff surface inside the bubble

ds2 ≈ 1

2h2
e2(u−unuc−f(ξ))

[
(1− 2e−2(u−unuc−f(ξ))f ′(ξ)2)dξ2 + sinh2 ξdΩ2

2

]
, (A.9)
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where we assumed that hτ � 1. The total volume is finite, and since for ξ > 1 we can

approximate f(ξ) ≈ ξ it is not hard to see that almost all of the volume comes from

0 < ξ < 1. Up to an order one factor the total volume inside of the bubble of a slice of

constant light-cone time u is thus

V =
1

H3
m

e3(u−unuc). (A.10)

So in the square bubble approximation we can write

dVm ⊃
∑
n

Γmn
1

H3
m

dt =
∑
n

Γmn
1

H3
mHn

du. (A.11)

The factor of Hn appears because in converting dt to du we need to use the ancestor Hubble

since that is the appropriate proper time to multiply the decay rate by when computing

differential probability to decay in time dt.

We can now combine these results into the light-cone rate equations for proper volume

dVm
du

= 3Vm +
∑
n

Γmn
1

H3
mHn

Vn −
∑
n

Γnm
1

H4
m

Vm. (A.12)

We can make this look nicer by defining a dimensionless decay rate γmn = ΓmnH
−4
n and

multiplying both sides by H3
m to get

d(H3
mVm)

du
= 3(H3

mVm) +
∑
n

γmn(H3
nVn)−

∑
n

γnm(H3
mVm), (A.13)

which is the light-cone time rate equation. It is easy to see that the quantity e−3u
∑

mH
3
mVm

is conserved by this equation, so the total number of horizon volumes
∑

mH
3
mVm grows

exponentially.21

A.3 Light-cone Time in a Bubble

In this section we derive equation (A.6) by computing the light-cone time for various points

inside a CDL bubble. This section is rather technical and readers who are not measure

enthusiasts are welcome to skip it. Similar computations have been done for other slicings

21We have been quite cavalier in assuming that the results we derived for downward transitions are
also valid for upward transitions. This is standard practice in the literature, but that doesn’t mean it is
justified. This process requires a large fluctuation in the geometry, so the definition of the time in terms of
geodesics will break down and perhaps we can just take a definition of the time slicing through an upward
transition that agrees with (A.13).
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in [39, 38, 26, 40, 37], but we will use geometric tricks to simplify these analyses and

obtain some nice “exact” results. We will assume that decay rates are small enough that

the bubble nucleates well after its ancestor and thus that the light-cone time is comoving

inside of the ancestor. To compute the light-cone time of a point with FRW coordinates

(τ, ξ) inside the bubble, we need to compute its future lightcone and then compare this to

the fate of geodesics that begin as comoving in the ancestor. These comoving geodesics

become comoving inside the bubble at late times, and we will first compute the relationship

between these two comoving distances.

Following geodesics as they pass through the domain wall is made tractable by em-

bedding the entire geometry into a higher-dimensional Minkowski space and treating the

geodesics and the domain wall as intersections of the geometry with various planes. We

will for the remainder of this section work in units where the ancestor Hubble H is set

equal to one. Because of the symmetry the problem is really 1 + 1 dimensional, so we

will temporarily surpress two of the dimensions. The ancestor dS space is given by the

embedding

−T 2 +X2 + Y 2 = 1, (A.14)

into a 2 + 1-dimensional Minkowski space. In flat slicing the ancestor has metric:22

ds2 = −dt2 + e2tdr2 (A.15)

The bubble dS space will be a similar embedding but centered on a new origin:

−T 2 + (X −X0)2 + Y 2 =
1

h2
. (A.16)

For the decay to work we need h < 1. The domain wall is the intersection of the two

embeddings with a plane

X = Xw, (A.17)

which allows us to determine

X0 = Xw −
√
X2
w +

1

h2
− 1. (A.18)

The domain wall is of course not a geodesic, but it is a convenient fact that the

intersection of a plane that passes through the origin of the embedding space with the

surface (A.14) is a geodesic in the induced metric on the ancestor dS space. Similarly the

22These coordinates are related to the embedding coordinates by T = sinh t+ 1
2e

tr2, X = cosh t− 1
2e

tr2,
and Y = ret.

43



intersection of a plane that passes through the point T = Y = 0, X = X0 with the surface

(A.16) is also a geodesic inside the bubble. We can construct a geodesic that passes from

the ancestor into the bubble by finding two planes, one passing through the origin and one

passing through T = Y = 0, X = X0, which both intersect the domain wall at the same

point and whose induced geodesics have tangent vectors that have the same angle with

the domain wall at that point.23 These two planes can be parameterized as

−ÂT + B̂X + Y =0

−AT +B(X −X0) + Y =0. (A.19)

Â, B̂ are determined in terms of the comoving radius r0 of the geodesic in the ancestor by

Â = −B̂ = r0. (A.20)

A and B determine the trajectory of the geodesic inside of the bubble in FRW coordinates,

via24

−A sinh(hτ) cosh ξ +B cosh(hτ) + sinh(hτ) sinh ξ = 0. (A.21)

At late times in the bubble this becomes

A cosh ξ = B + sinh ξ, (A.22)

which is manifestly comoving at location ξ. A and B are determined in terms of r0 by the

following steps: solve

−T 2
w +X2

w + Y 2
w =1

r0(Tw +Xw)− Yw =0 (A.23)

to determine the location of the intersection of the geodesic with with the domain wall,

solve

−r0VT − r0VX + VY =0

−TwVT +XwVX + YwVY =0 (A.24)

23We thank M. Salem and I. Yang for pointing out a problem with an earlier version of this argument.

24Here the relationship of the embedding coordinates to the FRW coordinates is T = sinh τ cosh ξ,
Y = sinh τ sinh ξ, and X −X0 = cosh τ .
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to determine the tangent vector (VT , VX , VY ) to the geodesic at the intersection outside of

the bubble, solve25

−TwV ′T +XwV
′
X + YwV

′
Y =0

−VT +
Tw
Yw
VX =− V ′T +

Tw
Yw
V ′X (A.25)

to determine the tangent vector (V ′T , V
′
X , V

′
Y ) to the geodesic at the intersection inside of

the bubble, and finally solve

−ATw +B(Xw −X0) + Yw =0

−AV ′T +BV ′X + V ′Y =0 (A.26)

to find A and B. These equations are at most quadratic, so it is straightforward to write

down the exact solution. The result however is somewhat unwieldy, simpler expressions

are available if we work in the limit of zero tension in the domain wall, for which Xw = 1:

A =
r0(1− r0(1 + h2)/2)

1− r0(1− r0(1− h2)/2)

B = − hr0(1− r0)

1− r0(1− r0(1− h2)/2)
. (A.27)

Combining these with (A.22) gives the desired relationship between the comoving locations

of the geodesic inside and outside of the bubble. Athough this result was computed in

1+1 dimensions it is valid in any dimension by symmetry.

We now compute the lightcone time for a point P in the center of the bubble with

FRW time τ . The future lightcone of P is easy to compute, it has asymptotic comoving

radius

ξ = − log (tanh(hτ/2)) . (A.28)

Using this in (A.22) we find

A cosh(hτ) = B sinh(hτ) + 1. (A.29)

This expression gives the exact relationship between the FRW time τ and the ancestor

comoving radius r0 inside of which geodesics enter the future lightcone of P . Finally the

light-cone time (A.1) of P is given by

u(P ) = unuc − log r0. (A.30)

25The second of these two equations imposes that the tangent vector has the same angle with the
geodesic on both sides; we have chosen the norms of V and V ′ to be equal.
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We have given exact prescriptions for computing A andB in terms of r0, but it is convenient

to give the result in the special case where hτ � 1, h � 1 (remember H = 1), and the

domain wall tension is zero. These approximations are justified in the beginning of section

A.2, and they lead to r0 � 1. We then simply have A ≈ r0 and B ≈ −hr0, so from (A.29)

we find that the lightcone time of P in this approximation is

u(P ) ≈ unuc + hτ − log 2. (A.31)

The corrections to this formula are parametrically small in h/H and hτ .

Computing the light-cone time of points with ξ 6= 0 is more challenging, we will only

sketch a computation of the asymptotic behavior for large ξ with the same approximations.

Say that point the P we are interested is at (τ0, ξ0). Its future light-cone is no longer

centered at ξ = 0, but we note that the null geodesics starting at P and moving inwards

and outwards radially asymptote to ξ = ξ0∓ log [tanh(hτ0/2)]. For large hτ0 we can write

this as:

ξ = ξ0 ± 2e−hτ0 +O(e−2hτ0). (A.32)

Feeding this into (A.22) we find that these two geodesics have comoving radii

r± = 1−
√

2e−ξ0(1∓ 2e−hτ0). (A.33)

We can then approximate the volume in the initial surface as a sphere whose radius is

given by

r0 ≈
r+ − r−

2
= 2
√

2e−ξ0−hτ0 . (A.34)

This result is accurate up to a multiplicative order one factor. Finally using this in (A.30)

we find

u(P ) = unuc + hτ0 + ξ0 +O(1). (A.35)

This expression, along with (A.31), completes our derivation of (A.6).

B dS/CFT and FRW/CFT

dS/CFT and FRW/CFT are two holographic proposals for dual theories of eternal infla-

tion. In this appendix we make some preliminary remarks on the implications for these

theories of our results in the cellular model.
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B.1 dS/CFT

The term “dS/CFT” is applied to several different closely related ideas [14, 15, 16]: the

most precise is the proposal that the Wheeler-deWitt wave function of de Sitter space

is computed by the partition function of a nonunitary Euclidean conformal field theory

deformed by various sources which are simply related to the arguments of the wave func-

tion.26 This wave function does not have a simple analogue in the stochastic model we

have described in this paper. Our model is not quantum mechanical, and the probability

distribution for colors at future infinity we study is more analogous to the semiclassical

limit of the square of the wave function. The PGL(2, Qp) symmetry we found in the model

thus does not directly parallel the conformal invariance of the CFT that computes the wave

function. In [30, 42] the idea was explored that the square of the wave function can be

interpreted as a partial integration of a new “doubled” CFT living at future infinity, which

includes as dynamical fields two copies of the fields from the wave function CFT and also

the boundary values of the bulk fields. In [42] it was shown that it is this doubled CFT

whose correlators compute the extrapolation of bulk correlators to the future boundary.

Since the correlators we studied in this paper were first computed on the tree and then

extrapolated to the boundary, they are analogous to correlators in the doubled CFT.

Bubble nucleations are not well-understood in dS/CFT. In [4] evidence was provided

that in a landscape without terminals the correlation functions of bubbles at future infinity

should be conformally invariant. Our work confirms that this is so in the cellular model,

which as we just discussed has a boundary theory analogous to the doubled CFT in

dS/CFT. The multiverse fields of the cellular model suggest that there is a large sector of

highly relevant operators in the doubled CFT whose dimensions are very close to zero and

whose correlators describe the bubble distribution at future infinity. It would be good to

understand how to express these operators in terms of the doubled CFT fields.

The situation is more interesting when terminals are included. In the cellular model we

found that the correlators of operators at points that were conditioned to not be terminal

had an interesting nonconformal structure we referred to as a fractal flow. An interesting

conjecture is that this is also what happens in the doubled CFT in the continuum theory.27

This is a surprisingly simple proposal that we hope to return to in future work.

26An explicit example of this was recently proposed in Vasiliev gravity in [41].

27Another interesting conjecture for including terminals is discussed in [43, 5, 44] .
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B.2 FRW/CFT

FRW/CFT proposes that correlation functions seen on the sky of an observer living in

a stable Λ = 0 bubble, usually called the Census Taker, are computed by a Euclidean

CFT living on a sphere. It was argued in [30] that this dual theory is closely related to a

dimensionally reduced dS/CFT theory whose correlators are computed by extrapolating

bulk correlators in the domain wall region of the CdL geometry to the future boundary.

This is illustrated in figure (10).

I

II

III

Σ

Figure 10: The Penrose diagram of the Lorentzian Coleman De-Luccia geometry. The
dashed lines separate it into different regions which are preserved by symmetry. The lower
half is the time-reversal of the upper half and is unphysical. Region I is inside of the
bubble and the red line is a slice of constant FRW time. Region II is the domain wall,
which is foliated by lower-dimensional dS slices. A representative dS slice is shown in blue.
Region III is the future dS boundary. The point Σ is the two-sphere where the FRW/CFT
theory lives. It can be thought of either as a spatial boundary of region I or a future
boundary of region II. Since the natural spatial slices of region II have finite volume we
can dimensionally reduce to a single lower dimensional dS theory, whose future boundary
is Σ. It is clear that a timelike observer in region I, a census-taker, will see Σ at late times.

Bubbles that are nucleated within the domain wall region, denoted II in figure (10), are

inside the horizon of the Census Taker, and they produce a pattern of circles on his/her sky

which is simply related to the distribution at future infinity of the dimensionally reduced

dS theory28. This lower dimensional theory is gravitational, that is it has a normalizable

28Early ideas about describing bubble collisions in FRW/CFT by a lower dimensional effective theory
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Randall Sundrum type graviton mode as in the dS/dS correspondence [45]. So we expect

it to be able to make both up and down transitions, and that unless there are lower-

dimensional terminals it will be conformally invariant. The only candidates for terminals

are nucleations of Λ < 0 bubbles in region II. This situation has been analyzed in [46]. If

the domain wall has high tension it accelerates out of the Census Taker bubble. Here the

domain wall geometry is that of a lower dimensional dS space that is essentially region II

including its gravitational character. Its ability to nucleate up and down transitions means

that it is not a terminal. The only exceptions are Λ < 0 bubbles whose domain walls with

the Λ = 0 region have exactly BPS tension. Here the domain wall geometry is flat and no

up or down transitions are possible. It serves as a “hat” terminal in the lower dimensional

dS space of region II. These BPS domain walls are terminals from the point of view of the

bubble distribution seen by the Census Taker, since the circles they produce do not have

any smaller structure inside of them.

The existence of BPS domain walls in the string landscape is an open problem, but

the fragmentary evidence available seems to suggest that generically they do exist.29 Our

analysis of the cellular model with terminals clearly has implications for how BPS domain

walls might be incorporated into FRW/CFT, and we hope to return to this idea in more

detail in the future.
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