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Abstract

Cosmological N -body simulations are now being performed using Newtonian gravity on scales

larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of

dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology,

and it also is known that a correspondence between Newtonian and relativistic dust cosmologies

continues to hold in linearized perturbation theory in the marginally bound/spatially flat case.

Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of

an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales.

We investigate this issue in the light of a perturbative framework that we have recently developed

[1], which allows for such nonlinearity at small scales. We propose a relatively straightforward

“dictionary”—which is exact at the linearized level—that maps Newtonian dust cosmologies into

general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to

which the resulting metric and matter distribution solve Einstein’s equation. We find that, within

our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ǫ” at

large scales. We then find the additional corrections to the metric and matter distribution needed

to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their

own right, our main purpose in calculating them is that their smallness should provide a criterion

for the validity of the original “dictionary” (as well as simplified versions of this dictionary). We

expect that, in realistic Newtonian cosmologies, these additional corrections will be very small;

if so, this should provide strong justification for the use of Newtonian simulations to describe

relativistic cosmologies, even on scales larger than the Hubble radius.
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I. INTRODUCTION

With the improvements in computational abilities that have taken place in recent years,

it is now feasible to do numerical simulations of structure formation in cosmology on scales

comparable to—or even larger than—the Hubble radius. Such simulations are being carried

out by a number of groups [2–5]. However, these simulations are being carried out using

Newtonian gravity. Although it would appear reasonable to expect Newtonian gravity to

yield a good description of phenomena on scales much smaller than the Hubble radius—

except, of course, in the immediate vicinity of strong field objects—at first thought, it

might seem absurd that it could be expected to yield a reliable description of phenomena

on scales comparable to, or larger than, the Hubble radius. After all, Newtonian gravity

posits forces that act instantaneously over arbitrarily large distances, whereas the dynamical

evolution laws of general relativity assert that all influences propagate causally and that the

distribution of matter outside of one’s past light cone is irrelevant. Similarly, the Newtonian

gravity description of the Hubble expansion involves relative motion of bodies, whereas the

general relativistic description involves the expansion of space. Why should Newtonian

gravity give an accurate description of behavior on scales comparable to—or greater than—

the Hubble radius, when the relative velocity of bodies is comparable to—or greater than—

the speed of light?

Nevertheless, as we shall review in the next section, it is well known (see, e.g., [6]) that

under the assumptions of spatial homogeneity and isotropy, the equations for a uniformly

expanding pressureless fluid (“dust”) in Newtonian gravity are identical to the dynamical

equations for a dust filled Friedmann-Lemâıtre-Robinson-Walker (FLRW) universe in general

relativity—even in the case of nonvanishing spatial curvature. An explanation for this

remarkable correspondence can be found from the fact that in both Newtonian gravity

and general relativity, in the presence of spherical symmetry, the behavior of a co-moving

ball of dust does not depend upon the distribution of matter outside of the ball1. Thus,

in both Newtonian gravity and general relativity, the dynamical behavior of a co-moving

ball of dust in a homogeneous, isotropic universe is the same as it would be if that ball

were placed in an empty, asymptotically flat spacetime. However, for a sufficiently small

ball of dust in an otherwise empty spacetime, Newtonian gravity should be an excellent

1 This fact is closely related to the fact that there is no gravitational field/curvature inside a spherical shell

of matter in Newtonian gravity (by Newton’s theorem) and general relativity (by Birkhoff’s theorem).
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approximation to general relativity. Thus, for a sufficiently small ball, the density and co-

moving radius of the ball must satisfy the same dynamical equations in Newtonian gravity

and general relativity. This implies that the equations for the density and comoving radius

in a homogeneous, isotropic Newtonian dust cosmology must coincide with the equations for

the density and scale factor in a FLRW dust cosmology. This correspondence continues to

hold in the presence of a cosmological constant term in the Newtonian and general relativistic

equations.

The above argument relies crucially on exact spherical symmetry. Thus, one might ex-

pect that no such correspondence between Newtonian and relativistic cosmologies would

hold if one perturbs the homogeneous, isotropic solutions away from spherical symmetry.

Remarkably, however, the correspondence between Newtonian and relativistic cosmologies

extends into the regime of linearized perturbation theory in the case of perturbations off of a

spatially flat FLRW dust cosmology. More precisely, as pointed out by Bardeen [7] and will

be reviewed in the next section, the scalar gauge-invariant variables of linearized relativistic

perturbation theory obey exactly the same equations as the variables describing linearized

irrotational dust perturbations of the corresponding Newtonian cosmology. Furthermore,

it is not difficult to see that this correspondence extends to the vector case as well, i.e.,

vector gauge-invariant variables of linearized relativistic perturbation theory obey exactly

the same equations as the corresponding Newtonian variables describing vorticity perturba-

tions. Thus, the scalar and vector sectors2 of linearized relativistic perturbation theory off

of a spatially flat FLRW dust model are in exact correspondence with arbitrary Newtonian

perturbations off of the corresponding Newtonian dust cosmology.

Further justification for the validity of the Newtonian approximation in cosmology is

provided by the work of Oliynyk [8, 9] (see also Futamase [10]). Oliynyk rigorously proved

that for a given 3-torus Newtonian cosmology, there exists a one-parameter family of general

relativistic solutions that limits to this Newtonian cosmology, thus showing that there are

general relativistic solutions that are arbitrarily close to the Newtonian solution. However,

for Oliynyk’s one-parameter families, the ratio of the size of the universe to the Hubble radius

goes to zero in the limit3. Thus, the general relativistic solutions proven by Oliynyk to be

2 The tensor modes correspond to additional degrees of freedom present only in general relativity, and they

have no Newtonian correspondence.
3 Oliynyk formulated his limit as one in which the 3-torus remains of fixed size, but the speed of light—and

the Hubble radius—goes to infinity. By re-scaling the spatial coordinates, his limit can be reformulated
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very close to a Newtonian solution have size small compared with the Hubble radius, and thus

have no “long wavelength part”. Thus, Oliynyk’s results do not directly address the issue of

whether Newtonian simulations on scales comparable to the Hubble radius correspond closely

to a general relativistic solution, but it can be viewed as providing additional justification

for the validity of Newtonian gravity on scales small compared with the Hubble radius.

Taken together, the above considerations strongly suggest that for a universe that is suffi-

ciently close to a spatially flat FLRW dust model, Newtonian gravity should provide a good

description of structure formation on all scales. However, the situation is far from straight-

forward for the following reasons: (i) Although, as described above, there is a correspondence

at linearized order between Newtonian theory and general relativity, the “dictionary” needed

to translate a linearized Newtonian solution into metric and matter perturbations in any

particular gauge is nontrivial, and it is not obvious how this dictionary compares with stan-

dard dictionaries used for the Newtonian and post-Newtonian approximations to general

relativity on small scales. Thus, it is not obvious how to produce a “global dictionary”

that works on all scales. (ii) If one has a candidate global dictionary, it is not obvious

how to formulate criteria to determine whether the resulting general relativistic spacetime

is “sufficiently close” to a solution to Einstein’s equation to trust its predictions. The main

complication here is that the failure to take post-Newtonian corrections into account on

small scales will cause the general relativistic spacetime to fail to satisfy Einstein’s equation

by a larger amount than the failure to properly account in any way for the long wavelength

perturbations. For most applications in cosmology, the tiny post-Newtonian corrections to

the metric and matter motion on small scales are of no interest, but the leading order devia-

tion of the metric and matter density from a FLRW model on large scales is of great interest.

Thus, the proper criteria for being “sufficiently close” to a solution to Einstein’s equation

must take into account the distinction between small scales and large scales. (iii) One would

like to know explicitly what the dominant corrections to Newtonian cosmology are, both to

be able to quantitatively judge its reliability and to be able to make its predictions more

accurate.

The difficulties in addressing the above issues stem from the fact that the approximations

of Newtonian gravity (which, a priori, is expected to be good on small scales) and linearized

as one in which the speed of light remains constant and the Hubble radius goes to a well defined limit,

but the size of the 3-torus then approaches zero in the limit.
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perturbation theory (which, a priori, is expected to be good on large scales) are incompatible.

Specifically, in the Newtonian gravity approximation certain nonlinear terms in the equations

are kept (as they must be at small scales), but it is essential that time derivatives of quantities

be small compared with space derivatives [8, 9, 11, 12]. By contrast, linearized perturbation

theory allows time derivatives of quantities to be comparable to their space derivatives (as

they must be at large scales), but it is essential that all nonlinear terms be negligible. In

order to properly treat phenomena on all scales, one needs an approximation scheme that

can accommodate nonlinear phenomena on small scales but treats time derivatives on the

same footing as space derivatives on large scales. We recently proposed an approach that

accomplishes this [1], and we will apply this approach here4.

The main questions we wish to address in this paper can now be stated concretely as

follows. Suppose that a Newtonian cosmological simulation has been performed on a 3-torus

(i.e., periodic boundary conditions), where the size of the 3-torus may be larger than the

Hubble radius. For convenience, we assume that the Newtonian solution has been presented

as a continuum solution—i.e., that suitable smoothing has been done if the solution was pro-

duced from an N -body simulation. We would like to know the following: (1) What general

relativistic spacetime and dust matter distribution should we associate to this Newtonian

cosmology, i.e., what “global dictionary” should we use? (2) To what extent is this space-

time a solution to Einstein’s equation, i.e., what are the leading order terms in Einstein’s

equation that fail to be satisfied? (3) What are the leading order corrections to the metric

and dust distribution that improve the accuracy of this solution, and how large are these

corrections?

Our approach will be to use the framework of [1] to provide a “counting scheme” for the

sizes of terms in Einstein’s equation. We will start with a candidate “global dictionary,”

which is suggested by the known correspondences between Newtonian gravity and general

relativity in the exactly homogeneous and isotropic case and at the linearized level. We will

then see that in our counting scheme, the resulting general relativistic spacetime fails to sat-

isfy Einstein’s equation to O(1) at small scales and to O(ǫ) at large scales. The main effort

in our paper will then be to find the corrections to the metric and dust distribution that,

within our counting scheme, improve the accuracy of the solution to O(1) at small scales

and to O(ǫ) at large scales. It should be emphasized that we shall not prove existence of

4 Our approach is closely related to [13]; see also [14].
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a one-parameter family of solutions to Einstein’s equation with the properties we desire—a

far more difficult task than solving for leading order corrections. Nevertheless, if the leading

order corrections we obtain are small compared with terms appearing in the original global

dictionary, we believe that this provides a strong indication that there is a general rela-

tivistic solution that corresponds closely to the Newtonian cosmology. Conversely, if these

corrections are not negligibly small, then either the Newtonian cosmology is not providing

a sufficiently accurate representation of the general relativistic spacetime or the dictionary

being used will have to be significantly modified.

Our analysis also addresses concerns that have been expressed with regard to the use of

a “Newtonianly perturbed FLRW metric,” which corresponds to the using the “abridged

dictionary” given by (2.46)–(2.48) below. Ishibashi and Wald [15] have argued that this

metric should provide an excellent description of our universe. However, several authors

[16, 17] have objected to the use of this metric on the grounds that, if taken literally, and

dust peculiar velocities are ignored, then strong constraints relating to exact solutions of

Einstein’s equation apply, and the metric is only able to describe a spatially homogeneous

continuum. Other concerns have been raised by Rasanen [18]. The spacetime metric and

dust matter distribution that we produce in this paper—as summarized in section IV—solves

Einstein’s equation to a much higher degree of accuracy than the Newtonianly perturbed

FLRWmetric does, and, in particular, fully takes into account peculiar velocities and leading

nonlinear terms in the Einstein equation. No inconsistencies of any kind are encountered

in obtaining this much more accurate solution. Thus, the approximate solution considered

in [15] should be fully justified provided only that the corrections to (2.46)–(2.48) given in

section IV are negligibly small, as we argue is the case.

We remark that if one has an equation E(F ) = 0, one must draw a clear distinction

between having a quantity f that approximately solves this equation (i.e., E(f) ≈ 0) as

compared with having a quantity f that is an approximate solution (i.e., f ≈ F for some

exact solution E(F ) = 0). If the equation is suitably well posed, if E(f) ≈ 0, and if F is the

exact solution with the same initial data as f , then f and F will remain close to each other for

sufficiently early times. However, f may fail to remain close to F at late times because of the

build-up of secular effects. For example, the Newtonian solution for the motion of Mercury

solves the general relativistic equations of motion to an excellent approximation at all times,

but provides a very poor approximation to the general relativistic solution for the position

6



of Mercury after ∼ 106 years. In this paper, we are concerned with the issue of obtaining

general relativistic spacetimes that solve Einstein’s equation to an excellent approximation

at all times, but we will not be concerned with the issue of whether these spacetimes provide

good global-in-time approximations to exact solutions of Einstein’s equation.

In the next section, we shall review the correspondence between homogeneous, isotropic

Newtonian cosmology with dust matter and FLRW models in general relativity, as well

as the correspondence at the linearized level between these models in the marginally

bound/spatially flat case. On the basis of this correspondence, we will propose a dictionary

(2.40)–(2.44) to translate Newtonian cosmologies into general relativistic spacetimes. In

section III, we will apply our counting scheme [1] to analyze how well Einstein’s equation

is being satisfied, and we will obtain corrections needed to satisfy Einstein’s equation to

O(1). We will then obtain the further modifications to the metric and dust distribution

needed to obtain a solution to Einstein’s equation to O(ǫ) at large scales. These corrections

are of some interest in their own right. For example, as we shall see in Appendix B, there

are small modifications of some global properties of the cosmology, such as a slight modifi-

cation of the expansion rate and the introduction an (even smaller) anisotropic expansion.

However, our main purpose in determining these corrections is to provide a criterion for the

validity of the Newtonian cosmology as translated into a general relativistic spacetime via

the dictionary (2.40)–(2.44) and/or its abridgment (2.46)–(2.48) or its simplification (2.49)–

(2.51): The full set of metric and matter corrections to our original dictionary are given

by eqs. (4.1)–(4.13) and these corrections can be computed straightforwardly for any given

Newtonian cosmology. The smallness of these corrections should provide a reliable criterion

for judging the validity of using a Newtonian simulation with the dictionary (2.40)–(2.44)

(or its abridgment or simplification) to describe a relativistic cosmology.

II. BACKGROUND AND LINEARIZED CORRESPONDENCE

In this section we shall review the correspondence between homogeneous, isotropic New-

tonian dust cosmology and FLRW models, as well as the correspondence between linearized

perturbations of these models. We shall then propose a dictionary—valid to linearized

order—the accuracy of which will be evaluated and improved upon in the following section.

In Newtonian gravity, the gravitational field is described by a Newtonian potential φ,
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and the dust matter is described by a mass density ρ and a velocity field vi. The Newtonian

field potential is related to the mass density by the Poisson equation

∂i∂iφ+ Λ = 4πρ , (2.1)

which we have generalized to allow for the presence of a cosmological constant Λ. In addition,

the matter variables must satisfy mass conservation and Euler equations, which, for dust

matter, take the form

∂tρ+ ∂i(ρv
i) = 0 , (2.2)

∂t(ρv
i) + ∂j(ρv

ivj) = −ρ∂iφ . (2.3)

In these equations, the flat Euclidean metric of space is used to contract indices.

A. Background Correspondence

As a cosmological ansatz, we seek a solution to the above equations of Newtonian gravity

in which the density is spatially uniform, ρ = ρ0(t), and the velocity field is uniformly

expanding, vi = H(t)xi. Note that H is related to the radius, a, of any comoving ball by

H =
1

a

da

dt
. (2.4)

Since ∂iv
i ≡ 3H(t), (2.2) implies that

∂tρ0 + 3Hρ0 = 0 , (2.5)

from which it follows that

ρ0 = ρ0,inita
−3 . (2.6)

Using mass conservation, we can eliminate ρ from the Euler equation,

∂tv
i + vj∂jv

i = −∂iφ . (2.7)

The Poisson equation, (2.1), has the non-singular solution

φ0 =
2π

3
ρ0r

2 −
Λ

6
r2 + A(t) . (2.8)

Substituting for v and φ, we obtain

dH

dt
+H2 = −

4π

3
ρ0 +

Λ

3
, (2.9)
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which is one of the Friedmann equations. To obtain the other Friedmann equation, we

rewrite this equation as

1

a

d2a

dt2
= −

4π

3

ρ0,init
a3

+
Λ

3
. (2.10)

Integrating once, we obtain

H2 =
8π

3
ρ0 +

Λ

3
−

k

a2
, (2.11)

where k is a constant of integration. By choosing the size of the comoving ball appropriately,

we may choose k to take the values 0,±1. When Λ = 0, the value of k determines whether the

universe is unbound and expands forever (k = −1), is marginally bound and expands forever

but with expansion velocity approaching zero (k = 0), or is bound and will recollapse within

finite time (k = +1). Of course, in Newtonian gravity, k does not have any interpretation

in terms of spatial curvature; space is always Euclidean.

Equations (2.9) and (2.11) are precisely the equations satisfied by dust FLRW models in

general relativity. The underlying reason for this exact correspondence was discussed in the

Introduction.

B. Linearized Correspondence

We first re-write the exact Newtonian equations relative to some (arbitrarily chosen)

background solution of the previous section. We introduce comoving coordinates

x′i =
xi

a
. (2.12)

We then define the velocity variable v′i by

v′i ≡ a
dx′i

dt′
=
dxi

dt
−

1

a

da

dt
xi = vi −Hxi , (2.13)

so v′i measures the velocity relative to the Hubble flow of the background solution. We also

define density and potential deviations from the background, δ and ψ, by

ρ = ρ0(1 + δ) , (2.14)

φ = φ0 + ψ . (2.15)
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In terms of these quantities, the Newtonian equations are

∂i
′

∂i′ψ = 4πa2ρ0δ , (2.16)

∂t′δ +
1

a
∂i′

(

(1 + δ)v′i
′

)

= 0 , (2.17)

∂t′v
′i′ +

1

a
v′j

′

∂j′v
′i′ +Hv′i

′

= −
1

a
∂i

′

ψ . (2.18)

From now on, since we will always work in comoving coordinates, we shall drop the primes.

Next, we re-write these equations using “conformal time” τ defined by

dτ

dt
=

1

a
. (2.19)

We also denote derivatives with respect to conformal time with overdots. In terms of the

conformal time variable, the Newtonian background equations are

ȧ2

a2
=

8π

3
a2ρ0 +

Λ

3
a2 − k , (2.20)

d

dτ

(

ȧ

a

)

= −
4π

3
a2ρ0 +

Λ

3
a2 , (2.21)

ρ̇0 + 3
ȧ

a
ρ0 = 0 , (2.22)

and the Newtonian equations for the quantities describing the deviations from the back-

ground are

∂i∂iψN = 4πa2ρ0δN , (2.23)

δ̇N + ∂i
(

(1 + δN )v
i
N

)

= 0 , (2.24)

v̇iN + vjN∂jv
i
N +

ȧ

a
viN = −∂iψN , (2.25)

where we have now added a subscript N so that these Newtonian quantities can be easily

distinguished from the corresponding general relativistic quantities that we will introduce

later. We emphasize that (2.23)–(2.25) are exact. We shall assume below that these equa-

tions are solved on a 3-torus, i.e., a “box” at fixed comoving coordinates (of the background

solution) with periodic boundary conditions.

Linearizing (2.23)–(2.25) about the background solution, we obtain

∂i∂iψ
(1)
N = 4πa2ρ0δ

(1)
N , (2.26)

δ̇
(1)
N + ∂iv

(1)i
N = 0 , (2.27)

v̇
(1)i
N +

ȧ

a
v
(1)i
N = −∂iψ(1)

N . (2.28)
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We now compare the linearized Newtonian equations with the linearized general relativistic

equations about a dust FLRW model. In [7], Bardeen decomposed linearized metric and

stress-energy perturbations into their scalar, vector, and tensor parts, which evolve inde-

pendently. He then introduced gauge invariant quantities to describe these perturbations.

In the case of a perfect fluid, the two scalar gauge invariant variables describing metric per-

turbations are related—in his notation, ΦH = −ΦA—so the scalar perturbations are fully

described by ΦH (or ΦA), the scalar part of the velocity perturbation, vis, and a density

perturbation variable ǫm (defined by eqs. (3.9)–(3.11) and (3.13) of [7]). We can similarly

decompose a linearized Newtonian perturbation: ψ
(1)
N and δ

(1)
N are scalar quantities, and the

velocity perturbation can be decomposed as

v
(1)i
N = v

(1)i
Ns + v

(1)i
Nv , (2.29)

where v
(1)i
Ns can be written as a gradient and ∂iv

(1)i
Nv = 0. Newtonian perturbations have no

tensor part. It is then straightforward to see that, as pointed out by Bardeen [7], under the

correspondence

ψ
(1)
N ←→ ΦA = −ΦH , (2.30)

v
(1)i
Ns ←→ vis , (2.31)

δ
(1)
N ←→ ǫm , (2.32)

the linearized Newtonian equations become identical to the equations describing scalar per-

turbations of a spatially flat dust cosmology as given by eqs. (4.3), (4.5) and (4.8) of [7].

Note that this correspondence holds only for perturbations of spatially flat models, i.e., there

are additional terms in the linearized Einstein equation when the background solution has

nonvanishing spatial curvature.

It is not difficult to see that the exact correspondence between linearized Newtonian

gravity and general relativistic perturbations of spatially flat models extends to vector per-

turbations as well with

v
(1)i
Nv ←→ vic , (2.33)

where the gauge invariant quantity vic is defined by Bardeen’s eq. (3.23). Specifically, the

vector part of the linearized Euler equation (2.28) for v
(1)i
Nv is identical to Bardeen’s eq. (4.13)

for vic. There are no additional Newtonian equations for vector perturbations. However, there
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is an additional general relativistic equation [Bardeen’s eq. (4.12)],

∂j∂jΨ
i = −16πa2ρ0v

i
c , (2.34)

which is a Poisson equation for a quantity Ψi not present in Newtonian theory. On a torus,

this equation has a solution if and only if there is no spatially homogeneous part of vic, i.e.,

∫

d3x v
(1)i
Nv = 0 . (2.35)

This equation must hold for all for all times τ , but it is easily checked that this equation

is preserved under time evolution, so it suffices to impose it at any one time. Thus, (2.35)

is a constraint that must be imposed upon a linearized Newtonian solution in order that it

correspond to a linearized solution of Einstein’s equation under the correspondence (2.33)

In summary, provided only that the constraint (2.35) is satisfied, there is an exact corre-

spondence, given by (2.30)–(2.34), between the complete linearized Newtonian equations for

dust matter off of a homogeneous and isotropic background and the scalar and vector parts

of the linearized Einstein equation off of a spatially flat dust FLRW background. As pre-

viously noted, there are no counterparts to tensor perturbations in Newtonian gravity, i.e.,

general relativity has these additional degrees of freedom not present in Newtonian gravity.

C. A Proposed Dictionary

Based upon the results of the previous subsections, we now shall propose a dictionary

that translates a solution (ψN , δN , v
i
N ) of the exact Newtonian equations (2.23)–(2.25) into

a general relativistic spacetime metric gab and dust matter stress-energy tensor Tab = ρuaub.

In the next section, we shall investigate the extent to which (gab, Tab) satisfies Einstein’s

equation as well as what further corrections need to be made to (gab, Tab) to make it solve

Einstein’s equation to higher accuracy.

First, the Newtonian equations (2.23)–(2.25) were written relative to a “background so-

lution” of (2.9) and (2.11) with “scale factor” a and mass density ρ0. Since these Newtonian

background equations are identical to the equations for a dust filled FLRW general rela-

tivistic spacetime, we define our dictionary so that it associates the corresponding FLRW

spacetime to this background solution. Thus, we have defined our dictionary for the case

ψN = δN = viN = 0. In the following, we shall restrict consideration to the case where k = 0
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for the background solution, since this is the only case where we expect a good dictionary to

exist when deviations from homogeneity and isotropy occur. We shall assume that periodic

boundary conditions have been imposed on the Newtonian background solution, so that the

corresponding FLRW background solution has 3-torus spatial slices. For convenience, we

assume that the co-moving spatial coordinates of the Newtonian and FLRW background

solutions range between 0 and 1.

In order for our dictionary to produce a definite general relativistic spacetime, we must

make a choice of gauge for the metric. In the context of linearized perturbation theory, a

natural and very useful gauge choice is the longitudinal gauge, in which the metric takes the

form

ds2 = a2(τ)
[

−(1 + 2A)dτ 2 − 2Bidx
idτ + ((1 + 2HL)δij + hij) dx

idxj
]

, (2.36)

where ∂iBi = 0, ∂jhij = 0 and hii = 0, and spatial indices i, j, k, . . . are raised and lowered

with the background flat Euclidean metric δij . In the context of linearized perturbation

theory, the quantities A, Bi, HL, and hij represent the metric perturbation, and it can be

shown that an arbitrary metric perturbation can be put in the form (2.36) by an infinitesimal

gauge transformation. It also can be shown that this gauge is essentially unique, i.e., there is

essentially no additional gauge freedom that maintains the form (2.36). However, linearized

perturbation theory is not adequate for our purposes, since our dictionary is required to

map Newtonian solutions that differ by a finite amount from the Newtonian background

solution into metrics that differ by a finite amount from an FLRW model. Nevertheless,

it should be possible to show via the implicit function theorem that for metrics that differ

from an FLRW model by a sufficiently small but finite amount, the metric form (2.36)—

with ∂iBi = 0, ∂jhij = 0 and hii = 0—always can be imposed by a (nonlinear) gauge

transformation. We shall not attempt to prove such a result here, and will merely take

(2.36) as an ansatz for the metric in constructing our dictionary. However, we believe that

imposition of the metric form (2.36) does not involve any loss of generality if the metric is

sufficiently close to an FLRW model.

The stress-energy tensor of dust in the general relativistic spacetime takes the form

Tab = ρuaub . (2.37)

We define the three-velocity, vi, of the dust to be such that the components, uµ, of the

four-velocity in our gauge are proportional to (1, vi). Normalizing using the metric form

13



(2.36), we obtain

uµ =
1

a
√

1 + 2A+ 2Bjvj − ((1 + 2HL)δjk + hjk) vjvk
(1, vi) . (2.38)

Thus, this equation gives the formula for the 4-velocity ua appearing in (2.37) in terms of

the 3-velocity vi that will be specified by our dictionary below. We define the fractional

density perturbation δ in the general relativistic model via

ρ = ρ0(1 + δ) . (2.39)

As already stated above, the Newtonian solution is specified by (ψN , δN , v
i
N). With the

above gauge choice, the general relativistic spacetime and matter distribution is specified by

(A,Bi, HL, hij, δ, v
i). Our proposed dictionary will therefore be defined by providing formulas

for A, Bi, HL, hij , δ, and v
i in terms of the Newtonian variables. To obtain this dictionary,

we start by taking the formulas that hold at linearized order under the correspondence of

the previous section, which we obtain by expressing the Bardeen variables appearing in

(2.30)–(2.33) in terms of (A,Bi, HL, hij , δ, v
i). Then we improve our definition for Bi (and

correspondingly for vi) by requiring consistency with the nonlinear momentum constraint

at small scales, leading to the replacement of ρ0v
i by ρ0(1 + δN)v

i. We thereby propose the

following dictionary:

A = −HL = ψN , (2.40)

(1 + δN)v
i = (1 + δN )(v

i
N +Bi)− (1 + δN)viN

∣

∣

∣

v
, (2.41)

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

, (2.42)

hij = 0 , (2.43)

and Bi is the solution to the equation

∂j∂jB
i = −16πρ0a

2
(

(1 + δN)v
i
N − (1 + δN )viN

)
∣

∣

∣

v
, (2.44)

with5 Bi = 0, where the overbar denotes spatial average, i.e.,

f ≡

∫

d3xf . (2.45)

5 The condition Bi = 0 can be imposed by using the coordinate freedom xi → xi + F i(t).
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(Recall that the comoving spatial coordinates are assumed to range from 0 to 1.) In (2.41)

and (2.44), the notation |v denotes the “vector part” of a quantity in a decomposition of the

type (2.29).

At large scales, one would expect the vector part of vi to be negligible because in linear

perturbation theory, vector modes are known to decay [7]. In addition, comparing the

Poisson equation for Bi with the Poisson equation for ψN , one would expect Bi to be

smaller than ψN by order v/c at small scales, and thus Bi should be negligible compared

with A and HL at all scales. Thus, (2.41) should yield a negligibly small correction to the

equation vi = viN . Thus, under normal circumstances, it should be acceptable to replace our

proposed global dictionary with the following abridged version of the dictionary:

A = −HL = ψN , (2.46)

vi = viN , (2.47)

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

, (2.48)

together with Bi = hij = 0. This abridged dictionary corresponds to a continuum version

of the dictionary6 given by Chisari and Zaldarriaga [19].

Finally, on small scales δN should dominate the other terms appearing on the right side

of (2.42). Thus, on scales much smaller than the Hubble radius, it should be possible to use

the following simplified version of the dictionary:

A = −HL = ψN , (2.49)

vi = viN , (2.50)

δ = δN , (2.51)

together with Bi = hij = 0. This simplified dictionary is very commonly assumed. However,

on scales comparable to the Hubble radius, all terms in (2.42) should be of comparable size,

so if one is interested in investigating behavior on large scales, the full dictionary or abridged

dictionary should be used.

As explained above, our dictionary (2.40)–(2.44) has been constructed so as to produce

a solution of Einstein’s equation to linearized order in (A,Bi, HL, hij , δ, v
i). A Newtonian

cosmology that corresponds to our universe should have ψN ≪ 1 and |viN | ≪ 1, but will

6 Their definition of ρ differs from ours by a term involving the perturbed volume element.
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normally have δN ≫ 1 on small scales. Therefore, it is not obvious, a priori how accurate

our dictionary is in producing a solution to Einstein’s equation. In fact, it is clear that there

may be difficulties in this regard because the dictionary should produce a spacetime that

nearly satisfies the linearized Einstein equation on small scales, but the linearized Einstein

equation is incompatible (via the linearized Bianchi identity) with the nonlinear dynamical

behavior of matter7 that occurs on small scales. We now investigate how close (2.40)–(2.44)

comes to producing a solution to Einstein’s equation.

III. COUNTING SCHEME AND IMPROVED DICTIONARY

As stated at the end of the previous section, we wish to determine how close our dictio-

nary comes to producing a solution of Einstein’s equation when the Newtonian cosmology

has ψN ≪ 1 and |viN | ≪ 1, but may have δN ≫ 1 at small scales. To analyze this is-

sue, we need a consistent approximation scheme that can take advantage of the fact that

the deviation of the metric from an FLRW model is small on all scales, but permits very

large deviations of the stress-energy tensor from an FLRW model to occur on small scales.

Such an approximation scheme was recently developed by us in [1] and used to analyze the

backreaction effects of small scale inhomogeneities on large scale dynamics. We refer the

reader to that reference for the precise mathematical formulation of the approximation. For

our purposes here, it suffices to observe that, as in ordinary perturbation theory, in our

approximation scheme there is a “small parameter” ǫ (denoted λ in [1]) that measures the

deviation, γab = gab − g
(0)
ab , of the metric gab from a background metric g

(0)
ab , so γab = O(ǫ).

However, unlike ordinary perturbation theory, first spacetime derivatives of γab are allowed

to be O(1), and second spacetime derivatives of γab—and, hence, the deviations of the stress-

energy tensor from the background stress-energy—are allowed to be O(1/ǫ). In particular,

the quadratic products ∇cγab∇fγde and γab∇c∇fγde that appear in Einstein’s equation are

O(1), so our approximation scheme allows small scale inhomogeneities to affect the dynamics

of the background metric. One of the main results of [1] is that, in fact, the only possible

effect that these nonlinear terms can have on the dynamics of the background metric is to

contribute an effective stress-energy that is traceless and has positive energy, corresponding

7 In many references (see, e.g., [19, 20]), the linearized Einstein equation is written down together with

the nonlinear dynamical equations for matter. This combined system of equations is mathematically

inconsistent.
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to the presence of gravitational radiation. For the present work, we assume that the universe

contains a negligible amount of gravitational radiation, so that this effective stress-energy

tensor can be set to zero, and the background metric (which has FLRW symmetry) therefore

obeys the ordinary Einstein equation with dust stress energy tensor.

In addition to analyzing the effects of small scale inhomogeneities on the dynamics of

the background metric, in [1] perturbation theory was generalized to allow for significant

nonlinearity at small scales, while at the same time maintaining a linearized description at

large scales (see also [13]). In order to ascribe different behavior to perturbations at different

scales these notions must of course be defined. In [1], the notion of the “long wavelength

part” of quantities was defined in a mathematically precise manner by considering the weak

limit of these quantities as ǫ → 0. As explained in [1], at sufficiently small but finite ǫ,

this should correspond closely to taking an average over a spatial scale8 L that is small

compared with the background curvature (i.e., the Hubble radius) but sufficiently large that

at this scale and beyond we have |δ| ≪ 1. For the present work, we shall identify the long

wavelength part, A
(L)
a1···an , of a tensor field, Aa1···an , with the spatial average9 of its components

A(L)
µ1···µn

(x) = 〈Aµ1···µn
〉(x) ≡

∫

d3x′WL(x− x
′)Aµ1···µn

(x′) , (3.1)

using a suitable “window function,” WL(x − x′), of size L, i.e., a smooth function which is

equal to 1 for a2|x − x′|2 < L, and which smoothly falls to 0 outside of this region10. The

requirement that L be much smaller than the background curvature scale ensures that this

averaging process is well-defined, whereas the requirement that L be sufficiently large that

|δ| ≪ 1 should ensure that the long wavelength parts of perturbations behave linearly.

We define the “short wavelength part” of Aa1···an by

A(S)
a1···an ≡ Aa1···an −A

(L)
a1···an , (3.2)

thereby providing a decomposition of any quantity into its long and short wavelength parts.

The framework of [1] allows one to make different assumptions in a mathematically consistent

manner about the long and short wavelength parts of the various quantities. In particular,

8 For the present universe, L ≈ 100 Mpc should meet these criteria.
9 In [1] averages over (short) time intervals were also performed. The purely spatial averaging we perform

here with a suitable “window function” corresponds precisely to the averaging done in [13].

10 Equivalently, one could work in Fourier transform space and multiply the Fourier transform, Â
(L)
a1···an

(k),

by ŴL(k), where ŴL(k) interpolates between 1 (for k < 1/L) and 0 for k ≫ 1/L.
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derivatives of short wavelength parts can pick up the factors of 1/ǫ described above, but

derivatives do not increase the size of long wavelength parts.

Our framework can be straightforwardly applied to cosmological Newtonian gravity. It

is natural in this case also to impose the additional conditions that velocities are suitably

“small” and time derivatives of quantities are correspondingly small compared with space

derivatives at small scales. Specifically, the sizes we assign11 to the short wavelength part of

the quantities (ψN , v
i
N , δN) of the previous section are given in Table I. On the other hand,

Quantity Order

ψ
(S)
N ǫ

v
(S)i
N ǫ1/2

δ
(S)
N ǫ−1

∂0 ǫ−1/2

∂i ǫ−1

TABLE I. Small scale order counting for Newtonian quantities

the long wavelength part of all of these quantities and their space and time derivatives

are assumed to be O(ǫ). It should be noted that certain products of short wavelength

quantities can have O(ǫ) large scale average. In particular, long wavelength averages of

nonlinear quantities corresponding Newtonian potential energy12, kinetic energy, and linear

momentum enter the perturbation equation for γ
(L)
ab .

Our aim here is simply to use the framework of [1] as a “counting scheme” in powers

of ǫ to see how close our dictionary comes to producing a solution to Einstein’s equation.

Specifically, we assume that we have been provided with a Newtonian cosmological solution

where the “sizes” of quantities correspond to Table I. To complete our “counting scheme,”

we must also assign an ǫ-order to B
(S)
i . Since Bi is obtained by solving the Poisson equation

(2.44) and, according to Table I, the source term is of order ǫ−1/2, we assign B
(S)
i the order

ǫ3/2.

Having assigned ǫ-orders to all quantities, we may ask the following question: If we

substitute the Newtonian solution into our dictionary (2.40)–(2.44) to produce a spacetime

11 The orders we assign to the quantities in Table I correspond to the post-Newtonian orderings of Futamase

and Schutz [11] up to a rescaling of the spatial coordinates, but they differ from the post-Newtonian

orderings of Oliynyk [8, 9].
12 A priori, 〈δNψN 〉 = O(1), but due to the fact that δN is bounded below by −1, in fact 〈δNψN 〉 = O(ǫ);

see the lemma of section II of [1].
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metric gab and dust stress-energy tensor Tab, how close does (gab, Tab) come to satisfying

Einstein’s equation?

If we are to have confidence that the dictionary is producing a good approximation to a

solution to Einstein’s equation, we would want Einstein’s equation to be solved to at least

O(1) in ǫ. This is a nontrivial requirement, since there are individual terms, such as δ, in

Einstein’s equation that are O(1/ǫ) in our counting scheme. As we shall see below, the

dictionary (2.40)–(2.44) solves Einstein’s equation to O(1/ǫ) but fails to yield a solution

to Einstein’s equation at O(1) in ǫ. Nevertheless, we will then show that we can make

further small corrections to the metric so that Einstein’s equation does hold to O(1). As

we shall see, these metric corrections should be O(ǫ2) at small scales and therefore should

be negligible. If so, our original dictionary (2.40)–(2.44) should be producing an accurate

relativistic cosmology in terms of its description of the metric and matter distribution on

small scales.

In addition, if the dictionary is to be trusted for its description of large scale structure—

including on scales comparable to (or larger than) the Hubble radius—we would want Ein-

stein’s equation to hold to at least O(ǫ) at large scales. As we shall see below, even after

we have made the necessary corrections to the metric so that Einstein’s equation is satisfied

to O(1) at small scales, Einstein’s equation will fail to hold to O(ǫ) at large scales in our

counting scheme. We will therefore make further large scale corrections to the dictionary

so that Einstein’s equation holds to O(ǫ) at large scales. As we shall see, although these

corrections are formally of order ǫ, they would be expected to make negligible corrections

to ordinary linearized perturbation theory at long wavelengths. If so, our original dictio-

nary (2.40)–(2.44) should be producing an accurate relativistic cosmology in terms of its

description of the metric and matter distribution on large scales.

The above corrections provide us with an improved dictionary that incorporates the dom-

inant general relativistic corrections to (2.40)–(2.44). Although the improved dictionary is

undoubtedly far more precise than would be needed for most applications, it is important

as a matter of principle to know that corrections can be made so that Einstein’s equa-

tion holds to O(1) at all scales and at O(ǫ) on large scales. Furthermore, for any given

Newtonian cosmology, the correction terms appearing in the improved dictionary can be

calculated straightforwardly, and their size should give a reliable indication of the accuracy

of the original dictionary (2.40)–(2.44). If, as indicated above, these correction terms are
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negligibly small, then the Newtonian cosmology should provide—via the original dictio-

nary (2.40)–(2.44) and/or its abridgment (2.46)–(2.48) or simplification (2.49)–(2.51)—an

excellent description of what is predicted by general relativity.

A. Solving Einstein’s equation to O(1)

1. How well are Einstein’s equation solved by the original dictionary?

Appendix A presents the calculation of Einstein’s equation for the metric (2.36) and

stress-energy tensor (2.37)–(2.39), keeping all terms that could potentially contribute to O(1)

as well as all terms that could potentially contribute to O(ǫ) at large scales. Given a New-

tonian cosmological solution (ψN , v
i
N , δN), we substitute it into the dictionary (2.40)–(2.44),

and substitute the result into Einstein’s equation, freely using the Newtonian equations to

simplify the resulting expressions. Equation (A2) yields

G0
0(g) + Λ− 8πT 0

0

=
3

a2

{

−
2

3
∂i∂iψN −

8

3
ψN∂

i∂iψN − ∂
iψN∂iψN

}

− 8πρ0
{

−δN − (1 + δN )v
i
NvNi

}

+ o(1)

=
3

a2

{

−
8

3
ψN∂

i∂iψN − ∂
iψN∂iψN

}

+ 8πρ0(1 + δN )v
i
NvNi + o(1) , (3.3)

where we used the Poisson equation (2.23) for ψN in the second equality. Since the quantities

ψN∂
i∂iψN , ∂

iψN∂iψN and δNv
i
NvNi are each O(1) in our counting scheme (and these terms

do not cancel), we see that this component of Einstein’s equation is not satisfied to O(1).

Equation (A3) yields

G0
i(g)− 8πT 0

i =
2

a2

{

−∂iψ̇N −
ȧ

a
∂iψN

}

− 8πρ0 [(1 + δN)vNi]|s + o(1) . (3.4)

However, from the Newtonian equations of motion (2.23) and (2.24), it follows that

∂i∂iψ̇N +
ȧ

a
∂i∂iψN = −4πρ0a

2∂i
[

(1 + δN )v
i
N

]

. (3.5)

On the torus this may be integrated, giving

∂iψ̇N +
ȧ

a
∂iψN = −4πρ0a

2 [(1 + δN )vNi]|s . (3.6)

Thus, we obtain

G0
i(g)− 8πT 0

i = o(1) , (3.7)
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i.e., these components of Einstein’s equation are satisfied13 to O(1).

Finally, from eq. (A4) we obtain the space-space components,

Gi
j(g) + Λδij − 8πT i

j

=
1

a2

{

2ψ̈N − 4ψN∂
k∂kψN − 3∂kψN∂

kψN

}

δij +
1

a2
{

4ψN∂
i∂jψN + 2∂iψN∂jψN

}

+
1

2a2

{

∂iḂj + ∂jḂ
i
}

− 8πρ0(1 + δN )v
i
NvNj + o(1) . (3.8)

Thus, these components of Einstein’s equation are not satisfied to O(1).

2. Corrections to the dictionary needed to solve Einstein’s equation to O(1)

We will now show that all components of Einstein’s equation can be satisfied to O(1) by

making the additional corrections χ, ξ, and ij to the spacetime metric as follows:

A = ψN + χ+ ξ , (3.9)

HL = −ψN − χ , (3.10)

hij = ij , (3.11)

with ξ(S), χ(S), and 
(S)
ij all O(ǫ2). However, we do not make any modifications to the original

dictionary expressions for vi, δ, and Bi, i.e., we continue to use

(1 + δN)v
i = (1 + δN )(v

i
N +Bi)− (1 + δN)viN

∣

∣

∣

v
, (3.12)

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

, (3.13)

∂j∂jB
i = −16πρ0a

2
(

(1 + δN)v
i
N − (1 + δN )viN

)
∣

∣

∣

v
. (3.14)

In particular, it should be emphasized that no additional corrections are made to the matter

distribution variables δ and vi.

We have already seen that the original dictionary solved the time-space components of

Einstein’s equation to O(1) and it is not difficult to see that these equations continue to hold

with the above revisions. Thus, to solve Einstein’s equation to O(1), we need only consider

the space-space components (A4) and the time-time component (A2). To solve (A4), we

13 In fact, the precise forms of (2.41) and (2.44) were chosen so that no further corrections to vi and Bi

would be needed to satisfy Einstein’s equation to O(1).
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note that we can uniquely decompose any symmetric tensor field Eij on a 3-torus with flat

metric δij and flat derivative operator ∂i as

Eij = Uδij + ∂i∂jV −
1

3
∂k∂kV + 2∂(iWj) +Xij , (3.15)

with ∂iWi = 0, ∂iXij = 0, and X i
i = 0. This defines the decomposition of Eij into its scalar

(U, V ), vector (Wi), and tensor (Xij) parts. Thus, we can solve an equation of the form

Eij = 0 by separately solving its scalar, vector, and tensor parts. To begin, we take the

double divergence of the traceless part of (A4). We obtain14

−
2

3a2
∂i∂i∂

j∂jξ +
1

a2
∂i∂

j
{

4ψN∂
i∂jψN + 2∂iψN∂jψN

}

−
1

3a2
∂i∂i

{

4ψN∂
j∂jψN + 2∂jψN∂jψN

}

= 8πρ0∂i∂
j
[

(1 + δN)v
i
NvNj

]

−
8π

3
ρ0∂

i∂i
[

(1 + δN)v
k
NvNk

]

+ o

(

1

ǫ2

)

. (3.16)

Here we have dropped terms which are o(1/ǫ2), since we have taken two spatial derivatives

of an equation that we wish to satisfy to O(1). We can solve (3.16) to the desired order by

defining ξ to be the solution to the following double Poisson equation:

∂i∂i∂
j∂jξ = 3∂i∂

j
{

2ψN∂
i∂jψN + ∂iψN∂jψN

}

− ∂i∂i
{

2ψN∂
j∂jψN + ∂jψN∂jψN

}

−12πρ0a
2∂i∂

j
[

(1 + δN )v
i
NvNj

]

+ 4πρ0a
2∂i∂i

[

(1 + δN )v
k
NvNk

]

. (3.17)

A solution for ξ exists on a torus because the source term is a divergence and therefore

has no spatially constant piece. This solution is unique up to a spatially constant function

of time, which we fix by requiring that its spatial average, ξ, vanishes. Since the double

divergence of the traceless part of (A4) has now been solved to O(1/ǫ2), the scalar part of

the traceless part of (A4) should now be solved to O(1), as desired. Note that since the four

spatial derivatives applied to ξ yields a quantity that is O(1/ǫ2), the short wavelength part,

ξ(S), of ξ should be O(ǫ2), so our assumption that ξ(S) is O(ǫ2) is self-consistent.

Next, we show that, with this choice of ξ, the trace of (A4) also is satisfied to O(1).

Substituting the revised dictionary (3.9)–(3.14) into the trace of (A4), we find that we must

satisfy

3

a2

{

2

3
∂i∂iξ + 2ψ̈N

}

+
1

a2
{

−8ψN∂
i∂iψN − 7∂iψN∂

iψN

}

= 8πρ0(1 + δN)v
i
NvNi + o(1) . (3.18)

14 In substituting for vi we have neglected some terms proportional to 1/(1 + δN ), which can in fact be

quite large in low density regions. When one makes a uniform momentum correction − (1 + δN )vi
N

∣

∣

∣

v
,

this corresponds, in a low density region, to a very large velocity correction which is unphysical. If such a

situation were to occur, then a fix would be to transfer some of this momentum to a higher density region.22



To see if this equation holds, we take its Laplacian. The double Laplacian of ξ will then

appear, and we can substitute for this quantity using (3.17). Since we want to solve (3.18)

to O(1), and each spatial derivative increases the small scale order by a factor of 1/ǫ, we

wish to solve the Laplacian of (3.18) to O(1/ǫ2), so the equation we wish to solve is

3

a2

{

2∂i∂iψ̈N − 2∂i
(

∂iψN∂
j∂jψN

)

}

= 24πρ0∂
j∂i

[

(1 + δN)v
i
NvNj

]

+ o

(

1

ǫ2

)

. (3.19)

However, using the Newtonian equations (2.23)–(2.25), as well as the Friedmann equations

for the Newtonian background, one can show that

∂i∂i

{

2ψ̈N + 6
ȧ

a
ψ̇N +

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

ψN

}

= 8πρ0a
2∂i∂j

[

(1 + δN)v
i
Nv

j
N

]

+ 2∂i
(

∂j∂jψN∂
iψN

)

, (3.20)

so (3.19) is indeed solved to the desired order. We have thus fully solved the scalar parts of

the space-space part of Einstein’s equation to O(1).

Next, we consider the vector part of (A4) by taking its divergence, using the fact that

the scalar parts have already been solved. We obtain

1

2a2
∂j∂jḂ

i +
1

a2
∂j

{

4ψN∂
i∂jψN + 2∂iψN∂jψN

}
∣

∣

v

= 8πρ0∂
j
[

(1 + δN)v
i
NvNj

]
∣

∣

v
+ o

(

1

ǫ

)

. (3.21)

Using the Newtonian Euler and mass conservation equations, along with the definition of

Bi, one can show that

1

2a2

{

∂j∂jḂ
i + 2

ȧ

a
∂j∂jB

i

}

+
1

a2
∂j

{

4ψN∂
i∂jψN + 2∂iψN∂jψN

}
∣

∣

v

= 8πρ0∂
j
[

(1 + δN )v
i
NvNj

]
∣

∣

v
, (3.22)

so equality does hold for the terms explicitly written in (3.21). Thus, the vector part of

(A4) is satisfied to O(1).

The tensor part of (A4) is all that remains of this equation. We obtain

−
1

a2
∂k∂k

i
j +

1

a2
{

4ψN∂
i∂jψN + 2∂iψN∂jψN

}
∣

∣

t
= 8πρ0(1 + δN )v

i
NvNj

∣

∣

t
+ o(1) , (3.23)

where |t denotes the tensor part of a quantity in its decomposition (3.15). To solve this

equation to the desired order, we define ij to be the solution of

∂k∂k
i
j =

{

8πρ0a
2(1 + δN )v

i
NvNj + 4ψN∂

i∂jψN + 2∂iψN∂jψN

−8πρ0a
2(1 + δN)viNvNj + 2∂iψN∂jψN

}
∣

∣

∣

t
, (3.24)
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where the overline denotes spatial average (see (2.45)). The terms with the overline in (3.24)

have been added in so that the source has vanishing integral, as is necessary in order to be

able to solve the Poisson equation. Since these terms are15 O(ǫ), we will satisfy (3.23) to

the desired order by choosing ij to solve (3.24). We fix the ambiguity in ij by requiring

ij = 0. Since two spatial derivatives applied to ij yields a quantity that is O(1), the

short wavelength part, 
(S)
ij , of ij should be O(ǫ2), so our assumption that 

(S)
ij , is O(ǫ2) is

self-consistent. We have now solved (A4) to O(1).

Finally, we consider the time-time component of Einstein’s equation. Substitution of the

dictionary into (A2) yields

3

a2

{

−
2

3
∂i∂iψN −

2

3
∂i∂iχ−

8

3
ψN∂

i∂iψN − ∂
iψN∂iψN

}

= 8πρ0
[

−δN − (1 + δN)v
i
NvNi

]

+ o(1) . (3.25)

Using the Newtonian field equation (2.23), we obtain

3

a2

{

−
2

3
∂i∂iχ−

8

3
ψN∂

i∂iψN − ∂
iψN∂iψN

}

= −8πρ0(1 + δN)v
i
NvNi + o(1) . (3.26)

We define χ to be the solution to the Poisson equation

∂i∂iχ = −4ψN∂
i∂iψN −

3

2
∂iψN∂iψN + 4πa2ρ0(1 + δN)v

i
NvNi

−
5

2
∂iψN∂iψN − 4πa2ρ0(1 + δN)v

i
NvNi , (3.27)

with χ = 0. Since two spatial derivatives applied to χ yields a quantity that is O(1), the

short wavelength part, χ(S), of χ should be O(ǫ2).

Thus, we have shown that Einstein’s equation can be solved to O(1) by making the

corrections (3.9)–(3.11) to the original dictionary, where χ, ξ, and ij are given, respectively,

by (3.27), (3.16), and (3.24). Although it is extremely important as a matter of principle

that such corrections can be made so as to obtain a solution to O(1), we expect that these

corrections will be negligibly small compared with ψN .

B. Improving the solution to O(ǫ) at large scales

In the previous subsection we obtained a solution to O(1). However, as previously stated,

if our dictionary is to be trusted for its description of large scale structure—including on

15 See footnote 12.
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scales comparable to (or larger than) the Hubble radius—we want Einstein’s equation to

hold to at least O(ǫ) at large scales. Within the context of ordinary perturbation theory,

this corresponds to solving the linearized perturbation equation. Within our generalized

perturbative framework, this corresponds to solving the generalized linearized perturbation

equation (87) of [1]. The difference between these, as noted earlier, is that long wavelength

averages of products of small scale quantities enter into the generalized linearized equation.

It is easy to check that, even with the corrections (3.9)–(3.11), our dictionary does not

produce a solution toO(ǫ) at long wavelengths. Therefore, we will need to make the following

additional long wavelength corrections to our metric and matter variables:

A = ψN + χ+ ξ +X + Ξ , (3.28)

HL = −ψN − χ−X , (3.29)

(1 + δN)vi = (1 + δN)(vNi +Bi)− (1 + δN )vNi

∣

∣

∣

v
+ Pi , (3.30)

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

+∆ , (3.31)

hij = ij + Jij . (3.32)

No additional long wavelength correction is needed for Bi. Here, the quantities Ξ, X , Pi, ∆,

and Jij are assumed to be O(ǫ) and to have vanishing short wavelength part. Hence, they

do not contribute to Einstein’s equation to O(1) and thus do not spoil the solution obtained

in the previous subsection.

Our strategy is to apply the averaging operator 〈·〉 (see eq. (3.1)) to Einstein’s equation,

and to choose the above new correction terms in order to obtain a solution to O(ǫ). For

our the calculations below, it is useful to note that the averaging operator 〈·〉 commutes

with differentiation. Note also that since ψN = O(ǫ), we clearly have 〈ψ2
N〉 = O(ǫ2), and,

consequently, we have

〈∂iψN∂iψN 〉+ 〈ψN∂
i∂iψN 〉 =

1

2
∂i∂i〈ψ

2
N 〉 = O(ǫ2) . (3.33)

Thus, we may freely “integrate by parts” to set 〈ψN∂
i∂iψN 〉 = −〈∂iψN∂iψN 〉 in our calcu-

lations.

As before, we begin with the double divergence of the trace-free part of the space-space

components (A4) of Einstein’s equation. Substituting our new dictionary (3.28)–(3.32), ap-

plying the averaging operator 〈·〉, and using the equation obtained by applying the averaging
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operator to (3.17) to simplify the resulting expression, we obtain

−
2

3a2
∂i∂i∂

j∂jΞ = o(ǫ) . (3.34)

Thus Ξ can only have a spatially constant part, i.e.,

Ξ = Ξ , (3.35)

where Ξ may be an arbitrary function of τ . Examining the scalar homogeneous parts of the

metric,

ds
2
= a2(τ)

[

−(1 + 2X + 2Ξ)dτ 2 + (1− 2X)δijdx
idxj

]

, (3.36)

we see that Ξ corresponds to gauge freedom in the choice of time coordinate. We fix this

freedom by setting

Ξ = −2X , (3.37)

corresponding to using conformal time.

Next, we consider the trace of (A4). Substituting from the dictionary, applying 〈·〉, and

using Ξ = −2X , we obtain

3

a2

{

2

3
∂i∂i〈ξ〉+ 2

(

〈ψ̈N〉+ 〈χ̈〉+ Ẍ
)

+ 2
ȧ

a

(

3〈ψ̇N 〉+ 3〈χ̇〉+ 3Ẋ + 〈ξ̇〉 − 2 ˙̄X
)

+

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(

〈ψN 〉+ 〈χ〉+X + 〈ξ〉 − 2X̄
)

}

+
1

a2
〈∂iψN∂iψN 〉

= 8πρ0〈(1 + δN) v
i
NvNi〉+ o(ǫ) . (3.38)

As before, we take the Laplacian of this equation and substitute the average of (3.17),

obtaining

3

a2
∂j∂j

{

2
(

〈ψ̈N 〉+ 〈χ̈〉+ Ẍ
)

+ 2
ȧ

a

(

3〈ψ̇N〉+ 3〈χ̇〉+ 3Ẋ + 〈ξ̇〉
)

+

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(〈ψN〉+ 〈χ〉+X + 〈ξ〉)

}

−
6

a2
∂i〈∂

iψN∂
j∂jψN 〉

= 24πρ0∂i∂
j〈(1 + δN ) v

i
NvNj〉+ o(ǫ) . (3.39)

Simplifying further using the average of (3.20) and then inverting the Laplacian, we obtain

2Ẍ + 6
ȧ

a
Ẋ − 4

ȧ

a
Ẋ +

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(

X −X
)

= −2〈χ̈〉 − 6
ȧ

a
〈χ̇〉 − 2

ȧ

a
〈ξ̇〉 −

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(〈χ〉+ 〈ξ〉)

−
1

3
∂iψN∂iψN +

8πρ0a
2

3
(1 + δN )viNvNi + o(ǫ) . (3.40)
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Here, the constant of integration was determined by requiring consistency with (3.38). Thus,

the trace of (A4) is satisfied to O(ǫ) at long wavelengths provided thatX satisfies this second

order ordinary differential equation in time. The “scalar parts” of the long wavelength part

of (A4) have now been satisfied to O(ǫ)

Using (3.22), it is not difficult to see that the long wavelength part of the divergence

of (A4) is solved to O(ǫ) at large scales, without any need for further corrections. Thus,

the “vector part” of (A4) has been satisfied to the desired order at long wavelengths. Only

the “tensor part” of (A4) remains. Substituting the dictionary and applying the averaging

operator 〈·〉, we obtain

1

a2

{

J̈ i
j +

ȧ

a
J̇ i

j − ∂
k∂kJ

i
j

}

= −
1

a2

{

〈̈ij〉+
ȧ

a
〈̇ij〉 − ∂

k∂k〈
i
j〉

}

+
2

a2
〈∂iψN∂jψN〉

∣

∣

t
+ 8πρ0〈(1 + δN )v

i
NvNj〉

∣

∣

t
+ o(ǫ)

= −
1

a2

{

〈̈ij〉+
ȧ

a
〈̇ij〉

}

+
2

a2
∂iψN∂jψN

∣

∣

∣

t
+ 8πρ0(1 + δN)viNvNj

∣

∣

∣

t
+ o(ǫ) , (3.41)

where we used the average of (3.24) in the second line. Thus the tensor part of (A4) is

solved to O(ǫ) at large scales provided that Jij solves this wave equation. This completes

the solution of the long wavelength part of (A4) to O(ǫ).

Next, we consider (A3). Substituting from the dictionary, applying 〈·〉, and taking the

divergence, we obtain

−
2

a2
∂i∂i

{

〈ψ̇N 〉+ Ẋ + 〈χ̇〉+
ȧ

a
(〈ψN 〉+X + 〈χ〉+ 〈ξ〉)

}

= 8πρ0∂
i ((1 + δN )vNi + Pi) + o(ǫ) . (3.42)

Using the average of (3.5) to simplify this expression, we obtain

−
2

a2
∂i∂i

{

Ẋ + 〈χ̇〉+
ȧ

a
(X + 〈χ〉+ 〈ξ〉)

}

= 8πρ0∂
iPi + o(ǫ) . (3.43)

We solve this equation by setting P i to be

P i = −
1

4πρ0a2
∂i

(

Ẋ + 〈χ̇〉+
ȧ

a
(X + 〈χ〉+ 〈ξ〉)

)

. (3.44)

This satisfies the “scalar part” of (A3) to the desired order at long wavelengths. It is easy

to check that the vector part of (A3) is also satisfied without the need for any further

corrections.
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Finally, we consider the remaining component of Einstein’s equation, the time-time com-

ponent (A2). Substituting and averaging, we find that this equation is satisfied to the

required order by making the density correction

∆ = −〈(1 + δN)v
i
NvNi〉 −

5

8πa2ρ0
〈∂iψN∂iψN 〉 −

3

8πρ0a2

{

−
2

3
∂i∂i (X + 〈χ〉)

+2
ȧ

a

(

Ẋ + 〈χ̇〉
)

+ 2

(

ȧ

a

)2
(

X − 2X + 〈χ〉+ 〈ξ〉
)

}

= −(1 + δN)v
i
NvNi −

5

8πa2ρ0
∂iψN∂iψN −

3

8πρ0a2

{

−
2

3
∂i∂iX

+2
ȧ

a

(

Ẋ + 〈χ̇〉
)

+ 2

(

ȧ

a

)2
(

X − 2X + 〈χ〉+ 〈ξ〉
)

}

. (3.45)

Here, the average of (3.27) was used to get the second line.

Einstein’s equation has now been fully solved to O(1) everywhere, and to O(ǫ) at large

scales. All of the quantities appearing in our dictionary are uniquely determined by the

Newtonian solution, except for X and Jij , which obey second order differential equations in

time. The degrees of freedom associated with X correspond to the long wavelength degrees

of freedom present in the dust matter sector in ordinary linearized perturbation theory. It

would be natural to fix X by requiring that ∆ and Pi vanish at an initial time16. The degrees

of freedom associated with Jij correspond to the presence of long wavelength gravitational

radiation.

Finally, we consider the magnitude of the additional long wavelength quantities Ξ = −2X ,

X , Pi, ∆, and Jij that we have just obtained. The equations for these quantities involve

terms of the form 〈∂iψN∂jψN 〉 and 〈(1 + δN )vNivNj〉 as well as 〈ξ〉, 〈χ〉, and 〈ij〉, which

themselves are sourced by terms of the form 〈∂iψN∂jψN 〉 and 〈(1 + δN)vNivNj〉. Thus, the

additional long wavelength quantities appearing in our new dictionary (3.28)–(3.32) should

have a magnitude of the order of the Newtonian potential energy and kinetic energy of

the dust matter. Although very small, the homogeneous (i.e., spatially constant) part of

these quantities provides the dominant correction to the background FLRW dust cosmology.

We compute these corrections explicitly in Appendix B. However, the long wavelength

corrections at finite wavelength are sourced by large scale inhomogeneities in 〈∂iψN∂jψN 〉

and 〈(1 + δN )vNivNj〉. These terms should be extremely small as compared with, say, 〈δN 〉.

16 Since P i vanishes identically, this does not fix the spatially homogeneous part, X , of X . An additional

condition on X will be imposed in Appendix B .
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Thus, the long wavelength corrections we have obtained in this subsection should make

entirely negligible contributions to Newtonian large scale structure.

IV. SUMMARY

Combining all of the results of the previous section, we have the following Oxford dictio-

nary for translating a Newtonian cosmological solution (ψN , v
i
N , δN) to a general relativistic

spacetime metric (2.36) and dust stress-energy (2.37):

A = ψN + χ+ ξ +X − 2X , (4.1)

HL = −ψN − χ−X , (4.2)

(1 + δN)vi = (1 + δN)(vNi +Bi)− (1 + δN )vNi

∣

∣

∣

v
+ Pi , (4.3)

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

+∆ , (4.4)

hij = ij + Jij . (4.5)

Here, the quantities Bi, ξ, χ, ij , P
i, and ∆ are given by

∂j∂jB
i = −16πρ0a

2
(

(1 + δN)v
i
N − (1 + δN )viN

)
∣

∣

∣

v
, (4.6)

∂i∂i∂
j∂jξ = 3∂i∂

j
{

2ψN∂
i∂jψN + ∂iψN∂jψN

}

− ∂i∂i
{

2ψN∂
j∂jψN + ∂jψN∂jψN

}

−12πρ0a
2∂i∂

j
[

(1 + δN )v
i
NvNj

]

+ 4πρ0a
2∂i∂i

[

(1 + δN )v
k
NvNk

]

, (4.7)

∂i∂iχ = −4ψN∂
i∂iψN −

3

2
∂iψN∂iψN + 4πa2ρ0(1 + δN)v

i
NvNi

−
5

2
∂iψN∂iψN − 4πa2ρ0(1 + δN)viNvNi , (4.8)

∂k∂k
i
j =

{

8πρ0a
2(1 + δN)v

i
NvNj + 4ψN∂

i∂jψN + 2∂iψN∂jψN

−8πρ0a
2(1 + δN)v

i
NvNj + 2∂iψN∂jψN

}
∣

∣

∣

t
, (4.9)

P i = −
1

4πρ0a2
∂i

(

Ẋ + 〈χ̇〉+
ȧ

a
(X + 〈χ〉+ 〈ξ〉)

)

, (4.10)

∆ = −(1 + δN)v
i
NvNi −

5

8πa2ρ0
∂iψN∂iψN −

3

8πρ0a2

{

−
2

3
∂i∂iX

+2
ȧ

a

(

Ẋ + 〈χ̇〉
)

+ 2

(

ȧ

a

)2
(

X − 2X + 〈χ〉+ 〈ξ〉
)

}

, (4.11)
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with Bi = ξ = χ = ij = 0. The quantities Jij and X satisfy the differential equations

1

a2

{

J̈ i
j +

ȧ

a
J̇ i

j − ∂
k∂kJ

i
j

}

= −
1

a2

{

〈̈ij〉+
ȧ

a
〈̇ij〉

}

+
2

a2
∂iψN∂jψN

∣

∣

∣

t
+ 8πρ0(1 + δN)v

i
NvNj

∣

∣

∣

t
. (4.12)

and

2Ẍ + 6
ȧ

a
Ẋ − 4

ȧ

a
Ẋ +

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(

X −X
)

= −2〈χ̈〉 − 6
ȧ

a
〈χ̇〉 − 2

ȧ

a
〈ξ̇〉 −

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

(〈χ〉+ 〈ξ〉)

−
1

3
∂iψN∂iψN +

8πρ0a
2

3
(1 + δN )viNvNi . (4.13)

Like the Oxford English Dictionary, the above dictionary should be far more detailed and

precise than needed for everyday use. Nevertheless, it may be comforting to have it on

one’s bookshelf in case the need does arise. Furthermore, as a matter of principle, it is of

importance to know that a dictionary of this accuracy—namely, solving Einstein’s equation

to O(1) on all scales and to O(ǫ) on large scales—can be constructed without running into

inconsistencies.

Our main purpose in obtaining the complete dictionary (4.1)–(4.5) was to evaluate the

accuracy of the original dictionary (2.40)–(2.44) (as well as its abridgement (2.46)–(2.48) and

simplification (2.49)–(2.51)). We have argued that for a Newtonian cosmology that satisfies

ψN ≪ 1 and |viN | ≪ 1 but may have δN ≫ 1 at small scales, all of the additional terms

appearing in (4.1)–(4.5) as compared with (2.40)–(2.44) should be negligibly small. Whether

or not this is actually the case for any given Newtonian cosmology can be determined by

computing the quantities ξ, χ, ij , P
i, ∆, X , and Jij given by (4.7)–(4.13). If these quantities

are indeed negligibly small, then one can have confidence that the Newtonian cosmology is

accurately representing a general relativistic spacetime via the original dictionary (2.40)–

(2.44). If, in addition, Bi is negligibly small (see (4.6)), then one is similarly justified in

using the abridged dictionary (2.46)–(2.48). These statements remain valid even in cases

where the Newtonian cosmology is describing phenomena on scales comparable to or larger

than the Hubble radius.
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Appendix A: Einstein’s equation

For the metric ansatz (2.36), we write down the various components of the perturbed

Einstein equation,

Gµ
ν(g)−G

µ
ν(g

(0)) = 8π
(

T µ
ν − T

(0)µ
ν

)

, (A1)

keeping all terms which are O(1) at small scales or O(ǫ) at large scales in our counting

scheme. We introduce the notation o(1; ǫ) to denote a quantity which is o(1) at small scales

and o(ǫ) at large scales. The µ
ν = 0

0 equation reads

3

a2

{

−2
ȧ

a
ḢL +

2

3
∂i∂iHL + 2

(

ȧ

a

)2

A−
8

3
HL∂

i∂iHL − ∂iHL∂
iHL

}

= 8πρ0
{

−δ − (1 + δ)vi(vi − Bi)
}

+ o(1; ǫ) , (A2)

the µ
ν = 0

i equation is

2

a2

{

∂iḢL −
ȧ

a
∂iA

}

−
1

2a2
∂j∂jBi = 8πρ0(1 + δ)(vi − Bi) + o(1; ǫ) , (A3)

and the µ
ν = i

j equation is

1

a2

{

∂k∂k(HL + A)− 2ḦL − 4
ȧ

a
ḢL + 2

ȧ

a
Ȧ+ 4∂τ

(

ȧ

a

)

A + 2

(

ȧ

a

)2

A

}

δij

+
1

a2
{

−4HL∂
k∂kHL − 2A∂k∂kA− 2HL∂

k∂kA− 2∂kHL∂
kHL − ∂kA∂

kA
}

δij

−
1

a2
∂i∂j(HL + A) +

1

a2
{

4HL∂
i∂jHL + 2HL∂

i∂jA+ 2A∂i∂jA+ ∂iA∂jA

+∂iA∂jHL + ∂iHL∂jA + 3∂iHL∂jHL

}

+
1

2a2

{

∂iḂj + ∂jḂ
i + 2

ȧ

a
∂iBj + 2

ȧ

a
∂jB

i

}

+
1

a2

{

ḧij + 2
ȧ

a
ḣij − ∂

k∂kh
i
j

}

= 8πρ0(1 + δ)vi(vj − Bj) + o(1; ǫ) . (A4)

Appendix B: Modified background metric

In this Appendix we compute the homogeneous part of the metric and matter distribution

as given by our final dictionary (4.1)–(4.5). These can be viewed as providing the dominant
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corrections to the background cosmology produced by small scale inhomogeneities. The

relevant equations can be obtained by taking spatial integrals of the equations of section IV.

We find that the spatially homogeneous parts of the metric components are given by

A = −X , (B1)

HL = −X , (B2)

hij = J ij , (B3)

as well as B
i
= 0 (see footnote 5). Thus, the homogeneous part of the metric takes the form

ds
2
= a2(τ)

[

−(1− 2X)dτ 2 + ((1− 2X)δij + J ij)dx
idxj

]

. (B4)

We also have

δ = ∆ , (B5)

P
i
= 0 , (B6)

and

(1 + δ)(vi −Bi) = 0 . (B7)

In addition, the quantities X , ∆, and J ij satisfy

2Ẍ + 2
ȧ

a
Ẋ −

[

4∂τ

(

ȧ

a

)

+ 2

(

ȧ

a

)2
]

X = −
1

3
∂iψN∂iψN +

8π

3
a2ρ0(1 + δN)viNvNi , (B8)

∆ = −(1 + δN)v
i
NvNi −

5

8πa2ρ0
∂iψN∂iψN −

3

8πρ0a2

{

2
ȧ

a
Ẋ − 2

(

ȧ

a

)2

X

}

, (B9)

and
1

a2

{

J̈
i

j +
ȧ

a
J̇
i

j

}

=

{

2

a2
∂iψN∂jψN + 8πρ0(1 + δN )v

i
NvNj

}
∣

∣

∣

∣

t

. (B10)

It is clear that the metric perturbation given by X can be interpreted as taking one to a

new FLRW spacetime, with scale factor

â(τ) = a(τ)(1−X) . (B11)

We now derive modified Friedmann equations for â. To linear order in barred quantities, we

have
1

â

dâ

dτ
=

1

a

da

dτ
− Ẋ , (B12)

32



so

(

1

â

dâ

dτ

)2

=

(

1

a

da

dτ

)2

− 2
ȧ

a
Ẋ

=
8πρ0â

2

3

(

1 + ∆ + (1 + δN)v
i
NvNi

)

+
5

3
∂iψN∂iψN +

Λâ2

3
. (B13)

Here, we made use of the Friedmann equation for a as well as eq. (B9). Similarly, we have

d

dτ

(

1

â

dâ

dτ

)

=
d

dτ

(

1

a

da

dτ

)

− Ẍ

= −
4πρ0â

2

3

(

1 + ∆+ 2(1 + δN)viNvNi

)

−
2

3
∂iψN∂iψN +

Λâ2

3
. (B14)

To put these equations in a more recognizable form, we note that for dust matter,

∇a(ρu
a) = 0, so the integrated flux of ρua over a Cauchy surface Σ

N = −

∫

Σ

ρudǫdabc (B15)

is a constant, i.e., independent of Σ. N is often referred to as the “total number of baryons”;

in an N -body simulation, it would correspond to the total number of particles in the simu-

lation. Evaluating the right side of (B15), we obtain

N = ρ0a
3

(

1 + ∆ +
1

2
(1 + δN )viNvNi +

3

4πρ0a2
∂iψN∂iψN − 3X

)

. (B16)

It is natural to use our freedom in choosing initial conditions for a solution to (B8) to require

N = N0 = ρ0a
3, so that the total number of particles is the same as in the background

spacetime. This condition yields

∆ = −
1

2
(1 + δN )v

i
NvNi −

3

4πρ0a2
∂iψN∂iψN + 3X . (B17)

Combining this equation with (B9), we obtain

0 = −
1

2
(1 + δN)v

i
NvNi +

1

8πa2ρ0
∂iψN∂iψN − 3X −

3

8πa2ρ0

{

2
ȧ

a
Ẋ − 2

(

ȧ

a

)2

X

}

, (B18)

whose time derivative is (B8).

We define the average particle number density ρ̂ relative to â by

ρ̂â3 = N = N0 = ρ0a
3 . (B19)
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In terms of ρ̂, the Friedmann equations become

(

1

â

dâ

dτ

)2

=
8πρ̂â2

3

(

1 +
1

2
(1 + δN)viNvNi −

1

8πρ̂â2
∂iψN∂iψN

)

+
Λâ2

3
, (B20)

d

dτ

(

1

â

dâ

dτ

)

= −
4πρ̂â2

3

(

1 +
3

2
(1 + δN )v

i
NvNi −

1

4πρ̂â2
∂iψN∂iψN

)

+
Λâ2

3
. (B21)

From these equations, one can read off the effective energy density and pressure, including

the contributions from small scale inhomogeneities,

ρeff = ρ̂

(

1 +
1

2
(1 + δN)viNvNi −

1

8πρ̂â2
∂iψN∂iψN

)

, (B22)

Peff = ρ̂

(

1

3
(1 + δN)v

i
NvNi −

1

24πρ̂â2
∂iψN∂iψN

)

. (B23)

The correction terms in ρeff correspond precisely to averaged gravitational potential energy

and kinetic energy, as expected [1, 10, 13]. They can be interpreted as renormalizing the

proper mass density ρ̂ to an “ADM mass density” ρeff. For virialized systems, the correction

terms in Peff cancel, as pointed out in [13]. Thus, we see that the corrections resulting from

X and ∆ correspond to modifying the FLRW background to a new FLRW spacetime with

small corrections to the average effective mass density and pressure that arise from small

scale Newtonian gravitational potential energy and stresses as well as small scale kinetic

motions.

The remaining corrections due to Jij perturb one to an anisotropically expanding Bianchi

model. It can be seen from (B10) that anisotropies in the spatial average of the Newtonian

stresses and/or kinetic motions must necessarily induce an anisotropic expansion of the

universe. However, we would expect these effects to be extremely small.
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