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We examine cosmological, astrophysical and collider constraints on thermal dark matter
(DM) with mass mX in the range ∼ 1 MeV − 10 GeV. Cosmic microwave background
(CMB) observations, which severely constrain light symmetric DM, can be evaded if the
DM relic density is sufficiently asymmetric. CMB constraints require the present anti-DM
to DM ratio to be less than ∼ 2 × 10−6 (10−1) for DM mass mX = 1 MeV (10 GeV) with
ionizing efficiency factor f ∼ 1. We determine the minimum annihilation cross section for
achieving these asymmetries subject to the relic density constraint; these cross sections are
larger than the usual thermal annihilation cross section. On account of collider constraints,
such annihilation cross sections can only be obtained by invoking light mediators. These light
mediators can give rise to significant DM self-interactions, and we derive a lower bound on the
mediator mass from elliptical DM halo shape constraints. We find that halo shapes require
a mediator with mass mφ & 4 × 10−2 MeV (40 MeV) for mX =1 MeV (10 GeV). We map
all of these constraints to the parameter space of DM-electron and DM-nucleon scattering
cross sections for direct detection. For DM-electron scattering, a significant fraction of the
parameter space is already ruled out by beam-dump and supernova cooling constraints.
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I. INTRODUCTION

Studies of dark matter (DM) have historically focused on particles with weak scale mass ∼ 100 GeV [1–3]. The
reason is not only the focus of the high energy physics community on weak scale phenomena, but also because the
annihilation cross section for a Weakly Interacting Massive Particle (WIMP) naturally gives rise to the observed cold
DM relic abundance. This is the so-called “WIMP miracle.”
More recently there has been a broader interest in light DM, with mass mX . 10 GeV. Part of the reason for this

interest is phenomenological. Direct detection results from DAMA [4], CoGeNT [5, 6], and CRESST [7] claim event
excesses that can be interpreted as nuclear scattering of DM with mass ∼ 10 GeV (although the mutual consistency
of these results is disputed). Meanwhile dark matter with masses of MeV has been studied as a possible explanation
of the INTEGRAL 511 keV line [8–14].
There is also a theoretical motivation for light DM, as DM with mass mX . 10 GeV appears in certain classes of

models naturally. In supersymmetric hidden sector models, for example, gauge interactions generate light DM masses
and give rise to the correct annihilation cross section [12, 15, 16]. The asymmetric DM (ADM) scenario, where the
DM particle X carries a chemical potential, analogous to the baryons, provides another approach to light DM (see
e.g. [17–20] and references therein). In these scenarios, both DM (X) and anti-DM (X̄) particles may populate the
thermal bath in the early Universe; however, the present number density is determined not only by the annihilation
cross section, but also by the DM number asymmetry ηX . Depending on the value for ηX , the DM mass can be as
low as ∼ keV in ADM models [21], though the natural scale for ADM is set by (ΩCDM/Ωb)mp ≈ 5 GeV.
The purpose of this paper is to explore model-independent constraints and predictions for the asymmetric and

symmetric limits of light DM with mass ∼ 1 MeV−10 GeV.1 Although both phenomenological and theoretical
considerations have motivated the study of light DM candidates, there are still a number of important constraints
that should be taken into account in realistic model building. In general, light thermal DM faces two challenges: one
is to evade bounds on energy injection around redshifts z ∼ 100 − 1000 coming from observations of the CMB; the
other is to achieve the required annihilation cross section without conflicting with collider physics constraints.
CMB data from WMAP7 strongly limits DM annihilation during the epoch of recombination, and excludes sym-

metric thermal light DM with mass below ∼ 1− 10 GeV if the annihilation is through s-wave processes [22–24]. The
CMB bounds may be evaded in the symmetric case if DM dominantly annihilates to neutrinos or if its annihilation is
p-wave suppressed. When the DM relic density is asymmetric, DM annihilation during recombination can be highly
suppressed if the symmetric component is sufficiently depleted, providing a natural way to resolve the tension from
CMB constraints for light DM scenarios. Unlike the case of symmetric DM, the CMB places a lower bound on the
annihilation cross section for ADM from the requirement of sufficient depletion of the symmetric component. We
calculate the minimum annihilation cross section required in order to evade the CMB bound and achieve the correct
relic density simultaneously.
However, it is difficult to achieve the needed annihilation rate to Standard Model (SM) particles through a weak-

scale mediator. Null results from mono-jet plus missing energy searches at the Tevatron [25–27] and the LHC [28, 29]
strongly constrain such a mediator if DM couples to quarks and gluons. Meanwhile, the mono-photon plus missing
energy search at LEP sets limits on the coupling between DM and charged leptons [30] via such a heavy state. These
collider constraints are so strong that the annihilation through an off-shell heavy mediator is generally insufficient for
ADM to achieve the correct relic density and evade the CMB constraint, if the DM mass is below a few GeV. One
way to evade the collider constraints is to invoke a light mediator with mass much less than ∼ 100 GeV. In this case,
DM can annihilate to SM states efficiently via the light state without conflicting with collider bounds. Furthermore,
if the mediator is lighter than the DM, a new annihilation channel opens and DM can annihilate dominantly to the
mediator directly. In this limit, the mediator particle may couple to the SM sector rather weakly.
The presence of the light mediator has various implications for DM dynamics in galaxies and for cosmology. The

light mediator may give rise to significant DM self-interactions (i.e., DM-DM scattering); this is true in both the
symmetric and asymmetric limits, since the light state mediates DM-DM interactions as well as anti-DM and DM
interactions. These interactions leave footprints in the DM halo dynamics. There are limits on the DM self-interaction
cross section coming from observations of elliptical DM halos and elliptical galaxy clusters. We combine these with
the relic density constraint to place a lower bound on the mediator mass ∼ 4×10−2 MeV−40 MeV for DM masses in
the range ∼ 1 MeV − 10 GeV. We assume this massive mediator decays to SM relativistic degrees of freedom in the
early universe to avoid the overclosure problem, and derive conditions for thermalization of the DM and SM sectors.

1 For DM much lighter than ∼1 MeV, DM can only annihilate to neutrinos, new light states that remain relativistic through matter-
radiation equality, or hidden sector forces that decay invisibly. In this case, the CMB and collider bounds discussed here do not
apply.
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These astrophysical and cosmological constraints can be applied to the parameter space of scattering rates in direct
detection experiments. We consider DM-nucleon scattering for DM masses of 1− 10 GeV and DM-electron scattering
for DM masses 1 MeV − 1 GeV. In the case of electron scattering, we combine the astrophysical and cosmological
constraints with bounds from beam dump experiments and supernova cooling, which exclude a large region of the
allowed parameter space. In addition, the predictions are very different dependent on whether the mediator is heavier
or lighter than the DM.
The rest of paper is organized as follows. In Section II, we present the relic density calculation for DM in the presence

of a chemical potential. In Section III, we study the CMB constraint on ADM models and derive the annihilation
cross section required to evade the CMB bound. In Section IV, we examine current collider physics constraints on
the DM annihilation cross section. In Section V, we study the elliptical halo shape constraint on the mediator mass.
In Section VI, we map out the parameter space for DM direct detection. We conclude in Section VII.

II. RELIC DENSITY FOR SYMMETRIC AND ASYMMETRIC DARK MATTER

Our starting point is to establish that the correct relic density of ΩCDMh2 = 0.1109± 0.0056 [31] can be obtained,
where we assume that the annihilation cross section 〈σv〉 and the asymmetry ηX are floating parameters.
In the usual thermal WIMP scenario, the correct relic density is determined by DM annihilation until freeze-out.

For Dirac DM in the symmetric limit, the cold DM relic density is ΩCDMh2 ∼ 0.11
(

6× 10−26cm3/s
)

/〈σv〉. DM may
also carry a chemical potential which leads to an asymmetry between the number density of DM and anti-DM. In
this case, when the DM sector is thermalized, the present relic density is determined both by the annihilation cross
section and the primordial DM asymmetry ηX ≡ (nX − nX̄)/s, where nX , nX̄ are the DM and anti-DM number
densities and s is the entropy density. In the asymmetric limit, neglecting any washout or dilution effects, the correct
relic density is obtained for a primordial asymmetry given by

ηX ≈ ΩCDM

mX

ρc
s0

, (1)

where s0 ≈ 2969.5 cm−3 and ρc ≈ 1.0540h2 × 104 eV/cm3 are the entropy density and critical density today. In the
asymmetric limit, the annihilation cross section is sufficiently large that the thermally-populated symmetric component
is a sub-dominant component of the energy density today.
Depending on the strength of indirect constraints on DM annihilation, light DM scenarios must interpolate between

the symmetric and asymmetric limits. We thus require precise calculations of the present anti-DM to DM ratio
r∞ = ΩX̄/ΩX , which controls the size of indirect signals from DM annihilation. Note that r∞ is related to the
absolute relic densities by

ΩX =
1

1− r∞

ηXmXs0
ρc

, ΩX̄ =
r∞

1− r∞

ηXmXs0
ρc

, (2)

and the total CDM relic density is ΩCDM = ΩX +ΩX̄ .
To compute r∞ we solve the Boltzmann equations for nX , nX̄ freezeout in the presence of a nonzero chemical

potential [32]. In this work, we focus on the case where DM is in thermal equilibrium with the photon thermal bath
through freezeout. In general, this assumption may not hold if there is a weakly coupled light mediator coupling DM
to the SM. We leave the more general case for future work [33], noting that the effects on the relic density are up to
O(10), depending on mX .
The coupled Boltzmann equations for the species n+ = nX and n− = nX̄ are

dn±
dt

= −3Hn± − 〈σv〉
[

n+n− − neq
+ neq

−
]

(3)

where 〈σv〉 is the thermally-averaged annihilation cross section over the X and X̄ phase space distributions [34]. The
Hubble expansion rate is H ≈ 1.66

√
geffT

2/Mpl where Mpl ≈ 1.22 × 1019GeV is the Planck mass and geff is the
effective number of degrees of freedom for the energy density. If there is a primordial asymmetry in X number, then
there is a nonzero chemical potential µ which appears in the equilibrium distributions as neq

± = e±µ/Tneq. Here neq

is the usual equilibrium distribution with µ = 0, and thus neq
+ neq

− = (neq)2.
We then take the standard definitions x = mX/T and Y± = n±/s, where s = (2π2/45)heff(T )T

3 is the entropy
density and heff(T ) is the effective number of degrees of freedom for the entropy density. We write the annihilation
cross section as 〈σv〉 = σ0x

−n, with n = 0 and n = 1 for s-wave and p-wave annihilation processes respectively. Then
simplifying Eq. (3) gives

dY±
dx

= − λ

xn+2

√
g∗
(

Y+Y− − (Y eq)2
)

, (4)
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where λ ≡ 0.264MplmXσ0 and Y eq ≃ 0.145(g/heff)x
3/2e−x ≡ ax3/2e−x. The effective number of degrees of freedom

is
√
g∗ = heff√

geff

(

1 + T
3heff

dheff(T )
dT

)

[34].

After being generated at some high temperature, the DM asymmetry is a conserved quantity, so we have the
constraint

ηX = Y+ − Y− (5)

which is constant at any given epoch.2 In order to impose this condition on our numerical solutions, we define the
departure from equilibrium ∆ by Y± = Y eq

± +∆, and instead solve the (single) equation for ∆.
It is helpful to present approximate analytic solutions in the limit of constant

√
g∗ [32, 38, 39]. Eq. (4) can be

solved analytically at late times when (Y eq)2 becomes negligible. In this limit, using Eq. (5), we can integrate Eq. (4)
separately for X̄ and X to obtain

Y±(∞) ≃ ±ηX

1− [1∓ ηX/Y±(xf )] e
∓ηXλ

√
g∗x

−n−1

f
/(n+1)

. (6)

These solutions also apply for the symmetric case in the limit of ηX → 0. We take the freezeout temperature
xf = mX/Tf as derived in [38]:

xf ≃ ln [(n+ 1)
√
g∗aλ] +

1

2
ln

ln2
[

(n+ 1)
√
g∗aλ

]

ln2n+4
[

(n+ 1)
√
g∗aλ

]

− (
√
g∗)2 [(n+ 1)ληX/2]2

. (7)

Using Y±(∞) given in Eq. (6), we can obtain the present ratio of the X̄ to X number densities:

r∞ ≡ Y−
Y+

(∞) ≃ Y−(xf )

Y+(xf )
exp

(

−ηXλ
√
g∗

xn+1
f (n+ 1)

)

. (8)

While we can obtain a precise analytic result for r(xf ) = Y−(xf )/Y+(xf ), it turns out that the consequence of
neglecting the (Y eq)2 in the late-time solution can almost exactly be accounted for by simply setting r(xf ) = 1. This
gives numerically accurate answers over a wide range of ηX and 〈σv〉 as discussed in [38]. Note that the solution here
only converges when ηXλ is small enough

√
g∗ηXλ < 2xn+2

f .

III. CMB CONSTRAINTS

For both symmetric and asymmetric thermal DM, the DM particles must have a sufficiently large annihilation cross
section in order to achieve the correct relic density. This annihilation may have many indirect astrophysical signatures;
among these, the most robust prediction (or constraint) is the effect of DM annihilation on the cosmic microwave
background (CMB) [40], since the effect only depends on the average DM energy density. We first summarize recent
studies of CMB constraints on DM annihilation, and then discuss scenarios which naturally evade these constraints
for light DM, focusing on the asymmetric DM scenario.
Energy deposition from DM annihilation distorts the surface of last scattering, which affects the CMB anisotropies

and is thus constrained by WMAP7 data. CMB constraints become increasingly severe for smaller DM masses: the
energy released in DM annihilations scales as ∼ mX(nX)2 ∼ ρ2CDM/mX , where ρCDM is the average energy density
in DM. This implies the effect of DM annihilation on the CMB scales as ∼ 〈σv〉/mX . Though the precise bound
depends on the mass and annihilation channels, WMAP7 limits the amount of annihilation during recombination to
below the thermal relic annihilation cross section if mX . 1− 10 GeV [22, 23, 41, 42]. Furthermore, Planck data can
improve these constraints by up to a factor of 10.
For self-annihilating DM particles such as Majorana fermions or real scalars, the energy deposition rate per volume

at redshift z is

dE

dtdV
(z) = ρ2cΩ

2
CDM(1 + z)6f(z)

〈σv〉CMB

mX
, (9)

2 We assume there is no Majorana mass term for DM, and thus X − X̄ oscillation [21, 35–37] does not occur. We also assume there is no
entropy production in this case and there are no DM-number violating interactions at these temperatures.



5

0.001 0.010 0.100 1.000 10.000 100.000
mX [GeV]

10-26

10-25

10-24
f<

σv
>

C
M

B
 [c

m
3 /s

]

r=
10

-5
r=

10
-4

r=
10

-4

r=
10

-3

r=
10

-3

r=
10

-2

r=
10

-2

r=
10

-1

r=
10

-1

1

1

W
M

A
P

7 
co

ns
tra

in
ts

r=10 -3

r=10 -3r=10-2
r=10 -2

r=10 -1

r=10 -1Ωh2=0.11, r=1

f = 1

Figure 1: WMAP7 95% C.L. constraints on the DM annihilation cross section and mass for asymmetric dark matter and s-wave
annihilation. We show constraints for various values of r = r∞ = ΩX̄/ΩX , the anti-DM to DM ratio at the present time. The
shaded region (blue) is excluded by the WMAP7 data, with different shades corresponding to different r∞. Along the horizontal
contours of constant r are the values of 〈σv〉 where the correct relic density can be obtained for an efficiency factor f = 1. The
turnover around mX ∼ 10 GeV comes from the drop in SM degrees of freedom when the universe has temperature ∼ 1 GeV.
The solid red line is the intersection of the WMAP7 and relic density contours: it indicates the minimum 〈σv〉 needed to obtain
the observed relic density and satisfy CMB constraints for s-wave annihilation.

where ρc is the critical density at the present time, 〈σv〉CMB is the thermally-averaged annihilation cross section at
the epoch of recombination, and f(z) parametrizes the amount of energy absorbed by the photon-baryon fluid at
redshift z, relative to the total energy released by DM annihilation at that redshift.
The quantity f(z) gives the efficiency of energy deposition at redshift z and thus depends on the spectrum of

photons, neutrinos and e± resulting from DM annihilation. In general, the dependence of f(z) on z is mild [41], and
an excellent approximation is to take f(z) ≡ feWIMP(z) where f is a constant and eWIMP(z) is a universal function for
WIMP DM [24]. In addition, to leading order f ≃ (1− fν) [23], where fν is the fraction of energy going to neutrinos
per annihilation. For DM annihilation channels to charged lepton or pion final states, f ≈ 0.2− 1; here annihilation
only to e± can give f ∼ 1.
There is also some mild mX dependence in f(z) (or f), since the spectrum of DM annihilation products depends

on mX . Ref. [41] computed detailed efficiency curves f(z) for mX > 1−10 GeV, depending on the channel. However,
the observed trend is that efficiency does not depend strongly on mass in the range 1-1000 GeV, and furthermore
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Figure 2: (Top) Minimum 〈σv〉 for efficient annihilation of the symmetric component in an ADM scenario, such that CMB
bounds can be evaded, for two different values of the efficiency f . The black dotted line gives the thermal relic 〈σv〉 for the
symmetric case. (Bottom) The corresponding maximum allowed r∞, the anti-DM to DM ratio at the present time.

increases for lower mass.3 We will extrapolate results to mX < 1 GeV; we expect this is a conservative approach.
The WMAP7 limit on DM energy injection at the 95% C.L. can be written as [22]

f
〈σv〉CMB

mX
<

2.42× 10−27 cm3/s

GeV
. (10)

This bound4 as given assumes DM particles are self-annihilating, i.e. Majorana fermions or real scalars. For DM
candidates that are Dirac fermions or complex scalars, as in ADM scenarios, the energy injection rate is

dE

dtdV
(z) = 2ρ2cΩ

2
CDM

r∞
(1 + r∞)2

(1 + z)6f(z)
〈σv〉CMB

mX
, (11)

where we have used ρX + ρX̄ = ρCDM and r∞ = ρX̄/ρX . Note there is factor of 2 in the energy injection rate relative
to the self-annihilating case, accounting for the number of possible annihilations. Comparing Eq. (9) and Eq. (11),
we can translate the bound given in Eq. (10) to the Dirac fermion or complex scalar case:

2r∞
(1 + r∞)2

f
〈σv〉CMB

mX
<

2.42× 10−27 cm3/s

GeV
. (12)

We show this constraint for various r∞ values in Fig. (1); the dotted black line gives the thermal relic annihilation
cross section in the symmetric case, where we have solved for the relic density numerically and taken f = 1.

3 Above mX , mφ > 1 MeV, most of the annihilation products rapidly cascade down to lower energies and the efficiency f is only mildly
sensitive to the initial energy spectrum of annihilation products (normalizing for the total energy). However, photons in the range
∼ 0.1 − 1 GeV deposit their energy relatively inefficiently. For annihilation of sub-GeV scale DM, typically a smaller fraction of the
total energy goes into photons of these energies, which increases the total efficiency slightly. We thank Tracy Slatyer for this point.

4 Note: the results of [23] are slightly weaker by a factor of 1.2-2.
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ADM can evade CMB bounds while still allowing s-wave annihilation.5 The CMB bounds do not completely
disappear in the ADM scenario, however, because there is a small symmetric component of DM remaining, r∞, the
size of which depends on 〈σv〉. Because of the exponential dependence of r∞ on 〈σv〉, as shown in Eq. (8), the CMB
constraints lead to a lower bound on 〈σv〉. This is shown in Fig. (1), where we map out the constraints in the 〈σv〉CMB

and mX parameter space, computing the relic density numerically and applying the constraint in Eq. (10). The solid
line (red) gives the resulting lower bound on f〈σv〉CMB. This lower bound on f〈σv〉CMB translates to an upper bound
on the residual symmetric component, r∞, as shown in Fig. (2). We give analytic approximations to these numerical
solutions next.
When r∞ ≪ 1, we can ignore the X̄ contribution to the total relic density, and the DM asymmetry parameter ηX

is set by ηX ≈ ΩCDMρc/(mXs0). For a given ηX , the required annihilation cross section at freezeout to achieve a
particular residual symmetric component, r∞, can be obtained by rewriting Eq. (8) as

〈σv〉f ≃ s0xf

0.264ΩCDMρc
√
g∗,fMpl

ln

(

1

r∞

)

≃ cf × 5× 10−26 cm3/s× ln

(

1

r∞

)

, (13)

where cf ≡
(xf

20

)

(

4√
g∗,f

)

is an O(1) factor. We show the numerical result as the horizontal contours of constant r∞

in Fig. (1); for mX < 1 GeV we obtain a good approximation to the numerical solution by taking cf = 1. On the
other hand, the CMB bound on the annihilation cross section when r∞ ≪ 1 is

〈σv〉CMB <
2.42× 10−27 cm3/s

2f

( mX

1 GeV

)

(

1

r∞

)

. (14)

For s-wave annihilation, we take 〈σv〉f ≃ 〈σv〉CMB. Since 〈σv〉f increases with log(1/r∞), but the CMB bound on
〈σv〉CMB increases with 1/r∞, we can evade the CMB constraints by decreasing r∞. For a given DM mass, thermal
ADM is consistent with the CMB constraints if r∞ satisfies the following condition,

r∞ ln

(

1

r∞

)

<
2.42× 10−2

f × cf

( mX

1 GeV

)

. (15)

The numerical result for this bound is shown in Fig. (2); a good analytic approximation is given by r∞ < r0/ ln (1/r0),
with r0 ≃ 2× 10−2(mX/GeV)/f . Taking f ∼ 1, we can see that r∞ has to be smaller than 5× 10−3 and 2× 10−6 for
mX ∼ 1 GeV and 1 MeV, respectively.
Likewise, we can combine Eq. (13) and Eq. (14) to place a lower bound on 〈σv〉f :

〈σv〉f
cf × 5× 10−26 cm3/s

&

{

ln
(

40cff × 1 GeV
mX

)

+ ln ln
(

40cff × 1 GeV
mX

)

, mX . f × 10GeV.

2 , mX & f × 10GeV.
(16)

Note if mX is larger than f × 10 GeV, the CMB constraints do not apply and the annihilation cross section is set by
the relic density requirement. The analytic approximation in Eq. (16) agrees well with the numerical results, which
are shown in Fig. (2).
With these constraints on the minimum annihilation cross section, we now turn to discussing what classes of models

can generate the needed annihilation cross section consistent with collider constraints.

IV. LIGHT MEDIATORS

Thus far, we have treated the annihilation cross section 〈σv〉 as a free parameter. To proceed we must specify the
physics that generates this cross section. First, DM may annihilate directly to SM particles through heavy mediators
with mass greater than the weak scale. This coupling to the SM implies light DM can be produced in abundance

5 In the symmetric limit, one can evade the CMB bounds if DM annihilates via p-wave suppressed interactions. Then
〈σv〉CMB ≃ (vCMB/vf )

2 〈σv〉f and since vCMB ∼ 10−8 while vf ∼ 0.3, the annihilation cross section at recombination is highly
suppressed and WMAP constraints are substantially weakened. An increased branching ratio to neutrinos (smaller f) can also alleviate
the tension with CMB data for light DM.
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in colliders. We review constraints from missing (transverse) energy searches at collider experiments and from direct
detection experiments, which conflict with the 〈σv〉 required to obtain the observed relic density. In this case, thermal
light DM is ruled out in both the symmetric and asymmetric scenarios. Second, DM can annihilate via new light states
which have a mass below the typical momentum transfer scale in the colliders. In this case, the collider constraint
can be evaded. If the new state is lighter than DM, it can be very weakly coupled to the SM.

A. Collider and Direct Detection Constraints on Light DM with Heavy Mediators

In the heavy mediator case, a convenient way to parametrize the DM-SM coupling is via higher dimensional
operators, which is valid if the mediator mass is heavier than the relevant energy scale. Here we give two typical
examples,

O1 :
X̄γµXf̄γµf

Λ2
1

and O2 :
X̄Xf̄f

Λ2
2

, (17)

where X is DM, f is a SM fermion, and Λ1,2 are cut-off scales for O1,2. The cut-off scale, in terms of the parameters
in the UV-complete models, is Λ = mφ/

√
gXgf , where mφ is the mediator mass, and gX and gf are coupling constants

of DM-mediator and SM-mediator interactions respectively.
In the limit of mX ≫ mf , the DM annihilation cross sections at freezeout are given by

〈σv〉1 ≃
N c

f

π

m2
X

Λ4
1

and 〈σv〉2 ≃
N c

f

8π

m2
X

Λ4
2

1

xf
, (18)

for O1 and O2 respectively. N c
f is the color multiplicity factor of fermion f , and xf = mX/T ≈ 20, with T the

temperature. Note that the annihilation cross section through O2 is p-wave suppressed. Now we can estimate the
limit on the cut-off scales Λ1 and Λ2 by requiring the correct relic density

Λ1 . 370 GeV

(

N c
f

3

)

1

4 ( mX

10 GeV

)
1

2

(

6× 10−26 cm3/s

〈σv〉

)
1

4

, (19)

Λ2 . 100 GeV

(

N c
f

3

)

1

4 ( mX

10 GeV

)
1

2

(

6× 10−26 cm3/s

〈σv〉

)

1

4
(

20

xf

)
1

4

, (20)

where the limit is relevant for both the asymmetric and symmetric cases. Since the annihilation cross section is p-
wave suppressed for O2, we need a smaller cut-off scale to obtain the correct relic abundance. Now we review various
constraints on the cut-off scales Λ1,2.

• Direct Detection Constraints

If DM couples to quarks, the operators O1,2 can lead to direct detection signals with the DM-nucleon scattering
cross section: σn1,2

∼ µ2
n/Λ

4
1,2, and µn is the DM-nucleon reduced mass. For a DM mass ∼ 10 GeV, taking

the value of Λ1,2 given in Eqs. (19) and (20), we expect the DM-nucleon scattering cross section to be σn1
∼

10−38 cm2 and σn2
∼ 10−36 cm2. However, the current upper bound on σn from direct detection experiments

for DM with mass mX & 10 GeV is σn . 10−42 cm2 [43], which is much smaller than the predicted values from
requiring the correct thermal relic density. For DM with mass below a few GeV, the recoil energies are too small
and direct detection bounds are currently very weak or nonexistent.

• Tevatron and LHC Constraints

The DM-quark interactions given in O1,2 can lead to signals of mono-jet plus missing transverse energy at
hadron colliders, while the Tevatron data for this signal matches the SM prediction well. We require that O1,2

do not give rise to sizable contributions to this signal. The lower bounds on Λ1,2 are ∼ 400 GeV and ∼ 400 GeV
[25–27] respectively, for DM masses mX . 10 GeV that we are interested in. Recent LHC results give a stronger
limit on Λ1 & 700 GeV [29]. Therefore the Tevatron and LHC searches have excluded both thermal symmetric
DM and ADM in the whole range of light DM if the DM particles annihilate to light quarks through O1 and
O2.

• LEP Constraints

If DM particles couples to the electron through O1,2, the mono-photon search at LEP sets a limit on the cut-off
scale: Λ1 & 480 GeV and Λ2 & 440 GeV for DM mass mX . 10 GeV [30]. Note the limit also applies to the
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case where DM couples to three generations of charged leptons universally. One may avoid the limit by coupling
DM only to µ or τ . However this approach usually involves model building complications and severe flavor
constraints.

Thus we conclude that for O1,2, DM does not have the correct relic abundance for symmetric DM and ADM due
to the combination of direct detection and collider constraints. The direct detection constraints can be relaxed by
suppressing the direct detection scattering cross section; this can happen for example if the scattering off nuclei is
velocity suppressed, notably through an axial interaction. However, the collider bounds are still severe for higher
dimensional operators involving interactions with light quarks or electrons [25–30].

B. Light Dark Matter with Light Mediators

One simple way to evade the collider constraints for light DM is to invoke light mediators with masses much
smaller than the typical transverse momentum of the colliders pT ∼ O(100 GeV) (or the center of mass energy
∼ 200 GeV for LEP). In this limit, the effective theory approach breaks down and the collider bounds become much
weaker [27, 29, 30, 44]. In general, if the mediator mass is much less than the pT probed at colliders, there exists a
large parameter space for light DM scenarios to achieve the correct relic density. We consider a hidden sector with
Dirac DM coupled to a light mediator which could be a spin-1 or spin-0 particle; for ease of notation we always refer
to it as φ. We write the Lagrangians as

LV = gXX̄γµXφµ + gf f̄γ
µfφµ +mXX̄X +m2

φφ
µφµ, (21)

LS = gXX̄Xφ+ gf f̄fφ+mXX̄X +m2
φφ

2, (22)

where mφ is the mediator mass. We consider two cases for the mediator mass:6 a mediator with mφ > 2mX and
lighter mediator with mφ < mX .
In the case of pT ≫ mφ > 2mX , the DM particles can annihilate to SM particles through the s-channel process.

There is a collider bound on gf because an on-shell mediator which decays to XX̄ can be produced, potentially
contributing to the mono-jet plus missing transverse energy signal. Tevatron data has been employed to place an

upper bound on gf < 0.015/
√

Br(φ → XX̄) for mφ < 20 GeV [44], where Br(φ → XX̄) is the branching ratio
of φ decay to the DM pair. In this case the annihilation cross section is given by 〈σv〉V ≃ 4αXg2fm

2
XN c

f/m
4
φ and

〈σv〉S ≃ αXg2fm
2
XN c

f/2m
4
φxf , where αX ≡ g2X/4π. To see how the collider constraint affects the annihilation cross

section in this case, we take the conservative limit gf . 0.015, setting Br(φ → XX̄) ∼ 1. From the relic density
constraint, we then obtain an upper bound on the mediator mass,

mφ . 13 GeV
( αX

10−1

)1/4
(

10−25 cm3/s

〈σv〉

)1/4
( mX

1 GeV

)1/2

. (23)

This bound7 is consistent with our assumption that mφ ≫ mX .
If mφ < mX , DM can annihilate to the mediator directly and the annihilation cross section is determined primarily

by the hidden sector coupling gX :

〈σv〉V =
πα2

X

m2
X

√

1−
(

mφ

mX

)2

, 〈σv〉S =
9

2

πα2
X

m2
X

T

mX

√

1−
(

mφ

mX

)2

(24)

for the vector and scalar mediators respectively. Meanwhile gf determines how the DM sector couples to the SM sector.
As for the collider physics, the production of XX̄ occurs through an off-shell mediator; since this is a three-body
process, the bound is rather weak. Tevatron data requires gf . 0.2 if the mediator couples to quarks universally [44].
Although gf does not appear to play an important role in the relic density, this coupling controls the width (lifetime)

of φ and is relevant for cosmology. The width Γφ of the mediator is

(Γφ)V =
4N c

f

3

mφ

16π
g2f

√

1−
(

2mf

mφ

)2

, (Γφ)S = 2N c
f

mφ

16π
g2f

√

1−
(

2mf

mφ

)2

, (25)

6 In this paper, we do not consider the intermediate case mφ ∼ 2mX , where there is a resonance in the s-channel annihilation of X̄X.
7 Note that in this case there are also strong bounds on mφ from neutrino experiments [13]; however, we have checked that it is still
possible to obtain the correct relic density and that the direct detection predictions are unaffected.
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where the lifetime τφ = Γ−1
φ . In Section II, we assumed the DM particles to be in thermal equilibrium with the

SM thermal bath in the early universe, and in this case the standard freezeout picture and cosmology apply. Now,
we check the condition for thermalization of the two sectors. If the mediator decay rate is larger than the Hubble
expansion rate at temperatures T > mφ, then the inverse decay processes can keep φ in chemical equilibrium with
the SM thermal bath [45]. At these temperatures, the decay rate is given by Γφ ∼ g2fm

2
φ/(16πT ), where the factor of

mφ/T accounts for the effect of time dilation. In order for the mediator to stay in thermal equilibrium with the SM
thermal bath through DM freezeout, we require Γφ & H at temperatures T ∼ mX . This gives a constraint on gf :

gf ∼
√

16πΓφ

mφ
≫ 8× 10−8

(√
geff

9

)1/2
( mX

GeV

)3/2
(

100 MeV

mφ

)

. (26)

If gf is less than the bound given in Eq. (26), the DM sector can have a different temperature from the SM sector
and the standard freezeout calculation can be modified in a number of ways. We have checked that these effects
lead to change in the minimum annihilation cross section by less than a factor O(10), compared to the results we
derived, in Sections II-III. Furthermore, the massive mediator is a late-decaying particle and in the case where the
mediator decays to the SM states, can modify standard nucleosynthesis (BBN). There are stringent constraints on
the hadronic decay of long-lived particles from the 4He fraction, which requires that the lifetime of the mediator be
less than 10−2 s [46–48]. This leads to a lower bound of gq & 1.6 × 10−11

√

1 GeV/mφ for a vector mediator, where
we take N c

f = 3. For leptonic decay modes, we take the lifetime of the mediator τφ . 1 s, and obtain a slightly weaker

bound, ge & 5× 10−11
√

10 MeV/mφ, for a vector mediator with N c
f = 1.

Finally, we comment on the calculation of the relic density and application of the CMB constraints in the light
mediator case. When mφ < mX , X̄X can annihilate to φφ, but φ decays to standard model particles rapidly compared
to the relevant time scales at recombination so that the CMB constraints are unchanged. The only difference between
a heavy mediator and light mediator with large width is whether there is a contribution to the effective degrees of
freedom, g∗, from the light mediator. A slightly higher g∗ in the light mediator case gives rise to smaller r∞, which
in turn weakens the lower bound on 〈σv〉 from CMB constraints.
In addition, we have neglected the Sommerfeld enhancement effect. As we will discuss in the following section, the

mediator mass is bounded from below by DM halo shapes; this limits the size of any Sommerfeld enhancement. In
addition, since 〈σv〉 ≈ πα2

X/m2
X , for light DM the coupling αX can be much smaller and still satisfy the relic density

constraint. For the DM masses considered here, we have checked that the Sommerfeld enhancement effect is negligible
for s-wave and p-wave annihilation processes at both freezeout and during recombination, if we take αX and mφ close
to their minimum allowed values.

V. HALO SHAPE CONSTRAINTS ON THE MEDIATOR MASS

The presence of the light mediator allows for significant DM self-interactions, which can have non-trivial effects on
DM halo dynamics. A number of astrophysical observations constrain DM self-interactions, for example observations
of the Bullet Cluster [49], elliptical galaxy clusters [50] and elliptical DM halos [51, 52]. Among these, the upper
bound on DM self-interaction from the ellipticity of DM halos is the strongest [51]. DM self-interactions can erase
the velocity anisotropy and lead to spherical DM halos, so the observed ellipticity of DM halos constrains the DM
self-scattering rate. Because the strength of self-interaction increases as the mediator mass decreases, we can use the
elliptical halo shape constraint to place a lower limit on the mediator mass. Note that in the case of mφ = 0, the
ellipticity of the DM halos then places a strong upper limit on the hidden sector coupling gX [53]; it is only possible
to obtain the correct relic density if mX & 103 GeV [51, 54]8 .
The effect of DM self-interactions on DM halo shapes can be parametrized by the average rate for DM particles to

change velocities by O(1) [52]:

Γk =

∫

d3v1d
3v2f(v1)f(v2)(nXvrelσT )(v

2
rel/v

2
0), (27)

where nX is the DM density in the DM halo, vrel = |~v1−~v2|, and f(v) is the DM velocity distribution in the DM halo,

for which we take f(v) = e−v2/v2

0/(v0
√
π)3. σT is the scattering cross section weighted by the momentum transfer:

σT =
∫

dΩ∗(dσ/dΩ∗)(1− cos θ∗).

8 This limit can be relaxed if the hidden sector is much colder than the visible sector when DM freezes out. In this case, DM can achieve
the correct relic density with a smaller annihilation cross section [55].
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Figure 3: Lower limit on the mediator mass from combining relic density and DM self-interaction constraints. We show the
case of a vector mediator; the result for a scalar mediator is similar and is given in Eq. (31). We consider DM self-interaction
constraints from elliptical halo shapes and elliptical cluster shapes. Bullet cluster constraints do not give a lower bound on mφ.
The dashed red line indicates the bound on the mass from elliptical halo shapes if CMB bounds are also applied, assuming
efficiency f ≈ 1.

The form of σT depends on the particle physics nature of DM self-interactions and the relevant momentum scales.
If the mediator is lighter than the typical momentum transfer in collisions, DM particles interact through long-range
forces and σT depends on velocity. In the opposite limit where the mediator is heavy compared to momentum transfer,
DM self-interactions are contact interactions and σT is independent of vrel. In this case, we can take the σT out of
the velocity integrals in Eq. (27) and the calculation is straightforward. We first will derive the upper bound on the
DM self-interaction cross section assuming a contact interaction, and then show that this limit applies in deriving the
minimum mediator mass.
We consider the well-studied elliptical galaxy NGC720 [56, 57], taking our bound from the observed ellipticity

at a radius of 5 kpc. The DM density profile is fit with local density 4 GeV/cm3 and radial velocity dispersion
v̄2r = v20/2 ≃ (240 km/s)2. We require the average time for DM self-interactions to create O(1) changes on DM
velocities to be larger than the galaxy lifetime tg ∼ 1010 years i.e. Γ−1

k > tg. This gives the upper bound

σT . 4.4× 10−27 cm2
( mX

1 GeV

)

(

1010 years

tg

)

. (28)

The reader should bear in mind that this is an analytic estimate and detailed N-body simulations studying a range
of elliptical galaxies are required for a robust bound.
Other astrophysical constraints have been derived for σ/mX , assuming a hard sphere scattering cross section σ. A

similar bound derived from shapes of elliptical galaxy clusters is (σ/mX . 10−25.5 cm2(mX/GeV)) [50]. Specifically,
this estimate is obtained from the inner regions of the galaxy cluster MS2137-23, at a radius of 70 kpc with dark
matter density ∼ 1 GeV/cm3. Cosmological simulations of cluster-sized objects support this estimate within an order
of magnitude [58]; however, the bound is still based on a single cluster. There is also a bound derived from the Bullet
Cluster (σ/mX . 2 × 10−24 cm2(mX/GeV)) [49], reproduced in simulations of the collision by [59]. Note that this
result is not derived from the shapes of the merging clusters but from requiring that the subcluster does not lose a
significant fraction of its mass in passing through the larger cluster; however, we have found that the bound is too
weak in this case to give a minimum mediator mass.
For the vector and scalar interactions considered here, the force is described by a Yukawa potential V (r) =

±αXe−mφr/r. Depending on the mediator, and whether we are in the asymmetric limit, the sign may be posi-
tive or negative. For the vector case, we have both XX interactions (+) and XX̄ interactions (-) unless we are in the
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asymmetric limit. For the scalar case, the sign is always negative. However, in the limit of a contact interaction, the
sign of the potential does not matter. The momentum transfer cross section for scattering through t and u-channel
processes in the Born approximation is

σT ≈ 4πα2
Xm2

X

m4
φ

, (29)

which is subject to the bound in Eq. (28). We have assumed a contact interaction, mXvrel/mφ ≪ 1; we will justify
later that this is a valid assumption in deriving the bounds below.
On the other hand, the relic density constraint places a lower bound on the annihilation cross section 〈σv〉 &

10−25cm3/s for light DM and thus on αX :

αX |V & 5× 10−5

( 〈σv〉
10−25cm3/s

)1/2
( mX

GeV

)

,

αX |S & 11× 10−5

( 〈σv〉
10−25cm3/s

)1/2
( mX

GeV

)(xf

20

)1/2

, (30)

for vector and scalar coupling respectively. Note that we assume mφ < mX and take the annihilation cross sections
in Eq. (24).
Since αX cannot be arbitrarily small, mφ cannot be made arbitrarily small. Combining the bound on αX with

Eq. (28), we obtain a lower bound on the mediator mass:

mφ|V & 7 MeV

( 〈σv〉
10−25cm3/s

)1/4
( mX

GeV

)3/4

,

mφ|S & 11 MeV

( 〈σv〉
10−25cm3/s

)1/4
(xf

20

)1/4 ( mX

GeV

)3/4

(31)

for the vector and scalar mediator cases, where we take the elliptical galaxy with tg = 1010 years. Note that because

the bound on mφ scales as σ
−1/4
T in the contact interaction limit, the result is not very sensitive to the precise bound

on σT .
In deriving the above bound on mφ, we have assumed that mφ ≫ mXvrel and that the Born approximation is valid.

Now we check that the bound given in Eq. (31) is consistent with these assumptions. The condition mφ ≫ mXvrel is

satisfied for 1 MeV < mX < 10 GeV, since from Eq. (31) we have mφ/mX ∼ 10−2(mX/GeV)−1/4 but vrel ∼ 10−3.
In this limit the Born approximation is valid if the following condition is satisfied

mX

∣

∣

∣

∣

∫ ∞

0

rV (r)dr

∣

∣

∣

∣

=
mXαX

mφ
≪ 1. (32)

From Eq. (30), we can see vrel ≫ αX in the DM mass range we are interested in, and thus this condition is also
satisfied if mφ ≫ mXvrel. We emphasize that we cannot extrapolate the lower mass bound given in Eq. (31) to
mX & 50 GeV because the Born approximation breaks down. For these higher masses, in general one has to solve
the scattering problem numerically [60]. In the classical limit where mXvrel ≫ mφ, there is a fitting formula available
in [61] for the transfer cross section, which has been used to study self-interactions via a light mediator for DM masses
greater than ∼ 100 GeV [45, 52, 62, 63].
In Fig. (3) we show the lower limit on mφ for the vector case, including the result derived from the more conservative

bounds from elliptical cluster shapes. We also show the slightly stronger result if we take the CMB constraint on the
cross section,9 given in Eq. (16). There is a turnover for the elliptical cluster bounds because the contact interaction
limit breaks down; here we use the full cross section, again in the Born approximation, given in [52]. The bounds
from the Bullet Cluster, which we derive following [51], do not give rise to a lower bound on mφ.

VI. DIRECT DETECTION

Given the experimental effort needed to detect DM directly, it is important to map out the parameter space of
direct detection cross sections, subject to the astrophysical and cosmological constraints we have discussed. Current

9 In the scalar case, annihilation is p-wave suppressed and thus CMB constraints don’t apply.
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Figure 4: (Left) Nucleon scattering through a vector mediator. The green shaded region indicates the allowed parameter space
of direct detection cross sections. The lighter green region imposes the bound of thermal coupling between the two sectors
(“large width”) while the larger shaded region only requires mediator decay before BBN. Also shown is the lower bound for the
heavy mediator (mφ ≫ mX) case. (Right) Electron scattering through a vector mediator, for mφ < mX (green) and mφ ≫ mX

(red); the intersection of the two regions is shaded brown. We show the projected sensitivity of a Ge experiment, taken from
[64]. Beam dump, supernova, and halo shape constraints apply here and carve out the region of large σe at low mX . For more
details, see the text. In the lighter green region, the condition of thermal equilibrium between the visible and hidden sectors is
imposed.

experiments are not sensitive to DM-nucleon scattering if the DM mass is below ∼1 GeV because of the energy
thresholds. It has been suggested that DM-electron scattering may provide an alternative way for the detection of light
DM [64]. We consider DM-nucleon scattering formX & 1 GeV and DM-electron scattering for 1 MeV . mX . 1 GeV.
We compute the range of allowed elastic scattering cross sections within the framework of light DM annihilating via

hidden sector mediators, assuming mediator couplings to electrons or light quarks. We consider both lighter mediators,
mφ < mX , and heavier mediators, where we focus on the case mφ ≫ mX . When mφ < mX the mediator can be very
weakly coupled to the SM, and so the scattering cross sections can be much smaller than when mφ ≫ mX . However,
there is still a lower limit on the cross section coming from the lower bounds on the couplings of the mediator to the
DM and SM fermions, αX and gf respectively. The lower bound on αX is derived from requiring that relic density
and CMB constraints are satisfied. We consider two possible lower bounds on gf : from requiring the thermalization
between the DM and SM sectors, or from requiring decay of the mediator before BBN. When mφ ≫ mX the lower
limit on the cross section arises purely from the relic density and CMB constraints.
Meanwhile, we obtain upper bounds on the electron scattering cross section from the combination of halo shape

bounds and requiring that the mediator does not significantly affect the electron anomalous magnetic moment. In-
cluding supernova and beam dump constraints on the dark force coupling [65] then carves out a nontrivial part of the
parameter space for electron scattering.
Fig. (4) summarizes our results for the case where the mediator is a vector. We show the possible DM-nucleon (left

panel) and DM-electron (right panel) scattering cross sections as a function of DM mass. The green shaded region
is the parameter space for mφ < mX which is allowed by the constraints from the relic density, BBN, and DM halo
shape constraints; in the electron case we include beam dump and supernova cooling constraints. The lighter green
area is set by the additional assumption that the mediator has large decay width and thus that the two sectors are
in thermal equilibrium. In the nucleon scattering case, mφ ≫ mX is ruled out by CRESST-I and XENON10. In
the electron scattering case, the red shaded region gives the allowed cross sections for mφ ≫ mX . In the following
sections we derive these results and present more details.
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A. Nucleon Scattering

We first consider nucleon scattering in the mass range 1 GeV . mX . 10 GeV, taking universal couplings to the
light quarks given by gq. The DM-nucleon scattering cross section is given by

σn = 4αXg2n
µ2
n

m4
φ

, (33)

where µn is the WIMP-nucleon reduced mass, and gn = 3gq is the φµ-nucleon coupling constant. The upper bounds
here are set by results from direct detection experiments, in particular CRESST-I [66] and XENON10 [67]. We have
taken a contact interaction; this is a good approximation over much of the parameter space because the momentum
transfer is generally less than the minimum mediator mass allowed by the ellipticity of DM halos, as discussed in
Section V. We note that momentum-dependence can be relevant for scattering off heavier nuclei such as xenon if we
take mφ to be close to this minimum value, and thus can change the upper limit from XENON10 [68–70]. However,
the lower limit is obtained in the limit that mφ ≈ mX and thus momentum dependence will not be important. We
therefore consider the bounds on a contact interaction for simplicity.
To determine the lower limit on this cross section, we bound αX and gq from below in the case that the mediator

is lighter than the DM, mφ < mX . For thermal DM and masses mX > 1 GeV, a lower bound on αX is determined
primarily by the relic density. As described in Section III, CMB constraints are only important in this mass range
if φµ decays dominantly to electrons, for which the efficiency factor is f ∼ 1. For φµ coupling primarily to quarks,
f ≈ 0.2 and CMB bounds don’t apply above mX ∼ 2 GeV. Then the minimum annihilation cross section is
〈σv〉 ≈ πα2

X/m2
X ≈ 10−25cm3/s, giving a bound of αX & 5.2 × 10−5(mX/GeV). Requiring thermal equilibrium

between the hidden and visible sectors, we take the bound on gq in Eq. (26), with
√
geff ≈ 9. Combining the limits

above results in a lower bound on the nucleon scattering cross section:

σn & 10−48cm2 ×
( mX

GeV

)4
(

GeV

mφ

)6
( µn

0.5GeV

)2

. (34)

Since mφ < mX , this quantity is saturated for any mX if we set mφ to its maximum value of mφ ∼ mX . This bound
is indicated by the “Large width” line in Fig. (4). Coincidentally, the lower limit here is similar to the best achievable
sensitivity for WIMP-nucleon scattering if the dominant irreducible background is coherent scattering of atmospheric
neutrinos off of nuclei [71–73]. However, these studies focused on WIMP DM; for light DM, solar neutrinos become
much more important and the best achievable sensitivity may be several orders of magnitude weaker.
The lower bound on σn given in Eq. (34) is derived by requiring the two sectors be in thermal equilibrium.

We may relax this assumption, and just demand the mediator decay by nucleosynthesis. This gives gq & 1.6 ×
10−11

√

1 GeV/mφ, as discussed in Section IVB. For such gq the two sectors are decoupled through freezeout; then
the relic density calculation is slightly more complicated and depends on the thermal history of the sectors. The
change in the relic density then modifies the bound on αX . We have checked that the full calculation generally only
changes the bound on αX by an O(1) factor [33], so here we take the bound on αX from the large φ width case for
simplicity. In this limit, the lower bound on σn is given by

σn & 5× 10−54cm2 ×
( mX

GeV

)

(

GeV

mφ

)5
( µn

0.5GeV

)2

(35)

labeled as “Decay before BBN” in Fig. (4).
For reference, we also give the lower bound on the cross section in the case where mφ ≫ mX . Here DM annihilation

occurs directly to SM final states through φµ, with annihilation cross section 〈σv〉 = 4αXg2nm
2
X/m4

φ. Since the same
combination of parameters enters in both the annihilation cross section and the nucleon scattering cross section, we
can directly apply the relic density constraint to obtain

σn & 5× 10−37 cm2

(

1 GeV

mX

)2
( µn

0.5 GeV

)2

. (36)

This is the “mφ ≫ mX” line in Fig. (4). However, this scenario is ruled out by the direct detection limits on the cross
section.
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Figure 5: (Left) Constraints on mediator mass mφ and coupling to electrons ge for mφ < mX . The shaded region is excluded
from electron anomalous magnetic moment, beam dump experiments, and supernova cooling [65]. The red dashed line shows
the ge value used to derive the corresponding red dashed line (“C”) in the right plot. (Right) Constraints on electron scattering
from Fig. 4. The boundaries A, B, and C are discussed in more detail in the text.

B. Electron Scattering

We consider scattering off electrons for DM in the mass range 1 MeV < mX < 1 GeV. The DM-electron scattering
cross section is

σe = 4αXg2e
µ2
e

m4
φ

. (37)

The lower bound on the scattering cross section can be derived in the same way as in the nucleon case, taking
mφ < mX . Here both CMB and relic density constraints apply, since mX < 1 GeV and the energy deposition
efficiency f ≈ 1 for decay to electrons. We take the bound on the annihilation cross section in Eq. (16) with cf ≈ 1,
giving a lower limit on αX :

αX & 4× 10−7
( mX

10 MeV

)

√

ln

(

40 GeV

mX

)

. (38)

As in the nucleon case, a lower bound on the DM-electron scattering cross section can be derived by assuming that
the hidden and visible sectors are in thermal equilibrium. Analogously to Eq. (34), we find

σe & 3× 10−51cm2 ×
( mX

10 MeV

)4
(

10 MeV

mφ

)6
( µe

0.5 MeV

)2

√

ln

(

40 GeV

mX

)

, (39)

where we take
√
geff ≈ 3.

Again, it is possible that the DM sector thermal bath evolves independently from the SM sector and in this case we
only require the mediator to decay before BBN. From Section IVB, we take the bound ge & 5× 10−11

√

10 MeV/mφ.
The minimum scattering cross section is

σe & 3× 10−53 cm2
( mX

10 MeV

)

(

10 MeV

mφ

)5
( µe

0.5 MeV

)2

√

ln

(

40 GeV

mX

)

. (40)
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If the annihilation goes through a heavier mediator mφ ≫ mX , we derive the strongest lower bound on the scattering
cross section by applying CMB and relic density constraints:

σe & 4× 10−39 cm2

(

10 MeV

mX

)2
( µe

0.5 MeV

)2

ln

(

40 GeV

mX

)

. (41)

For electron scattering there are no direct experimental bounds on σe. However, for mφ < mX , there are bounds
on σe arising from indirect constraints, namely halo shape bounds and from searches for new light gauge bosons
[65]. The halo shape constraint requires that the self-scattering cross section satisfy σT /mX < 4.4× 10−27cm2/GeV
with σT ≃ 4πα2

Xm2
X/m4

φ. If mφ < mX then constraints on new light gauge bosons rule out parts of the (mφ, ge)

parameter space; we show beam dump, supernova cooling and electron anomalous magnetic moment constraints10 in
Fig. (5) (left panel). Here we make use of the convention in [65], where ge = ǫe, with the kinetic mixing parameter
ǫ ≡ ǫY cos θW and e electric charge. The solid line (and shaded region) indicates the constraint.
As a simple application of the constraints discussed above, we derive the upper bound on the cross section by

rewriting σe:

σe =
4µ2

e√
4πmX

√

σT

mX

(

ge
mφ

)2

. 3.5× 10−35 cm2
( µe

0.5 MeV

)2
√

10 MeV

mX
. (42)

Here we have applied the halo shape constraint and taken (ge/mφ)
2 . 10−1e2/GeV2, arising from measurements of

the electron anomalous magnetic moment [74].
To explain more complicated constraints on the (mX ,σe) plane from the supernova cooling and beam dump exper-

iments for mφ < mX , we show again the allowed parameter space for electron scattering cross sections, but highlight
boundaries of the constraints by labeling “A”, “B”, and “C” in the right panel of Fig. (5). We can map excluded
regions on the (mφ, ge) plane to these constraints:

• Constraint “A”:

For mφ < mX . 8 MeV, supernova plus beam dump constraints require ge . 1.3×10−9. This places a stringent
upper bound on the cross section, which we derive by taking mφ to its minimum value of mφ = 2me ≈ 1 MeV,

and then setting αX to the maximum value allowed by halo shape constraints: αX < 9.5× 10−6
√

10 MeV/mX .
This upper bound is then

σe . 6× 10−45 cm2
( µe

0.5 MeV

)2
√

10 MeV

mX
. (43)

Note that the constraint changes somewhat if we also consider mφ < 1 MeV. In this case, supernova cooling
constraints still require ge . 1.3 × 10−9 but halo shapes allow for a somewhat smaller mφ. As a result, the

upper bound is slightly weaker if we allow mφ < 1 MeV: σe . 6× 10−44 cm2 (µe/0.5 MeV)2 (10 MeV/mX)−2.

• Constraint “B”:

This constraint applies for the large width case. In contrast with constraint A, taking (mφ, ge) = (1 MeV, 1.3×
10−9) is in conflict with the condition of thermal equilibrium between the two sectors if the DM mass mX &
5 MeV. Furthermore, for mX & 20 MeV, the region (mφ ∼ 20 MeV, ge ∼ 3× 10−8) opens up. These competing
effects lead to the kink in line B.

• Constraint “C”:

For mX & 8 MeV, then supernova and beam dump constraints allow a region of larger ge: for example,
(mφ ∼ 8 MeV, ge ∼ 6 × 10−4) is now allowed. The red dashed lower bound on ge in the left panel of Fig. 5
then gives rise to the constraint “C”. The lower bound on the cross section here comes from setting mφ ∼ mX ,
applying the red dashed lower bound on ge, and setting αX to its minimum value from CMB constraints.

10 In general there are also constraints from low-energy e+e− colliders, fixed target experiments, and neutrino experiments [13]. We find
these do not significantly affect our results. In the case of kinetic mixing, bounds from measurements of the muon anomalous magnetic
moment also apply. We do not include them in this paper.
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Figure 6: For fixed mX and a mediator with mass mφ < mX , we generate random values of (mφ, ge) allowed by beam dump,
supernova, ae, and BBN constraints. We show a sample of allowed points in the (mφ, ge) parameter space; the solid curve is
extrapolated from the constraints in [65], also shown in left panel of Fig. (5). For each (mφ, ge) point, we then sample the
allowed αX satisfying halo shape and relic density constraints, and compute the corresponding elastic scattering cross section
σe. The color of the point is determined by σe. (Left) mX = 20 MeV, where the minimum mediator mass is mφ = 1 MeV.
(Right) mX = 100 MeV, where the minimum mediator mass mφ & 3 MeV is set by halo shape constraints.

We make two final notes. First, in the heavy mediator case, the beam dump constraints do not apply and the
CMB constraints are in general much stronger. As a result, the high σe, low mX region which is excluded in the
light mediator case is again allowed indicated by the light red shaded region in Fig. (4). Second, if we remove the
constraint mφ > 1 MeV, φ will decay invisibly, and only the supernova constraints are relevant. Then a small region
of parameter space with ge ∼ 1.3× 10−9 and mφ < 1 MeV opens up, as discussed above under constraint “A.”
We have verified the bounds discussed above by performing a general scan of the hidden sector parameter space.

Fig. (6) illustrates our method. We begin by mapping out the parameter space of (mφ, ge) and require either large φ
width or φ decay before BBN. We combine this with the constraints in [65], given by the solid curve in the top panels
of Fig. (6). In doing so, we impose the limit 1 MeV < mφ < mX for the case of mφ < mX and mφ > 2mX in the
case where mφ ≫ mX . The lower limit of mφ > 1 MeV is imposed in order to allow for φ decay to electrons. If the
halo shape constraint gives a stronger lower bound on mφ, then we take (mφ)min,halo < mφ < mX for the mφ < mX

case, where (mφ)min,halo is minimum mediator mass allowed by the halo shape constraint. This generates the sampled
points in (mφ, ge) that we have shown. For a fixed (mφ, ge), a range of values for αX is allowed, giving rise to a range
of allowed scattering cross sections. We sample random αX values, subject to the halo shape constraint and the relic
density constraint as in Eq. (38). This then gives a randomly sampled σe value, which we indicate by the color of the
point in Fig. (6). For a fixed mX value, because of the range of allowed mφ and αX values, excluded regions in ge do
not directly map to an excluded region in σe. An excluded region in σe only arises if a sufficiently large region of ge
is excluded, as shown in the left plot of Fig. (6). We thus verify the possible values of σe in this way, imposing all the
constraints self-consistently.

VII. CONCLUSIONS

Given the unknown nature of DM, it is important to carry out broad-based studies of models of DM. In this paper, we
have examined constraints on thermal DM with mass 1 MeV . mX . 10 GeV, a mass range interesting for numerous
phenomenological and theoretical reasons. We considered bounds from cosmology, colliders and astrophysics, and
derived implications of these constraints on direct detection.
CMB constraints on DM annihilation present the most serious challenge for light thermal DM, excluding symmetric

thermal relic DM with s-wave annihilation if mX . 1 − 10 GeV. Two natural ways to evade this constraint are to
have a DM number asymmetry or velocity suppressed annihilation. In the asymmetric case, we found the constraint
on the annihilation cross section such that the symmetric component efficiently annihilates away; the minimum cross
section is larger than the usual thermal relic cross section by a factor of a few, depending on the mass.
Achieving this minimum cross section is difficult if annihilation occurs through a weak scale (or heavier) mediator.
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Collider and direct detection constraints have forced the presence of relatively light mediator states in the hidden
sector in order to achieve the correct relic abundance and evade the CMB bounds. On the other hand, we found that
the DM halo shape bounds on DM self-interactions require that the mediator is not too light. We examined constraints
from elliptical galaxy NGC720 and elliptical clusters, and derived a lower bound on the mass of the mediator particle.
We also calculated the range of scattering cross sections allowed within this scenario. Although the lowest bound

which is cosmologically consistent is well below the reach of any current or envisioned direct detection experiments,
we showed that several cosmologically interesting benchmarks could be reached. For example, in the case of scattering
off nucleons, a hidden sector in thermal contact with the SM at T ∼ mX can be ruled out if an experiment can reach
cross sections with σn . 10−48cm2. In the case of scattering off electrons, the scenario where mφ ≫ mX can be
probed by direct detection. Beam dump and supernova constraints carve out a significant fraction of the available
parameter space if mφ < mX .
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