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Abstract

We present a theory of the generation of magnetic fields in bubble collisions during
the electroweak phase transition (EWPT), which is first order in the minimal super-
symmetric Standard Model (MSSM). Using the equations of motion (EOM) derived
from this theory we derive the magnetic field using a model of gentle collisions of the
EWPT bubbles, discussed in our earlier work. Solutions of the relevant EOM for the
magnetic field are examined in O(1,2) space-time symmetry with boundary conditions
applied at the time of collision. These solutions indicate that the magnetic fields based
on the MSSM are somewhat larger in magnitude and extend more uniformly through
the available volume of the bubble than those found in the Abelian Higgs model. The
magnetic fields so produced might possibly seed galactic and extra-galactic magnetic
fields observed today.

1 Introduction

Identifying the source of the observed large-scale galactic and extra-galactic magnetic fields
remains an unresolved problem of astrophysics [1]. One of the interesting possible sources
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is cosmological magnetogenesis, where the seed fields would have arisen during one of the
early-universe phase transitions. Our first work on magnetic field creation was the study of
bubble collisions during the Quantum Chromodynamic phase transition (QCDPT) at about
107° seconds|2, 3], in which it was shown that the magnetic fields could lead to detectable
correlations in the CMBR.

In our present work our interest is in magnetic field production during the electroweak
phase transition (EWPT) at about 107! seconds, during which the Gauge fields and the
other particles acquired their masses. Studies of the evolution of primary magnetic fields
from the QCDPT and EWPT4, 5, 6] showed that it is very unlikely that the EWPT produces
seeds of galactic and extra-galactic magnetic fields, while it is possible that the QCDPT,
with a much larger scale, could produce the seeds. These calculations, however, used random
magnetic seed fields, while in our MSSM EW theory, discussed below, the electromagnetic
fields produced are coherent, and therefore have a much larger scale.

If magnetogenesis occurred during the EWPT, it most likely required a first-order phase
transition, in which bubbles of matter in the broken phase nucleate within the unbroken
phase. Although it was shown that there is no first-order EWPT in the Standard Model,
with the known minimum Higgs mass [7], there has been a great deal of activity in minimal
supersymmetric extensions (MSSM) of standard EW theory [8, 9, 10]. In models with the
Stop, the SS partner of the top quark, with certain Stop masses there can be a first-order
phase transition and baryogenesis [11, 12, 13, 14]. Also, limits on the parameter-space of
(MSSM) are given by electric dipole moment measurements and dark matter [14].

Interest in these issues has led to quantitative studies of EWPT magnetogenesis based
on the solution of equations of motion (EOM) derived from specific models. Nucleation
was studied in a model using a Higgs potential [15]. In the Abelian Higgs model (AHM)
[16, 17, 18], the first-order phase transition developed as the Universe condensed into bub-
bles consisting of localized regions of space filled by the Higgs field in a broken phase. These
models, based on earlier work of Coleman [19], were some of the earliest attempts to derive
magnetic field production during the EWPT. The EOM related the magnetic fields to gra-
dients in the phase of the Higgs field produced when bubbles merged following nucleation.
Simple and transparent solutions to the EOM evolved from specific field configurations ap-
plied at the point of collision in a relativistic O(1,2) symmetric model. In Refs [16, 17, 18],
the importance of the bubble wall velocity v,q; and conductivity o [20], and how they affect
seed field formation, have been discussed.

We carried out the first work that uses the basic EW theory with MSSM for the pro-
duction of electromagnetic (em) fields via bubble nucleation in a first order phase transition
without[21] and with charged lepton currents [22, 23]. Due to the spherical symmetry,
however, magnetic fields are not produced via nucleation. This approach was extended to
EWPT bubble collisions, during which magnetic fields are produced, with an O(1,2) sym-
metric EOM approach [24, 25], similar to the isospin ansatz in our nucleation work [21, 23].
Since lepton currents were neglected, only the charged gauge fields are the source of the em
currents. Numerical studies [25] found magnetic fields similar to those of the Abelian Higgs
model even though the source of the current in the two approaches was quite different. In



our more recent studies [26, 27] bubble surface dynamics was taken into account in the same
model, and the results presented therein showed that the magnetic fields produced could be
possibly even larger than those calculated in its absence.

It was shown [5, 6] that helicity plays a major role for magnetic fields produced in
cosmological phase transitions to be the seeds for galactic and extra-galactic magnetic fields,
or that give measureble effects in CMBR. For the QCDPT helicity was determined [2], and
measurable efects in CMBR polarization were found. For our theory of the EWPT, including
the present work, we do not derive helicity. This will be done in the future. In our study of
gravity wave production from the QCDPT and EWPT [28] MHD turbulence caused by the
magnetic fields created during the phase tranitions produce the helicity needed to produce
gravity waves.

In Sect. 2, we review the derivation of the exact EOM from the MSSM Lagrangian. We
also identify constraints on the initial conditions required for solving the EOM for bubble
collisions.

In Sect. 3 we review the general framework within which our theory is applied[25], dis-
cussing thermal erasure and gentle collisions. Restricting the application to the regime of
gentle collisions has the advantages that the EOM linearize an the Higgs field decouples from
the other fields, similar to the models of Ref. [16, 17, 18]. In this section we also show ex-
plicitly how thermal erasure of the gauge fields makes it possible for the phase of the Higgs
field to become the source of the em current in the MSSM. We find EOM for the Higgs
phase, obtain a corresponding Maxwell equation for the magnetic field, and identify specific
requirements on the 7 field necessary for internal consistency of the theory. For our study
based on MSSM for gentle collision we refer to our present work as the Non-abelian Higgs
model (NAHM), in contrast to the Abelian Higgs Models (AHM).

Then, in Sect. 4 we express our EOM in O(1,2) symmetric form and give explicitly the
initial conditions imposed by thermal erasure. Additionally, it is shown that the Z field
satisfies the requirement for internal consistency identified in Sect. 3.4, and we discuss issues
for determining the other fields in the NAHM. A closed-form expression for the magnetic
fields is also given here.

Numerical results for the NAHM are then presented in the following section along with
a comparison of these results of the Abelian Higgs model obtained in Ref. [17]. We identify
significant qualitative differences arising from the Non-abelian character of the underlying
Lagrangian. Comparing to the numerical results of Ref. [17] we find that our magnetic fields
are larger in both scale and magnitude, which could be important for them to be seeds of
galactic and extra-galactic magnetic fields.

2 Equation of motion for a MSSM EW theory

In this sction we review the EOM derived from a MSSM extension of the standard EW
theory, with parameters giving a first order phase transition [21, 23]



2.1 Equations of Motion

The Lagrangian which we use[23] is
£MSSM — £1 +£2 + AL ’ (1)

where £! and £? are contributions to £ from the gauge and the Higgs fields ® of
the Standard Model, and where AL accounts for leptonic, quark, and supersymmetric part-
ner interactions. Thus,

1 7 g 1 v
Lt = —ZWWW“ —ZBWB“ ,
Wi, = 9.W.—-0,W, — geijkwgwf
B;w = a,uBu_&/Bua (2>

with W for i = (1,2) the W, W~ fields, and
£2 = (0= 57 W =SB0
- V(?), (3)

with 7¢ the SU(2) generator and V(®) the Higgs potential. The various parameters are
discussed in many publications [11]. For our calculations we use the values consistent with
experiments,

g = e/sinfy = 0.646 ,

g = gtanfy =0.343 ,
my = 80.4 GeV
my = 91.2 GeV , (4)

where myy is the mass of the charged gauge bosons, My the mass of the Z, and

G = g9 /\/¢*+g?=0.303. (5)

In this section and throughout the paper units are such that A = ¢ = 1, with distance and
time expressed in units of myy.

In the picture we are developing, the Higgs field plays a central dynamical role in EW
bubble nucleation and collisions. In AHM models the Higgs potential V' (®,T') at temperature
T is an essential element in the theory, while it is not relevant for the purposes of this paper.
We require only that the EWPT is first-order, consistent with certain MSSM extensions,
including, for example, those with a right-handed Stop [10, 23].

As in Ref. [25], we derive“exact” EOM by minimizing the action using an effective
SU(2)xU(1) invariant Lagrangian at the classical level from which the supersymmetric part-
ners have been projected out as explicit degrees of freedom, but whose effect is retained by
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a renormalization of the Higgs potential to maintain the properties of the first-order phase
transition. Fermions are not explicitly considered since our study EWPT nucleation [23]
showed charged lepton current have a small effect, and earlier work to which we want to
compare also ignored them. The EOM obtained are complicated nonlinear partial differen-
tial equations (PDE) coupling the W, B, and ® fields.

From the solution of the EOM one may obtain the physical Z and A*™ fields,

em  __ 1 ! 3
AN = W(g WN + gBM)
1
Z, = —=—=—==(gW, ~¢B,) . (6)

In order that the photon be massless, the SU(2)xU(1) symmetry of the theory is sponta-
neously broken (by the form of the Higgs, Eq. (7) below), except in the sector containing
the electromagnetic field A7™. By the nature of spontaneous symmetry breaking, physical
observables continue to be invariant under corresponding local S(2)xU(1) gauge transfor-
mations, although the fields themselves are not.

The fields in the plasma outside the bubbles are assumed to occupy thermal modes
described by a partition function at a local temperature T. We further assume that once the
phase transition begins and bubbles form, the fields within the bubbles must be treated as
evolving through non-equilibrium dynamics described by the EOM obtained by minimizing
the action corresponding to the Lagrangian in Eq. (1). We next present these EOM [24, 25]
in a particular unitary gauge in which the Higgs field doublet has the form

®x) = < p(x)ex%i@(x)) : (7)

where O(z) is the phase of the Higgs field and p(z) its magnitude.

2.1.1 EOM for Higgs, B, and W Fields

For our choice of gauge, the modulus p of the Higgs field satisfies the “p-equation”,

2

0 = Ppla) = Lp(x)W" - W (8)
oV
W2 W2 = plepid” + pl@) g
and the gauge field B field satisfies the “B-equation”,
0=0°B, — 0,0 B+ p(x)*q", () . 9)

The quantity v, is given by

S22
v, (r) = 0,0 — gingZ

(10)



and satisfies the relationship
0= 9"p(x)*ty(x). (11)
The gauge field W field satisfies two “W-equations”. For ¢ = 3,

W2 — 9,0 W? — gp(x)*,(x)

= (), (12)
and for i = (1,2),
PWE— 0,0 - W'+ my(x)* W = 59 (x) . (13)

Here

i9D(z) = geir[Wro - W 4-2W7 . oWk

— WI,WM| — gPeupme WIWHW," (14)
and myy, the mass of the W field, is given by
2 2
my (1)* = p(z; g (15)

(14) and using the EOM for the W fields, we find
019 (x) = —gesWi(x)
x - (miy ()W, (2) + gp(x) (@)
— —g%(a) emwa)(gWi(x) + (@) (16)
It will be seen that explicit solutions of Eqgs. (12,13) will not be required to find the
em current and hence the magnetic fields in the NAHM. Instead, the em current will be

obtained indirectly from the EOM for the Z field given below taking advantage of a fortuitous
connection between the two under the conditions of thermal erasure.

Taking the divergence of Eq.

2.1.2 EOM for electromagnetic field A°"

Maxwell’s equation for the em field AS™(z) is found by taking the linear combination of the
W3 and B indicated in Eq (6). The EOM for A°™ then becomes
OPA™ — 0 - A = 4o (x) . (17)

The expression for the em current j¢"(z) deduced from this is proportional to j3,

dmjem () = —L i () (18)

Vo + g
consisting of terms quadratic and cubic in the three fields W(z). That the em current is
conserved,

9. jm=0, (19)
follows from Eq. (16).



2.1.3 EOM for 7
Using the definition of the Z field in Eq. (6),

1
— (9
Vgi+g?
and using the EOM for B and W3 we are able to find an EOM for the Z field,

8%, — 3,0 Z — p(x)*\/ 9% + g%, (x

= ZArj"(x) (21)

Z, = W3 —4¢B,), (20)

similarly to determining Eq. (17).

In order to facilitate the solution of this equation, it is helpful to note that by taking the
divergence of Eq. (21) and using Eq. (11) we obtain a consistency condition, the auziliary
condition for Z,,

xz(z) =0, (22)
where
oM (m%Z,) Z - 0m%
xz(z) = = P =0.-7 e (23)
introducing a mass for the Z field
2 2
_, g +yg .
m%(t,7) = 5 p(t,7)* . (24)
Equations (22,23) require
Z - 0m?
07 =— m;” z (25)
Z

and that mz(z)? > 0 everywhere, as it is when averaged over the local distribution of bubbles.
Using Eq. (25) the EOM in Eq. (21) may be rewritten as

) Z - 0m?% 2 ST
aZV + au m2 —p(t,’f’) V3 +g ’QD,/(ZL')

Z

g2 + gl2

5 Admgem . (26)

g
J

The solution to this equation is equivalent Eq. (21) provided the auxiliary condition Eq. (22)
is maintained for all x.



To see how the auxiliary condition Eq. (22) may be maintained for all (¢, Z), note that
Eq. (26) requires xz(z) to satisfy the Klein-Gordon equation

O*xz(z) + my(x)*xz(x) = 0. (27)

By choosing the initial configuration of Z,(x), at time ¢t = tq, to satisfy

xz(to, ) =0 (28)
and
aXZ (th F) .

we assure that xz(z) = 0 for all future times since Eqgs. (28, 29) are boundary conditions for
the trivial solution of Eq. (27), xz(t,7) = 0. In Ref. [25] the counterpart of ¢, was the point
of first contact of the bubbles.

2.1.4 Solving the EOM: initial conditions

Issues just encountered in the discussion of Z are common to finding solutions of many of
the EOM. For example, consider ,. Although it is not an independent field ), is a very
useful adjunct quantity whose EOM,

0%, — 0,01 +mL(t, M,
_g g2 _|_g/2 com

= g/ fju y (30)

follows from Eq. (21) by replacing Z by its expression in terms of ¢ and © using Eq. (10)

Z, = #(&/@ - wu) ) (31)

and noting that the terms involving © cancel.
The EOM in Eq. (30) may be rewritten as

2 ZﬁmzZ 2 2 2
0*Z, + 0, - — p(t,r)*\/ 9> + g% ()

2
/
2 2
ING TG ypjom (32)
g 2
which is equivalent to Eq. (30) provided the corresponding auxiliary condition
x(x) =0, (33)



where

_ oM (mB) Y- Omy
X(x>:TQZM_8'w+ - (34)

is maintained for all x. As in the case of Z, this requires choosing the initial configuration
of ¥, (x), at time t = ty, to satisfy

and
8X(t077_1’) _
S =0, (36)

Because constraints such as those in Eq. (28,29) and Eq. (35,36) apply at the initial time
to, they make it natural to distinguish two categories of initial conditions. The first category,
which we will refer to as boundary conditions, consists of the initial fields that may be chosen
freely. The second consists of the set determined by the constraints at t = ty, which we will
refer to as the constrained initial conditions.

3 The dynamical framework and gentle collisions

The Abelian Higgs model has been of interest as a prototype for the generation of magnetic
fields in the early universe in collisions of bubbles during a first-order EW phase transition [16,
17, 18]. The Lagrangian of the Abelian Higgs model describes a complex scalar field coupled
to the em field A7™. It corresponds to the Lagrangian Eq. (1) in the Abelian sector, formed
by eliminating the W fields, identifying A7™ with the field B, and relating the electric
charge e to coupling parameter ¢’ as e = ¢'/2.

Results obtained in the Abelian Higgs model follow the original analysis of Kibble and
Vilenkin [16], who expressed the EOM in coordinates appropriate to O(1,2) symmetry. With
this choice of coordinates a point located a distance z from the origin along the axis of collision
at a distance r; = y/x? 4+ y? from this axis at time ¢ is given by (7, z), where

T=1/t?—1%. (37)

They obtained O(1,2) symmetric solutions with jump boundary conditions applied on a
space-time surface defined by the time of collision ¢t = ¢., assuming that for ¢ > t. the Higgs
field (and therefore the masses of the W and Z in the MSSM) is constant at py within the
region of bubble overlap. They demonstrated that when the phase of the Higgs fields is
initially different within each bubble an axial magnetic field forms as the bubbles merge and
that this field has the structure of an expanding ring of radius b(t) encircling the overlap
region of the colliding bubbles.



The main difference of our current work compared to the Abelian Higgs model is that we
use the standard EW theory, rather than a model, and in our MSSM EW theory the source
of the current is the charged gauge fields. The fact that the em current is given in terms of
the W field in Eq. (18) suggests that to find the magnetic field one begins by solving the
EOM for the W fields. This was the approach taken in Refs. [25, 27], where the initial W=
fields in the bubble were argued to form a condensate with a coherence reflecting that of the
Higgs field of the bubble.

3.1 Thermal Erasure

We characterize the thermal history of the early universe by a (time-dependent) temperature
T(t) and a corresponding equilibrium partition function. It is assumed that this partition
function gives the probability that any of the gauge fields occurs at t = ¢y and is sufficient for
thermal erasure of any coherence at the time of the phase transition. In the case of complete
erasure all gauge fields and their time derivatives would, on average, initially vanish, eg,

Wite, ™) = (W'(to,7)) =0
OW'(to, M) /0t = (OW'(to,7)/0t) =0 . (38)

Of course, as time progresses nonlinearities in the theory may result in correlations that do
not average out. Note in particular that the EOM for W is nonlinear and thus (W(x)) and
(j&™(x)) calculated from W may develop finite expectation values as time increases.

Many field configurations arise in a thermal gas. Thus, to calculate any quantity, say the
magnetic field B , one should solve the EOM for each possible initial configuration, leading
to an ensemble of solutions WE(¢,7) and Z,(t,7) and their corresponding B. To obtain
the magnetic field, one would then average B, B(z) —< B(z) >, over the ensemble of
configurations.

3.2 Gentle collisions

In Ref. [25] bubble collisions in the Coleman model [19] were studied by obtaining numerical

solutions to the equation
ov
*¢(x) + ¢($)6752

with the Higgs field a real scalar field ¢ (© = 0), and an effective potential V(¢), which
specifies the dependence of the energy of vacuum on ¢. Fluctuations in p(z) (see Eq(7)) are
defined as p(x) — po, with py a central value. It was found that these fluctuations became
very small as the bubbles overlapped.

For the present paper, as well as Ref. [25], it is important that in the collision the
expansion of p(x), obtained as the solution of Eq. (8) have fluctuations which remain small
compared to py. We refer to a collision of this character as a “gentle” collision. Thus
for gentle collisions the solution p(z) of Eq. (8) can be approximated by a simple function

=0, (39)
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p(x) =~ p(x). As in Ref. [25], an expansion in a & p(z) — p(x) shows that to leading order
the equation for p(z) becomes independent of the other fields allowing p(z) to be fixed in
advance.

As in our earlier work based on the MSSM we achieve considerable simplification by
applying the theory to gentle collisions following Kibble and Vilenkin. It follows that for the
purpose of calculating the em current in the NAHM, and hence the corresponding magnetic
field produced in bubble collisions, the EOM for the magnitude and phase of the Higgs field
are the only ones required. The solutions are of course coupled to all the other fields through
the scalar field, but for gentle collisions, as noted, the magnitude of the Higgs field decouples
from these fields. As a result, in the NAHM for gentle collisions there is only one PDE to be
solved in order to obtain the em current, that for the phase of the Higgs field in the collision.

3.3 The Non-abelian Higgs model

Although calculating the em current directly in terms of the W fields was relatively straight-
forward with the condensate boundary conditions of Refs. [25, 27], invoking thermal erasure
would require obtaining these fields as solutions of the nonlinear equations for an ensemble
of thermal boundary conditions and then averaging the current over this set of solutions.
This would be a formidable undertaking.

Fortunately, thermal erasure admits an alternative to determining the em current that is
actually quite simple and straightforward, the NAHM approach we take in this paper. The
EOM leading to the calculation of the magnetic seed fields are obtained in Sect. 3.4.

3.4 EOM in the NAHM

In Sect. 3.4.1 we will obtain an expression for the em current of the NAHM defined entirely in
terms of the gradient of the phase of the Higgs field (and its magnitude) for gentle collisions.
Maxwell’s equation for determining the magnetic field in bubble collisions including the
effect of finite conductivity is also given here. The simple connection of the em current to
the gradient of the Higgs phase arises from the linear, homogeneous character of the EOM
for Z,, in contrast to the EOM for W, and thermal erasure of < Z >=0 at t = t,.

In Sect. 3.4.2 we will derive a PDE for this phase from current conservation and in
Sect. 3.4.3 we discuss the significance of 7, for justifying the NAHM and derive a PDE for
determining it. Both are linear and homogeneous.

3.4.1 Electromagnetic current and Maxwell’s equation in the NAHM
Applying the ensemble averaging principle to Eq. (21) we find, at ¢ = to,

/

4 (jom(z)) = —%¢g2+gf2p<t,f>2
X 0,0(x) (40)
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by setting (Z,(z)) = 0 in accord with our assumption that the gauge fields initially occupy
thermal modes. The essence of the NAHM is that Eq. (40) should hold, not only at t = ¢,
but also throughout the duration of the phase transition. This will clearly occur when
(Z,(z)) = 0 for times t > t,, a result that we show in Sect. 4.4 follows from the assumption
of thermal erasure as given in Eq. (38). This result establishes that under the assumptions
of thermal erasure, the NAHM provides a prediction for the magnetic seed fields following
from our EOM that avoids having to determine the corresponding W fields. a result we show
in Sect. 4.4. To the extent that this can hold, the solution of the EOM for the W fields is
unnecessary determining the magnetic seed fields.

In what follows, we streamline the notation by understanding that j&(x) is short-hand
for (j™(z)), Z,(z) short-hand for (Z,(z)), and v, (x) short-hand for (¢, (z)).

From Eq. (17), the expression for the em current averaged over the thermal partition
function for the initial gauge field configurations, Eq. (40) leads to the Maxwell equation

DPA — 910 - A = 4Amjo ()
/

= —LVEEFR 0,00 (11)

To find Maxwell’s equation for the magnetic field B ,
B = VxA™, (42)
arising from the charged gauge bosons, we multiply Eq. (17) by €;;,0;, obtaining
€0 AYT —  €1,0;060 - AT

= Adme0ii" (43)
Expressing Eq. (42) in components,
B, = Eijkﬁj Zm, (44)
we immediately find the basic result,
PB = Amd x " (45)

In addition to the gradients of the Higgs phase, fermions also contribute to the current and
have a significant impact on magnetic seed field production. One contribution was discussed
recently in Ref. [23] and estimated there for the nucleation phase of the collision. Another
occurs through the conductivity of the medium . This is taken into account through its
associated current 7,(x),

Jelw) = 0E(x) , (46)

where the usual assumption that ;c(:v) is proportional to the electric field E has been made.
In the present work we do not consider fermions or the conductivity current, taking o = 0.

In this case, the quantity B (t,7) obtained by solving Eq. (45) is the expected magnetic seed
field.
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3.4.2 EOM for the Higgs Phase in the Non-abelian Higgs Model

A PDE for the Higgs phase O(x) follows immediately from current conservation, Eq. (19).
Using Eq. (40) along with this, we find
1
0 = ——=0- 200
mZ (t ) mZ( ) ( )
= 0’0+ (00) - (0lnm3) . (47)

To determine © from this, appropriate boundary conditions on © and its derivative on some
initial space-time surface are required. When the Higgs fields of the colliding bubbles differ in
phase before the collision occurs, 9,0(z) develops a non-zero value within the bubble overlap
region after the collision. The em current j™(z) then develops a non-zero value there and
magnetic fields will form. We will see explicitly how the em currents and associated magnetic
fields begin to form in the collision once the bubbles begin to overlap when we solve the EOM
in Sect. 5.

Note that the EOM for © in the NAHM contains no mass term and therefore differs in
an essential way from the Abelian Higgs model. This difference can be traced to the fact
that the only vector field available to define the covariant derivative in the Abelian Higgs
model is A7, whereas the Non-abelian character of the MSSM means that this vector field
becomes, instead, that of W. One consequence is that the Z field plays the role of A™ in
the Abelian Higgs model [25]. Thus, thermal erasure can eliminate Z while preserving the
possibility of generating a magnetic field. Thermal erasure is not only a meaningful concept
in the MSSM, it is also the underlying reason for the absence of a mass term in the EOM for
O and the source for the dramatically different time-dependence of © that we find in Sect. 5.

3.4.3 EOM for Z in the NAHM

Although not explicitly needed to calculate the magnetic field, Z plays an important role
in the formulation of the NAHM. Specifically, in order to express the current in terms of
the gradient of the Higgs phase, Eq. (40), requires that (Z,(z)) = 0. The results presented
below form the basis for the argument.

Substituting the definition of ¢, Eq. (10), into Eq. (26), using the expression for the em
current in the NAHM, Eq. (40), and taking the thermal average, we immediately find

Z - 8mZ

mz

0*Z, + 0, +m%Z,=0. (48)

The Z is subject to constrained initial conditions in Eqs. (28,29),

0=0-Z+Z-0lnmy (49)
and

0 0

&8 Z+ T —Z-0lnmy . (50)
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Thus, the assumption of thermal erasure is consistent with Z,(x) being determined by a
linear, homogeneous PDE even before invoking the assumption of gentle collisions, discussed
in the next section.

We also see that the EOM of the NAHM for Z, Eq. (48), for 0,0, Eq. (47), along with
the electromagnetic current defined in Eq. (40), are all consequences of the EOM for Z
in Egs. (22,26) and current conservation, with Z defined in Eq. (6). Thus, obtaining j&™
from Eq. (40) by solving Eq. (47) is exactly equivalent to obtaining it by solving the EOM
determined directly by minimizing the action.

4 The NAHM in O(1,2) Symmetry

In this section, following Kibble and Vilenkin, we express the EOM of the NAHM using the
(7, z) variables appropriate to O(1,2) symmetry. Although wall speeds v,y < ¢ and electrical
conductivity both break O(1,2) symmetry, it is still of interest to explore O(1,2) symmetric
solutions in the NAHM. This is because of the relative transparency of the analysis and
because it facilitates comparison with earlier work in the Abelian Higgs model [16, 17, 18]
and the MSSM [24, 25].

The relevant EOM are those for O, Z, and B. In this section we find the general solution
of the EOM for a pair of colliding bubbles for jump boundary conditions applied on a
space-time surface at fixed 7 = t., the current corresponding to these solutions, and the
corresponding magnetic field by solving Maxwell’s equations. Since the EOM are intended
to give the fields inside the bubbles, our O(1,2) symmetric solutions are valid only within
the region of overlap of the bubbles, that is for 7 < ¢..

4.1 Calculation of Z of the NAHM in O(1,2) Symmetry

As discussed in Sect. 3.4.3 the Z plays an important role in the formulation of the NAHM.
Specifically, the EOM of the NAHM for © and Z in Egs. (47,48) are consistent with the
EOM determined by minimizing the action only if the solution of the EOM for Z, Eq. (48),
with initial conditions consistent with thermal erasure lead to (Z, (7, z)) = 0 for all 7. Then
and only then is it possible to express the em current in terms of the gradient of the Higgs
phase, Eq. (40) throughout the phase transition. In this section we examine Z with this in
mind.

To express the equations of motion, in terms of the (7,2) coordinates, for the vector
fields, for example Z,, we take

Z,(x) = Z,(7,2), v=3
Z,(x) = z,Z(7,2), v=(0,1,2), (51)

with Z, = —Z%. In the remainder of the paper, we will find it convenient to use a to denote
the Lorentz index for the values v = (0,1,2). Also note that initial conditions for O(1,2)
symmetric solutions are specified on a space-time surface defined by 7 = t..
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Thus, 9*Z, (7, z) becomes for v = 3

? 290 0
0*Z,(r,2) = (ﬁ + i @)Zz(x) (52)
and
”? 40 O
82Za(’7', Z) = l'a(w + ;E - @)Za(l’) . (53)
Also,
0Z* 0z
0-Z(x) = P +3Z+ra—7. (54)
The EOM in Egs. (48) for Z are then as follows,
”? 20 0
0= Gatiag aa TR )
and
? 490 0
0 = (ﬁﬁ-;a—@—i-m%)Zz (56)

To find the solution of these EOM, initial conditions are needed for Z and its time
derivatives. Denoting by Z,(t., z) the profile of the Z, fields on the space-time surface when
the collision occurs, the initial values for Z,(t., z) is determined from the partition function
of a thermal gas at 7 = t.. Since its distribution is incoherent and essentially random,
consistent with a thermal distribution, we find for the initial conditions under the conditions
of complete thermal erasure

(Z.(lc,2)) = 0

<azzﬁ(t;,z)> _

(Z(te,2)) =
(2203 _ @)

It is easily shown that these are consistent the auxiliary condition of Eq. (23), which
requires that Eq. (49) hold,

o O

07 0z
XZ(tC,Z) = az +3Z+tca

= 0, (58)
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and that Eq. (50) hold,

oxz(te,z) 0% . 0 0?
or N azﬁTZ +4EZ+thZ
? . 0
N azﬁTZ +4EZ
4 8 0? 9
= 0, (59)

where we have used the EOM of Eq. (55). As before the derivatives do not act on the 6
functions. Equations (58,59) are clearly satisfied by Eq. (57).

With Z satisfying the linear, homogeneous EOM of Eq. (48) (Egs. (55,56)in (7, z) coordi-
nates), and with the result that Z, and its 7 derivatives vanish at 7 = ¢, under conditions of
complete thermal erasure, it follows that the solution of these EOM, (Z,(7, z)), must vanish
for all 7. Consequently, the NAHM is established and we may proceed to the examination of
its consequences for production of magnetic seed fields taking the em current to be related
to gradients of the phase of the Higgs field as given in Eq. (40).

4.2  Calculation of © of the NAHM in O(1,2) Symmetry
The PDE for © in Eq. (47), in terms of which j¢ is defined, becomes, in (7, z) coordinates

(82 n 20 0?
or 7101 022
As indicated, the Non-abelian Higgs mechanism assumes that initially, at 7 = ¢., the Higgs
phase for a single bubble is constant throughout the bubble, but this phase differs in the
two colliding bubbles, as in the Abelian Higgs Model. Likewise, the boundary condition on

the 7 derivative is the same as it is in the Abelian Higgs model. Accordingly, the boundary
condition on © is

)o(t,7) = 0. (60)

O(r =te2) = O €(z) (61)
—O(r=t,z) = 0,

where €(z) is the sign of z and 0 < ©g < 7/2 is the initial Higgs phase in one of the colliding
bubbles. Of course for 7 > t. the actual variation of the phase © in the bubble is determined
by its EOM, Eq. (60).

The solution of Egs. (60) is found by standard methods. Expressing ©(z) as a Fourier
transform in z, Eq. (60) gives an ordinary differential equation for the 7-dependence, yielding

o(r,2) = \[ / wk (62)

+ dy coswyT)dk
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where wj;, = Vv k? + m? where it is understood that m — 0 at the end of the calculation.
The coefficients a; and b, in Eq. (62) are fixed by the boundary conditions on © in
Eq. (61). Performing the sum over the modes k, we then obtain

|z
O(r2) = “Elo(r |2 |

( 1 + i)Jo(m\/W)dz/

te OT
4 9(|z|—T)%(%+§T)smmT]
- oo -2 [T
+ 8 - T+ )
= 20— |2z + Oue(2)0(12] ~ T) (63)

where T' = 7 — ¢..

4.3 Calculation of B in NAHM with O(1,2) Symmetry

We first examine the calculation of the em current taking it to have the form

jsm(7> Z)) = (j2(7-> Z)axocj(7> Z)) . (64)

in (7, z) coordinates where the em current is given in the NAHM in Eq. (40). Thus, with
O(1,2) symmetry we find the current in Eq. (40) expressed in (7, z) coordinates becomes

! 0
Arj, = —g—vg2+g’2pﬁa—@(ﬂ 2)
g z
/

g e
- —Evg2+g’2p370«9(T—|Z\) (65)
and
; g/ 2 2 2 9
dmj = Vet Py O(7,2)
/

g S
= 92+g’2p37—209(T— EDE (66)

where we have used Eq. (63) to obtain

%@(T,Z) = —%G(T_M)Z (67)
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and
—O(r,2) = —O0(T—1z]) . (68)

When evaluating the partial derivatives in Eq. (65,66), and using the expressions in
Eq. (63), we do not let the derivatives act on the step functions. We note that ignoring the
surface derivatives is quite consistent with current conservation and should therefore lead to
a valid expression for the magnetic field throughout the bubble interior.

To obtain the magnetic field we need to solve Maxwell’s equation, Eq. (41), with the
current given by Eq.(40), and with the © fields appearing in the current given by the solutions
of Egs. (60). The solution of Maxwell’s equation is completely determined once we specify
the boundary conditions on the A°™ field with the © field given above.

Because the electromagnetic current has the form given in Eq. (64), the electromagnetic
field has this form also,

AT, 2) = (a.(T, 2), xqa(T, 2)) . (69)

Maxwell’s equation becomes quite simple in the (7, z) with the axial gauge, a, = 0, namely,

—aa—;a(T, z) =A4dmj(r, 2) . (70)

Applying the boundary conditions, namely a(7g, 2z) = 0 and d,a(T =0, z), we find

a(t,z) = —47r/ dz// g(r, 2")d=" . (71)

The magnetic field, B = § x A", where A°™ = (za(r, 2), ya(r, z),0) with a(r, z) given
in Eq. (71) is

B* =0

B* = —47Ty/ g(r,2")dz

BY = 47@/ g(7,2")dz" (72)
or

B = Mqu (73)
rL

with

B? = 47T7’J_/ g(r, 2")dz" . (74)
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Thus, the magnetic field generated in the bubble collision lies entirely in the azimuthal plane,
with x and y components only, and encircles the z-axis, just as in the Abelian Higgs model
and our earlier work [25].

To obtain the magnetic field we evaluate Eq. (74) with the current given by Eq. (66),

g/ (__) z
B? = rlgx/g2+g’2p(2)7_—20/_ O(T — |7'])2" d

/ (__) 4
= rl%\/92+g’2p87—209(T—|z|)/ 2 d
-7
! @ T
+ 2 gz+gf2pg—§e(\z|—cr)/ Y 4
g T -T
_ g 2 2 260
= ME\/Q +9%p0 5 0(T — |2])
—T)?
o T -

4.4 The B, W, and v fields in the NAHM in O(1,2) Symmetry

Just as for Z, solutions of the EOM for the B, W3, and 4 fields in the NAHM are not needed
explicitly to calculate the magnetic seed fields. However, these solutions are easily obtained
once the EOM for the NAHM are solved, for completeness we show how to do this in this
section.

With Z, = 0, Eq. (6) shows that the solutions of the EOM for B and W? must be
proportional, specifically,

B, =gW}/g, (76)
with

2 12
Ao = VI Ty (77)

g/2

Thus, both W2 and B, are determined once the em field is known, and it is unnecessary to
solve their EOM to find them.

Accordingly, if we take AS™ = 0 in an isolated bubble, the condition that the electric
and magnetic fields vanish in the Lorentz gauge, this would imply W32 = 0. However, in
colliding bubbles it is fortunately the case that Z, = 0 does not rule out A%™ # 0. The
vanishing of the Z, field in this case rather implies that B, and W3 must both be non-zero
and proportional to A,. These considerations are completely consistent with the EOM for
W3, Eq. (12), and Maxwell’s equation, Eq. (41).

The solution of the EOM for 1, Eq. (30), can be determined directly from the definition
of ¢, (t,7) in Eq. (10) and the solutions of the EOM for © and Z, Eqgs. (47,48), respectively.
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Thus, to obtain the solution of Eq. (30) it is not necessary to actually solve its PDE either.
Since (Z,(t,7)) = 0 we find the simple result

Yy = 0,0 . (78)

It is more difficult to solve the EOM for W¥ with thermal erasure because of its non-
linear character and the number of (thermal) initial conditions for which it must be solved.
Fortunately this solution is not needed for applying the NAHM to calculate the magnetic
seed fields.

However, it may still be of interest to find a formulation in which the em current is
expressed explicitly in terms of the charged gauge bosons. One way to do this would be to
develop gentle collisions more thoroughly along the lines of Ref. [25, 27]. A critical element
missing at this time is a means to find initial conditions of the W= fields consistent with full
thermal erasure. A more direct approach would be to solve the full nonlinear theory. This
is the approach taken in Ref. [23] with the “I-spin ansatz”. Solutions have however been
obtained only for the nucleation stage of the collision

5 Numerical Results

To facilitate the comparison with the Abelian Higgs model of Ref. [17] we assume that
bubbles nucleate at points on the z-axis at z = +R at time ¢ = 0, that they expand from
the point of nucleation with the radius of the bubble R(t) = ct at the speed of light, and
that they collide at time ¢ = ¢, = R, as in Refs. [17]. Results may be expressed in terms of
the time after collision, dt, so that a point (r, z) at t = t. + ot has the O(1,2) coordinates
(1,2) = (V/(te + 0t)% — rl,z).

We will first show the magnetic field B?, the value of the azimuthal field, assuming
a non-conducting medium ¢ = 0 and a terminal wall speed v,,; = 1, with distance and
time expressed in units of 1/my and the magnetic field in units of m¥,. Although the
assumptions of ¢ = 0 and v,; = 1 are unrealistic for the actual EWPT, the corrections are
well-understood and thoroughly studied in the Abelian theory [16, 17, 18].

To compare to the Abelian Higgs model of Ref. [17] we take t. = R = 10 with 6t = 5,
10, 15, and 20, and with ©y = 1. We will note some striking differences that we link to the
behavior of the Higgs phase in the Non-abelian character of our theory.

In the (7, z) variables appropriate to O(1, 2) symmetry, the point of collision on the z axis
at z =0 and r; = 0 has the coordinates (7, z) = (1/t? — b(t)?,0) where b(t) is the radius of
the circle intersection in the plane of symmetry, the X-y plane at z = 0. Smce the bubbles
collide on the z-axis with radius R, = R, b(t) grows with time as b(t) = \/R(t)? — R? =
\/t? — R2, or equivalently to 7 = t.. The collision time ¢, is determined by the condition
R. = R(t.) (or equivalently b(t.) = 0) giving t.—t,, = \/R? — R2. The fact that the speed of
expansion can be superluminal is not in contradiction with relativity, as discussed in Ref. [1§]

Figure 1 shows the region of bubble overlap in the x-z plane at time dt = 20 for this
geometry. The circle of bubble intersection in the x-y plane is shown in Fig. 2. The so-
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Figure 1: Bubble configuration in the z — z plane at time ¢. + 20 after collision.
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Figure 2: Bubble configuration in the z — y plane at time t. + 20 after collision.

lutions of the EOM are meaningful in O(1,2) symmetry only inside the region of overlap,
corresponding to T > 0, as discussed above.

The B? field in the x-y plane at this time, calculated using Eq. (75), is shown in Fig. 3.
This clearly shows that B? encircles the axis of collision.

Additionally, B? is narrowly confined longitudinally near z = 0 in the x-y plane as shown
next in Fig. 4. This shows that B? is largest at intersection of the bubbles at z = 0, and
that it falls off rapidly with z away from this point. The magnetic field is thus concentrated
in a narrow ring encircling the axis of collision on the circle of intersection of the bubbles.

Figure 5 shows our calculated field B? at §t = 5, 10, 15, and 20. This is to be compared
to the result shown in Fig. 6 calculated in the Abelian Higgs model with distance and time
again expressed in units of inverse mass of the vector boson and the magnetic field in this
mass squared. A convenient expression for the magnetic field is given in Eq. (29) of Ref. [18].

Thus, evaluating B? for parameters corresponding to numerical results of Ref. [17], we
find that the peak magnetic fields in the MSSM for the NAHM as given in Eq. (75) occur
along the axis of symmetry at the point of intersection of the bubbles, just as in the Abelian
Higgs model. However, our fields are about a factor of 2 larger and do not change sign in
contrast to that in the Abelian Higgs model, which displays oscillations. Additionally, it
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Figure 4: Magnetic field in the = — z plane at time t. + 20 after collision.

is clear that the magnetic field extends more deeply into the collision region in our theory,
which makes the volume-averaged azimuthal field in the ring even larger than it is in the
Abelian Higgs model.

Note that the magnetic field in the Abelian Higgs model drops to zero suddenly at the
outer boundary of the expanding overlap region. This unphysical feature was discussed in
Ref. [18] and was traced to the abrupt change in the boundary condition at the point of
collision in that model.

Next we compare the magnetic field along the z direction at fixed radial distance p from
the collision axis. Comparing the results for our theory and that of the Abelian Higgs model
shown in Fig. 7 and Fig. 8, respectively, we see that near the center of the overlap region of
the collision at z = z = y = 0 the magnetic field is quite small in both models. Because the
field is small and sensitive to the distance off axis, the most significant difference is the lack
of oscillations in the NAHM. The Abelian Higgs model again displays strong longitudinal
oscillations in B?, particularly when we look deep within the overlap region.

In summary, from the comparison of Figs. 5,6 and Figs. 7,6 we see that the magnitude of
the magnetic field in the present model is larger and smoother than the one obtained in the
Abelian Higgs model. That the two should differ is not unexpected because the description
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Figure 5: Magnitude of the azimuthal magnetic field calculated in the theory of the present
paper. The field is shown as a function of distance p = r; from the axis of collision in the

symmetry plane at time 6t =5, 10, 15, and 20.
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Figure 6: Magnitude of the azimuthal magnetic field calculated in the Abelian Higgs model.
The field is shown as a function of distance p = r from the axis of collision in the symmetry

plane at time 6t = 5, 10, 15, and 20.

-30 -20 -10 10 20

Figure 7: Magnitude of the azimuthal magnetic field calculated in the theory of the present
paper. The field is shown as a function of distance z along the axis of collision at a distance

p = 1 from the axis of collision for times 6t = 5, 10, 15, and 20.
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Figure 8: Magnitude of the azimuthal magnetic field calculated in the Abelian Higgs model.
The field is shown as a function of distance z along the axis of collision at a distance p =1
from the axis of collision for times 6t = 5, 10, 15, and 20.
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Figure 9: Higgs phase calculated in the theory of the present paper. The field is shown as a
function of distance z along the axis of collision at time 6t = 5, 10, 15, and 20.

of the physics is quite different in the two cases, with the source of the em current in the
present model being charged gauge bosons of the MSSM. One consequence of the gauge
bosons is the time dependence of the Higgs phase. We show the evolution of the Higgs phase
in Fig. 9. As noted in Sect. 3.4.2, differences arise because a distinction is made between
the em field and the Z field in the MSSM. Consequently, the phase in Fig. 9 approaches a
constant independent of time outside the region of bubble overlap.

The differences, particularly the difference in scale, presumably are significant for the
evolution of the magnetic field to the present era. Differences will of course be mitigated by
the fact that the finite conductivity ¢ damps the magnetic field in the interior of the ring.
Additionally, before we can make an estimate of present day magnetic fields, the effects of
the speed of the bubble wall has to be calculated. These are most naturally calculated in an
O(3) s ymmetric formulation [27].

The quantity we need to obtain from our calculation for determining the effectiveness
of magnetic field creation during the electroweak phase transition seeding the galactic and
extragalactic magnetic fields we see today is the integrated azimuthal magnetic field strength

24



B(R) within the ring created within the colliding bubbles. In the Abelian Higgs model, the
value of B(R) is given by Eq. (24) of Ref. [17] as a function of v,,q;, the radius of the bubbles
R at the time of collision ¢ = ., and the radius p,:,, at the time of completion of the phase
transition. This result depends only on B? in the surface of the because the conductivity
damps out the magnetic field in the interior of the bubble but not at the outer surface of
the ring where it is the largest. However, the finite wall speed does damp the magnetic field
at the surface as shown in Eq. (24) of Ref. [17]. Because this damping is a kinematic effect,
it scales with the value of the magnetic field at the surface of the ring.

Hence, from knowledge of the value of the magnetic field in the surface of the ring we
can obtain the appropriate B(R) for our theory by scaling it relative to the value of the
magnetic field in the ring in the Abelian Higgs model. It is clear from Fig. 5, Fig. 6, Fig. 7,
and Fig. 8 that this scaling indicates our seed fields would lead to a larger magnetic field
than the estimate in Eq. (30) of Ref. [17] for the galactic dynamo. However, the helicity
must be known for a complete calculation [5, 6]

6 Summary

We have developed a “Non-abelian Higgs model”, our basic MSSM EW theory for “gentle
collisions”, taking advantage of the fact that the EOM for the Z field depends on the same
current that determines the magnetic field. Under the conditions of complete thermal erasure
this leads to a simple, although indirect, expression for the em current of charged gauge
bosons through the gradient of the Higgs phase similar to that of the Abelian Higgs model in
bubble collisions. As such, the NAHM applies in a different regime than the theory presented
in Ref. [25] in which solutions of EOM for W#* that evolved from condensate boundary
conditions for gentle collisions drove the production of magnetic fields. It was shown that
for gentle collisions the NAHM is consistent and leads to magnetic fields comparable to
those found in the Abelian Higgs model. These results reinforce the hope that the EWPT
is a promising source for production of seed for large-scale galactic and extra-galactic fields
observed today, since the scale and magnitude of the magnetic fields is larger than those
used previously in evolutionary models.

We would like to estimate the likelihood that present day magnetic fields could have been
seeded by the fields generated during the EWPT that we calculate. To do this, however,
would require a calculation of the helicity density h,. Estimates of h, thus becomes an
important subject for future work.
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