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Loosely coherent searches for sets of well-modeled signals.
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We introduce a high-performance implementation of a loosely coherent statistic sensitive to signals
spanning a finite-dimensional manifold in parameter space. Results from full scale simulations on
Gaussian noise are discussed, as well as implications for future searches for continuous gravitational
waves and related searches for slowly modulated signals, such as emitted by radio pulsars. We
demonstrate an improvement of more than an order of magnitude in analysis speed over previously
available algorithms. As searches for continuous gravitational waves are computationally limited,
the large speedup results in gain in sensitivity.
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I. INTRODUCTION

Loosely coherent algorithms [1] detect families of noise-
dominated signals. Their development was prompted by
the challenge of conducting a blind search for continu-
ous gravitational waves. These signals are expected to
be produced by rotating neutron stars with large mass
quadrupole moment. Since the stars rotate in vacuum
their frequency is expected to be stable (similar to radio
pulsars) with slow modulation from energy loss, possible
companion objects, Doppler shifts from changing detec-
tor velocity and changes in detector orientation.

Traditional coherent approach requires construction of
sufficiently dense bank of waveforms, which is used in a
matched filter applied to acquired data. Due to large
computational requirements this approach is impractical
to pursue with the several years of data accumulated by
LIGO detectors [2], while still covering a significant por-
tion of the sky.

An alternative common approach is to use a semi-
coherent algorithm which breaks up data into short seg-
ments, each of which is analyzed with a coherent algo-
rithm and the results are summed. The decrease in the
coherent timebase leads to great reduction in required
computational power, at a cost of reduced sensitivity.

A loosely coherent algorithm straddles the middle of
these extremes by considering families of signals with a
limited phase drift relative to an ideal coherent template.
For example, a signal family could consist of a set of
waveforms with nearby parameters.

As we are still waiting for the first detection, we cannot
rely on a natural source to verify correctness of the detec-
tor and search pipelines. Our algorithms must be resis-
tant to possible imperfections of the detector, to faults in
understanding of gravitation or even to bugs in the search
programs. It also helps to be sensitive to a wide family
of signals, in case the loudest source is not a perfect sine
wave, which can result, for example, from a companion
object.

Consideration of a set of signals, rather than a partic-
ular template, leads to improvements in computational
speed and controlled way to introduce robustness to de-
viations from ideal signal model.

The first implementation of a loosely coherent search
[1] was designed for signals with a large amount of phase
deviation over 30-minute interval. This provided the gain
in sensitivity needed for follow up of outliers seen in the
full dataset of the LIGO detector’s fifth science run S5 [3],
while preserving the robustness of the underlying, semi-
coherent PowerFlux algorithm [4–6].

In this paper we explore the other end of the spectrum
- an algorithm sensitive to coherent signals described by
a small number of parameters, such as frequency or sky
position. A number of coherent codes have been devel-
oped previously, in particular [7–16]. What is different in
our approach is that, unlike previous algorithms, our sky
templates are “thick”, sweeping small patches of param-
eter spaces. In particular, individual signals taken from
the middle of nearby patches do not have a high degree
of overlap. This property, together with careful attention
to implementation particulars, provides for a very high
performance coherent code.

The implementation, discussed below, makes use of
several new techniques:

• A local perturbative expansion of signal waveforms.

• A pair of complex valued parameters which con-
veniently describe polarization of incoming signals
and the manifold of signals of unit strain.

• An efficient method to compute B-statistic [14].

• A way to use a simplified and computationally ef-
ficient statistic to determine whether more compli-
cated physically meaningful statistics need to be
computed for a particular data sample.

• Unlike previous implementations of F-statistic [7]
this code derives upper limits as well as SNR, re-
moving the need to run expensive Monte-Carlo sim-
ulations to estimate upper limits.

• Pseudo-convolutions are used as a core part of com-
putational engine.

• An analysis of code efficiency uses actual running
time with performance reported in CPU cycles per
template.
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II. A SIMPLIFIED ALGORITHM

Suppose that we are interested in a family of signals
described by the formula

s(t; a) = Ae2πiν(t+Ξ(t,a)) (1)

where ν is the signal frequency and Ξ(t, a) has a smooth
dependence on time t and multidimensional parameter
set a.

Our input data z(t) = s(t; a) + ξ(t) consists of one
signal from this family and, ideally, uncorrelated, but
non-stationary Gaussian noise of variance σ2(t):

〈ξ(t)ξ(t′)〉 = σ2(t)δ(t− t′) (2)

In practice, this data is usually derived by partitioning
input data into short segments, taking Fourier transform
of each segment and then picking a single bin in each
short Fourier transform (SFT). If the segments are non-
overlapping this usually implies uncorrelated bins. Oth-
erwise, a small amount of correlation between nearby bins
is present, which we neglect in this exposition. An alter-
native way to obtain ξ(t) is to use a heterodyning filter
in which case the correlation length will depend on the
width of the filter and discretization step used during
computation.

If we knew the frequency ν and parameter set a, we
could form a matched filter that would return the ampli-
tude of our signal:

A(ν, a) =
1

W

∫ t1

t0

z(t)

σ2(t)
e−2πiν(t+Ξ(t,a))dt (3)

Here W is the total weight:

W =

∫ t1

t0

1

σ2(t)
dt

If the signal parameters are not known, one can con-
struct a bank of waveforms s(t; a) and evaluate the in-
tegral separately for each template. This is, of course,
computationally expensive.

One way to gain a large speedup is to introduce a new
time variable t′ that straightens out our signal into a sine
wave:

t′ = t+ Ξ(t, a) (4)

One then resamples [15] the input data z(t) to be equally
spaced in the new variable t′ and uses a Fourier transform
to compute amplitudes for a range of possible signal fre-
quencies. It has also been proposed by B.F.Schutz that
a change to nearby value a′ can be accomplished with a
kernel [17]. As far as we know this method of “stepping
around in the sky” (named so because sky position is an
important source of nonlinearity) does not yet have an
implementation.

A simpler approach that combines the best features
of both resampling and stepping around in the sky is to
consider the following function of the input data:

F (λ; ν0, a0) =
1

W

∫ t1

t0

z(t)

σ2(t)
e−2πiν0(t+Ξ(t,a0))e−2πiλtdt

(5)
which is easily computed with a fast Fourier transform.
For λ = 0 it returns an amplitude estimate of the signal
with parameters (ν0, a0). The values of F for λ 6= 0
carry slightly distorted information on nearby templates,
which can be used to compute estimates of their signal
amplitude with a convolution:

A(ν, a) =
1

W

∫ t1

t0

z(t)e−2πiν(t+Ξ(t,a)) 1

σ2(t)
dt =

=
1

W

∫ t1

t0

z(t)e−2πiν0(t+Ξ(t,a0)) 1

σ2(t)
·

·e−2πi(ν−ν0)t−2πi(ν−ν0)Ξ(t,a0)−2πiν(Ξ(t,a)−Ξ(t,a0))dt =

=

∫
F (ν − ν0 − µ; ν0, a0)·

·
∫ t1

t0

e−2πiµt−2πi(ν−ν0)Ξ(t,a0)−2πiν(Ξ(t,a)−Ξ(t,a0))dtdµ

(6)
The reader will notice that the last term is not quite

the ordinary convolution - one of the convolved terms
has a (slow) dependence on the convolution parameter.
We call this a “pseudo-convolution” operator. We distin-
guish this case from the more general notion of integral
operator, because in practical computation we do not
have to update the slowly changing convolution with ev-
ery data sample and the computational requirements of
the operator are equivalent to the computational require-
ments of plain convolution.

In our case the pseudo-convolutions are of the form

A(ν, a) =

∫
F (ν−ν0−µ; ν0, a0)

∫ t1

t0

e−2πiµt−U(t,ν,a)dtdµ

(7)
where U(t, ν, a) is a phase mismatch function describing
difference in phase evolution between nearby templates.
For smooth U(t, ν, a) the convolution operator is close
to δ-function. In practical computation, using discrete
Fourier transform, this means that our convolution can
be approximated with an FIR filter that has small num-
ber of terms.

It is crucial to control the number of terms in the con-
volutions. There are two ways to achieve that, aside from
simply using small increments in the parameters with a
corresponding increase in the number of templates.

First, we can subtract a linear term from the argument
of the exponent so that it has the same value at both
ends of the segment [t0, t1]. The linear term is analogous
to a Doppler shift correction and results in relabeling of
frequency parameter ν.

Secondly, pseudo-convolutions have small or null com-
mutators. One can then apply methods of linear alge-
bra to change from initial set of operators (usually corre-
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sponding to individual parameters) to a set with progres-
sively fewer convolution terms. The operators with the
smallest number of terms are used in the innermost com-
putational loop thus determining overall performance of
the code.

We implement these techniques by representing
U(t, ν, a) as a sum of a linear term and Fourier series
with coefficients linear in ν:

U(t, ν, a) ' U(t1, ν, a)− U(t0, ν, a)

t1 − t0
(t− t0) +

+

∞∑
k=−∞

(
u0
k(a) + u1

k(a)ν
)
e2πikt

(8)

For many parameters we use (such as spindown) the de-
pendence on ν is linear and the equality is exact.

The linear term is folded into the frequency variable
which thus acquires a shift of a fraction of frequency bin.
The periodic terms are integrated with the help of the
Jacobi-Anger identity:

eiz cos θ =

∞∑
n=−∞

inJn(z)einθ (9)

Only a small number of terms are usually needed and
recomputation is done rarely. The simulations presented
in section IV were carried out with innermost loops that
used convolutions with only 11 terms - a number chosen
to take advantage of vectorized arithmetic on modern
CPUs.

The set of pseudo-convolution operators can then be
transformed into a new basis by minimizing coefficients
in the series. We then place the pseudo-convolution
with the smallest number terms into the inner-most loop,
which will dominate the scalability of the code.

III. IMPLEMENTATION DETAILS

While a fast engine to compute coherent sums is es-
sential for our search code, it is only part of a whole. In
particular, after computing coherent sums one needs to
derive statistics such as maximum SNR or upper limit
which can be expensive to compute. For example, if one
were to use a rank-based method (which is nicely robust)
to compute statistics on N bins, it would require sorting
the data which has a scaling of N logN - same as a fast
Fourier transform used in resampling method, and much
slower than a convolution.

It is usually not practical to analyze the entire band of
interest in one go, but rather one splits it into frequency
bands of 1 Hz or smaller. The amount of loaded data
can be greatly reduced by precomputing short discrete
Fourier transforms of duration commensurate with the
region of interest. It is convenient to have the SFT length
be short enough that the signal frequency can be assumed
to be stationary.

A. Polarization analysis

Continuous gravitational waves have a more compli-
cated form than is given by equation 1 - there are two
polarizations with detected strengths that vary with the
orientation of the detector.

The following analysis is similar to one found in
[7, 18, 19]; we prefer, however, to reduce the four real
parameters to two complex parameters that have a sym-
metric role. We also derive a convenient equation for
surfaces of constant h0.

We start by assuming that our signal consists of two
polarizations:

h′+ = A+ cos(ωt+ φ)
h′× = A× sin(ωt+ φ)

(10)

A generic pulsar signal can be represented as A+ =
h0

(
1 + cos2(ι)

)
/2, A× = h0 cos(ι), with h0 = A+ +√

A2
+ −A2

× and cos(ι) = A×/
(
A+ +

√
A2

+ −A2
×

)
We will assume that demodulation is performed for a

fixed frame of plus and cross polarizations rotated at an
angle β. In this coordinate system we have:

h+ = A+ cos(ωt+ φ) cos(ε)−A× sin(ωt+ φ) sin(ε)
h× = A+ cos(ωt+ φ) sin(ε) +A× sin(ωt+ φ) cos(ε)

(11)
where we introduced ε = 2(ψ − β), with ψ denoting the
orientation angle of the source pulsar [5–7].

The signal amplitude in SFT bin corresponding to fre-
quency ω is then

z =

∫
(F+h+ + F×h×) e−iωtdt =

= 1
2e
iφ (F+(A+ cos(ε) + iA× sin(ε))+

+F×(A+ sin(ε)− iA× cos(ε)))
= F+w1 + F×w2

(12)

where F+ and F× denote amplitude response of the de-
tector to plus and cross polarizations and we introduced
complex amplitude parameters

w1 = 1
2e
iφ(A+ cos(ε) + iA× sin(ε))

w2 = 1
2e
iφ(A+ sin(ε)− iA× cos(ε))

(13)

The complex amplitude parameters w1 and w2 are alge-
braically symmetric:

b = |w1|2 + |w2|2 =
1

4
(A2

+ +A2
×) =

=
1

16
h2

0(1 + 6 cos2(ι) + cos4(ι))

a = Im(w1w̄2) =
1

4
A+A× =

1

8
h2

0(1 + cos2(ι)) cos(ι)

(14)
and are otherwise unconstrained. They have a simple
relation to more familiar real amplitude parameters Aµ
[20]:

w1 = A1 − iA3

w2 = A2 − iA4 (15)
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One easily finds the following equation of constant h0:

√
|w1 + iw2|+

√
|w1 − iw2| =

√
h0 (16)

the solutions of which form a singular surface enclosing
a non-convex solid. This complicated form is responsi-
ble for differences between PowerFlux style upper limits,
which are always limited by sensitivity to linearly polar-
ized signals, and SNR statistics, the outliers of which can
have arbitrary polarization. A related issue is the differ-
ence between the F-statistic and the B-statistic [14].

It is easy to compute generators for rotations in φ and
ε:

∂

∂φ

(
w1

w2

)
= i

(
w1

w2

)
(17)

∂

∂ε

(
w1

w2

)
=

(
0 −1
1 0

)(
w1

w2

)
(18)

This shows that the surface of h0 = 1 is obtained by
revolving the parabola

w′1 = 1
4 (1 + cos2(ι))

w′2 = − i
2 cos(ι)

(19)

along φ and ε.

B. Coherent sum

Assume we have data for many SFTs {zi}Ni=1. We use
index i to denote SFT number (which thus corresponds
to time). We assume that SFT bins are large enough so
that the signal is contained in one bin per SFT, which is
retained as zi:

zi = (F+(ti)w1 + F×(ti)w2) eiΦ(ti) + ξi (20)

In a coherent analysis we construct a weighted sum

Z =

N∑
i=1

αi
zie
−iΦ(ti)

F+(ti)w′1 + F×(ti)w′2
(21)

which estimates signal amplitude. Here Φ(ti) describes
some assumed phase evolution due to changes in the

source or detector, αi are weights satisfying
∑N
i=1 αi = 1,

and w′1 and w′2 are computed for polarization and phase
of our signal, but assuming h0 = 1, i.e. they satisfy√

|w′1 + iw′2|+
√
|w′1 − iw′2| = 1 (22)

There are many ways to compute “optimal” weights
αi, in particular [7, 14]. Here we use the variance of
Z as the optimality measure. This choice allows ana-
lytic treatment (as opposed to L1 or L∞ norm) and ease
of implementation, while minimizing established upper

limit in the common case of signal absence. This also
leads to optimum average (over different noise realiza-
tions) signal SNR. A reader might wonder why do we
not optimize |Z|2/Var (Z) directly ? First of all, it is
difficult to implement with required efficiency. Secondly,
it has a disadvantage of fitting the received noise, which
leads to data mining effects, in particular, increased er-
rors in parameter estimation and elevated SNR floor for
background data.

Assuming ξi are independent Gaussian variables with
zero mean, we compute:

Var (Z) =

N∑
i=1

α2
i

Var (ξi)

|F+(ti)w′1 + F×(ti)w′2|2
(23)

One easily finds that Var (Z) is minimized for

αi =
1

A(w′1, w
′
2)

|F+(ti)w
′
1 + F×(ti)w

′
2|2

Var (ξi)
(24)

where A is the normalization weight:

A(w′1, w
′
2) =

N∑
i=1

|F+(ti)w
′
1 + F×(ti)w

′
2|2

Var (ξi)
(25)

Substituting the optimal coefficients αi, we compute:

Z(w′1, w
′
2) =

1

A(w′1, w
′
2)

N∑
i=1

zie
−iΦ(ti)

F+(ti)w̄
′
1 + F×(ti)w̄

′
2

Var (ξi)

(26)
and

Var (Z(w′1, w
′
2)) =

1

A(w′1, w
′
2)

(27)

We see that the total weight A(w′1, w
′
2) can be interpreted

as a measure of the amount of data used to compute
Z(w′1, w

′
2), as in the case of stationary input data it is

proportional to the number of independent SFTs.

We now note that A(w′1, w
′
2) depends quadratically on

coefficients w′i and on the estimate of variance of the data
and can thus be computed once for all templates with
similar detector response F+ and F×. The unnormalized
coherent sum AZ is linear in w′i, and these coefficients
are exactly the kind of sum that we learned to compute
in section II.

Our computation then results in the following repre-
sentation of Z:

Z(n) =
X1(n)w̄′1 +X2(n)w̄′2

Y11|w′1|2 + 2Y12Re(w′1w̄2
′) + Y22|w′2|2

(28)

Here Y11, Y12 and Y22 are coefficients that determine the
total weight of the coherent sum and X1(n) and X2(n)
are two arrays (in frequency bin n) of coherent sums:
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Y11 =

N∑
i=1

F+(ti)
2

Var (ξi)

Y12 =

N∑
i=1

F+(ti)F×(ti)

Var (ξi)

Y22 =

N∑
i=1

F×(ti)
2

Var (ξi)

X1 =

N∑
i=1

zie
−iΦ(ti)

F+(ti)

Var (ξi)

X2 =

N∑
i=1

zie
−iΦ(ti)

F×(ti)

Var (ξi)

(29)

For convenience, we tabulate a few useful expressions
using these coefficients:

A(w′1, w
′
2) = Y11|w′1|2 + 2Y12Re(w′1w̄2

′) + Y22|w′2|2

Z(w′1, w
′
2) =

X1w̄
′
1 +X2w̄

′
2

A(w′1, w
′
2)

SNR(w′1, w
′
2) =

|X1w̄
′
1 +X2w̄

′
2|

2

A(w′1, w
′
2)

SNRR(w′1, w
′
2) =

(Re (X1w̄
′
1 +X2w̄

′
2))

2

A(w′1, w
′
2)

(30)
Here signal-to-noise ratio SNR(w′1, w

′
2) has been de-

fined in power, rather than amplitude. This eases the
analysis (no square roots) and has the same scaling for
large signals as F-statistic or PowerFlux SNR.

C. Efficient computation of coherent sum statistics

We now need to reduce the data to the SNR or
some other statistic of the loudest outlier. The simplest
method, employed by PowerFlux [4–6] and the large-δ
loosely coherent search [1] is to scan different values of
w1 and w2 looking for a maximum. The elements of our
coherent sums are computed, however, with ∼ 22 com-
plex multiplications for each frequency bin, and even a
modest grid of polarization parameters dominates com-
putation.

An approach taken in [7] is to analytically maximize
SNR over w1 and w2. A new B-statistic was introduced
in [14] that was shown to have a better physically moti-
vated prior. We describe an efficient method of comput-
ing it in appendix A.

There is an easy and elegant way to compute all of
these statistics with minimal cost.

First we note, that our statistics are monotonic in λ
for a signal family λs(t; a); they just disagree as to which
signal parameters a are given preference. Once the sig-
nal strength is fixed (in any suitable statistic), picking a
single member of each family, the rest of the parameters
form a bounded manifold - and other statistics achieve a

maximum and minimum value on it. We can thus infer
an estimate of another statistic from knowing the max-
imum of some convenient, easy-to-compute measure of
signal strength.

As a toy example, assume that our statistics vary by at
most a factor of 4 for signals of the same power |X1|2 +
|X2|2 and that our signal array consists of ≈ 300000
complex gaussian numbers with mean 0 and variance 1.
Then on average the maximum power in this array is
12. But 95% of these samples have power below 3 =
12/4. Thus, to find the maximum of a more complicated
statistics we only need to examine 5% of the samples,
providing a factor of 20 speed up. If a signal is present
our maximum is even higher excluding a larger amount
of data.

In a practical implementation it is better to use ad-
justed power (see table I), which results in a less-than-4
worst-case scale factor for upper limit statistics (eval-
uated for strong signals) and close to unity factors for
plain SNR and F-statistics as can be seen on figure 1.
The strong dependence on declination is due to changes
in received power with daily rotation of Earth and non-
uniform antenna pattern of the detector. The fraction
of templates for which we computed upper limit statis-
tic during a Gaussian noise simulation run (discussed in
more detail in the following section) is shown in figure 2.

Declination, rad

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Circular upper limit
Upper limit

SNR
F−statistic

●

FIG. 1. Maximum variance of statistics for signals of constant
adjusted power. The numbers come from simulations using
Gaussian noise and describe the ratio between the maximum
and minimum statistic values for signal of constant adjusted
power. Top curve - upper limit assuming circular polarization.
Next curve below is upper limit statistic, followed by SNR and
F-statistic (color online).
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Statistic Formula

Raw power |X1|2 + |X2|2

Adjusted power Y22 |X1|2 + Y11 |X2|2

SNR max
w′

1,w
′
2

|X1w̄
′
1 +X2w̄

′
2|

2

A(w′
1, w

′
2)

Upper limit max
w′

1,w
′
2

√
|X1w̄′

1 +X2w̄′
2|

2

A(w′
1, w

′
2)2

+ 2
|X1w̄′

1 +X2w̄′
2|

A(w′
1, w

′
2)3/2

+
σ − 1

A(w′
1, w

′
2)

F-stat
Y22|X1|2 − 2Y12Re(X1X̄2) + Y11|X2|2

Y11Y22 − Y 2
12

B-stat

∫
dw′ 1

A(w′
1, w

′
2)

Θ

(
|X1w̄

′
1 +X2w̄

′
2|

2

2A(w′
1, w

′
2)

)

TABLE I. Statistics functions. The variables w′
1 and w′

2 are constrained by equation 22.

Declination, rad

P
ro

po
rt

io
n 

of
 s

ta
tis

tic
s 

ca
lls

0.00

0.02

0.04

0.06

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

FIG. 2. Fraction of templates resulting in statistic calls. The
underlying data was pure Gaussian noise (color online).

IV. PERFORMANCE AND VALIDATION

An initial implementation of the ideas discussed above
has been completed. It has a number of simplifications
compared to an eventual production program - the input
data is assumed contiguous, one spindown is analyzed at
a time, and there is no support for higher-order source
frequency evolution parameters.

We have performed Monte-Carlo runs of 1000 injec-
tions each into Gaussian data spanning four million sec-
onds (approximately 1.5 months), assuming a detector
located at LIGO Hanford observatory. The injection
sky locations and source orientation were uniformly dis-
tributed. The spindown parameter was set to be zero.

In the first run, we injected signals of various strength
(figure 3) to test signal detection and upper limit esti-
mation. The second run had identical parameters and
noise distribution, but the signal strengths were set to
0. This provided upper limits on pure noise alone (for
relative comparison) as well as timing of worst-case com-
putational performance, as the presence of strong signals
makes computation of statistics faster. The injection fre-
quency was uniformly distributed in ±0.084 Hz interval
centered on 400 Hz.

Each separate injection run included a search over a
1-arcminute disk around a nominal sky location that
was obtained from rounding the true injection locations;
hence the actual injection locations were uniformly dis-
tributed in relation to the sampled grid.
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FIG. 3. Upper limit versus injected strain (color online).
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Each injection is analyzed independently, just as it
would happen in a run using real signals. The upper
limits are established using formula given in table I. As
injected power rises above background the upper limits
increase to be above injected signal values (Figure 3).
The gap between the reconstructed points and the red
line marking injected values is due to a conservative cor-
rection for Hann-windowed input data.
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FIG. 4. Frequency reconstruction (color online).

When signals rise above background their frequencies
are well localized (figure 4). We use this localization as a
criterion for detection: a signal is considered to be found
if its frequency is within 1×10−5 Hz of true value. This
corresponds to false alarm ratio of ≈ 6×10−5.

Figure 5 compares the efficiencies of various detection
statistics. The SNR and F-statistics are mathematically
equivalent; the only difference is that the SNR is com-
puted by iterating over a grid of parameters w′1 and w′2,
while the F-statistic has a much more efficient closed
form. The slower SNR algorithm was used as a bridge
to an implementation of the B-statistic, and will also
be useful for future implementation of loosely coherent
statistics.

As seen from the plot we observe no difference in per-
formance between F-statistic and B-statistic. We believe
this is due to two factors:

• First, even for pure noise, maximizing over 2×106

bins results in high SNR values where the difference
between F-statistic and B-statistic is smaller.

• Secondly, the area searched is small which sig-
nificantly reduces influence of the weight term
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FIG. 5. Statistics efficiency versus strength of injected signal,
relative to established upper limit (color online).

A(w′1, w
′
2) that appears in the B-statistic

It might be possible to take advantage of the improved
performance of the B-statistic at low SNR by analyzing
multi-detector data with consistency cuts to bring down
maximum SNR.

The computational performance of our code is shown
in Figure 6. The y-axis is in units of cycles per tem-
plate, with each template computed once per frequency,
sky position and spindown while sampling all possible
alignments of the source. All statistics (SNR, upper
limit, circular upper limit, F-statistic and B-statistic)
were computed during the run. The underlying data was
purely Gaussian. The simulations were run on a cluster
of 2.3 GHz AMD processors.

Our worst-case performance is below 1500 cycles which
favorably compares with performance of resampling [15,
21] that is estimated to be ≈ 20000 cycles per template.
The cpu utilization by different parts of the algorithm
is shown in table II. Only a third of the cycles is at-
tributable to computation of the convolution, while at
least 46% is spent gathering statistics, leaving much room
for further improvement.

V. CONCLUSIONS

We have described an implementation of the loosely
coherent statistic that searches over families of ideal con-
tinuous gravitational signals. The performance of the al-
gorithm is more than an order of magnitude better than
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FIG. 6. CPU cycles spent per template as a function of dec-
lination of the injected signal (color online).

CPU fraction Code description

36% Computation of upper limit
16% Computation of 11-term convolution
10% Computation of terms of convolutions
8% General statistics function
7% Computation of 63-term pseudo-convolution
2% Computation of logarithm

Balance of 21% Spread out over many parts of the algorithm

TABLE II. CPU cycles spent in different parts of the algo-
rithm for sky position with declination of 1.0 radian.

previously published algorithms, opening the way for ex-
ploring wider parameter spaces.

The algorithm is not specific to analysis of LIGO data
and can be applied whenever one searches for narrow
spectrum slowly modulated signals, for example, searches
for binary systems in data from future space-based inter-
ferometers or discovery of radio pulsars.

There are several directions for further improvement:

• Making use of coherent or loosely coherent com-
bination of data from two interferometers should
improve sensitivity and provide better rejection of
detector artifacts. This might also be an area where
the B-statistic will show its strength.

• It is necessary to derive more efficient alternatives
for the computation of upper limit.

• It would be desirable to extend the algorithm to
search over frequency evolution parameters to be

able to detect binary systems with weak modula-
tion.

• The fine granularity of input data can be used to
avoid high-intensity glitches, by excluding contam-
inated SFTs.
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Appendix A: Efficient computation of B-statistic

B-statistic was introduced in [14] as a Bayesian alter-
native to F-statistic. It was shown that the F-statistic is
equivalent to a Bayesian statistic with a prior that favors
linearly polarized signals and high signal strength. In
contrast, the B-statistic is isotropic in spin orientation.

The statistic starts with the likelihood function:

L(x,A) = eA
µxµ− 1

2A
µMµνAν =

= eRe(w̄1X1+w̄2X2)− 1
2 (Y11|w1|2+2Y12Re(w1w̄2)+Y22|w2|2)

(A1)
Instead of maximizing it, which is the approach of the
F-statistic we compute the integral:

B(x) =

∫
h<h0

dAL(x,A) =

∫
dw′

∫ h0

0

dh·

·ehRe(w̄′
1X1+w̄′

2X2)− 1
2h

2(Y11|w′
1|

2+2Y12Re(w′
1w̄

′
2)+Y22|w′

2|
2)

(A2)
The measures dA and dw′ are chosen to be uniform in
parameters φ, ψ and cos(ι). The integral with respect to
h is not normalized, which allows to set its upper limit
infinite and transition to improper prior on [0,∞]. This
effectively changes B(x) (as defined in [14]) to be in units
of strain. It would be interesting to explore the possibility
of deriving an upper limit estimator based on the same
principles as B(x).

The integral with respect to h can be shown to be a
function of SNRR(w′1, w

′
2) and total weight A(w′1, w

′
2):∫ ∞

0

dxeax−bx
2/2 =

1√
b
e
a2

2b

∫ a/
√
b

−∞
dxe−x

2/2 (A3)
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B(x) =

∫
dw′

eSNRR(w′
1,w

′
2)/2√

A(w′1, w
′
2)

∫ SNRR(w′
1,w

′
2)/2

−∞
e−x

2/2dx

(A4)
This still leaves a three dimensional integral to carry out
which is undesirable inside the inner loop. We note that
A(w′1, w

′
2) does not depend on phase φ, while

SNRR(w′1, w
′
2) = cos(φ)SNR(w′1, w

′
2) (A5)

We can thus represent our statistic as

B(x) =

∫
φ=0

dw′
1√

A(w′1, w
′
2)

Θ

(
1

2
SNR(w′1, w

′
2)

)
(A6)

where Θ(x) is defined as

Θ(x) =
1

2π

∫ 2π

0

ecos(φ)x

√
2π

∫ cos(φ)x

−∞
e−s

2/2dsdφ (A7)

We can now study Θ(x) as a new special function and find
a means to compute it efficiently. We have the following
easy identities:

Θ(x) = Θ(−x)
Θ(0) = 1

2

(A8)

It is also easy to compute approximations for small and
large x:

Θ(x) = 1
2 +

(
1
8 + 1

2
√

2π

)
x2 +O(x4)

Θ(x) = e|x|√
2π|x|

(1 +O(1/x))
(A9)

Armed with these relations, we can spend some time in
numerical experimentation and arrive at the following
approximation:

Θ(x) ≈
exp

(√
0.25 + x2

)
(4π2x2 + 16e2)

1/4

a0 + a2x
2 + a4x

4 + x6

b0 + b2x2 + b4x4 + x6

(A10)
which has a 0.05% error over the entire range with the
following values of constants:

a0 = 7.7199014890487
a2 = 19.0337266315871
a4 = 5.2017224760755
b0 = 7.7201854234519
b2 = 21.1533518190664
b4 = 4.2818853782852

(A11)

Now we can compute B-statistic with a simple sum over
a uniform grid in ψ and cos(ι), at a cost within an order
of magnitude of computing the SNR statistic.
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