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The detection of gravitational waves from the inspiral of a neutron star or stellar-mass black
hole into an intermediate-mass black hole (IMBH) promises an entirely new look at strong-field
gravitational physics. Gravitational waves from these intermediate-mass-ratio inspirals (IMRIs),
systems with mass ratios from ∼10:1 to ∼100:1, may be detectable at rates of up to a few tens per
year by Advanced LIGO/Virgo and will encode a signature of the central body’s spacetime. Direct
observation of the spacetime will allow us to use the “no-hair” theorem of general relativity to
determine if the IMBH is a Kerr black hole (or some more exotic object, e.g. a boson star). Using
modified post-Newtonian (pN) waveforms, we explore the prospects for constraining the central
body’s mass-quadrupole moment in the advanced-detector era. We use the Fisher information
matrix to estimate the accuracy with which the parameters of the central body can be measured.
We find that for favorable mass and spin combinations, the quadrupole moment of a non-Kerr central
body can be measured to within a ∼ 15% fractional error or better using 3.5 pN order waveforms;
on the other hand, we find the accuracy decreases to ∼ 100% fractional error using 2 pN waveforms,
except for a narrow band of values of the best-fit non-Kerr quadrupole moment.

PACS numbers: 04.80.Nn, 04.25.Nx, 04.30.Db, 04.80.Cc

I. INTRODUCTION

Within the coming decade, the field of gravitational
wave astrophysics will become an effective tool for ex-
ploring the universe. As gravitational waves are emitted
from any system with a time dependent quadrupole mo-
ment (such as the inspiral and merger of two compact ob-
jects), this new field will provide us with an insight into
the universe independent of conventional electromagnetic
observations. For the first time, we will be able to directly
detect the coalescence of compact objects, such as neu-
tron stars (NS) and black holes (BH). Of particular in-
terest is the information about strong-field gravitational
physics that these gravitational waves contain. The anal-
ysis of the final moments of binary inspiral will provide
us with the first direct tests of general relativity in the
strong-field regime [1].

With the LIGO and Virgo gravitational wave observa-
tories scheduled to reach their advanced sensitives [2, 3]
around 2015, a large effort is underway to develop tech-
niques capable of estimating the parameters of a coalesc-
ing compact binary composed of neutron stars and/or
black holes. Most of this work has been geared towards
the detection of inspirals in which the two components
are of approximately equal mass, with the total mass of
the system less than ≈ 35M� [4, 5]; however, more recent
searches in the high-mass regime have looked for inspirals
with total mass in the range 25M� ≤ M ≤ 100M� and
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component masses in the range 1M� ≤ m1, m2 ≤ 99M�,
searching for more extreme mass ratios [6]. These sys-
tems emit gravitational waves in the frequency range best
suited for detection by Advanced LIGO, the peak sensi-
tivity of which will lie at ∼ 100 Hz.

Both observational evidence and theoretical models
suggest the existence of intermediate-mass black holes
(IMBHs) with masses ranging from under a hundred to
ten thousand solar masses (see [7] for a review). While
the recently discovered ultra-luminous X-ray source in
ESO 243-49 may turn out to be the first confident IMBH
detection [8], many questions about IMBH formation
mechanisms and their prevalence in dense stellar environ-
ments remain unanswered. Gravitational waves emitted
during the intermediate-mass-ratio inspirals (IMRIs) of
stellar-mass compact objects into IMBHs will be in the
observable frequency band of Advanced LIGO [9] and dy-
namics studies suggest possible IMRI detection rates of
up to a few tens per year [10].

The gravitational waveforms generated by these inspi-
rals will encode information about the higher-order mul-
tipole moments of the central body’s spacetime. Since
the “no-hair” theorem predicts that all the higher-order
multipole moments of a Kerr black hole can be expressed
as a function of its mass and spin, a simultaneous mea-
surement of the mass, spin, and mass-quadrupole mo-
ment would serve as a test of the null hypothesis that
massive compact objects are Kerr black holes and inspi-
rals are governed by general relativity.

In this paper, we describe the potential for constraining
the mass-quadrupole moment of the central body in an
IMRI. This idea was first rigorously developed by Ryan,
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who showed that the inspiral of a nearly circular, nearly
equatorial extreme mass ratio binary encodes informa-
tion about all the higher order mass and spin moments of
the spacetime [11]. While Ryan studied the detectability
of all higher order multipole moments [12], more recent
work has focused on isolating the mass-quadrupole mo-
ment (IMRIs in LIGO by Brown et al. [9], and extreme-
mass-ratio inspirals in LISA by Barack and Culter [13]).
Whereas previous work focused on deviations about the
null case of a Kerr spacetime, we offer the first explo-
ration of the quadrupole moment parameter space, look-
ing at non-Kerr objects and comparing their detectabil-
ity to that of the null case. For simplicity, we restrict
ourselves to the quasi-circular, single-spin case where the
orbital and IMBH angular momenta are aligned.

Using the Fisher matrix formalism, we compute the
precision of parameter estimation that will be possible
using Advanced LIGO operating at its design sensitiv-
ity. By including an additional term in the waveform
representing deviations from the theoretically predicted
quadrupole moment, we find that we should be able to
constrain any deviation of the quadrupole moment with
a fractional error of ∼ 1−10 when the best-fit parameters
are those of a Kerr central body, and to ∼ 15% − 300%
or better for certain non-Kerr central bodies, depending
on our choice of pN order and central-body mass and
spin. In some cases, this will make it possible to discern
between a Kerr black hole and some more exotic, horizon-
less object, such as a boson star [14]. If the object is a
Kerr black hole, we will be able to demonstrate that it
matches the predictions of general relativity to the same
precision.

In section II, we review the current theoretical under-
standing of IMBH formation and IMRIs, with a partic-
ular focus on detection rates in Advanced LIGO. In sec-
tion III we describe the frequency domain waveforms and
their numerical implementation in the Fisher informa-
tion matrix (FIM). Section IV reports the results of two
cases: the null case (a Kerr IMBH), and the anomalous
case (in which the best-fit quadrupole moment deviates
from the no-hair Kerr IMBH). We also discuss technical
issues arising from the FIM, as well as our use of the post-
Newtonian waveforms for IMRI systems. Unless other-
wise stated we use geometrized units, with G = c = 1.

II. GRAVITATIONAL WAVES FROM IMRIS

A. Rate Estimates

Numerical and observational studies of globular clus-
ters (including ultra-luminous X-ray sources) have sug-
gested the existence of IMBHs with masses from 102M�
to 104M�. Unlike stellar mass black holes, the forma-
tion mechanisms for these objects are not well under-
stood. Currently, one of the most promising formation
mechanisms is the runaway merger scenario. By succes-
sively colliding massive stars on a timescale much faster

than that of stellar evolution (<∼ 3 Myr), one can grow a
massive star (800-3,000M�), which then collapses to an
IMBH [15]. However, more recent simulations have sug-
gested that stellar winds would prevent this mechanism
in any but the most metal-poor environments [16]. It
is also possible that IMBHs could form through a series
of mergers with other compact objects in a dense sub-
cluster in the center of a globular cluster. The issue with
this process is that these collisions would generate ob-
jects with high kick velocities, most likely leading them
to be ejected from the cluster [17, 18]; however, with a
sufficiently heavy seed black hole in the cluster center,
possibly formed by the above mechanism, these IMBHs
could be retained [10].

There are other possible, albeit less explored, mecha-
nisms for IMBH formation. It is possible that early, mas-
sive, low-metallicity population III stars could collapse
directly into an IMBH because of the greatly reduced
mass loss via stellar winds [19]. It is also possible that gas
accretion could lead to direct IMBH formation early in a
globular cluster’s history. A solar mass black hole in a gas
rich environment would eventually accrete enough mass
to enter the intermediate mass regime [20, 21]. Despite
these possibilities, the exact processes leading to IMBH
formation are unclear. Direct detection of gravitational
waves from a merger involving an IMBH could provide
the first irrefutable proof of their existence, giving us a
greater insight into the nature of these mysterious objects
[22].

If IMBHs do indeed exist at a sufficiently high den-
sity, their mergers with stellar mass compact objects will
lead to IMRI signals in Advanced LIGO. The rate of de-
tectable IMRI signals was estimated in [10] under the
following set of assumptions. First, that the Advanced
LIGO network will have a lower frequency cutoff of 10Hz,
with a minimum signal-to-noise ratio of 8 required for a
coherent detection. Secondly, that the number density
of globular clusters with a sufficiently high central den-
sity that contain IMBHs is ∼ 0.3(g/0.1)Mpc−3, with a
high uncertainty of the fraction g, although simulations
suggest that g ∼ 10% for IMBHs up to 300M� may be
plausible. Finally, that the rate of IMRIs per globular
cluster is driven primarily by three-body hardening of a
compact-object–IMBH pair. This scenario yields an es-
timated rate per cluster of α ∼ 10−9(g/0.1) Mpc−3 yr−1

for both NS-IMBH and BH-IMBH systems. Under these
three assumptions, Advanced LIGO could reasonably
observe one NS-IMBH event every 3 years, and up to
10 BH-IMBH inspirals per year [10]. With sufficient im-
provements to the low-frequency sensitivity, that number
could improve to 1 and 30 events per year for NS and BH
inspirals, respectively.

B. Why IMRIs?

As stated above, most searches for gravitational waves
from compact binary coalescence have focused on the
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equal mass regime. The current proposed Advanced
LIGO noise curve has greatest sensitivity in the 100Hz
to 500Hz range, with a peak sensitivity at ∼250Hz. In
the case of a NS-NS binary, where the plunge and merger
of the bodies occurs at ∼1600Hz, only the intermediate
portion of the inspiral falls into this most sensitive re-
gion. However, for strong-field tests, we are interested
in the effects that come from the final moments of in-
spiral when the companion object is very close to the
central body. What we want is a signal that terminates
near the maximum sensitivity point of our detector, en-
suring we are as sensitive as possible to the higher-order
post-Newtonian effects. Since our upper frequency cutoff
for binary inspirals is inversely proportional to the total
mass (in the non-spinning case), we expect that an IMRI
which terminates just slightly above 250Hz (correspond-
ing to a total mass in the 10− 60M� range) will be ideal
for our purposes.

At the same time, a more extreme mass ratio means
that the compact object “test particle” spends more or-
bital cycles close to the horizon of the IMBH, gathering
more information about the strong-field of the central
body. Furthermore, asymmetric mass ratios may allow
us to ignore complicating contributions from the com-
panion, such as companion spin. As such, we expect our
ideal systems to be IMRIs with a moderate total mass
and high mass ratio. This will ensure that the inspi-
ral produces a large number of strong-field cycles in the
highest sensitivity section of the detector bandwidth.

III. FISHER MATRIX IMPLEMENTATION

Here we present the formalism for determining the ex-
pected precision of parameter estimation using the Fisher
information matrix. This technique has been regularly
applied to gravitational wave parameter estimation (e.g.
[23, 24]). For our purposes, we follow the setup detailed
in Poisson and Will [25].

A. Modified Waveform

We use a frequency domain waveform accurate up to
3.5 post-Newtonian (pN) order (sometimes called the
TaylorF2 approximant [26]). Using the stationary phase
approximation, the gravitational wave amplitude is given
by

h̃(f) = Af−7/6eiψ(f), (1)

where A ∝ M5/6
c Θ(angle)/D, D is the luminosity dis-

tance of the binary, and ψ(f) is the pN phase. Θ(angle)
is a function of the orbital orientation with respect to
the detector network in terms of the sky position, orbital
inclination, and the wave polarization. In addition to the

total mass, M ≡ m1 +m2, it is convenient to work with
the mass ratio and chirp mass, defined by

η ≡ m1m2/M
2 and Mc = η3/5M, (2)

respectively. Then, in terms of the Newtonian orbital
velocity v = (πMf)1/3, the 3.5pN phase is
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π
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where γeuler ≈ 0.577 and vISCO is the orbital velocity
at the cutoff frequency. We restrict ourselves to quasi-
circular waveforms as a simplifying assumption. While,
in principle, eccentricity could significantly impact the
waveforms [27], we expect IMRI systems to have neg-
ligible eccentricities when formed via three-body hard-
ening [10]. The terms tc and φc in equation (3) are
constants of integration, referring to the chirp time and
chirp phase, respectively. Although uninteresting physi-
cally, they must be included in any parameter estimation
study of the waveform phase. The terms β and σqm rep-
resent the leading-order spin-orbit and spin-quadrupole
interactions of the two masses. These contributions take
the form

β =
1

12

2∑
i=1

(
113(mi/M)2 + 75η

)
L̂ · χi (5)

σqm = −5

2

2∑
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(
3(L̂ · χ̂i)

2 − 1
)

(6)
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where χi is the dimensionless spin of the ith companion,
and

Qi = (−χ2
i +Qanom)m3

i (7)

is the relativistic mass-quadrupole moment (since we are
only interested in the quadrupole moment of a single ob-
ject, we ignore the indices and only include terms from
the central body). We have introduced the dimensionless
parameter Qanom to characterise a non-Kerr quadrupole
moment. This deviation is similar to the one introduced
for supermassive black holes by Barak and Cutler in their
analysis of LISA extreme-mass-ratio inspirals [13]. In
general, there are three additional terms to σ, repre-
senting the spin-spin, self-spin, and dipole-dipole inter-
actions [28]. However, since we have restricted ourselves
to IMRIs where the central body spin is dominant, we ig-
nore the spin-spin and dipole coupling effects. Addition-
ally, the self-spin correction is proportional to σqm when
Qanom is 0, but its magnitude is σself-spin/σqm = 1.25%,
and in practice we found it had no noticeable effect on
parameter estimation.

In this paper, we make several simplifying assumptions
in the construction of our template family. In addition
to circular orbits, we have explicitly assumed (i) that the
spin of the companion object can be ignored; and (ii)
that the IMBH spin is aligned with the orbital angular
momentum. These assumptions significantly reduce the
dimensionality of our parameter space, which, in princi-
ple, could have up to 17 parameters: the two component
masses, the two spin vectors, the eccentricity and argu-
ment of periapsis, the location of the binary on the sky,
the direction of its orbital angular momentum, and the
phase and time of coalescence – as well as the additional
Qanom. The spin distribution of IMBHs is almost entirely
unconstrained at present, and for dynamically formed bi-
naries both the IMBH and companion object could have
spins misaligned with the orbital angular momentum, al-
though a sufficiently extreme mass ratio makes the spin of
the companion increasingly unimportant [29]. The pos-
sible impact of including spin-spin and spin-orbit preces-
sion on the accuracy of parameter estimation is difficult
to estimate. On the one hand, increasing the dimension-
ality of the parameter space tends to decrease the accu-
racy of measuring individual parameters because of inter-
parameter correlations. On the other hand, the waveform
modulation from precession contains additional informa-
tion that can break degeneracies, potentially leading to
improved measurement accuracy [30].

Our waveforms range from the lower frequency Ad-
vanced LIGO cutoff of 10Hz to the innermost stable cir-
cular orbit (ISCO) frequency of the system, which we
define by

πfISCO =
M1/2

r
3/2
ISCO + χ1M3/2

(8)

where rISCO is the separation of the two masses at ISCO
[31], given by

rISCO/M = 3 + Z2 ∓
√

(3− Z1)(3 + Z1 + 2Z2) (9)

Z1 ≡ 1 + (1− χ2
1)1/3

×
[
(1 + χ1)1/3 + (1− χ1)1/3

]
Z2 ≡

√
3χ2

1 + Z2
1

For prograde orbits, equation (9) varies from rISCO = 6M
in the non-spinning case to rISCO = M in the fully spin-
ning case. For a non-spinning 1M� system, this corre-
sponds to an fISCO of 4.4KHz. The most sensitive part
of the Advanced LIGO noise curve, at 250Hz, is the ISCO
frequency of a ∼ 17.5M� non-spinning black hole and it
is the ISCO frequency of a ∼ 58M� black hole with spin
χ = 0.9.

We use the noise power spectral density, Sn(f), pro-
vided by the LIGO Scientific Collaboration, representing
the best estimate for a high-power, zero-detuning config-
uration of Advanced LIGO. See [39] for a more complete
description of the sensitivity curves.

Finally, we note that the signal-to-noise ratio (SNR)
of a gravitational wave is defined as

ρ ≡ 4

σ

∫ ∞
0

|s̃(f)h̃∗(f)|
Sn(f)

df (10)

where ρ is the SNR and s̃(f) and h̃∗(f) are the frequency
domain signal and template, respectively. The normal-
ization σ is given by

σ2 = 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df (11)

Since we lack a true signal with which to use equation
(10), we approximate the SNR using σ from equation
(11) assuming Gaussian noise, for a network of detectors
as

ρ =

√∑
i

σ2
i (12)

where the index i refers to the signal and noise spectrum
of the ith detector. We choose the distance of each source
to yield a network SNR of ρ = 20. We consider the
complete advanced detector network consisting of the two
LIGO sites (in Hanford, WA and Livingston, LA) and the
Virgo site (in Pisa), although for simplicity we use the
Advanced LIGO sensitivity for all three detectors.
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B. Analytic Setup

Let us assume detection of a gravitational wave by a
network of detectors, given by

si(t) = hi(t;θ) + ni(t), (13)

where si is the output , a combination of the noise ni,
which we assume to be stationary and Gaussian, and
hi, the true waveform with parameters θ. The posterior
probability of such a signal being detected with the given
parameters is

p(θ|s) ∝ p(θ) exp

[
−1

2
〈h(θ)− s h(θ)− s〉

]
, (14)

where p(θ) is the prior probability, chosen from our physi-
cal knowledge of the parameter space. The brackets, 〈 | 〉,
refer to the noise-weighted inner product of two signals
in the frequency domain, defined as

〈a b〉 ≡ 4<
∫ fisco

10

ã(f)b̃∗(f)

Sn(f)
df, (15)

where Sn(f) is the power spectral density and < denotes
the real part. It can be shown [23] that equation (14)
can be expanded to leading order in SNR as

p(θ|s) ∝ p(θ) exp

[
−1

2
Γab∆θ

a∆θb
]
, (16)

where ∆θa is the difference between the ath parameter
and its maximum likelihood estimate, and Γ is the Fisher
information matrix, defined by

Γab ≡
〈
∂h

∂θa

∣∣∣ ∂h
∂θb

〉
. (17)

Note that equation (17) is technically evaluated at the
best-fit parameters of our template, not the “true” values
of the waveform, and it does not provide information
about the difference between the real and best-fit values.

Having cajoled equation (16) into the form of a Gaus-
sian, the variance-covariance matrix, Σ, is simply the in-
verse of the Fisher matrix, i.e. Σab = (Γ−1)ab. With this
formalism in hand, we can write the standard deviations
and correlations between parameters as

σa =
√

Σaa (18)

cab =
Σab√

ΣaaΣbb
(19)

Taken together, equations (18) and (19) provide a the-
oretical lower limit on the covariance of the posterior

probability distribution of the parameters, given a noise
realization Sn.

While a useful first approximation to parameter es-
timation accuracies, the Fisher information matrix does
suffer from several issues. The expansion leading to equa-
tion (17) requires a sufficiently high SNR in order to re-
main valid. Unfortunately, the requisite SNR is heavily
dependent on one’s choice of waveform and region of pa-
rameter space. We choose ρ = 20 as a fiducial value, in
the hope that this is sufficiently loud to avoid a break
down of the linear signal approximation; however, by
using the pN waveforms at such extreme mass ratios,
we run the risk of overloading the linear approximation.
Since this is a function of where we explore the parameter
space, there is no simple way to correct this.

Additionally, the Fisher matrix operates poorly where
the parameter correlations cause the determinant of Γ to
be near singular. We discuss the generic numerical issues
produced by this effect in the next section, and the is-
sues specific to our systems of interest in section IV C.
In particular, see Table II and associated text for an ex-
ample of parameter correlations specific to our waveform
model/mass regime. For an excellent and thorough re-
view of the pitfalls of the Fisher matrix in gravitational
wave signal analysis, see Vallisneri [32].

C. Numerical Implementation

We use a ninth order finite difference scheme to numer-
ically compute the partial derivatives of the waveform
with respect to the parameters. The step size of the
derivative must be carefully chosen: too large a step size
would take the waveform differences outside the linear
regime, while too small a size would introduce numerical
errors. To that end, each parameter step size was in-
dependently chosen by minimizing the local error of the
derivative. By computing the waveform derivatives over
a logarithmic grid of different step sizes (from 10−10 to
0.1), and computing the unnormalized χ2 of each deriva-
tive with respect to its two closest grid neighbors, we
can calculate the relative error of each step size, thereby
selecting the step size with a minimum error.

Once the partial derivatives are computed, we form the
Fisher matrix using equation (17), and then calculate the
covariance of the parameters by numerically inverting the
matrix. This step requires care, as the Fisher matrix is
often near singular, and if the condition number of the
matrix (the ratio of the largest to smallest eigenvalues)
exceeds the decimal precision limit of the machine, it
will introduce numerical errors larger than the inverse
Fisher elements themselves. For 32 bit machines, the
precision limit is about 15 decimal places, so if the con-
dition number of the matrix exceeds 1016, the results are
numerically unstable. This can arise in two ways. If our
choice of units is poor for a particular parameter, then
the difference in magnitude between any two columns can
exceed the machine limit. This can be easily corrected by
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normalizing each matrix column to a set value. On the
other hand, if two parameters are nearly perfectly cor-
related (e.g. distance and orbital inclination), then that
sub-matrix will be close to singular (with a determinant
considerably smaller than floating point precision).

As this effect often arises from physical degeneracies
within the waveforms, there is no easy numerical solution.
Analytically, one can sometimes chose parameters such
that the Fisher matrix is nearly diagonal, eliminating
some of the degeneracies. However, such parameter com-
binations are usually not known analytically and diago-
nalisation cannot easily be implemented numerically, as
any attempt to do so would require computation beyond
standard floating point precision. To be conservative,
we choose to only invert matrices with condition num-
bers below 1015, ensuring our results are free of rounding
errors. The effectiveness of this cutoff was tested by in-
troducing small perturbations into the input parameters
and ensuring they corresponded to small perturbations
in Σ.

In addition, a small sample of the results in this pa-
per were checked against two other methods of analyz-
ing parameter uncertainties. To confirm the stability of
numerical derivatives, we checked some results against
a Fisher matrix with analytically computed waveform
derivatives, c.f. equation (3.10) in [25]. We also per-
formed a grid-based search in the four-dimensional space
of masses, spin, and mass-quadrupole moment, automati-
cally maximizing over phase and time of coalescence, and
compared uncertainty estimates predicted by the Fisher
matrix against drops in overlaps between injected wave-
forms and templates evaluated at offset parameter values.

IV. RESULTS

In this section, we report the results for IMRI systems
with a wide range of input parameters, testing two dif-
ferent waveform orders: one with all known terms up to
second post-Newtonian order, and one with the known
quadrupole terms to 2pN, and all known mass terms to
3.5pN order. Although the 2pN waveform is expected
to be less accurate, the quadrupole moment correction is
only known up to 2pN order, making it unclear whether
including some terms to higher orders (i.e., the mass
terms) will necessarily yield more reliable results. More-
over, we already know that both waveforms match poorly
with the “true” waveforms in the IMRI mass regime [29].
Therefore, comparing the results from both pN orders al-
lows us to form a qualitative understanding of the true
parameter space while also exposing the dependence of
quantitative results on our choice of waveform template.

We focus on two cases: the null case in which the best-
fit parameters correspond to a central body which is a
Kerr black hole (Qanom = 0) and we wish to know how
accurately we can constrain deviations away from this
value, and the anomalous case, in which the best-fit pa-
rameters correspond to a central body with a non-Kerr

mass-quadrupole moment which we are attempting to
identify. The latter case can introduce additional con-
cerns about the validity of the post-Newtonian expansion
of the phase, which we discuss in section IV C.

A. Null Detectability

As a pure test of the no-hair theorem, we examine the
accuracy of measuring the intrinsic parameters for the
case when the best-fit Qanom = 0. The results for our
various IMRI systems are reported in Table I. We study
IMRIs with central body masses of 10, 25, 50, 100, and
150 M� and central body spins of 0, 0.5 and 0.9, giving
us a good look at the measurement accuracy as a function
of both mass and spin. It should be noted that although
previous work looked at IMBHs up to 350 M�, we found
that with pN waveforms, the Fisher matrices were highly
unstable numerically for these high-mass systems, with
condition numbers well beyond the 1015 cutoff. The de-
tectability of waveform parameters improves the longer
the IMRI signal remains in the detector band. Thus, we
find that higher χ1 typically leads to a more accurate
measurement of Qanom. The third section (χ1 = 0.9) in
Table I suggests that the ideal system lies somewhere in
the 10M� to 50M� range, depending on the pN order
of the waveform model. In Fig. 1, we plot the standard
deviations of Qanom as a function of central body mass
for the highest spin case.
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FIG. 1: Standard deviations of Qanom as a function of central
body mass (with χ1 = 0.9) for an IMBH-NS system (com-
panion mass of 1.4M�). The minimum standard deviation is
waveform dependent (at 17M� for 2 pN and at 37M� for 3.5
pN). In our dimensionless units, the quadrupole moment for
these systems is |Q| = 0.81.

We find, as expected, that there does exist an ideal
mass of the system for conducting a null test, depending
on the order of the pN phase used. In fact, our best sys-
tems for detecting Qanom are systems of medium mass,
where the final stages of inspiral lie in the high sensitiv-
ity section of the Advanced LIGO bandwidth. Since we
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TABLE I: 1-σ parameter uncertainties as computed from the Fisher matrix using the TaylorF2 waveform to 2pN and 3.5pN
order. In both cases the spin and quadrupole moment terms are included up to 2pN order. We consider the spin-aligned
inspiral case, with a companion object of 1.4M� (a typical neutron star mass) and a central body of various masses and spins.
The times are reported in milliseconds, the angles in radians, and all other quantities are dimensionless.

Central Body 2pN 3.5pN
∆Mc/Mc ∆η/η ∆tc ∆φc ∆χ1 ∆Qanom ∆Mc/Mc ∆η/η ∆tc ∆φc ∆χ1 ∆Qanom

χ1 = 0
10M� 0.369% 1.319 2.4 36.1 0.510 1.925 0.205% 1.808 217.1 357.6 0.078 13.165
25M� 1.410% 2.982 12.0 116.6 1.130 2.546 0.137% 1.708 71.6 806.4 0.333 12.006
50M� 4.067% 6.198 49.5 332.6 2.491 3.459 0.896% 2.588 361.8 2509.1 0.875 19.118
100M� 5.903% 7.051 160.5 616.8 2.977 3.146 4.680% 4.574 2232 9314.6 2.342 36.542
150M� 5.995% 7.799 529.4 1301.6 3.017 5.119 Unstable

χ1 = 0.5
10M� 0.278% 0.929 1.2 22.0 0.035 1.455 0.080% 0.834 7.3 171.6 0.396 6.113
25M� 0.918% 1.770 4.7 57.7 0.126 1.766 0.128% 0.688 26.2 343.1 0.416 4.867
50M� 2.621% 3.566 17.7 154.2 0.405 2.643 0.621% 0.849 107.4 888.6 0.665 6.318
100M� 5.414% 5.499 59.7 338.9 0.839 3.226 2.848% 1.417 618.1 3212.5 1.471 11.464
150M� 5.923% 5.361 121.9 471.3 0.894 3.007 5.148% 1.625 1493.0 5779.8 1.950 13.779

χ1 = 0.9
10M� 0.205% 0.634 0.5 12.6 0.189 0.931 0.032% 0.355 2.7 94.0 0.04 2.591
25M� 0.556% 0.956 1.4 24.4 0.167 0.918 0.113% 0.226 7.5 151.4 0.231 1.615
50M� 1.370% 1.611 4.1 52.0 0.177 1.217 0.359% 0.213 23.2 317.3 0.277 1.610
100M� 3.532% 2.982 14.3 127.0 0.179 1.914 1.203% 0.265 98.3 918.3 0.457 2.170
150M� 5.101% 3.635 27.4 189.1 0.146 2.184 2.530% 0.335 256.9 1926.5 0.688 2.890

have fixed the mass of the companion object in Fig. 1 to
1.4M�, changing the central body mass simultaneously
adjusts the total mass and the mass ratio, making the
observed minima in ∆Qanom a competition between the
ISCO frequency and the mass ratio.

To reiterate, as the total mass of the system increases,
our upper frequency cutoff (from the system ISCO, equa-
tion (8)) decreases. This moves the end of the waveform
towards the most sensitive section of our advanced de-
tector noise curve (250Hz). With the final part of the
waveform in the most sensitive part of the detector band-
width, we become better able to discern physical effects
that arise at higher pN orders, despite the overall loss of
signal information (owing to the reduction in the time
the signal spends in the detector band — we adjust the
distance so that the SNR is kept fixed as the mass is
changed). At the same time, a more extreme mass ratio
allows us to better ignore the contributions of the com-
panion: the more asymmetric the ratio, the better the
test particle approximation becomes, giving us a nearly
geodesic map of the central body spacetime. To better
see this, we allow the mass of the companion object to
vary, changing the total mass and mass ratio indepen-
dently. We plot the measurability of Qanom as a function
of both masses in Fig. 2. Overall, the more asymmetric
the mass ratio (towards the bottom right of the contour
plots), the more accurately we can measure the mass-
quadrupole moment; however, this only holds up to a
certain total mass, and as the total mass pushes fISCO

below Advanced LIGO’s peak sensitivity, the uncertainty
on Qanom starts to increase again, as fewer cycles fall into
the sensitive frequency band.

Given the large standard deviations, it will be difficult
to precisely constrain the mass-quadrupole moment as an
independent parameter. Even the systems best suited to
our purposes would only provide a 1-sigma error in Qanom

on the order of the Kerr quadrupole moment. This will
limit the precision of tests of the no-hair theorem, and we
must await the detection of extreme-mass-ratio inspirals
by a LISA type detector [13] or the detection of IMRIs
by a third-generation ground-based detector like the Ein-
stein Telescope [33, 34] for more precise tests. Despite
this difficulty, the detection of an IMBH with a best-fit
value of Qanom ≈ 0 will allow us to rule out strong de-
viations from the Kerr geometry, such as those expected
for boson stars.

B. Off-Kerr Detectability

We now explore the potential to detect a quadrupole
moment with a non-zero best-fit value of Qanom. In other
words, if we detect a signal suggesting a violation of the
null-hypothesis that the central body is a Kerr black hole,
how confident can we be of this violation? We focus on
lower mass systems (25M�, 50M�, and 100M� central
bodies), with spins of 0.5 and 0.9. The results are plotted
in Fig. 3. Again, as expected, the precision with which
we can measure Qanom improves when the mass and spin
values place the late stages of the inspiral into the most
sensitive portion of the detector bandwidth. Addition-
ally, we find that the determination of all other parame-
ters is, to lowest order, independent of the value ofQanom.

For both waveform models, the fractional uncertainty
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FIG. 2: 1-σ uncertainty estimates for Qanom as a function of
central body mass and the companion object mass. The lines
indicate contours of constant 1-σ error in Qanom. The struc-
ture of the plots is an interplay between the proximity of the
ISCO frequency to detector’s peak sensitivity (as determined
by the total mass) and the preference for more extreme mass
ratios to better probe the strong-field of the central body.
Both plots are for spin χ1 = 0.9; plots for other spin val-
ues are qualitatively similar, but decreasing the spin leads to
an overall deterioration of accuracy and some shifting of the
contour lines, due in part to the change in ISCO frequency.

in Qanom reaches a local minimum, at Q
(min)
anom ∼ 0.8

for the 2pN waveform, and at Q
(min)
anom ∼ 10 for the

3.5pN waveform. The rise on either side of the dip is
clearly a linear effect, with the asymptotic fractional er-
rors ∆Qanom/Qanom being sufficiently small in some cases
(∼ 15% for highly spinning systems in the 3.5pN case)
that large values of Qanom could easily be measured. In
fact, the measurement accuracy is much higher in the

vicinity of Q
(min)
anom . At first, this effect seems somewhat

surprising: since Qanom is merely a phase factor, one
might expect that different values would cause a minimal
effect on parameter estimation.

The explanation comes from an examination of the pa-
rameter correlations. At the minimum uncertainty, the
correlations between the two mass quantities and the
anomalous quadrupole moment also tend towards zero.
As Qanom passes through the minimum, the signs of the
correlations reverse, suggesting that at the dip, the pro-
jections of the multidimensional error ellipse onto our
given choice of parameters are roughly spherical, since
the correlation between parameters determines the ec-
centricity and orientation of the ellipses in error space.

This is confirmed by looking at the volume of theMc-
η-Qanom sub-matrix of the full correlation matrix. As ex-
pected, the volume of the error ellipsoid is conserved, in-
dependent of the value of Qanom. To demonstrate the ec-
centricity/orientation effect, we examine a 2-dimensional
Fisher matrix, using only η and Qanom as our parame-
ters, and use the inverse of the Fisher matrix, Σ, to plot
the error ellipses in the η-Qanom coordinate system. A
representative number of these ellipses are shown in Fig.
4.

As the value of Qanom is varied away from Q
(min)
anom , we

see that the error ellipses rapidly deform, going from
nearly circular at the minimum to highly eccentric and
rotated. As the quadrupole moment is further changed
from the minimum, the projection of the error ellipse onto
the Qanom axis increases, while the projection onto the
η axis remains the same. Although the eccentricity and
orientation of the ellipses vary, the area of the ellipses is
constant. This is to be expected, since σqm depends on a
combination of the masses and the quadrupole moment.
Furthermore, an analytic examination of the Fisher ma-
trix elements shows that only theMc and η rows depend
on the injected values of Qanom. We conclude that the or-
bital evolution is not directly affected by the quadrupole
moment; only via correlation with the masses does the
value of Qanom affect parameter estimation.

This deformation of the mass/quadrupole moment el-
lipsoids suggests that the correlation between the two
mass parameters and the anomalous quadrupole moment
is of greatest importance for parameter estimation of
Qanom. This effect is also responsible for the increase
in the measurement accuracy of large Qanom at higher
pN orders: since the 3.5 pN waveforms allow for more
accurate determination of system masses [35], they also
decrease the volume of the error ellipsoids in our Mc-η-
Qanom space, thereby decreasing the possible projection
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FIG. 3: The 1–σ uncertainty in Qanom as a function of the best-fit value of Qanom, for several choices of the central body
mass and spin magnitude. The solid lines are spin χ1 = 0.9 systems, and the dashed lines are χ1 = 0.5. In both cases, the

standard deviations dip to a local minimum, Q
(min)
anom , which varies with pN order. Using the 3.5pN waveforms, the fractional

error plateaus are sufficiently low that it should be possible to distinguish between a Kerr black hole and a more exotic object
(e.g. a boson star). The plots cut off the higher mass systems in the 2pN case and ignore the medium spin 100M� system, as
these fall outside our numerical cutoff for stable inversion of the Fisher matrix.

of the standard deviations onto the Qanom axis. This ef-
fect was confirmed by a direct comparison of the error
volume between the 2pN and 3.5pN waveforms. Figure 3
can be seen as one-dimensional projections of this effect.

Given this understanding of the parameter correla-
tions, we believe that it will be possible, under favorable
conditions, to detect a large off-Kerr quadrupole moment
in IMRI signals detected by Advanced LIGO, especially

if the best-fit value of Qanom happens to lie near Q
(min)
anom .

This explains the increased effectiveness of the 2pN wave-
forms at performing the null test that was noted earlier:

since Q
(min)
anom ≈ 0.8 for the 2pN waveforms, the overall

error ellipsoid at Qanom = 0 is closer to spherical than
in the 3.5pN case, yielding a smaller projection onto the
Qanom axis, even though the total error volume is greater.
However, a precision measurement will require a system
with a highly spinning central body and a relatively small
central mass. In order to reliably test for exotic stars
in Advanced LIGO, we will, above all, require accurate
IMRI waveforms.

C. Sources of Systematic Errors

There are a number of technical issues that can arise
in our analysis. We now discuss both the disadvantages
of our formalism as well as the problems inherent in the
waveform model. We have already touched on the generic
issues with the Fisher matrix formalism in section IIIA;

what we discuss now are the specific issues that arise
from parameter correlations. We also consider the sus-
pect nature of introducing large perturbations into pN
terms (i.e., Qanom), as well as the dependence of our re-
sults on assumptions regarding the low-frequency sensi-
tivity of advanced detectors.

First, recall from our introduction to the Fisher matrix
the issues that arise from high parameter correlations:
when two or more parameters become highly correlated,
the submatrix between those parameters tends towards
singular. As we move into certain areas of our parameter
space (in our case, higher total masses), we find that the
correlations and condition numbers increase. An example
of this effect is shown in Table II. This demonstrates that
our inversion criterion for the Fisher matrices was chosen
well, allowing us to avoid rounding errors from inverting
matrices beyond machine precision. The fact that most
of our systems yield high parameter correlations suggests
that the FIM must be used with care in this mass region
of the parameter space.

In addition to the issues with the Fisher matrix, the
post-Newtonian waveforms also give rise to systematic
errors in our study. We (Mandel and Gair, [29]) have
previously discussed the problems of convergence and
breakdown in the pN waveforms as applied to IMRIs.
The problem in the present case arises at large values of
Qanom, since increasing the pre-factor of the 2pN term
increases the contributions to the orbital evolution from
higher order terms. In some cases (e.g. Qanom ∼ 100),
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matrix (with other parameters held fixed), evaluated near the

value of Qanom = Q
(min)
anom (in solid black). The colored ellipses

are small deviations from the minimum (±0.1 in dashed blue,
and ±0.5 in dotted red).

the 2pN effects from the quadrupole moment are signif-
icant relative to the lowest order Newtonian orbital ef-
fects. This problem can be quantified by measuring the
number of orbital cycles each term contributes to the in-
spiral. To that end, we look at the phase in the time
domain up to 2pN order,

Φ(f) = φc −
1

16η
v−5

4∑
i=0

aiv
i (20)

where f is the gravitational wave frequency (see Poisson
and Will, c.f. equation 3.2), and v = v(f) = (πMf)1/3

as before. The coefficients are

TABLE II: The mean and maximum cross-correlation coef-
ficients, Cij , in the Fisher matrix for prototypical systems
(with m2 = 1.4M� and 3.5pN in phase). While the max-
imum Cij decreases with an increase in total mass (corre-
sponding to a decrease in 1 −Max(|Cij |)), the average of all
correlations increases with total mass. The one exception is
the non-spinning m1 = 150M� case, but this had a covari-
ance matrix with a condition number roughly 5 times larger
than our numerical cutoff. All other results are roughly at
or below our inversion tolerance. As the mean correlation in-
creases towards one, the matrices become more susceptible to
numerical rounding errors, indicating the FIM is ill-suited in
the high mass region of parameter space.

Central Body Mean(|Cij |) 1−Max(|Cij |)
χ1 = 0
10M� 0.92 6.7× 10−6

25M� 0.96 3.1× 10−5

50M� 0.97 4.4× 10−5

100M� 0.98 8.0× 10−5

150M� 0.92 3.5× 10−4

χ1 = 0.9
10M� 0.79 1.3× 10−4

25M� 0.93 2.7× 10−4

50M� 0.97 3.8× 10−4

100M� 0.98 4.6× 10−4

150M� 0.99 5.2× 10−4

a0 = 1 (21)

a1 = 0

a2 =
5

3

(
743

336
+

11

4
η

)
a3 = −5

2
(4π − β)

a4 = 5

(
3058673

1016064
+

5429

1008
η +

617

144
η2 − σqm

)
We then compare the fraction of cycles generated by

the 0th (Newtonian) and the 2nd order term from the
frequency the signal enters the detector (f0 = 10Hz) to
the ISCO frequency of the system (fISCO). Explicitly,

R =
a4
a0

[
v−1(fISCO)− v−1(f0)

v−5(fISCO)− v−5(f0)

]
(22)

gives the fraction of cycles. The pre-factor, a4/a0, de-
pends on the physical parameters of the system, so we
can look at how close to unity equation (22) can become
for various systems. This is shown in Fig. 5. It is clear
from this plot that the validity of the pN expansion given
our definition is inversely proportional to the value of
Qanom. This is in addition to the problem of using pN
waveforms for such an extreme mass ratio. Fig. 5 indi-
cates that even low mass systems can be pushed beyond
their range of validity with a sufficiently large physical
value of Qanom.
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FIG. 5: The fraction of orbital cycles contributed by the
2pN verses the 0pN terms as a function of the anomalous
quadrupole moment. The two shaded regions are for two
typical IMRI systems with spins ranging from 0 (black) to
0.9 (red). Note that the initial cross over between the non-
spinning and highly spinning cases arises from the sign change
in α4 at low Qanom. The validity of the approximation that ig-
nores higher-order Q-dependent terms comes into doubt when
the number of fractional cycles is high.

One could make the argument that having a greater
number of cycles generated at 2pN than at 0pN is not
necessarily invalid; after all, since we are including both
terms, such a large fraction would simply represent a
regime in which Newtonian orbital effects are subdomi-
nant to quadrupole-coupling effects. However, we have
only included the effects of the quadrupole moment to
lowest known order. If the 2pN term dominates at high
values of Qanom, there is no reason to suppose that the
unknown contributions at higher orders will not be sim-
ilarly dominant in the “true” waveform. We once again
conclude that any precision tests, particularly of exotic
objects with a large quadrupole moment, will require new
waveforms (most likely from perturbation theory and/or
effective-one-body approaches) that have been specifi-
cally tuned for the IMRI regime.

TABLE III: As in the bottom right section of Table I, this
table shows standard deviations on Qanom for m2 = 1.4, and
using the 3.5pN in phase waveform model. We change the
lower bound on frequency integration to explore how the re-
sults scale with the Advanced LIGO low-frequency sensitivity
cutoff. The SNR is kept fixed at ρ = 20.

χ1 = 0.9 ∆Qanom

Central Body f0 = 10Hz f0 = 20Hz f0 = 40Hz
10M� 2.59 3.93 7.89
25M� 1.62 3.05 7.57
50M� 1.61 3.65 6.67
100M� 2.16 4.74 6.95

Finally, a large part of the information extracted from
our IMRI signals comes from low frequencies, and there-
fore depends on assumptions regarding the low-frequency
sensitivity of the detectors. While we have used the cur-
rent best guess for the power spectral density, it is quite
possible that Advanced LIGO will not achieve the lower
frequency sensitivity that has been targeted. In that
case, significant amounts of information will be lost from
the shift in the lower frequency cutoff, as many in-band
orbital cycles would become inaccessible to observation.
We can look at the decreased sensitivity to Qanom that
arises from a different lower frequency bound in the signal
inner product (equation (15)). The results, in Table III,
confirm our statement that the information from lower
frequencies is key to measuring higher order pN effects.
The low-frequency sensitivity of Advanced LIGO will be
vital for the tests discussed in this paper to be performed.

V. CONCLUSION

We summarize here the key results of this paper. Using
frequency domain post-Newtonian waveforms, we tested
the possibility of measuring the quadrupole moment of
a massive, spinning compact body as a parameter inde-
pendent of the object’s mass and spin. This served two
distinct purposes: first, a simultaneous measurement of
the mass, spin, and quadrupole moment of a Kerr black
hole would serve as a test of the no-hair theorem of gen-
eral relativity, acting as a check on the internal consis-
tency of the theory. Secondly, the detection of an off-Kerr
quadrupole moment would suggest the existence of some
new, exotic type of star or other supermassive object, al-
lowing Advanced LIGO to identify possible new forms of
matter in the Universe.

For this analysis, we first explored whether we would
be able to rule out significant deviations from a Kerr
black hole in the case when the best-fit parameters cor-
respond to Qanom = 0. For this null test, we found that
the ability of Advanced LIGO to measure an anomalous
quadrupole moment will depend heavily on the parame-
ters of the system. The ideal systems are medium mass,
highly spinning systems with an ISCO frequency close to
250Hz, for which the final moments of the inspiral signal
lie at frequencies in the highest-sensitivity range of the
detector. Additionally, since systems with more extreme
mass ratios spend more orbital cycles in the strong-field
of the central body, their inspirals will encode more in-
formation about the quadrupole moment of the space-
time. It is the interplay between these two effects, the
ISCO frequency and the mass ratio, that determines the
best system for these tests. The optimal system also de-
pends on the pN order of the waveform used, due to the
increased mass precision at higher orders and the corre-
lation between the masses and the quadrupole moment
of the central body.

If the central body has a non-zero quadrupole moment,
the fractional uncertainty with which Qanom can be mea-
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sured varies as the Mc-η-Qanom error ellipse is slowly

deformed. The error has a local minimum at Q
(min)
anom ,

representing an error ellipse who principal axes nearly
align with the Mc-η-Qanom coordinates, and increases

linearly with |Qanom − Q(min)
anom |. The slope of this linear

effect is sufficiently small that certain systems could be
easily identified to within 15% accuracy for large values
of Qanom. If one of these near-optimal systems was ob-
served, Advanced LIGO would be able to definitively rule
out that it was a Kerr black hole.

The space-based gravitational wave detector (e)LISA
will also have the capability to measure anomalous
quadrupole moments of black holes. Barack and Cut-
ler [13] showed that a LISA observation of an EMRI with
a signal-to-noise ratio of 100 would be able to detect a de-
viation in the quadrupole moment of 10−4–10−2, depend-
ing on the system parameters, when the central object is
a Kerr black hole. If the effect we described in this pa-
per, that the quadrupole moment can be measured more
accurately when it is not equal to the Kerr value, also
holds for EMRI systems, (e)LISA could potentially do
even better. However, that analysis needs to be revisited
in light of the recent redesign of the eLISA mission [36],
which has led to a change in the frequency sensitivity
of the mission and has meant that an SNR of 100 is
now rather optimistic for EMRI sources. eLISA has the
potential to provide more precise constraints than Ad-
vanced LIGO because EMRI systems will be observed for
many more cycles in the strong-field regime than IMRI
systems. However, even optimistically, eLISA will not be
producing data until 5–10 years after Advanced LIGO.
The results in this paper indicate that Advanced LIGO
could provide the first hints for departures from the Kerr
metric, which would then be confirmed with more preci-
sion by future detectors including eLISA.

The primary limitations in the study presented in
this paper were the lack of accurate waveforms cover-
ing the IMRI mass regime and the limitations of the
FIM approach. In order to properly study the param-
eter space, we would require a realistic signal from an
IMRI template, studied with a Bayesian technique (e.g.
Markov Chain Monte Carlo). The primary limitation on

our ability to measure Qanom is the correlation in the
mass/quadrupole subspace. We would therefore expect
to measure Qanom more precisely if we were able to mea-
sure the masses more precisely. We have used a pN ap-
proximant waveform in this study, so we may be missing
pieces of the frequency evolution that would help break
this degeneracy. A further study using a more realis-
tic waveform model would be required to investigate if
we could do better in practice than the results described
here. Current work is underway in developing such wave-
forms via the “effective one-body – numerical relativity”
technique (see [37]), though these studies have yet to pro-
duce fully spinning IMRI waveforms in the strong-field
regime. However, even using this simplified waveform
model, we find that we would be able to differentiate
between black holes, boson stars, and naked singulari-
ties in the Advanced LIGO era, which would represent a
significant achievement for compact-object physics. As-
suming IMRI waveforms will be available in the next few
years, the realistic measurements may be even more pre-
cise than the results quoted here.

Future work will be needed to quantify the biases in-
troduced by our use of a pN approximant. While we have
explored some of these errors by comparing different pN
orders, there also exists the bias introduced by modeling
a waveform with Qanom present when it does not exist in
nature (or the converse). This work can also be extended
to proposed third generation detectors (e.g. the Einstein
telescope [38]), which could offer increased sensitivity at
the same SNR due to their lower low-frequency cutoff.
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E. Berti, A. Bohé, C. Caprini, M. Colpi, N. J. Cornish,
K. Danzmann, et al., ArXiv e-prints (2012), 1201.3621.

[37] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E.
Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D
84, 124052 (2011), 1106.1021.

[38] E. A. Huerta and J. R. Gair, Phys. Rev. D 83,
044021 (2011), URL http://link.aps.org/doi/10.

1103/PhysRevD.83.044021.
[39] Both the noise curve and technical reports describing it

can be found under LIGO Document T0900288-v3

http://dx.doi.org/10.1111/j.1365-2966.2009.15880.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15880.x
http://link.aps.org/doi/10.1103/PhysRevD.83.044021
http://link.aps.org/doi/10.1103/PhysRevD.83.044021
''https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974''

