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We construct an analytical model for two channel, two-body scattering amplitudes, and then
apply it in the description of the three-body J/ψ → K+K−π0 decay. In the construction of the
partial wave amplitudes, we combine the low energy resonance region with the Regge asymptotic
behavior determined from direct two-body production. We find that resonance production in the
Kπ channel in J/ψ decays seems to differ from that observed in direct Kπ production, while the
mass distribution in the KK̄ channel may be compatible.
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I. INTRODUCTION

Meson spectroscopy has played an important role
in developing phenomenology and gaining insights into
QCD in the non-perturbative domain. In an amplitude
analysis of experimental data it is necessary to explore
all of the available theoretical constraints because the ex-
traction of resonance parameters requires the analysis of
partial waves outside of the kinematic range of exper-
imental data. In particular, amplitudes describing the
mass distribution of a two-body subsystem in a quarko-
nium decay may be different from those describing scat-
tering of the same two particles. In this paper we focus
on the isospin 1/2, 1 and spin-one, P -wave scattering am-
plitudes in the ππ, KK̄ and Kπ channels and compare
the phase shift data with two-body mass distributions
from the three-body J/ψ → K+K−π0 decay. These am-
plitudes are dominated by the ground state vector reso-
nances ρ(770) and K∗(892) that are well established as
quark-antiquark, QCD bound states that are weakly cou-
pled to the meson-meson continuum. There is also strong
experimental evidence for higher mass vector resonances,
although precisely how many and to what extent these
are related to QCD single hadron states remains an open
issue [1–5].

In Table I we list the masses of the lowest vector meson
states obtained from recent lattice QCD simulations [6]
and the quark potential model [7] and compare them to
the data compiled by the Particle Data Group (PDG) [8].
Below 2 GeV the PDG lists two excited isovector reso-
nances, the ρ′(1450) and ρ′′(1700), that could have the
quark model assignments of 2S and 1D, respectively. In
the lattice simulations of [6] the average pion mass is ap-
proximately 400 MeV, which puts the ρ meson approxi-
mately 130 MeV above its measured mass. Shifting the
vector mesons masses from lattice computations down by
130 MeV puts the first excited state around 1600 MeV,
which is ∼ 150 MeV higher than the measured mass of
the ρ′(1450). While a resonance in the 1600− 1700 MeV
mass range can be clearly inferred from the ππ scatter-
ing phase shift data [2], the experimental evidence for
the ρ′(1450) is ambiguous [8]. The main motivation for

the ρ′(1450) comes from the need to accommodate data
on 4π production [9, 10]. To the best of our knowledge,
however, there has been no comprehensive analysis of all
available P -wave data and the importance of the vari-
ous inelastic channels, possibly even the dominant one,
KK̄ [2] is yet to be settled. For example, an alternative
scenario that seems to be supported by the lattice results
might be that the 2S and 1D states are above 1.6 GeV
while any residual strength corresponding to the PDG
ρ′(1450) could due to residual interactions between pions
and/or inelastic channel effects.

ρ(1−−) K∗(1−)
0.90 0.95

Lattice QCD [6] 1.8 1.8
· · · · · ·

0.77(13S1) 0.90(13S1)
Quark Model [7] 1.45(23S1) 1.58(23S1)

1.66(13D1) 1.78(13D1)
· · · · · ·

0.775 0.895
PDG [8] 1.465 1.414

1.720 1.717

TABLE I: Masses of the first few lowest-lying vector meson
resonances.

The vector mesons discussed above can be produced
in J/ψ → KK̄π and 3π decays. In this paper we focus
on the former; we studied the latter in Ref. [11]. The
J/ψ → KK̄π decay has been analyzed by the BESII
Collaboration [12]. The Dalitz plot distribution of the
K+K−π0 events has clearly visible sharp bands corre-
sponding to the isospin-1/2, K±∗(892) and weaker bands
in the first excited K ′∗ resonance region. The distribu-
tion is shown in Fig. 1. There is also a significant en-
hancement in the low K+K− invariant mass region. In
the BESII analysis this broad band was associated with a
new isovector P -wave resonance, the X(1570), decaying
to K+K− with the pole position at (1576 − 409i) MeV
seen through a strong destructive interference with the
ρ(1700). There have been several theoretical attempts to
explain this result [13, 14].
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FIG. 1: The J/ψ → K+K−π0 Dalitz plot distribution from
the BESII Collaboration [12].

In this work we address the following questions. Can
the broad enhancement in the low-mass KK̄ channel
be described by the P -wave KK̄ amplitudes determined
from phase shift analysis? And, more generally, can the
Dalitz plot distribution of KK̄π events in the J/ψ decay
be described in terms of KK̄ and Kπ amplitudes recon-
structed from phase shift analysis? To do so, we use,
and further develop (by incorporating asymptotic energy
dependence), the P -wave ππ and KK̄ amplitudes ini-
tially constructed in [11, 15]. The amplitudes that we use
have the correct analytical properties, satisfy two body
unitarity and reproduce the known data on ππ scatter-

ing [2, 16, 17]. In [11] we successfully used these ampli-
tudes to describe the J/ψ → π+π−π0 Dalitz distribution.
In particular we have found that, since the ρ′′(1700) is
quite inelastic [2], destructive interference with the vir-
tual J/ψ → KK̄π → 3π process is important in reducing
the Dalitz plot intensity in the ρ′′ resonance region. We
will investigate if it is possible that a similar phenomena
is in operation in the KK̄π final state and whether the
virtual J/ψ → 3π → KK̄π decay may be responsible for
the broad structure at low K+K− invariant mass.

This paper is organized as follows. The partial wave
decomposition of the decay J/ψ → K+K−π0 is given in
Sec. II. In Sec. III, we discuss our P -wave amplitudes
and compare with the BESII data of Fig. 1. Ideally,
the set of partial waves that are developed here could be
used in a full Dalitz plot analysis, but this requires a full
knowledge of experimental acceptances and resolutions.
In this work we simply compare, qualitatively, a sample of
Dalitz plot distributions generated from our amplitudes
with the BESII result of Fig. 1. We include more details
on the amplitude construction in the appendices.

II. PARTIAL WAVE AMPLITUDES IN THE
J/ψ → K+K−π0 DECAY

Denoting the four momenta by p±,0, P for K±, π0 and
J/ψ respectively, the general expression for the J/ψ →
K+K−π0 amplitude is given by,

〈π0K+K−, out|J/ψ(λ), in〉 = i(2π)4δ4

 ∑
i=0,±

pi − P

Tλ.

(1)
The Dalitz plot invariants are defined by sij = (pi + pj)

2

with i, j = ±, 0 referring to K± and the π0, respectively.
The general expression for the helicity amplitude of Tλ
is given by

Tλ =
∑
S,L

∑
µ=±,0

NSLµ[D1∗
λ,µ(r+−)dSµ,0(θ+

+−)F+−
SL (s+−) +D1∗

λ,µ(r+0)dSµ,0(θ+
+0)F+0

SL (s+0) +D1∗
λ,µ(r−0)dSµ,0(θ−−0)F−0

SL (s−0)](2)

where NSLµ =
√

3(2S + 1)〈Sµ;L0|1µ〉/4π. Here λ is the
spin projection of the J/ψ along the e+e− beam axis,
which together with x and y define a lab coordinate sys-
tem, S is the spin of a two particle subsystem (the iso-
bar), and L is the relative orbital angular momentum be-
tween the isobar and the spectator meson. The rotation
rij is given by three Euler angles, rij = rij(φij , ϑij , ψ

i
ij)

which rotate the standard configuration in the (ij)k cou-
pling scheme, to the actual one. In the standard config-
uration of the (ij)k coupling J/ψ is at rest, particle k
has momentum along the negative z axis, and particles
i and j have momenta in the xz plane with the parti-
cle j moving in the positive x direction. The azimuthal

and polar angles, φij and ϑij , are defined in the J/ψ rest
frame and refer to the actual direction of motion of the
(ij) pair. Finally, ψiij and θiij are the azimuthal and the
polar angle of the i-th particle in the (ij), two-particle
(isobar) rest frame.

The scalar form factors F ijSL(sij) describe the dynamics
of the decay in the isobar model i.e. under the assump-
tion that in a given isobar channel the form factors are
functions of the sub-energy of that isobar only. In the
L − S basis, the parity of the K+K−π0 state is given
by P = (−1)S+L+1 and under charge conjugation the
two isobar channels, |(K+π0)K−〉 and |(K−π0)K+〉 are
exchanged while the third isobar channel, |(K+K−)π0〉
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is a charge conjugation eigenstate with the eigenvalue
(−1)S . Thus charge conjugation invariance implies that
in Eq. (2) there are only two independent form factors
which we define as,

F+−
SL ≡

1− (−1)S

2
FKK̄SL , F+0

SL = −F−0
SL ≡ −F

Kπ
SL (3)

and obtain,

Tλ =
∑
S,L

∑
µ=±1,0

N ′SLµ[D1∗
λ,µ(r+−)dSµ,0(θ+

+−)F+−
SL (s+−)−D1∗

λ,µ(r+0)dSµ,0(θ+
+0)FKπSL (s+0) +D1∗

λ,µ(r−0)dSµ,0(θ−−0)FKπSL (s−0)]

(4)

with N ′SLµ ≡ NSLµ(1 + (−1)S+L)/2. The µ = 0 com-
ponent vanishes due to parity conservation and we can

further reduce the partial wave expansion to

Tλ =
∑
S,L

N ′SL1{[D1∗
λ,1(r+−) +D1∗

λ,−1(r+−)]dS1,0(θ+
+−)

1− (−1)S

2
FKK̄SL (s+−)

− [D1∗
λ,1(r+0) +D1∗

λ,−1(r+0)]dS1,0(θ+
+0)FKπSL (s+0) + [D1∗

λ,1(r−0) +D1∗
λ,−1(r−0)]dS1,0(θ−−0)FKπSL (s−0)}. (5)

Finally, it is useful to rewrite the above amplitude in
terms of a single set of angles describing orientation of the
decay plane. Using the relation between Euler rotations,

r+− = r−0r(0, χ+, 0) = r+0r
−1(0, 0, π)r−1(0, χ−, 0),

(6)

where χ+(χ−) is the angle between K+ (K−) and π0 and
in the K+K−π0 rest frame enables to write T in terms
of r+− alone

Tλ =
∑
S,L

N ′SL1[D1∗
λ,1(r+−) +D1∗

λ,−1(r+−)][dS1,0(θ+
+−)

1− (−1)S

2
FKK̄SL (s+−) + dS1,0(θ+

+0)FKπSL (s+0) + dS1,0(θ−−0)FKπSL (s−0)].

(7)

The allowed quantum numbers in the K+K− channel
are SPC = 1−−(ρ), 3−−(ρ3), · · · , and in the K±π0 chan-
nels, SP = 1−(K∗), 2+(K∗2 ), 3−(K∗3 ), · · · . In the follow-
ing we will assume that the Dalitz distribution can be sat-
urated with the lowest partial waves, i.e. P -wave in both
K+K− and K±π0 channels, and we test this hypothesis
by studying the effect of theD-wave resonances in theKπ
channels. Parity conservation implies S = L; therefore,
in the following we will simply denote F ijSL by F ijL . The
(unnormalized) J/ψ partial decay width with respect to
one of the Dalitz invariants (e.g. MK+K− =

√
s+−) is ob-

tained by integrating the square of the decay amplitude

over the orientation of the decay plane and the other in-
dependent invariant,

dΓ

d
√
s+−

= N
√
s+−

∫ sup−0(s+−)

sdn−0(s+−)

ds−0|T |2, (8)

and

|T |2 = |
∑
S,L

N ′SL1[dS1,0(θ+
+−)

1− (−1)S

2
FKK̄L (s+−)

+ dS1,0(θ+
+0)FKπL (s+0) + dS1,0(θ−−0)FKπL (s−0)]|2. (9)
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The overall normalization (N) is adjusted to match the
measured number of events. It is |T |2 that determines
the distribution of events in the Dalitz plot, (i.e. |T |2 =
const. would give a flat distribution). The integration

limits, s
up/dn
−0 (s+−) are roots of the equation which define

the boundary of the Dalitz plot,

s+−s+0s−0 − (s+0 + s−0)(m2
πm

2
K +M2m2

K)− s+−(m4
K +M2m2

π) + 2(m4
Km

2
π +M2m4

K + 2M2m2
Km

2
π) = 0. (10)

Projections along MK+π =
√
s+0 and MK−π =

√
s−0

axis can be defined analogously.

In the following we discuss parameterizations of the
form factors FKK̄L and FKπL in terms of two-body am-
plitudes. Any parameters remaining in these parameter-
izations, which are related to the production process as
opposed to final state interactions should be determined
by fitting the Dalitz distributions. As discussed in Sec. I
we do not fit the published Dalitz distribution, but in-
stead show the predicted distributions for specific values
of these parameters.

III. THEORETICAL MODEL FOR FORM
FACTORS

Unitarity relates production form factors to two-body
amplitudes. In [11, 15] we constructed analytical repre-
sentations for the isovector, P - wave, two-body, ππ and
KK̄ amplitudes. Here we further extend the analysis of
[11] by constraining the high energy behavior, and ex-
tend the approach to the Kπ channel. We begin with
a K-matrix, phenomenological parameterization of the
known data (on the real axis) on phase shifts and elas-
ticities. Even though the K-matrix offers an analytical
representation for the amplitude, it often leads to spuri-
ous poles and zeros of the amplitude when extrapolated
outside the physical region. Therefore we use the analyti-
cal representation for phase shifts and inelasticity via the
K-matrix only in the data region and smoothly extrapo-
late to match with the asymptotic behavior of the partial
waves at high energies. We then use the amplitudes con-
structed this way over the whole physical energy range as
input into the Omnés-Muskhelishvili integral to construct
the part of the scattering amplitude regular on the left
side of the complex s-plane. With the N(s)/D(s) rep-
resentation, which is described below, we determine the
amplitude over the entire s-plane. Finally we solve the
unitarity relation for the form factors and write the J/ψ
decay amplitude in terms of the denominator functions
D(s) and production functions cα(s). In the following we
describe these steps in a little more detail. All details of
the amplitude construction are given in the Appendix.

A. Amplitude Parameterization

In [11] to describe the high energy limit of the isovector
P -wave, the following hypothesis was made: the S matrix
is saturated by two channels, ππ and KK̄ and the elastic
channel phase shifts asymptotically approach a multiple
of π with elasticity η approaching 1. Even though J/ψ
decays probe only a limited energy range, and are quite
insensitive to details of the asymptotic behavior we might
as well use a different hypothesis that is better rooted in
high energy phenomenology. It is known that at high
energies, elastic cross sections slowly grow with energy
almost approaching the Froissart bound. This implies
that at impact parameter larger than the interaction re-
gion O(1 fm) there is no interaction while the low par-
tial waves are suppressed as if scattering from a ”gray
disk.” The low partial waves correspond to L << L0(s)
where L0(s) ∼

√
s/2 fm and while the interaction radius

grows logarithmically with energy, the scattering of the
low partial waves becomes logarithmically suppressed,
i.e. ηL ∼ 1 − O(1/ log s). In the language of Regge
exchanges this picture corresponds to the Pomeron ex-
change at high energies. Furthermore, since asymptoti-
cally the number of inelastic channels grows rapidly, each
individual inelastic amplitude, e.g ππ → KK̄ is expected
to fall off with energy, and is represented by exchange of
non-vacuum quantum numbers, aka meson Regge trajec-
tories. The hypothesis of two-channel dominance in the
high energy limit is therefore not necessarily well justified
and in the following we adopt the Regge picture of high
energy scattering. Matching the K-matrix parameteri-
zation of the low energy data with Regge asymptotics,
leads to amplitudes of the form (we drop the angular
momentum label on the partial wave),

tα,β(s) = |tα,β(s)|eiφα,β(s) =

{
tKmatrixα,β (s), s < slow
tReggeαβ (s), s > shigh

(11)

with tKmatrixα,β (s) and tReggeαβ (s) determined from K-
matrix fits to the low energy data and Regge fits to the
high energy fixed t-data, respectively. Greek indices de-
note two body channels, i.e. α = (i, j) = ππ,KK̄, etc.
For energies between slow and shigh, we smoothly connect
both real and imaginary parts of the K-matrix and Regge
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amplitudes. The denominator function in the N/D pa-
rameterization

tαβ(s) =
Nαβ(s)

Dαβ(s)
(12)

is then obtained from the phase of the scattering am-
plitude using the Omnés-Muskhelishvili solution of the
unitarity relation (sth ≥ min(sα, sβ) where sα is the α-
channel threshold)

ImDαβ(s)

Dαβ(s)
= − sinφαβ(s)e−2iφαβ(s) (13)

and is given by

Dαβ(s) = e
− s
π

∫
sth

ds′
φαβ(s′)
s′(s′−s) (14)

where we conveniently normalized Dαβ(0) = 1. The nu-
merator functions Nαβ(s) are given by the largely un-
known discontinuity of the amplitudes on the left hand
cut. For the purpose of solving the unitarity relation
for the J/ψ decay form factors, which will be discussed
below (cf. Eq. (16)), it is convenient to have Nαβ(s)’s
for all intervening α, β channels having the same analyt-
ical form. This is certainly a simplifying approximation,
nevertheless we have found that with a simple parame-
terization

Nαβ(s) =
λαβ
s+ sL

(15)

and with the two-body amplitudes given by
Eqs. (12),(14), it is indeed possible to obtain good
fits to the two-body scattering data, i.e. phase shifts
and elasticity.

Having constructed the two-body amplitudes, the next
step is to relate them to the production form factors.
This is done through the unitarity relations which relate
the imaginary part of the form factors to the two-body
amplitudes,

ImF̂αL (s) =
∑
β

t∗α,β(s)ρβ(s)F̂ βL (s) (16)

with αβt representing the elastic L-partial wave scatter-
ing amplitude between two-body channels α = (ij) and

β = (i′j′). F̂ is the reduced form factor (with the barrier
factor removed),

F ijL (s) = qLij(s)p
L
k (s)F̂ ijL (s), (17)

with qij(s) being the relative momentum between mesons
i and j,

qij(s) =

√
[s− (mi +mj)2][s− (mi −mj)2]

4s
(18)

and

pk(s) =

√
[s− (M +mk)2][s− (M −mk)2]

4M2
, (19)

with M being the J/ψ mass, the relative momentum be-
tween the (ij) pair and the spectator meson k. ρα(s) =
2qij/

√
s describes the two-particle phase space. It is

straightforward to show that if the scattering amplitude
is dominated by a single resonance below inelastic thresh-
old (ρ = ρα, ρβ = 0 for β 6= α) the solution of the uni-

tarity condition for F̂ is

F̂αL (s) = c(s)BWL
R (s) =

c(s)

m2
R − s− imRΓL(s)

, (20)

where BWL
R (s) is the Breit-Wigner amplitude (with an

energy dependent width ΓL(s)) and c(s) is a real polyno-
mial in s. In the general multiple-channel case, with the
two-body amplitudes all parameterized by the same nu-
merator function, as in Eq. (15) the solution to Eq. (16)
is given by [18],

F̂α(s) =
∑
β

cβ(s)

Dαβ(s)
(21)

with cβ(s) being analytic functions in the right hand
plane and Imcα(s) = 0 for s > 0.

B. Results

As discussed in Sec. I the original BESII analysis was
based on the isobar, resonance parameterization of all
three two-body channels. In the absence of a known
isovector P -wave KK̄ resonance to describe the low mass
KK̄ enhancement, it was necessary to introduce a new
resonance, the X(1570). The ππ phase isovector P -
wave shift data, however, points to significant inelasticity
above 1.6 GeV, which following [2] we have attributed to
the KK̄ channel. The effect of the coupled ππ and KK̄
channels on the K+K−π0 mass distribution which fol-
lows from Eq. (21) is shown in Fig. 2.

In Fig. 3 we show the Dalitz distribution obtained us-
ing the single Kπ channel amplitude (details discussed
in the Appendix). Besides the K∗(892) peaks, bands at
MKπ = 1.75 GeV are clearly visible in both K+π0 and
K−π0 mass projections. These are due to the K∗(1680)
resonance clearly seen in the Kπ phase shift analysis [19–
21] but apparently not so in the Kπ production from
the J/ψ decay (cf. Fig. 1). This clear discrepancy in-
dicates that it is not sufficient to use a single channel
Kπ amplitude in the parameterization of the correspond-
ing form factor in the J/ψ decay. As discussed in the
Appendix the Kπ amplitude is indeed inelastic above
MKπ ∼ 1.5 GeV with a possibility of a large coupling to
the K∗(892)π channel.

Finally, in Fig. 4 we show the Dalitz distribution ob-
tained with a combination of three amplitudes, KK̄ →
KK̄, ππ → KK̄ and Kπ → Kπ with relative production
coefficients, cα(s) chosen to best match the observed dis-
tribution in Fig. (1). While the low mass KK̄ region
seems to be fairly well described, the resonance struc-
tures in he Kπ channel do not match between the elastic
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FIG. 2: Dalitz plot distribution obtained using, in Eq. (21),
a single two-body KK̄ → KK̄ amplitude (top) and a single
two-body ππ → KK̄ amplitude (bottom) (i.e. with cKK̄ = 1
(cππ = 1) for the top (bottom) and cα(s) = 0 for all other
waves).

tKπ→Kπ and J/ψ decay amplitude. The ππ → KK̄ and
KK̄ → KK̄ amplitudes behave rather smoothly in the
region corresponding to the Kπ resonances and do not
give enough strength to reducing the peak from the sec-
ond K∗ resonance region. Thus we anticipate that the
discrepancy is due to inelasticities in the Kπ channel it-
self. Since we are only comparing Dalitz distributions
as opposed to fitting data, we do not attempt to fur-
ther improve the comparison. It is worth noting that the
K∗(1410) listed in the PDG is indeed quite inelastic with
only a 6.6% branching to Kπ.
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FIG. 3: As in Fig. 2 but with a single two-body, Kπ → Kπ
amplitude.

)2 (GeV
-0

S
0 1 2 3 4 5 6 7

)
2

 (
G

eV
+

0
S

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

16

18

20

22

FIG. 4: As in Fig. 2 but with three amplitudes, KK̄ → KK̄,
ππ → KK̄ and Kπ → Kπ with relative production coeffi-
cients satisfying cKπ(s) : cKK̄(s) : cππ(s) = 1 : 0.3 : −0.7.

IV. DISCUSSION AND CONCLUSION

Based on unitarity and analyticity we have constructed
a set of analytical two-body amplitudes, which imple-
ment the known phase shift data. These extend our
previous work in coupled channel P -wave ππ and KK̄
systems and the J/ψ → 3π decay [11]. The two-body
amplitudes are only an approximation to the three-body
decay, nevertheless they provide a useful starting point
and should match below inelastic thresholds. We com-
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FIG. 5: Phase shift of the P -wave ππ amplitude. Data is
taken from [2] (circles) ,[16] (triangles) , and [17] (squares).
The solid line is the result of the fit to δπ and η with the
analytical K-matrix representation described in the text.

pared the analysis of the J/ψ decay with these ampli-
tudes to the original analysis of the BESII collaboration,
which was based on the isobar model with coherent Breit-
Wigner resonances. The isobar model with the known,
low mass resonances only and without inelasticities can-
not faithfully produce the broad structure of low K+K−

invariant mass, which is why in the BESII analysis an
additional P -wave resonance X(1576) coupled to K+K−

was introduced. Our preliminary study indicates that
the KK̄ low-mass region may be described by the inelas-
ticity in the ππ → ππ wave if attributed to the coupling
between ππ and KK̄ channels. A single Kπ → Kπ am-
plitude is strongly affected by the second vectorK∗(1680)
resonance as observed in Kπ phase shift analysis. How-
ever, in J/ψ decay this resonance seems to be suppressed.
It is worth noting that a similar suppression of the first
excited isovector-vector resonance is also observed in the
3π decay of J/ψ [11].
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Appendix A: Analytical model for the P -wave
isovector ππ → ππ, ππ → KK̄ and KK̄ → KK̄

amplitudes

1. K-matrix parameterization, (s < slow)

We use a two channel K-matrix [11] to fit the data on
ππ → ππ P -wave phase shift and elasticity η from [2,
16, 17] (Fig. 5,6). With the S-matrix saturated by two
channels, the model makes a prediction for the phase
shift in the KK̄ → KK̄ channel. In this section α, β =
π,K correspond to the two body channels ππ and KK̄,
respectively. The 2-channel K-matrix representation is
given by

[t̂−1(s)]αβ = [K−1(s)]αβ + δαβ(s− sα)Iα(s), (A1)

where

Iα(s) = Iα(0)− s

π

∫ ∞
sα

ds′
√

1− sα
s′

1

(s′ − s)s′
. (A2)

A convenient choice for the subtraction constant, Iα(0),
is to take ReIα(M2

ρ ) = 0 so that one of the poles of Kππ

corresponds to the Breit-Wigner mass squared, M2
ρ =

(0.77 GeV)2, of the ρ meson. Using the general two-pole
parameterization of the K matrix,

Kππ =
α2
π

M2
ρ − s

+
β2
π

s2 − s
+ γππ, KKK =

β2
K

s2 − s
+ γKK

KπK = KKπ =
βπβK
s2 − s

+ γπK , (A3)

where α2
π = ΓρM

2
ρ/(M

2
ρ − sπ)3/2 and fitting the P -wave

ππ phase shift, δπ, and the elasticity, η, we obtain Γρ =
0.140 GeV, and

√
s2 = 1.4708 GeV, βπ = 0.199, βK = 0.899,

γππ = 5.62× 10−2, γπK = 0.104, γKK = 1.525,

(A4)
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with the γ’s in units of GeV−2. The comparison of the
phase shift and the inelasticity obtained with this pa-
rameterization with the data is shown in Fig. 5,6. To
illustrate unphysical features of the K-matrix parame-

terization we rewrite Eq. (A1) using the standard N/D
representation for t̂αβ = tαβ/(4qαqβ). With the normal-
ization Dαβ(0) = 1 we obtain,

Nππ(s) = λππ
s− zππ

(s− sL,1)(s− sL,2)
, Dππ(s) = exp

(
− s
π

∫
sπ

ds′
φππ(s′)

s′(s′ − s)

)
,

NπK(s) =
λπK

(s− sL,1)(s− sL,2)
, DπK(s) =

s1,πKs2,πK

(s− s1,πK)(s− s2,πK)
exp

(
− s
π

∫
sπ

ds′
φπK(s′)

s′(s′ − s)

)
,

NKK(s) = λKK
s− zKK

(s− sL,1)(s− sL,2)
, DKK(s) = exp

(
− s
π

∫
sπ

ds′
φKK(s′)

s′(s′ − s)

)
, (A5)

with λππ = 5.649, λKK = 2.271 and λπK = 3.048 GeV2.
In this K-matrix model, the left hand cut of N is re-
duced to two poles at sL,1 = −13.87GeV2 and sL,2 =

−0.787 GeV2, respectively. There are also first or-
der zeros in Nαβ at zππ = −0.867 GeV2 and zKK =

−13.78GeV2. Above the KK̄ threshold the phase of the
inelastic amplitude φπK is given by φπK = δπ+δK . From
the K matrix we find that, asymptotically, φπK(∞) =
2π, which corresponds to two CDD poles: one at the
ρ mass, s1,πK = M2

ρ , and the other at s2,πK = s2 +

βπβK/γπK = 3.884 GeV2. Thus, while the K matrix pa-
rameterization faithfully reproduces the ππ phase shift
and elasticity in the whole available energy range, from
ππ threshold up to 1.9 GeV, extrapolation beyond this
range is problematic. The rapid decrease of φππ around
s ∼ 6 GeV2 seems unphysical. In the ππ → KK̄ channel,
the two CDD poles at m2

ρ and s2 +βπβK/γπK are clearly
an artifact of the pole parameterization of the K-matrix.
A CDD pole in the inelastic channel above threshold (cf.
the pole at s2,πK = 3.884 GeV2) leads to a discontinuity
in a phase shift and is unphysical. It also implies van-
ishing inelasticity, η = 1 at this energy. A pole between
ππ and KK̄ thresholds is admissible, e.g. the pole at
s1,πK = m2

ρ, but its strict overlap with the ρ mass is
also an artifact of the parameterization. Since the phase
space available in J/ψ decay extends up to sππ ∼ 9GeV2

we need to remove these unphysical features of the K-
matrix amplitude. As discussed in Sec. III we do this
by using the K-matrix amplitudes below slow and above
shigh we will use Regge parameterization.

2. Regge parameterization (s > shigh)

Regge analysis of ππ → ππ scattering has been stud-
ied recently in [22–24] and here we use the results of
[24]. Parameters in Regge amplitudes were constrained
by analyzing NN , πN and ππ scattering data. For com-
pleteness we give the relevant formulas below.

• ππ → ππ

Regge parameterization involves the Regge poles corre-
sponding to t-channel exchange of the Pomeron(P ), the
P ′ (associated with the f2(1270) trajectory) and the ρ.
The t-channel isospin amplitudes are given by

F (It=0)
ππ (t, s, u)

= −1 + e−iπαP (t)

sinπαP (t)
P (s, t)− 1 + e−iπαP ′ (t)

sinπαP ′(t)
P ′(s, t),

(A6)

F (It=1)
ππ (t, s, u)

=
1− e−iπαρ(t)

sinπαρ(t)
βρ

1 + αρ(t)

1 + αρ(0)
[1 + dρt]e

bt(s/ŝ)αρ(t),

(A7)

ImF (It=2)
ππ (t, s, u) = β2e

bt(s/ŝ)αρ(t)+αρ(0)−1.

(A8)

where (ŝ = 1 GeV)

P (s, t) = βPαP (t)
1 + αP (t)

2
ebt(s/ŝ)αP (t), (A9)

P ′(s, t) = βP ′
αP ′(t)[1 + αP ′(t)]

αP ′(0)[1 + αP ′(0)]
ebt(s/ŝ)αP ′ (t), (A10)

and the trajectories are given by

αP (t) = αP (0) + tα′P ,

αP ′(t) = αρ(t) = αρ(0) + tα′ρ +
1

2
t2α′′ρ . (A11)

Numerical values of all parameters are given in Eqs. (B5),
(B6) of [24]. The s-channel isospin, partial wave ampli-
tudes are normalized according to

F
(Is)
α,β (s, t, u) = (

√
2)σ

4

π

∑
L

(2L+ 1)t
(LIs)
α,β (s)PL(cos θ),

(A12)

where (
√

2)σ is the identical particle symmetry factor:
σ = 2 for ππ ↔ ππ, σ = 1 for ππ ↔ KK̄ and σ = 0 for



9

KK̄ ↔ KK̄. The s-channel amplitudes with Is = 0, 2
are symmetric under t ↔ u exchange, and the Is = 1
amplitude is antisymmetric and s ↔ t crossing leads to
the following relation between the s and the t-channel
isospin amplitudes,

F (Is=1)
ππ (s, t, u) =

1

3
F (It=0)
ππ (t, s, u) +

1

2
F (It=1)
ππ (t, s, u)

− 5

6
F (It=2)
ππ (t, s, u)− (t→ u). (A13)

The (t ↔ u) exchange brings in the u-channel Regge
poles (these were ignored in [24] where only the forward
t = 0 limit was considered). Finally, projecting out the
P -wave amplitude yields,

tReggeππ (s) =
π

16

∫ 1

−1

(d cos θ) cos θ

× [
1

3
F (It=0)
ππ (t, s, u) +

1

2
F (It=1)
ππ (t, s, u)

− 5

6
F (It=2)
ππ (t, s, u)− (t→ u)]. (A14)

The angular integration is done numerically. The leading
asymptotic behavior due to Pomeron exchange can be
calculated analytically and is given by,

tReggeππ (s) ' i π
16

1

3

∫ 1

−1

(d cos θ) cos θ[P (s, t)− P (s, u)]

' i
π

24
βP
−3α′P + 2(b+ α′P ln s)

(b+ α′P ln s)2
sαP (0)−1. (A15)

To combine the K-matrix (s < slow) with the Regge
projected (s > shigh) amplitudes into the full P -wave
ππ → ππ amplitude,

tππ(s) =

{
tKmatrixππ (s), s < slow
tReggeππ (s), s > shigh

, (A16)

we choose
√
slow = 2.20 GeV and

√
shigh = 2.56 GeV,

and use a simple analytical formula to smoothly join the
two amplitudes between slow and shigh. The result is
shown in Fig. 7.

• ππ → KK̄

Asymptotically the t-channel amplitude it is dominated
by the K∗ trajectory,

F
(It=

1
2 )

πK (t, s, u)

=
1− e−iπαK∗ (t)

sinπαK∗(t)
βK∗

2αK∗(t) + 1

2αK∗(0) + 1
ebt(α′K∗s)

αK∗ (t).

(A17)

Following [25] we use b = 2.4 GeV −2, and αK∗(t) =
0.352 + α′K∗t with α′K∗ = 0.882GeV −2. The s-channel
Is = 1/2 amplitude is antisymmetric under t ↔ u ex-
change,

F
(Is=1)
πK (s, t, u) = −F (Is=1)

πK (s, u, t). (A18)

0 5 10
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-0.4

-0.2

0

0.2

0.4
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[t
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1
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[t

(s
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FIG. 7: Real (top) and imaginary (bottom) parts of the
isovector, P -weave amplitude, tππ(s) (solid lines). Dashed
line is the result of the K-matrix parameterization.

and from s↔ t crossing we obtain,

F
(Is=1)
πK (s, t, u)

=
2

3
F

(It=
1
2 )

πK (t, s, u)− 2

3
F

(It=
3
2 )

πK (t, s, u)− (t→ u).

(A19)

In terms of F
(Is=1)
πK (s, t, u) the properly normalized P -

wave in ππ → KK̄ is finally given by

tReggeπK (s) =
π

8
√

2

∫ 1

−1

(d cos θ) cos θ

×
[

2

3
F

(It=
1
2 )

πK (t, s, u)− (t→ u)

]
. (A20)

We can fix βK∗ by matching our formula in Eq. (A17)
to Eq. (81) in [25] in the limit of t → 0 (forward direc-
tion). Taking into account differences in normalization
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employed here and used in [25], we find

ImF
(It=

1
2 )

πK (t, s, u)|s→∞,t→0

= βK∗(α
′
K∗s)

αK∗ (0) =
3

4π

λ

Γ[αK∗(0)]
(α′K∗s)

αK∗ (0)

(A21)

with λ = 1.82 taken from [25] and

βK∗ =
3

4π

λ

Γ[αK∗(0)]
= 0.172. (A22)

Asymptotically, tReggeπK (s) approaches

tReggeπK (s) ' 1− e−iπαK∗ (0)

sinπαK∗(0)
βK∗

π

8
√

2

2

3

∫ 1

−1

(d cos θ) cos θ[
2αK∗(t) + 1

2αK∗(0) + 1
ebt(α′K∗s)

αK∗ (t) − (t→ u)]

' 1− e−iπαK∗ (0)

sinπαK∗(0)

π

3
√

2

βK∗α
′
K∗

2αK∗(0) + 1

(1 + 2αK∗(0))[b+ α′K∗ ln(α′K∗s)]− 2α′K∗

[b+ α′K∗ ln(α′K∗s)]
2

(α′K∗s)
αK∗ (0)−1.

(A23)

]The complete amplitude is given by,

tπK(s) =

{
tKmatrixπK (s), s < slow
tReggeπK (s), s > shigh

(A24)

where we choose
√
slow = 2.5GeV and

√
shigh = 3GeV

and it is shown in Fig. 8.

• KK̄ → KK̄

Asymptotically we only retain the Pomeron exchange,

F
(It=0)

KK̄
(t, s, u)

= −1 + e−iπαP (t)

sinπαP (t)
βKK̄P αP (t)

1 + αP (t)

2
ebt(s/ŝ)αP (t).

(A25)

with αP (t) = αP (0) + tα′P and all other parameters, ex-

cept βKK̄P taken from [22, 24], while for the Pomeron

coupling to KK̄ we use relation βKK̄P = (
f
(P )
K

f
(P )
π

)2(f
(P )
π )2 =

1.15, where the values of
f
(P )
K

f
(P )
π

and βP = (f
(P )
π )2 are taken

from [22, 24]. From s↔ t crossing,

F
(Is=1)

KK̄
(s, t, u) =

1

2
F

(It=0)

KK̄
(t, s, u)− 1

2
F

(It=1)

KK̄
(t, s, u).

(A26)

For the Pomeron contribution to the s-channel P -wave
we thus find

tRegge
KK̄

(s) =
π

8

∫ 1

−1

(d cos θ) cos θ
1

2
F It=0
KK̄

(t, s, u). (A27)

Asymptotically, tRegge
KK̄

(s) is given by

tRegge
KK̄

(s)

' i
π

16
βKK̄P

∫ 1

−1

(d cos θ) cos θαP (t)
1 + αP (t)

2
ebtsαP (t)

' i
π

16
βKK̄P

−3α′P + 2(b+ α′P ln s)

(b+ α′P ln s)2
sαP (0)−1. (A28)

In the full amplitude,

tKK̄(s) =

{
tKmatrix
KK̄

(s), s < slow
tRegge
KK̄

(s), s > shigh
. (A29)

we take
√
slow = 1.62 GeV and

√
shigh = 3 GeV for

real parts of amplitudes, and
√
slow = 1.64 GeV and√

shigh = 1.8 GeV for imaginary parts of amplitudes.
The different choice for the real and imaginary parts al-
lows for a smoother connection with the Regge asymp-

totics. The phase of tRegge
KK̄

(s) asymptotically approaches

π/2 but the phase of tKmatrix
KK̄

(s) has a sharp drop above
1.65 GeV (see right plot in Fig. 10). Therefore, choosing√
slow ∼ 1.64 GeV allows for a continuous match between

the phases of tKK̄(s), as show in Fig. 9.

3. Phases of amplitudes and D functions

From Regge parameterizations we find the following
asymptotic behavior for the phases φαβ(s) of the com-
plete amplitudes,

φππ → arctan[− sinπαP (0)

1 + cosπαP (0)
] =

π

2
, (A30)

φπK → 2π + arctan[
sinπαK∗(0)

1− cosπαK∗(0)
] ' 2π +

π

3
, (A31)

φKK̄ → arctan[− sinπαP (0)

1 + cosπαP (0)
] =

π

2
. (A32)

These are shown in Fig. 10. For the D functions test lead
to the following asymptotic limits (cf. Eq. (14))

1

Dππ(s)
→ i

s
1
2

,
1

DπK(s)
→ 1− e−iπαK∗ (0)

sinπαK∗(0)

1

s2+ 1
3

,

1

DKK̄(s)
→ i

s
1
2

. (A33)
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FIG. 8: Real (top) and imaginary (bottom) parts of the
isovector, P -wave amplitude, tπK(s)/(qπqK) (solid lines).
The dashed line is the result of the K-matrix parameteri-
zation.

Appendix B: Analytical model for the P -wave
πK → πK amplitude

1. K-matrix parameterization, (s < slow)

To fit the phase shift data on πK scattering we use
a two-channel K-matrix model, with the two channels
being Kπ and K∗(892)π, and in the second channel treat
the K∗ as a stable particle, (i.e. we ignore cuts on the
third sheet). Similarly to the ππ, KK̄ case for the K-
matrix representation of Kπ and K∗(892)π amplitudes
we write

[t̂−1(s)]αβ = [K−1(s)]αβ + δαβ
(s− s+

α )(s− s−α )

s
Iα(s),

(B1)
where t̂αβ ≡ tαβ/(4qαqβ),

qα =

√
(s− s+

α )(s− s−α )

4s
, s±α = (mα ±mπ)2,

m1 = mK ,m2 = MK∗(892), (B2)
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FIG. 9: Real (top) and imaginary (bottom) parts of the
isovector, P -wave amplitude, tKK̄(s) (solid lines). The dashed
line is the result of the K-matrix parameterization.

and

Iα(s) = Iα(0)− s

π

∫ ∞
s+α

ds′

√
(1− s+α

s′ )(1− s−α
s′ )

s′(s′ − s)
. (B3)

A convenient choice for the subtraction constant, Iα(0),
is to take ReIα(M2

K∗(892)) = 0 so that one of the poles

of K11 is located at mass squared of the K∗(892), m2
2.

In terms of phase shift and inelasticity the Kπ and
K∗(892)π amplitudes are given by

t11 =
ηe2iδ11 − 1

2iρ1
, t22 =

ηe2iδ22 − 1

2iρ2
,

t12 = t21 =

√
1− η2ei(δ11+δ22)

2
√
ρ1ρ2

(B4)

where ρα(s) =

√
(1− s+α

s )(1− s−α
s ). The denominator

Dαβ of the Kπ and K∗(892)π amplitudes are defined by
Omnés-Muskhelishvili function

Dαβ(s) = exp

(
− s
π

∫ ∞
(mK+mπ)2

ds′
φαβ(s′)

s′(s′ − s)

)
. (B5)
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FIG. 10: Phase of the ππ (top), πK (middle) and KK̄ (bot-
tom) P -wave amplitude. The dashed line is the result of the
K-matrix parameterization from Eq. (A5).

To fit the P -wave phase shift data [19–21] we use a three-
pole parameterization of the K-matrix

K11 =
α2

1

M2
K∗(892) − s

+
β2

1

s2 − s
+

λ2
1

s3 − s
+ γ

(0)
11 + γ

(1)
11 s,

K22 =
β2

2

s2 − s
+

λ2
2

s3 − s
+ γ

(0)
22 + γ

(1)
22 s,

K12 = K21 =
β1β2

s2 − s
+

λ1λ2

s3 − s
+ γ

(0)
12 + γ

(1)
12 s, (B6)

where

α2
1 =

ΓK∗(892)M
5
K∗(892)

[(M2
K∗(892) − s

+
1 )(M2

K∗(892) − s
−
1 )]3/2

. (B7)

And for the parameters of the K-matrix obtain
ΓK∗(892) = 0.0504 GeV,
√
s2 = 1.35 GeV,

√
s3 = 1.75 GeV, β1 = 0.110,

β2 = −0.685, λ1 = 0.142, λ2 = 1.089.

γ
(0)
11 = 0.204, γ

(0)
12 = −0.983, γ

(0)
22 = 8.329,

γ
(1)
11 = −0.052, γ

(1)
12 = 0.426, γ

(1)
22 = −3.834.

(B8)

with the γ(0)’s in units of GeV−2 and γ(1)’s in units
of GeV−4. The phase, φ11 and magnitude, |t11| of
Kπ → Kπ scattering amplitude is compared to the date
in Fig. 11. We can express t̂αβ = tαβ/(4qαqβ) in terms of
a product of poles, zeros and the Omnés-Muskhelishvili
function

t̂αβ = Nαβ

∏
l=1,Nz,αβ

(s− s(αβ)
z,l )∏

l=1,8(s− sP,l)

× exp

(
s

π

∫ ∞
(mK+mπ)2

ds′
φαβ(s′)

s′(s′ − s)

)
. (B9)

where Nz,αβ is the number of zeros of t̂αβ for which
we find Nz,11 = Nz,22 = 7, Nz,12 = Nz,21 = 6. The
normalization factors are given by N11 = 7.075, N12 =
−421.989, N22 = 2.808. The positions of the poles and
zeros are given by (in units of GeV2)

sP,1/2 = 0.3573± i0.4055, sP,3/4 = 2.4912± i0.5762,

sP,5/6 = 20.3504± i3.3856,

sP,7 = −0.00489, sP,8 = −6.2666, (B10)

and

s
(11)
z,1/2 = 0.3428± i0.4470, s

(11)
z,3/4 = 2.2188± i0.6175,

s
(11)
z,5/6 = 12.8061± i0.2470, s

(11)
z,7 = 0.

s
(12)
z,1/2 = 1.9181± i0.3669, s

(12)
z,3 = 3.3956,

s
(12)
z,4 = M2

K∗(892), s
(11)
z,5/6 = 0.

s
(22)
z,1/2 = 2.2704± i0.2273, s

(22)
z,3/4 = 20.2775± i3.3479,

s
(22)
z,5 = −0.00489, s

(22)
z,6 = −6.1874, s

(22)
z,7 = 0,

(B11)
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FIG. 11: φ11 (top) and |t11| (bottom) of Kπ → Kπ scattering
amplitude vs data from [20] (squares), [21] (circles), and [19]
(triangles).

respectively. As can be seen from Fig. 12, this K-matrix
leads to a dramatic, most likely unphysical, drop in the
phase φ11 (dashed line) around 6 GeV2 and this results in
both φ11 and δ11 vanishing asymptotically. Furthermore
the resulting t-matrix has complex poles and zeros on the
physical sheet (see Eq. (B10) and Eq. (B11)). The origin
of these unphysical poles can be illustrated by considering
a single channel, K11 only, with a single pole and constant
background term. The resulting t-matrix element is then
given by,

t̂11 =
1

8

α2
1 + γ0

11(M2
K∗(892) − s)

(M2
K∗(892) − s)−

[s−(mK−mπ)2][s−(mK+mπ)2]
s I1(s)[α2

1 + γ0
11(M2

K∗(892) − s)]
. (B12)

If, for simplicity, we replace mK by mπ and keep only
the imaginary of I1(s), in the limit |s| → ∞ and γ0

11 → 0
with |γ0

11||s| � α2
1 one finds

t̂11 →
1

8

γ0
11

1− i
√

1− 4m2
π

s γ0
11s

. (B13)

In the limit γ0
11 → 0 the pole is on the first sheet and

approaches s → ± i
γ0
11

. Even though the K-matrix itself

has unphysical singularities and zeros it still faithfully
reproduces the phase and magnitude of the amplitude of
Kπ scattering data up to 1.8 GeV. Similarly to the cases
in ππ and KK̄ scattering presented in previous sections,
we will truncate the K-matrix solution at slow and match
it with Regge parameterization at shigh.

2. Regge parameterization for π0K± → π0K±

(s > shigh)

Asymptotically we only retain Pomeron (P ) in the t-
channel and the K∗ trajectory in the u-channel

F It=0
πK→πK(t, s, u)

= −1 + e−iπαP (t)

sinπαP (t)
βπKP αP (t)

1 + αP (t)

2
ebt(s/ŝ)αP (t).

(B14)

F
Iu= 1

2

πK→πK(u, t, s)

=
1− e−iπαK∗ (u)

sinπαK∗(u)
βK∗

2αK∗(u) + 1

2αK∗(0) + 1
ebu(α′K∗s)

αK∗ (u).

(B15)
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The Pomeron trajectory is given in Eq. (A11) with pa-
rameters in Pomeron parameterization are taken from

[22, 24], except the coupling constant βπKP = f
(P )
π f

(P )
K =

[βππP βKK̄P ]
1
2 = 1.709. The K∗ trajectory is given by

αK∗(u) = 0.352 + 0.882u as in Section A 2. From s-t
and s-u channel crossing, we obtain

F
Is=

1
2

πK→πK(s, t, u)

=
1√
6
F It=0
πK→πK(t, s, u) + F It=1

πK→πK(t, s, u)

+
1

3
F
Iu= 1

2

πK→πK(u, t, s) +
4

3
F
Iu= 3

2

πK→πK(u, t, s).

(B16)

The P -wave projection of the Regge amplitude in πK →
πK scattering is given by

tReggeπK→πK(s) =
π

8

∫ 1

−1

(d cos) cos θ

× [
1√
6
F It=0
πK→πK(t, s, u) +

1

3
F
Iu= 1

2

πK→πK(u, t, s)]. (B17)

The complete amplitude for the πK → πK amplitude is
given by,

tπK→πK(s) =

{
tKmatrix11 (s), s < slow
tReggeπK→πK(s), s > shigh

(B18)

where we choose
√
slow = 2.3GeV,

√
shigh = 2.5GeV for

the real part of the amplitude and
√
shigh = 2.7GeV

for the imaginary part of the amplitude as shown in
Fig. 12. From the P -wave projection of the Regge am-
plitude we find the following asymptotic behavior for the
phase φ11(s) and denominator function of the complete
amplitudes,

φ11 → arctan[− sinπαP (0)

1 + cosπαP (0)
] =

π

2
,

1

DπK→πK(s)
→ i

s
1
2

(B19)

The phase is shown in Fig. 12,
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114001 (2004).
[23] B. Ananthanarayan, G. Colangelo, J. Gasser and H.

Leutwyler , Phys. Rep. 353, 207 (2001).
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FIG. 12: Real (left) and imaginary (right) parts of the isovec-
tor, P -wave amplitude, tπK→πK(s) and phase φ11 (solid
curves). The dashed curves are the result of the K-matrix
parameterization.


