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Abstract

The E6SSM extension of the MSSM allows for the solution of many of the difficulties
that are usually encountered within conventional SUSY breaking scenarios, e.g., the µ

problem, the imposition of R-parity ‘by hand’, the generation of light neutrino masses
and obtaining a light Higgs boson with a mass as large as ∼ 125 GeV as suggested by
recent LHC measurements. In addressing these problems, such a scenario predicts the
existence of additional singlet and vector-like superfields beyond those in the MSSM
as well as possibly two new neutral gauge bosons near the TeV scale. In this paper
the phenomenological implications of simultaneous gauge kinetic mixing between the
usual Standard Model (SM) hypercharge gauge field and both these new neutral gauge
fields present in the E6SSM scenario is explored. To this end a large class of specific
toy models realizing this type of kinetic mixing is examined. In particular, we demon-
strate that a significant suppression (or enhancement) of the expected event rate for
Z ′ production in the dilepton channel at the LHC is not likely to occur in this scenario
due to gauge kinetic mixing.
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1 Introduction and Background

Supersymmetry, which is softly broken at the TeV scale, is one of the most attractive exten-
sions of the Standard Model (SM) as it directly addresses the hierarchy problem, provides
interesting dark matter candidates and allows for grand unification of the SM gauge cou-
plings. However, the simplest version of SUSY, the MSSM[1], has a number of outstanding
non-trivial difficulties associated with it which include: the need to impose an R-parity-like
symmetry to avoid rapid proton decay, the lack of a mechanism to generate light neutrino
masses, and the so-called µ-problem, i.e., how to naturally obtain values of the µ parameter
at or below the ∼ 1 TeV mass scale. Furthermore, in some of the well known SUSY-breaking
scenarios, it is somewhat difficult[2] within the MSSM to generate a sufficiently large light
Higgs mass in the neighborhood of ≃ 125 GeV, as is suggested by the recent results from
the LHC[3], without significant fine-tuning.

Perhaps one of the unique ways to naturally address all of these problems is the exten-
sion of the MSSM to the E6SSM[4]. In such a scenario, not only is the GUT group enlarged
beyond SU(5) or SO(10) to the exceptional group E6, but the low energy (i.e., ∼ TeV scale)
matter spectrum of the theory is also substantially modified by the presence of additional
vector-like (with respect to the SM) superfields which are necessary to achieve complete
anomaly cancellation, maintain coupling unification and to fill out full E6 27 fundamental
representations. (It is important to note that the conventional two Higgs doublets responsi-
ble for the breaking of the usual SM gauge symmetries are also present at the TeV scale as
in the MSSM.) Furthermore, the SU(2)L × U(1)Y electroweak gauge structure of the SM is
also likely to be extended at the TeV scale by additional SU(2) and/or U(1) factors[5]. The
simplest low-energy gauge extension from E6 grand unification that is usually considered in
the literature is that of a single new U(1) factor. Such a U(1) can result from a symmetry
breaking chain such as: E6 → SO(10)× U(1)ψ → SU(5) × U(1)χ × U(1)ψ → SM × U(1)θ
where the U(1)θ is a shorthand notation for some a priori arbitrary linear combination of
both the U(1)χ and U(1)ψ which occurs due to mass mixing. The heavy neutral gauge boson
associated with this new gauge group, Z ′

θ, is very often discussed as a benchmark scenario
and has been searched for (so far in vain) at the LHC[6] with lower limits on its mass now
in excess of roughly ∼1.5 TeV. Of course, given the usual discussion of such possible sym-
metry breaking patterns within E6, it is just as (perhaps more than?) likely that the two
new neutral gauge bosons associated with both linear combinations of these new U(1)’s may
survive down to the TeV scale.‡ The U(1)θ scenario can then be considered just a limiting
case of this somewhat more complex situation which is mainly discussed only for its relative
simplicity.

If one wants to perform a detail examination of the interactions of both of these
two new gauge bosons with the matter sector of the E6SSM scenario at the TeV scale,

‡We note, however, that if both U(1)’s survive down to the TeV scale then a somewhat different
mechanism[4] for neutrino see-saw mass generation is required perhaps employing higher dimensional
operators[7]. We will remain agnostic about this point in the following analysis.
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the effects of gauge kinetic mixing (GKM) between the various U(1)’s can be of significant
importance and cannot be neglected. In fact, the possible influence GKM on the properties
and interactions of Z ′’s, and the Z ′

θ scenario in particular, were studied in some detail
long ago[8]. Much of this work focused on the issue of whether or not GKM can lead to
near leptophobic Z ′

θ couplings which would make such a state very difficult to observe at
both the Tevatron and the LHC. In such an analysis, apart from an overall normalization
factor of order unity, one finds that the Z ′

θ couplings to fermions will now depend upon two
parameters: the, in principle arbitrary, amount of χ−ψ mass mixing, expressed via the usual
angle θ, and the size of the GKM between the SM U(1)Y and U(1)θ gauge fields, described
by an additional parameter δ, which itself is θ-dependent. Both the overall strength factor as
well as the parameter δ were shown to be uniquely calculable from a renormalization group
equation (RGE) analysis once the TeV-scale matter content of the theory was specified.
In this simplified case, it was found that[8] exact leptophobia would not occur although a
potentially significant cross section reduction for Z ′

θ production in the usual dilepton channel
might be possible. In the analysis presented here we will return to this important issue in a
different context where all three U(1) factors are simultaneously present and their associated
gauge fields undergo TeV-scale GKM.

As is well-known, a necessary condition for GKM to occur in a (SUSY)GUT-based
scenario, is the existence of incomplete GUT representations of matter superfields below the
unification/high mass scale. This situation necessarily occurs within the standard E6SSM
scenario as, in addition to the three generations of 27 matter superfields at the TeV scale, an
additional pair of Higgs doublets superfields (i.e., the ‘light’ parts of the usual 5+ 5 in the
standard SU(5) language), which are responsible for the breaking of the conventional SM
gauge symmetries, are also necessarily present. Furthermore, at least in principle, additional
light vector-like fields which form effective 5+5 and/or 10+10 SU(5) representations (but
which are incomplete E6 representations) may also be present without the loss of pertur-
bativity and without disturbing the one-loop unification of couplings. In such a scenario,
GKM, though absent by definition at the high mass scale due to the presence of complete
GUT representations, is then generated radiatively at the TeV scale via the RGEs from the
‘non-orthogonality’ of the full set of the various U(1) gauge charges. Thus, once the full low
energy matter content of the theory is specified, one can use the RGEs to determine all of
the TeV-scale gauge couplings as well as all of the GKM parameters, at least numerically,
with the mixing angle θ remaining as the only undetermined free parameter.

As mentioned above, in this paper we will consider the situation where both of the
two new U(1)’s are present at the TeV scale in the E6SSM framework such that GKM can
(and must) occur simultaneously between the gauge fields associated with all three U(1)
group factors: U(1)Y , U(1)χ and U(1)ψ. Note that a detailed discussion of the appropriate
formalism for GKM among three general U(1) factors has been recently given in Ref.[9]; we
will make direct use of the results presented there in the analysis that follows.§ As we will see

§See, however, Ref.[10] for a different approach wherein the authors seek a possible basis change in the
group space of the multiple U(1) factors to remove GKM completely at the one-loop level.

2



below, in such a situation, the coupling structure of both of the new gauge Z ′ bosons are now
potentially more complex than in the simpler case of the U(1)θ model and will be determined
in terms of five ‘Lagrangian’ parameters (apart from the common overall strength factor):
the usual χ− ψ mixing angle, θ, three GKM factors, which we will call δ1,2,3, as well as the
relative magnitudes of the gχ and gψ gauge couplings at the TeV scale. Note that since we
now work in the χ − ψ basis, unlike in the U(1)θ model, none of these parameters are θ-
dependent. Apart from θ itself, all of these parameters, as well as the overall strength factor
will be shown to be calculable within an extended version of the previous RGE analysis.
Furthermore, due to manner in which the various fermion couplings to the Z ′ fields can be
expressed in terms of these calculable Lagrangian parameters, we will show that the actual
number of independent parameters is actually only three.

The outline of this paper is as follows: Section 2 contains an analysis and discussion
of the various couplings and relevant RGE machinery necessary to calculate the TeV-scale
values of the various parameters listed above. In Section 3 we discuss the constraints on
E6SSM models with additional matter fields arising from split supermultiplets and construct
a sizeable set of E6SSM models which may potentially lead to significant GKM effects. The
five coupling parameters apart from θ are then numerically determined for this set of models
and are compared and contrasted in Section 4. The extension of this analysis to model sets
which also include additional SM singlet fields is also considered briefly in this Section as
is an analysis of some of the phenomenological implications of general GKM. An overall
summary of our results and conclusions are to be found in Section 5.

2 Analysis I: RGEs

We begin our analysis by reviewing the formulation of gauge kinetic mixing between three
U(1) factors as given in[9], realizing it within the specific context of the E6SSM scenario.
Consider the Lagrangian for the electroweak part of the SM with the addition of two new
U(1) fields which is decomposed in the following manner:

L = Lkin + Lint + LSSB + LSUSY . (1)

In the absence of spontaneous symmetry breaking at the TeV scale, the general form of
the Lagrangian for the pure electroweak gauge kinetic piece in the E6SSM scenario can be
written as

Lkin = −1

4
W i
µνW

iµν − 1

4
B̃µνB̃µν −

1

4
Z̃1µνZ̃1µν −

1

4
Z̃2µνZ̃2µν ,

−sinα

2
B̃µνZ̃1µν −

sin β

2
B̃µνZ̃2µν −

sin γ

2
Z̃µν

1 Z̃2µν , (2)

with W i, B̃ and Z̃1,2 representing the usual SU(2)L, U(1)Y and the two new U(1)1,2 fields
(which we will later identify with the Zχ,ψ gauge bosons), respectively, with the index ‘i’
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labeling the weak isospin. Note that the second line above contains the form for the general
gauge kinetic mixing allowed among the three U(1) fields. In this basis the generic gauge
interaction terms for the various fermions can be written as

Lint = −ψ̄γµ[gLT iW i
µ + g̃Y Y B̃µ + g̃1Q1Z̃1µ + (1 → 2)]ψ , (3)

where g̃1,2, Q1,2 are the couplings and appropriate group generators, respectively, correspond-
ing to the new fields Z̃1,2µ.

As was shown in Ref.[9], these kinetic terms can be brought into a diagonal canon-
ical form by a suitable set of field redefinitions: (B̃, Z̃1, Z̃2)

T = U(B,Z1, Z2)
T , where U is

(effectively) a triangular matrix as given in full detail in [9]. In terms of the elements of
the matrix U , this transformation takes the explicit form (note that it is always true that
U11 = 1)

B̃ = B + U12Z1 + U13Z2 ,

Z̃1 = U22Z1 + U23Z2 ,

Z̃2 = U33Z2 . (4)

With the corresponding rescalings of the original gauge couplings

gY = g̃Y ,

g1 = g̃1U22 ,

g2 = g̃2U33 ,

gY 1 = g̃YU12 ,

gY 2 = g̃YU13 ,

g12 = g̃1U23 , (5)

the fermionic interactions with the gauge fields can be written in a more familiar form as

Lint = −ψ̄γµ[gLT aW a
µ + gY Y Bµ + (g1Q1 + gY 1Y )Z1µ + (g2Q2 + gY 2Y + g12Q1)Z2µ]ψ . (6)

Symbolically, for later ease in the analysis below and to make contact with the notation
employed earlier in the last paper of Ref.[8], the abelian U(1)Y × U(1)1 × U(1)2 part of the
term in the square bracket above can be re-written into a slightly more generic looking form,
dropping the Lorentz index, as

Labelian ∼ gaaQaZa + (gbbQb + gabQa)Zb + (gccQc + gacQa + gbcQb)Zc , (7)

(with no summation of repeated indices implied) or, equivalently

Labelian ∼ gaaQaZa + gbb(Qb + δ1Qa)Zb + gcc(Qc + δ2Qa + δ3Qb)Zc , (8)

where here we have defined the GKM parameters δ1 = gab/gbb etc. Note that later we will
identify the indices (a-c) with our specific set of U(1)’s as a = Y , b = χ and c = ψ but we
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will sometimes find it convenient so use both sets of notation simultaneously. Finally, by
normalizing the gauge couplings to that of the SM hypercharge, this interaction can also be
written as

Labelian ∼ gaa[QaZa + λb(Qb + δ1Qa)Zb + λc(Qc + δ2Qa + δ3Qb)Zc] , (9)

where λb,c = gbb,cc/gaa, i.e., are the relative strengths of the new U(1) couplings in terms of
that for SM hypercharge. The size of the various δi not only reflect the magnitude of the
off-diagonal gauge couplings in the equation above but also the size of the kinetic mixing in
the original Lagrangian, i.e., they will be zero when sinα, etc, are zero. As discussed above,
since kinetic mixing is assumed to be absent at the high mass scale due to the presence of
compete GUT representations, the resulting values for the δi at the TeV scale will only be
generated by RGE running in the presence of the incomplete 27 representations at the TeV
scale. As we will see below, given some knowledge of what these representations can be, the
values of δi, as well as the various gauge couplings themselves, become calculable (at least
numerically) by solving the corresponding RGE equations. Note that although the number
of parameters appearing in Labelian is large only certain fixed combinations will appear in
the fermion couplings themselves. This will be discussed further below.

Note that in what follows the various ‘diagonal’ gauge couplings, gaa etc, will be taken
to be ‘GUT’ normalized in this basis since we will assume that complete E6 representations
exist at the high mass scale. Thus we will employ the SM notation and normalization

conventions, i.e., Y →
√

3
5
YSM and g̃Y →

√

5
3
g′ such that Qem = T3L + YSM . Furthermore,

for the specific case at hand, one also finds thatQ1 = Qχ/2
√
10 and Q2 = Qψ/2

√
6 employing

this standard normalization convention. For completeness, the values of the constants Qχ,ψ

for the various fermions in the E6 27 representation, employing the notation of the last paper
in Ref.[5], are given in Table 2.

In order to constrain the low scale values of the λψ,χ and δ1−3 for any given model
we must first perform an RGE analysis. At one-loop the RGE equations for the usual
SU(3)c and SU(2)L gauge couplings are decoupled from those in the U(1) sector so that the
associated RGEs can be trivially analytically integrated. Writing L = log(MU/MZ), these
two RGE equations can be combined in the usual manner from which we obtain the standard
expressions

L =
2π(α−1

s − xwα
−1)

βs − βL
,

α−1
U =

βsxwα
−1 − βLα

−1
s

βs − βL
, (10)

with αU being the common unification coupling and xw = sin2 θw. For numerical purposes
we will take αs(MZ) = 0.1186, α−1

em(MZ) = 127.957 and sin2 θw = 0.2315 in the analysis
below; our results will depend only very weakly on these particular choices.
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Particle SU(3)c 2
√
6Qψ 2

√
10Qχ 2

√
15Qη Y

Q = (u, d)T 3 1 -1 2 1/6

L = (ν, e)T 1 1 3 -1 -1/2

uc 3 1 -1 2 -2/3

dc 3 1 3 -1 1/3

ec 1 1 -1 2 1

νc 1 1 -5 5 0

H = (N,E)T 1 -2 -2 -1 -1/2

Hc = (N c, Ec)T 1 -2 2 -4 1/2

h 3 -2 2 -4 -1/3

hc 3 -2 -2 -1 1/3

Sc 1 4 0 5 0

Table 1: Quantum numbers of the particles contained in the 27 representation of E6 in the
notation of the last paper in Ref.[5]; standard particle embeddings are assumed and all fields
are taken to be left-handed.
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Defining Bij = Tr(QiQj) where Qi=a,b,c is defined from the Lagrangian above and the
trace is taken over the fields in the theory below the GUT scale we can then consider the
RGE equations for the various couplings. For the U(1)Y,χ couplings and for the parameter
λχ we can proceed exactly as in the simpler case of only two U(1)’s since the RGE for U(1)ψ
decouples at this order. Most easily obtained are the first set of partially coupled RGEs:

dgaa
dt

=
g3aa
16π2

Baa ,

dgbb
dt

=
g3bb
16π2

[Bbb + δ21Baa + 2δ1Bab] , (11)

dgab
dt

=
1

16π2
[2g2aagbbBab + 2g2aagabBaa + gabg

2
bbBbb + g3abBaa + 2gbbg

2
abBab] ,

Integration of the first RGE above yields the standard result for the hypercharge coupling
(recalling that a = Y ):

g−2
aa=Y (t) =

α−1
U

4π
[1 +

αU
2π
Baa(=Y Y )(tU − t)] , (12)

where tU ∼ logMU and the standard unification boundary condition has been imposed at
the high scale. Since δ1 = gab/gaa, and the solution for g2aa(t) is known, we can combine the
last two of the RGEs above to obtain

dδ1
dt

=
1

gbb

dgab
dt

− gab
g2bb

dgbb
dt

,

=
g2aa
8π2

[Bab + δ1Baa] . (13)

This can now be directly integrated yielding the earlier obtained, well-known result[8]

δ1(t) = −Bab

Baa

[

1− [1 +
αUBaa(tU − t)

2π
]−1

]

, (14)

where we have imposed the boundary condition that δ1(t) vanishes at the high mass scaleMU

since we have assumed that complete multiplets exist there. The weak/TeV scale parameter
δ1 relevant for the Z1,2 couplings is obtained when we set t ∼ logMZ so that tU − t =
log(MU/MZ) = L in the expression above. Note that δ1 grows linearly as the value of Bab is
increased.

Given the analytic result for δ1(t) then allows us to re-write the RGE for g2bb as

dgbb
dt

=
g3bb
16π2

[Bbb + 2δ1(t)Bab + δ21(t)Baa] , (15)

which also can then be analytically integrated. Defining the parameter combination z =
αUBaaL/2π we obtain as before

g−2
bb (MZ) =

α−1
U

4π
+
BbbL

8π2

[

1− B2
ab

BaaBbb

z

1 + z

]

. (16)
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Recalling that b = χ for our setup of interest, this result also allows us to obtain the nu-
merical value for the ratio of couplings λχ = gbb/gaa. Continuing on to the other parameters
straightforwardly leads us to the following more highly coupled set of RGEs:

dgcc
dt

=
g3cc
16π2

[Bcc + δ22Baa + δ23Bbb + 2δ2Bac + 2δ3Bbc + 2δ2δ3Baa] ,

dδ3
dt

=
g2bb
8π2

[Bbc + δ2Bab + δ3Bbb + δ1Bac + δ1δ2Baa + δ1δ3Bab] , (17)

dδ2
dt

=
g2aa
8π2

[Bac + δ2Baa + δ3Bab] +
g2bb
8π2

δ1

[

[Bbc + δ2Bab + δ3Bbb]

+δ1[Bac + δ2Baa + δ3Bab]
]

.

which, unlike those discussed above, can only be solved by employing numerical methods.
This we do by making use of the previously obtained analytical results as inputs. In order
to proceed further in such a numerical analysis, however, we must also obtain a set of values
for the Bij coefficients which appear in the equations above. These depend on the details of
the matter superfield content of the low-energy theory to which we must now turn.

3 Analysis II: Sample Models

As discussed above, GKM will only occur if a set of incomplete E6 multiplets is present at
the ∼ TeV scale and so we must determine what a realistic set of possibly low-energy spectra
might be if we want to estimate the magnitude of GKM effects. This was discussed at some
length in earlier work[8] so here we provide just a summary of and short elaboration on that
detailed analysis.

The set of possible low-energy fields directly follows from a short list of model building
requirements:

• The SM gauge couplings and those of the new U(1)’s are assumed to unify at a high
scale as in the MSSM and we don’t want this important feature to be disturbed. This
implies that: (i) as far as particles which carry SM quantum numbers are concerned
we can add only sets of particles that would normally form complete multiplets under
SU(5). (ii) The number and types of these new fields is clearly restricted since pertur-
bative unification is lost if too many multiplets are added. (iii) A priori, the number
of SM singlet fields is not so easily restricted.

• SM gauge anomalies must cancel amongst the low energy matter fields in the model.
This suggests that only fields which are vector-like or singlets with respect to the SM
gauge group be considered. In addition, the anomaly freedom must be maintained when
the two new U(1) fields are added to the MSSM. Employing only singlets/vector-like
fields also assists with satisfying constraints arising from precision measurements.
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• When taken together the above requirements strongly suggests that at low energies we
can augment the particle spectrum by at most four complete 5+ 5’s or only one 5+ 5

plus one 10 + 10 (in addition to possible SU(5) singlets) beyond that of the usual
MSSM. Note that some of this additional field content, three generations of 5 + 5’s
plus singlets, already appears in the three 27’s present in the E6SSM. Thus we can
only add, at most, one set of 5+ 5 fields plus singlets to the low energy content of the
minimal E6SSM scenario.

• The new matter fields will be assumed to originate from either 27 + 27 combinations
or from 78’s of E6 since these will automatically be both vector-like as well as anomaly
free under the full E6 group.

With this set of requirements there are actually only a small number of potentially
interesting specific cases to consider. In the minimal E6SSM we know that the low energy
theory already contains three complete 27’s as well as the usual pair of Higgs doublets (here
labeled as H1, H

c
1). These Higgs fields are then easily identified as the minimal split multiplet

content at low energies. The specific choice of origin of these Higgs within the 27+27 or the
78 will then tell us how they transform with respect to the two new U(1) gauge groups. As
noted above, since the three 27’s already contain three pairs of 5+5 fields beyond the usual
MSSM, this implies that we are only free to add a single extra 5+ 5 (plus possible singlets)
to the low energy spectrum of the E6SSM without upsetting unification. Here we note that
27 + 27’s contain three different possible embeddings of 5 + 5: (1) 5(−2, 2) + 5(2,−2),
(2) 5(2, 2) + 5(−2,−2) and (3) 5(−1,−3) + 5(1, 3), where the numbers in the parentheses
designate the Qψ,χ quantum numbers as normalized in Table 1. However, the 78 contains
only a lone possibility: (4) 5(3,−3)+ 5(−3, 3). Given this information we can calculate any
and all possible contributions to the various Bij ’s appearing in the equations above, as well
as those to βs,L, in an unambiguous manner.

What about SM singlet fields? Within the 27 + 27, we already have the fields Sc

and νc (plus their conjugates) that transform as 1(4, 0) + 1(−4, 0) and 1(1,−5) + 1(−1, 5),
respectively. On the otherhand, the 78 contains only one possibility, here simply denoted
as X (plus its conjugate), which transform as 1(−3,−5) + 1(3, 5). Note that since they are
SM singlets, the presence of these additional fields will only alter the values of Bχχ, Bχψ and
Bψψ. While the set of possible additional TeV-scale SM non-singlet fields is rather restricted,
it is possible that a sizeable and a priori unknown number of these new SM singlet fields may
also be present. To be concrete in the analysis that follows we will mostly ignore the possible
addition of SM singlets. We have verified, however, that the addition of one or two complete
sets of the above singlets in various combinations will only alter our numerical results for
the values of the δi in the models considered below at the level of at most ∼ 10 − 20%.
However, the possible changes to both λχ,ψ are found to be potentially more significant, up
to ∼ 30 − 35%. This is to be expected as the most direct effect of the additional singlets,
even in the absence of GKM, would be to reduce the values of the gχ,ψ couplings due to the
enhanced RGE running from the high scale. We will return to a discussion of the possible
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influence of additional SM singlet fields on our results in the analysis below.

From the discussion above, we can see that as far as SM non-singlet fields are con-
cerned there are only two possible subcases to consider. Either (i) H1/H

c
1 is the only pair

of light superfields beyond the three 27’s or (ii) one additional complete set of 5 + 5 fields
is also present. In case (i), with only 4 choices for the H1/H

c
1 quantum numbers, the calcu-

lation is very straightforward. However,in case (ii) the situation is somewhat more complex
since we can think of the additional low energy spectrum as containing two ‘Higgs’ doublets,
H1,2/H

c
1,2 as well as a pair of isosinglet, color triplet superfields, D1, D

c
1 which fill out the

remainder of the full 5 + 5. This field content now allows for 43 = 64 possible(but not
necessarily independent) quantum number assignments leading to different values for Bij ’s.
We label these possibilities by the set of integers (i,j,k) where the first(second,third) index
labels the embedding choice, i.e., (1)-(4), for the field H1/H

c
1(H2/H

c
2, D1/D

c
1). For example,

we may choose H1/H
c
1 to be from (1), H2/H

c
2 from (3) and D1/D

c
1 from (4) and we would

label this particular subcase as (1,3,4). The calculation is now again straightforward. Thus
there are now a total of 68 toy model scenarios (without SM singlets) to consider.

4 Analysis III: Numerical Results

The first step in the examination of the Z ′ couplings is to obtain the complete set of values
for the 5 parameters δ1,2,3 and λχ,ψ; these results are shown in Figs. 1 and 2 for all of the
68 models discussed in the previous section. In each of these plots we see a discrete set
of model points. Note that in some cases two (or more) of the 68 models may lead to
identical ‘degenerate’ values for any given pair of the parameters that are displayed here so
that several of the locations may actually be multiply occupied. Note that in all cases the
ranges of the δi away from 0 are not very large nor are the deviations of λχ,ψ from unity. As
mentioned above, the addition of one or two sets of SU(5) singlet fields of various types is
found to lead to possible upward shifts in the magnitudes of the δi shown here by less than
≃ 15 − 20% while the corresponding shifts in the λi (generally to smaller values) can be as
large as ≃ 30− 35%. Of course adding further singlets will enlarge these effects.

Let us now turn to the predictions for the couplings of the Z ′ to SM fermions. One
of issues that we can now immediately address is this framework is the question of whether
or not these general GKM modifications to the fermion interactions can lead to a near
leptophobic coupling for either of the new gauge bosons; as we noted above this subject has
had a long history[8]. As can be easily found in the E6 model case, complete leptophobia
certainly does not occur in the absence of GKM for any value of the parameter θ and,
as noted above, does not occur for the Z ′

θ model with GKM. The reason that this is an
important issue is, of course, that the typical search channel for a new Z ′ gauge boson at a
hadron collider such as the LHC is the resonant production of Drell-Yan pairs. However, to
determine whether or not the event rate in this channel is significantly altered, in the narrow
width approximation (NWA), one needs to determine the product of the Z ′ production cross
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Figure 1: Values of (bottom) λχ,ψ and (top) δ1,2 for the set of 68 models discussed in the
text.
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Figure 2: Same as the previous figure but now showing the results for δ1,3

section times the corresponding leptonic branching fraction, i.e., σZ′ · Bℓ=e,µ. Clearly, if the
value of Bℓ is reduced by a shift in the Z ′ leptonic couplings this will make this new particle
more difficult to discover. However, this reduction might be simultaneously compensated for
in the overall Z ′ production cross section. Thus leptophobia is not just an issue of reduced
leptonic couplings. Using the NWA, the predicted dilepton event rate can be more fully
expressed as [(v2u + a2u)fu + (v2d + a2d)fd]BℓL, where L is the collider integrated luminosity,
vu(au) is the vector(axial-vector) coupling of the u quark to the Z ′ and fu is an integral over
the appropriate product of the parton densities which only depends upon the Z ′ mass (and
similarly for the d quark). ¶ From this we see that actually all of the different Z ′ couplings
are involved in determining the overall event rate and not just the leptonic ones. Also, quite
obviously a hadrophobic Z ′ is just as bad an outcome as a leptophobic Z ′ as far as this
search channel is concerned. Clearly it is more important to consider how GKM affects the
product σZ′ ·Bℓ rather than simply just considering Bℓ alone if we are trying to understand
any suppression of hadron collider Z ′ event rates.

Give this observation we can now directly address the question: ‘What is the influence
of GKM on Z ′ production rates for the general mixing case considered here?’ For purposes
of this discussion we will assume for simplicity that the lightest Z ′ state does not have
kinematically allowed decays into any of the non-SM fields (including both the additional E6

¶It is interesting to recall that generation independence plus the assumption that the linear combination
of group generators to which the Z ′ couples (such as the U(1)χ,ψ generators) commutes with weak isospin
implies that all of the various SM fermion couplings can be expressed in terms of no more than 5 independent
parameters.
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SM singlets/vector-like exotics as well as any of the superpartners) and that this Z ′ does not
have any significant mass mixing with the SM Z so that decays such as, e.g., Z ′ →W+W−

can be safely ignored. To address the question of collider event rates it is sufficient to consider
the various fermionic interactions of a single general linear combination of the Zχ,ψ fields,
the Z ′

1, i.e., the lighter of the two mass eigenstates. In the notation used above the couplings
of the Z ′

1 can be explicitly written as

g

cw

√

5xw
3

[

− sλχ
Qχ

2
√
10

+ cλψ
Qψ

2
√
6
+

√

3

5

Y

2
(−sλχδ1 + cλψδ2) + cλψδ3

Qχ

2
√
10

]

, (18)

where s(c) = cos θ6(sin θ6) is the effective Zχ−Zψ mixing angle. The corresponding couplings
for the heavier Z ′

2 are trivially obtainable from those above by the simple replacements
(−s, c) → (c, s). Interestingly, we note that making the replacements λχ,ψ → λ, δ1 →
−sδ, δ2 → cδ and δ3 → 0 we recover the coupling structure associated with the earlier
obtained GKM modifications to the U(1)θ model[8]. However, in that case it was seen
that both the overall strength parameter, λ, as well as the GKM parameter, δ, were both
dependent on the value of θ which is not the situation in the triple GKM mixing scenario
considered here. Note further that the ‘standard’ result for the Z ′ couplings that are most
usually employed for E6-type model studies is given solely by only the first two terms in
the expression above with both λχ,ψ set to unity. From this construction it is easily seen
that the Z ′

1 interactions actually only depend upon on 3 effective parameter combinations.
For example, defining the auxiliary parameters ǫ1 = −sλχ + cλψδ3, ǫ2 = cλψ and ǫ3 =
−sλχδ1 + cλψδ2, we can re-write the general Z ′

1 interaction above more simply as just

g

cw

√

5xw
3

[

ǫ1
Qχ

2
√
10

+ ǫ2
Qψ

2
√
6
+ ǫ3

√

3

5

Y

2

]

. (19)

This same form holds for both the triple GKM scenario considered here as well as in the
more limited case of GKM mixing within the previously studied U(1)θ model and also in the
case when GKM is completely absent. The only difference in these three cases is then seen
to be in the allowed ranges of the quantities (ǫi) which are found to be somewhat different
in the triply GKM mixed case considered here. This demonstrates that only 3 parameters
actually determine the physical Z ′

1 couplings even though many more (calculable) parameters
actually appear in the original Lagrangian.

To proceed further with our numerical exercise, it is sufficient to examine a specific
example. First consider a ‘standard’ E6 Z

′, in the absence of any GKM with a mass of 1.5
TeV being produced at the

√
s = 7 TeV LHC‖. Varying only the single parameter θ one can

ask for that value for which σZ′ · Bℓ is minimized or maximized. (Note that in performing
these calculations we will employ the CTEQ6.6M pdfs[11] and will include an approximate
NNLO K-factor[12] as well as both QCD and QED corrections to the Z ′ partial decay widths.)

‖Assuming somewhat different Z ′ masses or going to the 8 or 14 TeV LHC will not alter the qualitative
nature of the results obtained below.
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Figure 3: Comparison of the σZ′ · Bℓ values as a function of θ at the 7 TeV LHC with
MZ′=1.5 TeV for the five scenarios discussed in the text. The black solid (second from the
top) curve corresponds to the standard prediction without any GKM included. The second
lowest red(top green) curve corresponds to the minimum(maximum) value obtained when
GKM is present for any of the 68 models. Kinks in the curves correspond to changes in
which model produces the extreme value. The corresponding lowest magenta(middle blue)
curves are the maximum(minimum) values for the case when GKM occurs and additional
singlets are also present. Note that curve orderings correspond to the center of the figure.
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A quick scan shows that the minimum (maximum) value, σZ′ · Bℓ ≃ 2.79(5.62) fb, occurs
when θ ≃ 15.54(82.76)o. Now if we allow for triple GKM within any of the 68 models above,
what is the new minimum (maximum) value of σZ′ · Bℓ? In such a situation, as θ is varied
different members of the set of 68 models may lead to this minimum or maximum value. In
this case we find these values to now be ≃ 1.08(7.32) fb occurring when θ ≃ 15.80(81.00)o.
If we further allow for the presence of up to two sets of additional singlet fields, repeating
this analysis we instead find this minimum (maximum) to be ≃ 0.51(4.29) fb and which
now occurs at θ ≃ 16.55(81.57)o. Note that the effect of addition singlets is to suppress the
maximum production rate; this is to be expected as the enhanced RGE running reduces the
sizes of the gauge couplings. These results can be seen even more clearly by examining Fig. 3
which shows the θ dependence of the value of σZ′ · Bℓ for these five cases as just discussed.
The kinks we observe in this plot are due to transitions between the models which lead to the
different σZ′ ·Bℓ extremum. As we scan over the values of θ the difference of the two extrema
are never found to be more than an order of magnitude. These σZ′ ·Bℓ values are not seen to
be vastly different from those found in Ref.[8] from which we conclude (unfortunately?) that
going to the triple GKM scenario considered here from the previously considered Z ′

θ model
does not lead to any drastic modifications in the rate of dileptons arising from Z ′ production
at the LHC.

5 Summary and Conclusions

The E6SSM scenario can address many of the outstanding issues associated with the MSSM
and predicts numerous new states at the ∼ TeV mass scale that may be observed at the LHC,
among them being new gauge bosons. In this paper we have examined the effect of gauge
kinetic mixing between the three U(1) fields that are generally present in the low energy
sector of this model: the usual SM U(1)Y and the U(1)χ,ψ associated with these new Z ′s.
To this end we examined a set of 68 toy models (and their extensions which included SM
singlets) and analyzed the resulting possible affect of GKM on the Z ′ couplings in each case
as a function of the Z ′

χ,ψ mixing angle, θ. As an example of the potential influence of GKM
on Z ′ production at the 7 TeV LHC in these models, for each value of this mixing angle the
set of toy models were scanned to determine both the largest and smallest possible event
rate for a fixed 1.5 TeV Z ′ mass. Within the set of models examined we found that GKM
did not lead to any drastic alterations in the dilepton production rate with the difference
between the maximum and minimum values we obtained always being less than one order
of magnitude.

Hopefully the new physics associated with the E6SSM scenario may soon be discovered
at the LHC.
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