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Abstract

A model based on SU(3)C×SU(2)L×U(1)Y ×SU(2)N has recently been proposed,

where the SU(2)N vector gauge bosons are neutral, so that a vector dark-matter can-

didate is possible and constrained by data to be less than about 1 TeV. We explore

further implications of this model, including a detailed study of its Higgs sector. We

improve on its dark-matter phenomenology, as well as its discovery reach at the LHC

(Large Hadron Collider).
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1 Introduction

The nature of dark matter [1] is under intense study. Whereas most assume that it is either a

fermion or a scalar or a combination of both [2], the notion that it could be a vector boson just

as well has also been proposed. In a theory of universal compact extra dimensions, the first

Kaluza-Klein excitation of the standard-model U(1) gauge boson B is such a candidate [3].

The T−odd counterpart of B in little Higgs models is another candidate [4]. Non-Abelian

vector bosons from a hidden sector may also be considered [5]. All of the above involve

“exotic” physics.

Recently, it was realized [6] that an existing conventional model [7] based on superstring-

inspired E6 has exactly the ingredients which allow it to become a model of vector-boson

dark matter, where the vector boson itself (X) comes from an SU(2)N gauge extension of

the Standard Model. In this paper we explore further implications of this model, including

a detailed study of its Higgs sector and the particle spectrum. We also improve on its dark-

matter phenomenology, namely we study the constraints on the parameters of the model

from both the relic density as well as the direct dark-matter search. We also study the

discovery reach at the LHC (Large Hadron Collider) for the dark vector boson. It should

be pointed out that our model is unique. It is the only model of a dark vector boson which

is a renormalizable extension of the Standard Model, without a hidden sector. As already

mentioned, all other such models involve some kind of “exotic” physics. The fact that our

model may have a superstring connection is a bonus, not a requirement.

In Sec. 2 we list all the necessary particles of this (nonsupersymmetric) model. In Sec. 3

we consider the complete Higgs potential and obtain the masses of all the gauge and Higgs

bosons. In Sec. 4 we compute the annihilation cross section of the dark-matter vector boson

X . In Sec. 5 we study the constraints from dark-matter direct-search experiments. In Sec. 6
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we consider some possible signals at the LHC. In Sec. 7 there are some concluding remarks.

The details of the Higgs potential are given in the Appendix.

2 Particle content

Under SU(3)C × SU(2)L × U(1)Y × SU(2)N × S, where Q = T3L + Y is the electric charge

and L = S + T3N is the generalized lepton number, the fermions of this nonsupersymmetric

model are given by [6]

(

u

d

)

∼ (3, 2, 1/6, 1; 0), uc ∼ (3∗, 1,−2/3, 1; 0), (1)

(hc, dc) ∼ (3∗, 1, 1/3, 2;−1/2), h ∼ (3, 1,−1/3, 1; 1), (2)
(

N ν

E e

)

∼ (1, 2,−1/2, 2; 1/2),

(

Ec

N c

)

∼ (1, 2, 1/2, 1; 0), (3)

ec ∼ (1, 1, 1, 1;−1), (νc, nc) ∼ (1, 1, 0, 2;−1/2), (4)

where all fields are left-handed. The SU(2)L doublet assignments are vertical with T3L =

±1/2 for the upper (lower) entries. The SU(2)N doublet assignments are horizontal with

T3N = ±1/2 for the right (left) entries. There are three copies of the above to accommodate

the known three generations of quarks and leptons, together with their exotic counterparts.

It is easy to check that all gauge anomalies are canceled. The extra global U(1) symmetry S

is imposed so that (−1)L, where L = S+T3N , is conserved, even though SU(2)N is completely

broken. The imposition of S in this case amounts to a generalized lepton number. Such a

procedure is very commonplace in model building. For example, to avoid rapid proton decay,

an extension of the Standard Model to include supersymmetry requires such an imposition.

The Higgs sector consists of one bidoublet, two doublets, and one triplet:

(

φ0
1 φ0

3

φ−
1 φ−

3

)

∼ (1, 2,−1/2, 2; 1/2),

(

φ+
2

φ0
2

)

∼ (1, 2, 1/2, 1; 0), (5)

(χ0
1, χ

0
2) ∼ (1, 1, 0, 2;−1/2),

(

∆0
2/
√
2 ∆0

3

∆0
1 −∆0

2/
√
2

)

∼ (1, 1, 0, 3; 1). (6)
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The allowed Yukawa couplings are thus

(dφ0
1 − uφ−

1 )d
c − (dφ0

3 − uφ−
3 )h

c, (uφ0
2 − dφ+

2 )u
c, (hcχ0

2 − dcχ0
1)h, (7)

(Nφ−
3 − νφ−

1 − Eφ0
3 + eφ0

1)e
c, (Eφ+

2 −Nφ0
2)n

c − (eφ+
2 − νφ0

2)ν
c, (8)

(EEc −NN c)χ0
2 − (eEc − νN c)χ0

1, (Ecφ−
1 −N cφ0

1)n
c − (Ecφ−

2 −N cφ0
2)ν

c, (9)

ncnc∆0
1 + (ncνc + νcnc)∆0

2/
√
2− νcνc∆0

3. (10)

There are five nonzero vacuum expectation values: 〈φ0
1〉 = v1, 〈φ0

2〉 = v2, 〈∆0
1〉 = u1, and

〈χ0
2〉 = u2, corresponding to scalar fields with L = 0, as well as 〈∆0

3〉 = u3, which breaks

L to (−1)L. Thus md, me come from v1, and mu, mννc(= −mNnc) come from v2, whereas

mh, mE(= −mNNc) come from u2, and nc, νc obtain Majorana masses from u1 and u3. The

scalar fields φ0,−
3 and ∆0

2 have L = 1, whereas χ0
1 has L = −1 and ∆0

3 has L = 2.

There are five neutral fermions per family. Two have odd L parity, i.e. ν and νc. Their

2× 2 mass matrix is of the usual seesaw form, i.e.

Mν =

(

0 mD

mD M3

)

, (11)

where mD comes from v2 and M3 from u3. The other three have even L parity, i.e. N , N c,

and nc. Their 3× 3 mass matrix is given by

MN =









0 −mE −mD

−mE 0 m1

−mD m1 M1









, (12)

where mE comes from u2, M1 from u1, and m1 from v1. Note that without M1, the nc mass

would be very small, i.e. −2m1mD/mE . Since (−1)L is exactly conserved, ν, νc do not mix

with N,N c, nc.

Even though this model is nonsupersymmetric, R parity as defined in the usual way for

supersymmetry, i.e. R ≡ (−)3B+L+2j , still holds, so that the usual quarks and leptons have

even R, whereas h, hc, (N,E), (Ec, N c), and nc have odd R. As for the scalars, (φ0
1, φ

−
1 ),

(φ+
2 , φ

0
2), χ

0
2, ∆

0
1, and ∆0

3 have even R, whereas (φ0
3, φ

−
3 ), χ

0
1, and ∆0

2 have odd R.
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3 Gauge and Higgs boson masses

The Higgs potential of this model is given by

V = µ2
1Tr(φ

†
13φ13) + µ2

2φ
†
2φ2 + µ2

χχχ
† + µ2

∆Tr(∆
†∆) + (µ2

3det∆+H.c.)

+ (µ22χ̃φ
†
13φ̃2 + µ12χ∆χ̃† + µ23χ̃∆χ† +H.c.) +

1

2
λ1[Tr(φ

†
13φ13)]

2 +
1

2
λ2(φ

†
2φ2)

2

+
1

2
λ3Tr(φ

†
13φ13φ

†
13φ13) +

1

2
λ4(χχ

†)2 +
1

2
λ5[Tr(∆

†∆)]2 +
1

4
λ6Tr(∆

†∆−∆∆†)2

+ f1χφ
†
13φ13χ

† + f2χφ̃
†
13φ̃13χ

† + f3φ
†
2φ13φ

†
13φ2 + f4φ

†
2φ̃13φ̃

†
13φ2 + f5(φ

†
2φ2)(χχ

†)

+ f6(χχ
†)Tr(∆†∆) + f7χ(∆

†∆−∆∆†)χ† + f8(φ
†
2φ2)Tr(∆

†∆)

+ f9Tr(φ
†
13φ13)Tr(∆

†∆) + f10Tr(φ13(∆
†∆−∆∆†)φ†

13), (13)

where

φ̃2 =

(

φ̄0
2

−φ−
2

)

, φ̃13 =

(

φ+
3 −φ+

1

−φ̄0
3 φ̄0

1

)

, χ̃ = (χ̄0
2,−χ̄0

1), (14)

and the µ2
3, µ23 terms break L softly to (−1)L.

After the spontaneous breaking of SU(2)N × SU(2)L × U(1)Y , the gauge bosons X1,2,3

and W,Z acquire masses as follows:

m2
W =

1

2
g22(v

2
1 + v22), m2

X1,2
=

1

2
g2N [u

2
2 + v21 + 2(u1 ∓ u3)

2], (15)

m2
Z,X3

=
1

2

(

(g21 + g22)(v
2
1 + v22) −gN

√

g21 + g22v
2
1

−gN
√

g21 + g22v
2
1 g2N [u

2
2 + v21 + 4(u2

1 + u2
3)]

)

. (16)

Whereas the usual gauge bosons have even R, two of the SU(2)N gauge bosons X1,2 have

odd R and X3(= Z ′) has even R. Assuming that X1 is lighter than X2, the former becomes

a good candidate for dark matter. There is also Z − Z ′ mixing in this model, given by

−(
√

g21 + g22/gN)[v
2
1/(u

2
2 + 4u2

1 + 4u2
3)]. This is constrained by precision electroweak data to

be less than a few times 10−4. If mZ′ ∼ 1 TeV, then v1 should be less than about 10 GeV.

Now mb comes from v1, so this model implies that tan β = v2/v1 is large and the Yukawa

coupling of bbcφ0
1 is enhanced. This will have interesting phenomenological consequences [8].
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Consider the simplifying (but arbitrary) case of f7 = f10 = 0, µ2
3 = 0, and µ12 = µ23, then

from Eqs. (33) and (34) of the Appendix, we find u1 = u3. The massless states of Eqs. (38)

and (39) are then easily identified: u2χ1I + v1φ3I and u2χ1R + 2
√
2u1∆2R − v1φ3R for the

longitudinal components of X1 and X2 respectively. Three exact mass eigenstates are:

(∆1I +∆3I)/
√
2 : m2 = −µ12u

2
2/u1, (17)

∆2I , (∆1R −∆3R)/
√
2 : m2 = 4λ6u

2
1 − µ12u

2
2/u1. (18)

Using the approximation v1,2 << u1,2, we also have

φ3R, φ3I : m2 = (f1 − f2)u
2
2 − µ22u2v2/v1, (19)

(v2φ1I + v1φ2I)/
√

v21 + v22 : m2 = −µ22u2(v
2
1 + v22)/v1v2, (20)

(2
√
2u1χ1R − u2∆2R)/

√

8u2
1 + u2

2 : m2 = −µ12(8u1 + u2
2/u1), (21)

(4u1χ2I + u2∆1I − u2∆3I)/
√

16u2
1 + 2u2

2 : m2 = −µ12(8u1 + u2
2/u1). (22)

This pattern shows that (φ0
1, φ

−
1 ) and (φ+

2 , φ
0
2) behave as the conventional two Higgs

doublets with the former coupling to d quarks and and the latter to u quarks. The new

feature here is that (φ0
1, φ

−
1 ) also interact with the SU(2)N gauge bosons and this will be

important for the discussion of dark-matter and collider phenomenology in the following.

4 X1X1 annihilation

We assume that X1 is the lightest particle having odd R. It is thus stable and a possible

candidate for dark matter. In the early Universe, X1X1 will annihilate to particles of even

R, i.e. dd̄ through h exchange, e−e+ through E exchange, νν̄ through N exchange, and φ1φ̄1

through φ3 exchange (and direct interaction). There is also the direct-channel process, such

as X1X1 → φ1R → dd̄, which is suppressed by md so it is negligible here. However, the

corresponding process for dark-matter direct search, i.e. X1d → X1d through φ1R exchange,
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may be important as discussed in the next section. Note that there is no tree-level contri-

bution from Z ′ because the only allowed triple-vector-boson coupling is X1X2Z
′ and X2 is

too heavy to be involved.

Figure 1: Annihilation of X1X1 to standard-model particles.

In Fig. 1 we show the various annihilation diagrams, resulting in the nonrelativistic cross

section × relative velocity given by

σvrel =
g4Nm

2
X

72π

[

∑

h

3

(m2
h +m2

X)
2
+
∑

E

2

(m2
E +m2

X)
2

+
2

(m2
φ3

+m2
X)

2
+

1

m2
X(m

2
φ3

+m2
X)

+
3

8m4
X

]

, (23)

where the sum over h, E is for 3 families. The factor of 3 for h is the number of colors, and

the factor of 2 for E is to include N which has the same mass of E. For the scalar final states

φ1φ̄1, in addition to the exchange of φ3, there is also the direct X1X1φ1φ̄1 interaction. Since

v1 << v2, both φ0
1 and φ−

1 are physical particles to a very good approximation. Assuming

as we do that mX is the smallest mass in Eq. (23), we must have

σvrel <
41g4N

576πm2
X

. (24)

This puts an upper bound on mX for a given value of σvrel. Assuming σvrel > 0.86 pb from
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the requirement of relic abundance, and g2N(≃ g22) = 0.4, we then obtain

mX < 1.28 TeV. (25)

In other words, whereas the scale of SU(2)N breaking is a priori unknown, the assumption

of X dark matter constrains it to be of order 1 TeV and be accessible to observation at the

LHC.

We consider Eq. (23) as a function of mX and δ = mh/mX − 1, with all three h’s having

the same mass. We then consider the two extreme cases for the other contributions: one

where all heavy masses are equal to mX ; and the other where all heavy masses (except

mX) are equal to the (arbitrary) value 2.5mX to ensure that no Yukawa or quartic coupling

gets too large. In the δ − mX plane, for a given value of σvrel, the region between these

two lines is then the allowed parameter space for mX and mh. We show this in Fig. 2 for

σvrel = 0.91± 0.05 pb [10].

5 Direct dark matter search

In Fig. 3 we show the tree-level diagrams forX1d → X1d through the direct-channel exchange

of h and the cross-channel exchange of φ1R. Taking into account twist-2 operators and gluonic

contributions calculated recently [9] and assuming that m(hd) = m(hs) = m(hb) = mh, we

find

fp
mp

= 0.052

[

− g2N
4m2

φ

− g2N
16

m2
h

(m2
h −m2

X)
2

]

+
3

4
(0.222)

[

−g2N
4

m2
X

(m2
h −m2

X)
2

]

− (0.925)

(

(1.19)
g2N

54m2
φ

+
g2N
36

[

(1.19)
m2

h

6(m2
h −m2

X)
2
+

1

3(m2
h −m2

X)

])

. (26)

To obtain fn/mn, the numerical coefficients (0.052,0.222,0.925) in the above are replaced by

(0.061,0.330,0.922). The spin-independent elastic cross section for X1 scattering off a nucleus
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Relic
Abundance

Direct Detection
Red : mÆ = 120
Blue : mÆ = 200

(in GeV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

m X

∆

Figure 2: Allowed region in δ = mh/mX − 1 versus mX (in TeV) from relic abundance and

from CDMS direct search.

of Z protons and A− Z neutrons normalized to one nucleon is then given by

σ0 =
1

π

(

mN

mX

)2
∣

∣

∣

∣

∣

Zfp + (A− Z)fn
A

∣

∣

∣

∣

∣

2

. (27)

Here we will use 73Ge with Z = 32 and A − Z = 41 to compare against the recent CDMS

result [11]. In the range 0.3 < mX < 1.0 TeV, the experimental upper bound is very well

approximated by [12]

σ0 < 2.2× 10−7 pb (mX/1 TeV)0.86. (28)

In Fig. 2 this appears as a solid line for mφ = 120 GeV, to the right (left) of which is allowed

(forbidden) by the CDMS data. If mφ > 120 GeV, this line will move slightly to the left.

It is seen that the relic-abundance constraint is indeed allowed, but direct search is still far

away from testing this model.

As for indirect searches from the annihilation of dark matter in space and inside the sun

9



Figure 3: Interactions of X1 with quarks in direct-search experiments.

or earth, these are subject to more uncertainties (such as contributions from astrophysical

sources and the dark-matter density distribution in our galaxy and its capture rates in

celestial bodies) beyond what we are able to estimate in this model. In particular, if we

regard the satellite observation of a positron excess (with no antiproton excess) as being due

to dark-matter annihilation without a boost factor, then this model cannot explain it.

6 Collider phenomenology

The dark-matter gauge boson X1 may be produced at the Large Hadron Collider in asso-

ciation with the lightest exotic heavy quark h through d + gluon → h + X1. Consider the

following mass spectrum:

mh > mX2
> mE,N > mX1

. (29)

In that case, h may decay into X1d and X2d, then X2 will decay into E+l−, E−l+, N̄ν, Nν̄,

and E+ → X1l
+, E− → X1l

−, N̄ → X1ν̄, N → X1ν. This means that about 1/4 of the

time, pp → hX1 will end up with one quark jet + missing energy + l+i l
−
j and pp → hh̄
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will end up with two quark jets + missing energy + l+i l
−
j . Some of these two-lepton final

states could involve different flavors because of mixing of families in the SU(2)N sector. Note

that X2 → X1 + virtual X3 → X1 + dd̄ (l−l+) is also possible, but very much suppressed if

mE,N < mX2
. Of course, the hierarchy chosen is not compulsory, other than our stated aim

to consider X1 as a dark vector boson, whereas mE = mN is required by the structure of the

model. With a different choice of hierarchy, there may not be distinct leptonic final states

so the signal will be much more difficult to see. We do not claim that our scenario must be

realized, only that it could be realized.

 0
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Figure 4: Normalized signal and background distributions as functions of missing transverse

energy.

In the following, we choosemX1
= 700 GeV,mE,N = 735 GeV,mX2

= 770 GeV, andmh =

980 GeV. (These values satisfy the constraints from direct detection and relic abundance

shown in Fig. 2, and are chosen to optimize the signal. If other points in the allowed region

are chosen, the signal to background discrimination would be less, and more integrated
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Event rates for ℓ+ℓ− + 1jet + ET/ with pTℓ
> 20, pTj

> 50

ET/ > 100 ET/ > 200 ET/ > 300

Signal Background Signal Background Signal Background

3.07 237 1.6 0 0.59 0

Table 1: Event rates (fb) for ℓ+ℓ− + 1 jet +ET/ at LHC with Ecm = 14 TeV, using CTEQ6L

parton distribution functions, and the average of final-state particle masses as partonic Ecm.

luminosity would be required to find the signal.) We find that at the LHC (Ecm = 14 TeV),

the cross section of dX1X1l
−l+ production is 5.5 fb. We show in Fig. 4 the distribution of

this signal versus the expected standard-model background (dominated by tt̄) as a function

of missing transverse energy, using the cut pT > 20 GeV for each lepton with |ηl| < 2.5, and

pT > 50 for the one hadronic jet. We use CalcHEP [13] in combination with Pythia [14] in this

calculation. We show in Table 1 that a cut on missing transverse energy of 200 GeV would

eliminate the standard-model background which is dominated by tt̄ events. We should point

out that in this calculation, we have not taken into account a number of experimental issues,

such as lepton, jet, or missing-energy smearing, multiple scattering, underlying events, or jet

mistag. Uncertainty in jet-energy scale or parton distribution functions may also change the

results. We only wish to show that this model has a potentially interesting feature which

may help it to be observed at the LHC.

Another possible signal comes from theQCD production of pp → hh̄, with the subsequent

decays of h and h̄ as discussed before. There are now 2 jets in the final state. In Table 2, we

show the opposite-sign dilepton event rates associated with 2 jets and missing energy with

the same assumed masses and cuts. We see that whereas the background may be reduced for

large missing energy, it is still too big for this search to be successful. The reason is that tt̄

production contributes much more two-jet than one-jet events. The production cross section

(5.2 fb) for the signal here is about the same as before (5.5 fb) without cuts. (Note that
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pp → hh̄ itself is much greater than pp → hX1 if mh = mX , but the former is suppressed by

phase space because mh is assumed much greater then mX , and to reach the dilepton final

state, the former is also suppressed by an additional branching fraction.)

Event rates for ℓ+ℓ− + 2jet + ET/ with pTℓ
> 20, pTj

> 50

ET/ > 100 ET/ > 200 ET/ > 300

Signal Background Signal Background Signal Background

1.47 348.5 1.04 19.8 0.54 3.96

Table 2: Event rates (fb) for ℓ+ℓ− +2 jets +ET/ at LHC with Ecm = 14 TeV, using CTEQ6L

parton distribution functions, and the average of final state particle masses as partonic Ecm.

If we consider the production of X1X1 with a monojet, this suffers from a large tt̄ back-

ground. With our benchmark point, the signal cross section is 4.2 fb, with a cut of ET/ >

300 GeV, whereas the background is almost 12 fb with the same cuts. This generic process

is not helpful for discovering dark matter in our case.

7 Concluding remarks

The (nonsupersymmetric) dark vector-gauge-boson model [6] is studied in some detail. Its

complete particle content is delineated and analyzed, including the most general Higgs po-

tential and its minimization. The identification of the X1 boson as a dark-matter candidate

(to account for the observed relic abundance) constrains the SU(2)N breaking scale to be

about 1 TeV. We have updated the theoretical cross section forX1 to interact in underground

direct-search experiments. The present CDMS bound is shown to be much below what is

expected in this scenario. On the other hand, the prognosis for observing the consequences

of this model at the LHC with Ecm = 14 TeV and integrated luminosity of 10 fb−1 is good,

with an expected signal in our specific example of 16 events (dimuon + jet + missing energy)

against negligible background for mX1
= 700 GeV and mh = 980 GeV.
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Appendix

The minimum of V is determined by

V0 = µ2
1v

2
1 + µ2

2v
2
2 + µ2

χu
2
2 + µ2

∆(u
2
1 + u2

3)− 2µ2
3u1u3 + 2µ22v1v2u2 + 2µ12u1u

2
2 + 2µ23u3u

2
2

+
1

2
λ1v

4
1 +

1

2
λ2v

4
2 +

1

2
λ3v

4
1 +

1

2
λ4u

4
2 +

1

2
λ5(u

2
1 + u2

3)
2 +

1

2
λ6(u

2
1 − u2

3)
2

+ f2v
2
1u

2
2 + f4v

2
1v

2
2 + f5v

2
2u

2
2 + f6u

2
2(u

2
1 + u2

3) + f7u
2
2(u

2
3 − u2

1)

+ f8v
2
2(u

2
1 + u2

3) + f9v
2
1(u

2
1 + u2

3) + f10v
2
1(u

2
1 − u2

3), (30)

where

0 = µ2
1 + (f9 + f10)u

2
1 + f2u

2
2 + (f9 − f10)u

2
3 + (λ1 + λ3)v

2
1 + f4v

2
2 +

µ22v2u2

v1
, (31)

0 = µ2
2 + f8u

2
1 + f5u

2
2 + f8u

2
3 + f4v

2
1 + λ2v

2
2 +

µ22v1u2

v2
, (32)

0 = µ2
χ + (f6 − f7)u

2
1 + λ4u

2
2 + (f6 + f7)u

2
3 + f2v

2
1 + f5v

2
2 +

µ22v1v2
u2

+ 2µ12u1 + 2µ23u3, (33)

0 = µ2
∆ + (λ5 + λ6)u

2
1 + (f6 − f7)u

2
2 + (λ5 − λ6)u

2
3 + (f9 + f10)v

2
1 + f8v

2
2

+
µ12u

2
2

u1

− µ2
3u3

u1

, (34)

0 = µ2
∆ + (λ5 − λ6)u

2
1 + (f6 + f7)u

2
2 + (λ5 + λ6)u

2
3 + (f9 − f10)v

2
1 + f8v

2
2

+
µ23u

2
2

u3

− µ2
3u1

u3

. (35)

There are 22 scalar degrees of freedom, 6 of which become massless Goldstone bosons,

leaving 16 physical particles. Their masses are given below:

m2(φ±
3 ) = (f1 − f2)u

2
2 + 2f10(u

2
3 − u2

1)− λ3v
2
1 + (f3 − f4)v

2
2 − µ22v2u2/v1, (36)

m2(sin βφ±
1 + cos βφ±

2 ) = [f3 − f4 − µ22u2/v1v2]
√

v21 + v22 , (37)

where tan β = v2/v1 and the orthogonal combination cos βφ±
1 − sin βφ±

2 is massless, corre-

sponding to the longitudinal component of W±. The 5 × 5 mass-squared matrix spanning
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(φ1I , φ2I , χ2I ,∆1I ,∆3I) is given by




















−µ22v2u2/v1 −µ22u2 −µ22v2 0 0

−µ22u2 −µ22v1u2/v2 −µ22v1 0 0

−µ22v2 −µ22v1 −µ22v1v2
u2

− 4µ12u1 − 4µ23u3 −2µ12u2 2µ23u2

0 0 −2µ12u2
−µ12u

2

2
+µ2

3
u3

u1

µ2
3

0 0 2µ23u2 µ2
3

−µ23u
2

2
+µ2

3
u1

u3





















,

(38)

with two zero mass eigenvalues, spanned by the states v1φ1I − v2φ2I and −(v1/2)φ1I −

(v2/2)φ2I + u2χ2I − 2u1∆1I + 2u3∆3I , corresponding to the longitudinal components of Z

and Z ′. In the (χ1I ,∆2I , φ3I) sector, the mass-squared matrix is given by

[(f1 − f2)v
2
1 + 2f7(u

2
1 − u2

3)− µ22v1v2/u2 − 2(µ12 − µ23)(u1 − u3)]χ
2
1I

+ 2
√
2u2[µ23 − µ12 + f7(u1 + u3)]χ1I∆2I + 2[µ22v2 − (f1 − f2)v1u2]χ1Iφ3I

+ [λ6(u1 + u3)
2 − µ12u

2
2/2u1 − µ23u

2
2/2u3 + µ2

3(u1 + u3)
2/2u1u3]∆

2
2I

− 2
√
2f10v1(u3 + u1)∆2Iφ3I + [(f1 − f2)u

2
2 + 2f10(u

2
3 − u2

1)− µ22v2u2/v1]φ
2
3I , (39)

with one zero mass eigenvalue, corresponding to the longitudinal component of X1. The

mass-squared matrix of the (χ1R,∆2R, φ3R) sector is analogously given by

[(f1 − f2)v
2
1 + 2f7(u

2
1 − u2

3)− µ22v1v2/u2 − 2(µ12 + µ23)(u1 + u3)]χ
2
1R

+ 2
√
2u2[µ23 + µ12 + f7(u3 − u1)]χ1R∆2R − 2[µ22v2 − (f1 − f2)v1u2]χ1Rφ3R

+ [λ6(u1 − u3)
2 − µ12u

2
2/2u1 − µ23u

2
2/2u3 + µ2

3(u1 − u3)
2/2u1u3]∆

2
2R

+ 2
√
2f10v1(u3 − u1)∆2Rφ3R + [(f1 − f2)u

2
2 + 2f10(u

2
3 − u2

1)− µ22v2u2/v1]φ
2
3R, (40)

with one zero mass eigenvalue, corresponding to the longitudinal component of X2. The

remaining 5 scalar fields (φ1R, φ2R, χ2R,∆1R,∆3R) form a mass-squared matrix


















2(λ1 + λ3)v
2
1 2f4v1v2 2f2v1u2 2(f9 + f10)v1u1 2(f9 + f10)v1u3

2f4v1v2 2λ2v
2
2 2f5v2u2 2f8v2u1 2f8v2u3

2f2v1u2 2f5v2u2 2λ4u
2
2 2(f6 − f7)u1u2 2(f6 + f7)u2u3

2(f9 + f10)v1u1 2f8v2u1 2(f6 − f7)u1u2 2(λ5 + λ6)u
2
1 2(λ5 − λ6)u1u3

2(f9 − f10)v1u3 2f8v2u3 2(f6 + f7)u2u3 2(λ5 − λ6)u1u3 2(λ5 + λ6)u
2
3


















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+





















−µ22v2u2/v1 µ22u2 µ22v2 0 0

µ22u2 −µ22v1u2/v2 µ22v1 0 0

µ22v2 µ22v1 −µ22v1v2/u2 2µ12u2 2µ23u2

0 0 2µ12u2
−µ12u

2

2
+µ2

3
u3

u1

−µ2
3

0 0 2µ23u2 −µ2
3

−µ23u
2

2
+µ2

3
u3

u1





















. (41)
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