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Scalar and tensor interactions were once competitors to the now well-established

V − A structure of the Standard Model weak interactions. We revisit these inter-

actions and survey constraints from low-energy probes (neutron, nuclear, and pion

decays) as well as collider searches. Currently, the most stringent limit on scalar and

tensor interactions arise from 0+ → 0+ nuclear decays and the radiative pion decay

π → eνγ, respectively. For the future, we find that upcoming neutron beta decay and

LHC measurements will compete in setting the most stringent bounds. For neutron

beta decay, we demonstrate the importance of lattice computations of the neutron-

to-proton matrix elements to setting limits on these interactions, and provide the



first lattice estimate of the scalar charge and a new average of existing results for the

tensor charge. Data taken at the LHC is currently probing these interactions at the

10−2 level (relative to the standard weak interactions), with the potential to reach

the <∼ 10−3 level. We show that, with some theoretical assumptions, the discovery

of a charged spin-0 resonance decaying to an electron and missing energy implies a

lower limit on the strength of scalar interactions probed at low energy.
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I. INTRODUCTION

Nuclear and neutron beta decays have historically played a central role in determining the

V −A structure of weak interactions and in shaping what we now call the Standard Model

(SM) [1, 2]. Nowadays, precision measurements of low-energy processes such as neutron

decay can be used to probe the existence of non-SM interactions, such as novel scalar and

tensor structures. Considerable experimental efforts using both cold and ultracold neutrons

are underway worldwide, with the aim to improve the precision of various neutron decay

observables [3, 4]: lifetime [5–9], beta asymmetry A [10–13] neutrino asymmetry B [12, 14],

electron-neutrino correlation a [15–17], and Fierz interference term b [15, 18]. In some of the

asymmetry measurements there are prospects to reach experimental sensitivities between

10−3 and 10−4; this makes these observables very interesting probes of new physics effects

originating at the TeV scale that have expected size (v/ΛBSM)2, where v = (2
√

2GF )−1/2 ≈

174 GeV and ΛBSM denotes the mass scale where physics beyond the Standard Model (BSM)

appears.

The overall goal of this work is to assess the discovery potential and discriminating

power of planned precision beta-decay measurements with cold and ultracold neutrons. In

particular we wish to study the sensitivity of neutron decay to new physics in the context of

and in competition with: (i) other low-energy precision measurements in nuclear beta decays

and pion decays; and (ii) high-energy collider searches (Tevatron, LHC). In order to achieve

our goal, we work within an effective field theory (EFT) setup, in which the dynamical effects

of new heavy BSM degrees of freedom are parameterized by local operators of dimension

higher than four built with SM fields. In the absence of a clear new-physics signal from

collider searches, we find this way of proceeding the most attractive and general: all specific

model analyses of beta decays (see Ref. [19] for a discussion within supersymmetry) can be

cast in the EFT language and the constraints on effective operators that we will derive can

be readily converted into constraints on the parameters of any SM extension.

Among various BSM contributions we identify new scalar and tensor operators involv-

ing left-handed neutrinos as the most promising to probe with neutron decay, because they

interfere with the SM amplitude and thus contribute at linear order to decay parameters.

Motivated by this, in the unified EFT framework we present a comprehensive analysis of con-

straints on such scalar and tensor BSM interactions from a broad range of low-energy probes
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(neutron decay, nuclear decays, pion decays) as well as collider searches.1 To our knowledge,

such a comprehensive model-independent EFT analysis is missing in the literature, despite

being essential to judging the relative merits of various low-energy experiments.

Extracting bounds on short-distance scalar and tensor couplings from neutron and nu-

clear beta decays requires knowledge of the nucleon scalar and tensor form factors at zero

momentum transfer, denoted here by gS,T . Prior to this work, gS and gT have been esti-

mated within quark models to be O(1) (see, for example, Ref. [20]). The importance of the

hadronic form factors can be appreciated by considering the extreme case in which gS,T � 1,

which would dilute the sensitivity of beta decays to new physics. Concerning the hadronic

form factors, the main results of this work are:

• We provide the first lattice-QCD estimate of gS and a new average of existing gT

results. Current lattice uncertainties are at the level of 50% for gS and 35% for gT .

This already enables much improved phenomenology (see for example Fig. 9).

• We show that a precision of 20% in gS will be needed to take full advantage of 10−3-

level neutron-decay measurements. We identify and discuss the key systematic effects

that need to be brought under control in order to achieve δgS/gS ∼ 20%.

Besides the new estimates of gS and gT with lattice QCD (LQCD), the main new findings

of our analysis can be summarized as follows:

• Currently, the most stringent constraints on the scalar and tensor effective couplings

(denoted by εS and εT ) arise from low-energy probes. εS is constrained by 0+ → 0+

nuclear beta decays, while εT is constrained by the Dalitz-plot analysis of the radiative

pion decay π → eνγ. There are also potentially very strong constraints on εS,T from

the ratio of π → eν to π → µν decay rates. This constraint arises from operator

mixing: once a scalar or tensor interaction is generated by new physics, SM radiative

corrections will generate an effective pseudoscalar operator that mediates the helicity-

suppressed mode π → eν. If the flavor structure of the SM extension is known, this

constraint could be the strongest.

1 The EFT analysis of collider searches is valid as long as the particles that mediate the new interactions

are above threshold for production at colliders.
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• Future neutron-decay measurements of the Fierz interference term b and the analogue

term bν in the neutrino asymmetry B can greatly improve existing constraints on

tensor interactions: precision levels δb, δbν ∼ 10−3 would provide a four-fold or higher

improvement in the bound (depending on the sign of εT ), as shown in Figs. 2 and 9.

On the other hand, δb, δbν ∼ 10−4-level measurements would improve current bounds

on εT by one order of magnitude and current bounds on εS by a factor of two (see

Fig. 3).

• Current collider bounds from the LHC are not yet competitive with low-energy con-

straints (see Fig. 10). Folding in the current uncertainty on gS, the LHC bounds on

εS and εT are weaker by a factor of about 4 and 3, respectively, than those obtained

from nuclear decays and π → eνγ.

• Future LHC results, based on higher center-of-mass energy and higher integrated lumi-

nosity, would definitely improve on current low-energy bounds on εS,T , and would com-

pete with improved low-energy constraints based on δb, δbν ∼ 10−3 in future neutron-

decay measurements (see Fig. 11).

• Finally, we have explored the possibility that a mediator of new scalar interactions

can be produced at the LHC. In this case, the EFT approach breaks down at collider

energies and we have derived a general correlation between production cross-section

for a scalar resonance at colliders and new-physics signal in neutron decay. This

correlation links the discovery of a scalar resonance in pp→ eν +X at the LHC with

a lower bound (i.e. guaranteed signal) on εS. This is illustrated in Figs. 12, 13, and

14.

The paper is organized as follows. In Section II we present the effective theory description

of low-energy charged-current processes and briefly discuss how the coefficients may be

constrained. In Section III we explain our notation for the matrix elements required to

describe the neutron beta decay and discuss how this decay constrains the parameters in the

effective field theory. In Section IV, we discuss the low-energy phenomenological constraints

on chirality-violating scalar and tensor operators in the effective Lagrangian. Section V

discusses current and planned lattice analyses for the matrix elements of the quark bilinear

structures ūΓd between neutron and proton states, with special emphasis on the scalar and
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tensor structures. We provide the first estimate of gS from lattice QCD and a new average

of existing calculations of gT . In Section VI we summarize the impact of lattice estimates

of gS,T on the phenomenology of scalar and tensor BSM interactions. In Section VII, we

present the constraints on the short-distance couplings obtained from an analysis of high-

energy scattering experiments and discuss the improvement expected in the next few years.

We present our concluding remarks in Section VIII. Two appendices provide details of the

operators contributing to charged-current processes and of the neutron-decay differential

decay distribution.

II. EFFECTIVE THEORY DESCRIPTION OF LOW-ENERGY

CHARGED-CURRENT PROCESSES

Following Ref. [21], we describe new physics contributions to low-energy charged-current

(CC) processes in a model-independent effective-theory setup, paying special attention to

neutron-decay observables and their interplay with other low-energy and collider measure-

ments.

We parameterize the effect of new degrees of freedom and interactions beyond the SM via

a series of higher-dimensional operators constructed with low-energy SM fields, assuming the

existence of a mass gap between the SM and its ultraviolet completion. If the SM extension is

weakly coupled, the resulting TeV-scale effective Lagrangian linearly realizes the electroweak

(EW) symmetry SU(2)L×U(1)Y and contains a SM-like Higgs doublet [22]. We also assume

that potential right-handed neutrino fields (sterile with respect to the SM gauge group) are

heavy compared to the weak scale and therefore have been integrated out of the low-energy

effective theory. This method is quite general and allows us to study the implications of

precision measurements on a large class of models.

In our analysis we truncate the expansion of the effective Lagrangian to the lowest non-

trivial order, given by dimension-six operators. The contribution from the dimension-six

operators to physical amplitudes involves terms proportional to v2/Λ2
BSM and E2/Λ2

BSM,

where v = 〈ϕ0〉 ≈ 174 GeV is the vacuum expectation value (VEV) of the Higgs field and

E is the characteristic energy scale of a given process. We will work to linear order in these

ratios of scales.
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A. Effective Lagrangian

In Ref. [21] a minimal basis of SU(2)×U(1) invariant dimension-six operators contribut-

ing to low-energy charged-current processes was identified (see Appendix A for details).

Denoting with Λi the effective dimensionful coupling associated with the operator Oi, we

can write the effective Lagrangian as

L(eff) = LSM +
∑
i

1

Λ2
i

Oi −→ LSM +
1

v2

∑
i

α̂i Oi , with α̂i =
v2

Λ2
i

, (1)

where in the last step we have set the correct dimensions by the Higgs VEV v and defined

the dimensionless new-physics couplings α̂i, which are O(10−3) for Λi ∼ TeV.

In this framework one can derive the low-scale O(1 GeV) effective Lagrangian for semi-

leptonic transitions. It receives contributions from both W -exchange diagrams (with mod-

ified W -fermion couplings) and the four-fermion operators O
(3)
lq , Oqde, Olq, O

t
lq defined in

Appendix A. This matching procedure leads to [21]

LCC =
−g2

2M2
W

Vij

[(
1 + [vL]``ij

)
¯̀
Lγµν`L ū

i
Lγ

µdjL + [vR]``ij ¯̀
Lγµν`L ū

i
Rγ

µdjR

+ [sL]``ij ¯̀
Rν`L ū

i
Rd

j
L + [sR]``ij ¯̀

Rν`L ū
i
Ld

j
R

+ [tL]``ij ¯̀
Rσµνν`L ū

i
Rσ

µνdjL

]
+ h.c. . (2)

where we use σµν = i[γµ, γν ]/2. The SM effective Lagrangian corresponds to vL = vR =

sL = sR = tL = 0. The effective couplings vL, vR, sL, sR, tL ∼ v2/Λ2
i are functions of the

coupling α̂i of SU(2)×U(1) invariant weak-scale operators. While their explicit expressions

can be found in Appendix A, here we simply point out two important features:

• vL involves a linear combination of three weak-scale effective couplings: a quark-gauge

boson vertex correction, a lepton-gauge boson vertex correction, and a four-fermion

operator coupling left-handed quarks and leptons (same chirality structure as the SM).

An important consequence is that by SU(2)× U(1) gauge invariance, vL is related to

Z0 fermion-antifermion vertex corrections and neutral-current four-fermion vertices.

• vR and sL, sR, tL are in one-to-one correspondence with weak-scale effective couplings.

vR describes a right-handed charged-current quark coupling, while sL, sR, tL corre-

spond to scalar and tensor four-quark operators. Again, SU(2) gauge invariance
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implies that these couplings mediate not only charged-currrent processes but also

processes such as ēe↔ ūu, d̄d, with scalar or tensor Dirac structure.

In what follows, we will work in the limit in which the effective non-standard couplings

vL,R, sL,R, and tL are real and we will focus only on CP-even observables (for a discussion of

CP-odd observables refer to Ref. [23]). To simplify the notation, we will omit flavor indices,

e.g. [vL]eeud → vL. In addition, we will use the tree-level definition of the Fermi constant

g2/(8M2
W ) ≡ G

(0)
F /
√

2. Working to linear order in the non-standard couplings, and focusing

on the ij = ud component, the semi-leptonic effective Lagrangian can be written in the

following useful form:

LCC = −G
(0)
F Vud√

2

(
1 + εL + εR

)[
¯̀γµ(1− γ5)ν` · ū

[
γµ −

(
1− 2εR

)
γµγ5

]
d

+ ¯̀(1− γ5)ν` · ū
[
εS − εPγ5

]
d+ εT ¯̀σµν(1− γ5)ν` · ūσµν(1− γ5)d

]
+ h.c., (3)

where we have defined the effective scalar, pseudoscalar, and tensor couplings as follows:

εL,R ≡ vL,R εS ≡ sL + sR εP ≡ sL − sR εT ≡ tL . (4)

While the physical amplitudes are renormalization scale and scheme independent, the in-

dividual effective couplings εi and hadronic matrix elements can display a strong scale de-

pendence. Throughout the paper, we will quote estimates and bounds for the εi at the

renormalization scale µ = 2 GeV in the MS scheme, unless otherwise specified.

The Lagrangian (3) mediates all low-energy charged-current weak processes involving

up and down quarks. For a recent analysis of flavor-dependent constraints, see Ref. [24].

In some of the charged-current processes involving first-generation quarks the theoretical

and experimental precision has reached or will reach in the near future a level that allows

stringent bounds on the new-physics effective couplings. In this work we are interested in

assessing the sensitivity of neutron decay to new physics in the context of (i) other low-energy

constraints from nuclear beta decays and pion decays; and (ii) constraints from high-energy

colliders (LEP, Tevatron, LHC). To set the stage for the discussion, we summarize the

observables that give us access to the couplings appearing in Eq. (3) (we will come back in

detail to these in following sections):

• The combination (εL + εR) affects the overall normalization of the effective Fermi con-

stant. This is phenomenologically accessible through quark-lepton universality tests
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(precise determination of Vud from 0+ → 0+ nuclear decays under the assumption

that GF = Gµ, where Gµ is the Fermi constant extracted from muon decay). An

extensive analysis of the constraints on (εL + εR) from universality tests and preci-

sion electroweak observables from the Z-pole was performed in Ref. [21], within BSM

scenarios with minimal flavor violation. In this context it was shown that constraints

from low-energy are at the same level or stronger (depending on the operator) than

from Z-pole observables and e+e− → qq̄ cross-section measurements at LEP.

• The right-handed coupling εR affects the relative normalization of the axial and vector

currents. In neutron decay εR can be reabsorbed in a redefinition of the axial coupling

and experiments are only sensitive to the combination (1 − 2εR)gA/gV (gV and gA

are the vector and axial form factors at zero momentum transfer, to be precisely

defined below). Disentangling εR requires precision measurements of (1 − 2εR)gA/gV

and precision calculations of gA/gV in LQCD.

• The effective pseudoscalar combination εP ≡ sL − sR contributes to leptonic decays

of the pion. It is strongly constrained by the helicity-suppressed ratio Rπ ≡ Γ(π →

eν[γ])/Γ(π → µν[γ]). Moreover, as discussed in Refs. [25–27], the low-energy coupling

εP receives contributions proportional to εS,T through electroweak radiative correc-

tions. We will discuss the resulting constraints on εS,P,T in Section IV A 4.

• Both the scalar combination εS ≡ sL + sR and the tensor coupling εT ≡ tL contribute

at linear order to the Fierz interference terms in beta decays of neutrons and nuclei,

and the neutrino-asymmetry correlation coefficient B in polarized neutron and nuclear

decay (see Appendix B for notation). Because of the peculiar way in which the Fierz

interference term appears in many asymmetry measurements, bounds on εS and εT

can also be obtained by observation of the beta-asymmetry correlation coefficient A,

electron-neutrino correlation a, and positron polarization measurements in various

nuclear beta decays. Finally, the tensor coupling εT can also be constrained through

Dalitz-plot studies of the radiative pion decay π → eνγ.

• All of the above operators can provide signatures at colliders. Currently there are no

competitive collider bounds on the chirality-flipping scalar and tensor couplings εS,P,T ,

because their interference with the SM amplitude carries factors of mf/Ef (where mf
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is a light fermion mass, f ∈ {e, u, d}), which at collider energies strongly suppresses

the whole effect. So we immediately see that low-energy physics provides a unique

opportunity to probe these couplings, to which collider searches are sensitive only

quadratically (i.e. via non-interference terms). We will derive in Section VII the

current bounds on εS,T from searches at the LHC, and we will show that with higher

center-of-mass energy and integrated luminosity they will become competitive with

low-energy searches.

Next, we review the analysis of neutron decay in the SM and beyond within the EFT

framework described above.

III. NEUTRON β DECAY

The amplitude for neutron decay n(pn) → p(pp)e
−(pe)ν̄e(pν) mediated by the effective

Lagrangian (3) involves in principle the matrix elements between the neutron and proton of

all possible quark bilinears. These can be parameterized in terms of Lorentz-invariant form

factors as follows [28]:

〈p(pp)| ūγµd |n(pn)〉 = ūp(pp)

[
gV (q2) γµ +

g̃T (V )(q
2)

2MN

σµνq
ν +

g̃S(q2)

2MN

qµ

]
un(pn)

(5a)

〈p(pp)| ūγµγ5d |n(pn)〉 = ūp(pp)

[
gA(q2)γµ+

g̃T (A)(q
2)

2MN

σµνq
ν +

g̃P (q2)

2MN

qµ

]
γ5un(pn)

(5b)

〈p(pp)| ū d |n(pn)〉 = gS(q2) ūp(pp)un(pn) (5c)

〈p(pp)| ū γ5 d |n(pn)〉 = gP (q2) ūp(pp) γ5 un(pn) (5d)

〈p(pp)| ū σµν d |n(pn)〉 = ūp(pp)
[
gT (q2)σµν + g

(1)
T (q2) (qµγν − qνγµ)

+ g
(2)
T (q2) (qµPν − qνPµ) + g

(3)
T (q2)

(
γµ/qγν − γν/qγµ

)]
un(pn)

(5e)

where up,n are the proton and neutron spinor amplitudes, P = pn + pp, q = pn − pp is the

momentum transfer, and MN = Mn = Mp denotes a common nucleon mass.2 Note that

2 In the case of vector and axial bilinears, the induced tensor term proportional to σµνq
ν can be traded for

an independent “scalar” form factor proportional to Pµ. Here we choose to follow the parameterization

of Ref. [28].
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all the above spinor contractions are O(1), except for ūpγ5un which is O(q/MN). Moreover,

as discussed below, second-class current contributions g̃S and g̃T (A) affect the amplitude at

levels below the expected experimental sensitivities.

Our goal here is to identify TeV-induced new physics contaminations to the amplitude

of typical size εP,S,T ∼ (v/ΛBSM)2 ∼ 10−3. The effect we are after is of the same size as

recoil corrections q/MN ∼ 10−3 as well as radiative corrections α/π. So in our analysis

we perform a simultaneous expansion in new physics contributions, recoil, and radiative

corrections keeping terms up to first order and neglecting higher-order terms, as they are

smaller than the current and planned experimental sensitivity. In light of this simultaneous

expansion in εP,S,T , q/MN , and α/π, we now discuss contributions from all quark-bilinear

operators:

• Vector current: The form factor gV (0) contributes at O(1) to the amplitude and

g̃T (V )(0) contributes at first order in q/MN . Also, up to isospin-breaking corrections of

order (Mn−Mp)/MN ∼ q/MN , the weak magnetism form factor g̃T (V )(0) can be related

to the difference of proton and neutron magnetic moments, that are well known. On

the other hand, the induced-scalar form factor g̃S(q2) vanishes in the isospin limit [28],

so it is of order (Mn −Mp)/MN ∼ q/MN . Since it multiplies one power of qµ/MN , its

contribution to the amplitude is effectively second order in the recoil expansion, so we

drop it.

• Axial current: From the axial current only gA(0) contributes up to first order. The

induced-tensor form factor g̃T (A)(q
2) vanishes in the isospin limit [28], and since it

multiplies one power of qµ/MN its contribution to the amplitude is of second order

in q/MN , so we drop it. Similarly, the contribution associated with the induced-

pseudoscalar form factor g̃P is quadratic in our counting, because the pseudoscalar

bilinear is itself of order q/MN , and it comes with an explicit q/MN suppression, so

we neglect it.3

3 This effect is, however, enhanced. Using partially conserved axial current one can show that the form factor

g̃P is of order MN/mq ∼ 100, making the contribution to the amplitude of order 10−4. In Section V D we

review the status of experimental data and LQCD calculations showing this enhancement. The effect of

g̃P on the neutron beta-decay rate has been worked out in Ref. [29], and it should be included when the

experiments reach that level of precision.
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• Pseudoscalar bilinear: The pseudoscalar bilinear ūpγ5un is itself of order q/MN .

Since it necessarily multiplies a new-physics effective coupling εP (there is no pseu-

doscalar coupling in the SM), this term is also of second order in our expansion, and

we drop it.

• Scalar and tensor bilinears: These bilinears enter into the analysis multiplied by

new-physics effective couplings εS,T . So we need the matrix elements to zeroth order in

the recoil expansion, which leaves us with gS(0) and gT (0). g
(1,2,3)
T (q2) are all multiplied

by one power of q and g
(3)
T vanishes in the isospin limit [28].

In summary, to the order we are working, the amplitudes depend only on gi ≡ gi(0)

(i ∈ {V,A, S, T}) and g̃T (V )(0). Up to second-order corrections in isospin breaking, one

has gV = 1 [30, 31]. For notational convenience, it is also useful to define the ratio of the

axial to vector form factors as λ ≡ gA/gV . As noted earlier, in presence of non-standard

right-handed interactions the axial form factor is always multiplied by the correction factor

(1− 2εR), so that the neutron-decay amplitude is actually a function of λ̃ ≡ λ(1− 2εR).

Finally, in order to make contact with the existing standard references on neutron and

nuclear beta-decay phenomenology [2, 32, 33], let us note here that Eq. (5) can be viewed

as the matching conditions from our quark-level effective theory Eq. (3) to a nucleon-level

effective theory, such as the one originally written down by Lee and Yang [32]. The Lee-Yang

effective couplings Ci, C
′
i (i ∈ {V,A, S, T}) can be expressed in terms of our parameters as

Ci =
GF√

2
Vud C̄i (6a)

C̄V = gV (1 + εL + εR) (6b)

C̄A = −gA (1 + εL − εR) (6c)

C̄S = gS εS (6d)

C̄T = 4 gT εT , (6e)

with C ′i = Ci, since we only have left-handed neutrinos in our low-energy effective theory.

Operators involving right-handed neutrinos do not interfere with the SM amplitude and

therefore contribute at second order to all observables. An analysis involving such operators

will be presented elsewhere [34]. Finally, notice that Ref. [23] defines the couplings CA, C
′
V,S,T

with an overall minus sign compared to ours.
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A. Differential decay distribution

Including the effect of recoil corrections, radiative corrections, and BSM couplings, the

differential decay rate for polarized neutrons reads [35–38]

dΓ

dEedΩedΩν

=
(G

(0)
F )2 |Vud|2

(2π)5
(1 + 2εL + 2εR)

(
1 + 3 λ̃2

)
· w(Ee) ·D(Ee,pe,pν ,σn) ,

(7)

where pe and pν denote the electron and neutrino three-momenta, while σn denotes the

neutron polarization. The bulk of the electron spectrum is described by

w(Ee) = peEe(E0 − Ee)2 F (Z = 1, Ee)
(

1 +
α

2π
eRV +

α

2π
δ(1)
α (Ee)

)
(8)

where E0 = ∆− (∆2−m2
e)/(2Mn) (with ∆ = Mn−Mp) is the electron endpoint energy, me

is the electron mass, and F (Z,Ee) is the Fermi function that captures the Coulomb radiative

corrections (Z denotes the charge of the daughter nucleus, which coincides with the proton

in this case). The function δ
(1)
α (Ee) [37, 38] captures model-independent (“outer”) radia-

tive corrections, while the coupling eRV is sensitive to the short-distance (“inner”) radiative

correction [37, 39]. The differential decay distribution function D(Ee,pe,pν ,σn) is given

by [37, 38]

D(Ee,pe,pν ,σn) = 1 + c0 + c1
Ee
MN

+
me

Ee
b̄+ ā(Ee)

pe · pν
EeEν

+ Ā(Ee)
σn · pe
Ee

+ B̄(Ee)
σn · pν
Eν

+ C̄(aa)(Ee)

(
pe · pν
EeEν

)2

+ C̄(aA)(Ee)
pe · pν
EeEν

σn · pe
Ee

+ C̄(aB)(Ee)
pe · pν
EeEν

σn · pν
Eν

, (9)

where b̄ is an effective Fierz interference term and ā(Ee), Ā(Ee), B̄(Ee) and C̄aa,aA,aB(Ee)

are effective energy-dependent correlation coefficients, whose full expressions [37, 38, 40]

we report in Appendix B, where one can also find the coefficients c0,1 generated by recoil

corrections.4 In absence of radiative corrections, recoil corrections and BSM contributions,

the effective correlation coefficients ā(Ee), Ā(Ee) and B̄(Ee) reduce to the following well-

known leading-order expressions

ā(Ee)→
1− λ2

1 + 3λ2
, Ā(Ee)→

2λ(1− λ)

1 + 3λ2
, B̄(Ee)→

2λ(1 + λ)

1 + 3λ2
, (10)

4 See also Ref. [41] for a discussion of recoil corrections to the proton asymmetry.
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with the rest of coefficients (c0,1, b̄, C̄(aa,aA,aB)(Ee)) vanishing in this limit.

The impact of new-physics contributions can be summarized as follows:

• The effect of εL/R was already evident from the effective Lagrangian of Eq. 3: they

induce (i) an overall correction proportional to (1 + 2εL + 2εR), and (ii) the shift

λ → λ̃ = λ(1 − 2εR). As a consequence of this second effect, working to linear order

in new-physics contributions, the measurements of different correlation coefficients by

themselves cannot disentangle λ and εR; they simply provide independent measures of

λ̃. In order to probe εR from correlation measurements, one needs to independently

know gA/gV from LQCD calculations.

• The hadronic-scale scalar and tensor couplings εS,T appear at linear order only through

the Fierz interference term b̄ and the analogue term bν in the neutrino-asymmetry

parameter (bν is the part of B̄(Ee) proportional to me/Ee, see Appendix B for a

precise definition)

bBSM =
2

1 + 3λ2

[
gS εS − 12λ gT εT

]
≈ 0.34 gS εS − 5.22 gT εT , (11a)

bBSM
ν =

2

1 + 3λ2

[
gS εS λ− 4gT εT (1 + 2λ)

]
≈ 0.44 gS εS − 4.85 gT εT . (11b)

To the order we are working, in the above expressions we can use either λ or λ̃.

Experimentally, one can probe the new-physics contributions in λ̃, bBSM, and bBSM
ν through

(i) measurements of the electron spectrum, aimed to isolate the term b̄ in Eq. (9); or (ii)

correlation measurements, aimed to isolate ā(Ee), Ā(Ee), and B̄(Ee) in Eq. (9). Correlation

measurements involve the construction of asymmetry ratios [36]. For example, in order to

isolate Ā(Ee) one constructs the ratio Aexp(Ee) = (N+(Ee)−N−(Ee))/(N+(Ee) + N−(Ee))

where N±(Ee) are the spectra corresponding to events with σn · pe > 0 and σn · pe < 0.

Similarly, in order to isolate B̄(Ee) one can use the simple ratio Bexp(Ee) = (Q++(Ee) −

Q−−(Ee))/(Q++(Ee) + Q−−(Ee)), where Q++(Ee) and Q−−(Ee) are the spectra of events

with σn ·pe > 0, σn ·pp > 0 and σn ·pe < 0, σn ·pp < 0, respectively. One can immediately

see that through the total spectra in the denominator, both Aexp(Ee) and Bexp(Ee) are

sensitive to the Fierz interference term b̄, so that asymmetry measurements involving simple
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ratios as described above really measure

Ỹ (Ee) =
Ȳ (Ee)

1 + b̄ me/Ee
, (12)

where Y ∈ {A,B, a, ...}. Moreover, each individual experiment applies optimization cuts in

Ee, thus mesuring a specific weighted average of Eq. (12).

The above observation has important consequences for the phenomenology of neutron

decay: (i) The me/Ee component of Bexp(Ee) is sensitive not to bBSM
ν but rather to the

combination (1 + 3λ2)/(2λ(1 + λ)) bBSM
ν − bBSM ≈ bBSM

ν − bBSM. Besides Bexp(Ee), it might

be possible to construct a set of observables that disentangle the contribution of bBSM and

bBSM
ν [42]. In this case the BSM sensitivity of bBSM

ν alone is of interest. In our phenomeno-

logical analysis we will study both cases (constraints from bBSM
ν − bBSM and bBSM

ν ). (ii) More

generally, correlation coefficients measurements traditionally used to determine λ = gA/gV

within the SM (εL/R = 0, b = bν = 0), provide information on three independent parameters

in our EFT setup: λ̃ = λ(1− 2εR), bBSM, and bBSM
ν .5 A fit to the current data [43–46] (with

precision δA/A ∼ 0.005, δa/a ∼ 0.05, δB/B ∼ 0.005) yields −0.3 < bBSM, bBSM
ν < 0.5 at

the 95% C.L. [4], which, as we will see, is not competitive with other bounds. It will be

interesting, however, to explore the implications of future experimental improvements in the

combined extraction of λ̃, bBSM and bBSM
ν from a, A, and B measurements, along the lines

described in Refs. [4, 47].

The main conclusion from the above discussion is that measurements of the differential

neutron-decay distribution are mostly sensitive to new physics through bBSM and bBSM
ν , which

depend on the scalar and tensor couplings, εS and εT , to linear order. Therefore, apart from

the next section, which we include for completeness, in the rest of this paper we restrict

our discussion on these exotic scalar and tensor interactions, comparing the physics reach

of neutron decay to other low-energy and collider probes.

5 In other words, if εS,T are larger than the experimental errors, one has to observe an unexpected

energy dependence of the form m/E in the measurements of the correlation coefficients (in addition

to the various expected energy dependences due to sub-leading standard effects that are detailed in

Appendix B). Thus, for a certain energy, a determination of λ from a(A) would be actually extract-

ing the quantity λ̃
(
1 + na(A)b

BSMm/E
)
, whereas in a B-based determination of λ, we would have

λ̃
(
1 + nB(bBSM

ν − bBSM)m/E
)
, where na = (1−λ2)(1+3λ2)

8λ2 ≈ −0.28, nA = − (1−λ)(1+3λ2)
(1+λ)(1−3λ) ≈ −0.25 and

nB = (1+λ)(1+3λ2)
(1−λ)(1+3λ) ≈ −10.2 .



14

B. Total decay rate and determination of Vud

For completeness, we discuss here the BSM corrections to the neutron decay rate and

the extraction of Vud from neutron decay. Expressing G
(0)
F in terms of the Fermi constant

determined in muon decay Gµ (this involves non-standard contributions to the purely lep-

tonic charged-current interaction encoded in the coefficient ṽL [21]) and performing the

phase-space integrations, the total decay rate reads

Γ =
G2
µ|Vud|2m5

e

2π3

(
1 + 3λ̃2

)
· f · (1 + ∆RC)

[
1 + 2εL − 2ṽL + 2εR + bBSM I1(x0)

I0(x0)

]
. (13)

In the above expression, the corrections from BSM physics are encoded in λ̃ and the terms

in square brackets. ∆RC = 3.90(8) × 10−2 is the SM electroweak radiative correction [39],

and the phase-space integrals are defined by

Ik(x0) =

∫ x0

1

x1−k (x0 − x)2
√
x2 − 1 dx f = I0(x0)(1 + ∆f ) , (14)

where x0 = E0/me and ∆f encodes Coulomb and recoil corrections that are numerically quite

important, I0(x0) = 1.629, f = 1.6887, I1(x0)/I0(x0) = 0.652 (See Ref. [39] for details). In

order to extract Vud from neutron decays one needs (see Eq. 13) experimental input on the

neutron lifetime 1/Γ [48, 49] and λ̃, which is usually extracted from beta-asymmetry Aexp(Ee)

measurements [43, 44] (after accounting for recoil and radiative corrections). Taking into

account Eq. (12), the usual method for extracting λ̃ actually determines λ̃
(
1 + c bBSM

)
,

where c is a certain O(1) number that depends on the specific experimental analysis. In

summary what we really extract from neutron beta decay is not Vud but the combination

|Vud|2
∣∣∣
n→peν̄

= |Vud|2
[

1 + 2εL − 2ṽL + 2εR + bBSM

(
I1(x0)

I0(x0)
− 6λ2

1 + 3λ2
c

)]

≈ |Vud|2
[

1 + 2εL − 2ṽL + 2εR + bBSM (0.65− 1.66 c)

]
. (15)

IV. LOW-ENERGY PHENOMENOLOGY OF SCALAR AND TENSOR

INTERACTIONS

A. Other probes of scalar and tensor interactions

In order to assess the discovery potential of experiments planning to measure b̄ and B̃

at the level of 10−3 and 10−4, it is crucial to identify existing constraints on new scalar and



15

tensor operators. As we discuss below in some detail, the most stringent constraint on the

scalar coupling εS arises from 0+ → 0+ nuclear beta decays. On the other hand, the most

stringent bound on the tensor effective coupling εT arises from the Dalitz-plot study of the

radiative pion decay π → eνγ. For completeness, we will also briefly review (i) constraints

on εS,T from other nuclear beta-decay observables, showing that they are not competitive at

the moment; and (ii) constraints on εS,P,T arising from the helicity-suppressed π → eν decay.

As we will show, the latter provides potentially the strongest constraints on εS,T , once the

flavor structure of the underlying theory is known. This provides very stringent constraints

on model building.

1. 0+ → 0+ transitions and scalar interactions

At leading order within the SM and new physics, the differential decay rate for an unpo-

larized nucleus is [33]

dΓ0+→0+

dEedΩedΩν

= 2
(G

(0)
F )2 |Vud|2

(2π)5
(1 + 2εL + 2εR) peEe(Ẽ0 − Ee)2F (−Z,Ee)

×
{

1 + a0+

pe · pν
EeEν

+ b0+

me

Ee

}
(16)

where Ẽ0 = MP −MD is the electron endpoint energy expressed in terms of the masses

of parent and daughter nuclei, F (−Z,Ee) is the Fermi function, Z is the atomic number

of the daughter nucleus (the minus sign applies to β+ emitters for which the most precise

measurements exist). For 0+ → 0+ transitions the coefficients a, b are

a0+ = 1 (17a)

b0+ = −2γ gS εS γ =
√

1− α2Z2 , (17b)

and the total rate is given by

Γ0+→0+ =
G2
µ|Vud|2m5

e

π3
f0+→0+

(
1 + ∆

(0+→0+)
RC

) [
1 + 2εL − 2ṽL + 2εR + b0+

I1(x̃0)

I0(x̃0)

]
(18)

where x̃0 = Ẽ0/me. In this last expression, the SM sub-effects have been included through

∆
(0+→0+)
RC and also inside f0+→0+ , that up to Coulomb, nuclear distortion and recoil effects, is

f0+→0+ = I0(x̃0), similarly to what happens in the neutron-decay case. The various radiative

corrections (including ∆
(0+→0+)
RC ) are discussed in detail in Refs. [50, 51]. Comparing the



16

values of Vud as extracted from neutron and nuclear decays, we find (see Eq. (15) and the

preceding discussion)

|V 0+→0+

ud |2

|V n→peν̄
ud |2

= 1 + bBSM
0+

I1(x̃0)

I0(x̃0)
− bBSM

n

(
I1(x0)

I0(x0)
− 6λ2

1 + 3λ2
c

)
, (19)

which in principle provides another handle on scalar and tensor interactions.

Let us now come to the point of greatest interest for this paper’s discussion. From a

comparison of precisely known half-lives corrected by phase-space factors f0+→0+ , Hardy

and Towner [51] found b0+ = −0.0022(26), which translates into the following bound on the

product of nucleon scalar form factor and short-distance scalar coupling:

− 1.0× 10−3 < gS εS < 3.2× 10−3 (90% C.L.) . (20)

This is the most stringent bound on scalar interactions from low-energy probes.

2. Radiative pion decay and the tensor interaction

An analysis of the Dalitz plot of the radiative pion decay π+ → e+νeγ is sensitive to the

same tensor operator that can be probed in beta decays. The experimental results from

the PIBETA collaboration [52] put constraints on the product εT × fT of the short-distance

coupling εT and the hadronic form factor fT defined by [53]

〈γ(ε, p)|ūσµνγ5d|π+〉 = −e
2
fT (pµεν − pνεµ) , (21)

where pµ and εµ are the photon four-momentum and polarization vector, respectively. The

analysis of Ref. [53], based on a large-Nc-inspired resonance-saturation model provides fT =

0.24(4) at the renormalization scale µ = 1 GeV, with parametric uncertainty induced by the

uncertainty in the quark condensate. The 90%-C.L. experimental constraint6 −2.0×10−4 <

εT × fT < 2.6× 10−4, when combined with the above estimate for fT run to 2 GeV implies

− 1.1× 10−3 < εT < 1.36× 10−3 (90% C.L.) . (22)

Again, this is the most stringent constraint on the tensor coupling from low-energy ex-

periments. The next best constraints, which we report in the next section, arise from

measurements of nuclear beta decays.

6 Note that there is a factor of 2 difference in the normalization of the tensor coupling εT compared to what

was used in Refs. [26, 52].
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3. Bounds on scalar and tensor structures from other nuclear beta decays

Bounds on scalar and tensor interactions can be obtained from a number of observables in

nuclear beta decays, other than 0+ → 0+ transitions. Although these bounds are currently

not competitive, we summarize them here for completeness.

The leading sensitivity to scalar and tensor operators appears through the Fierz inter-

ference term b, which in the limit of pure Gamow-Teller transitions is proportional to the

tensor coupling (bGT = −(8γgT εT )/λ), while in pure Fermi transitions is proportional to the

scalar coupling (bF = 2γgSεS). Significant constraints on b arise from electron-polarization

observables [33] as well as in measurements of Ã and ã in both Fermi and Gamow-Teller

transitions. Here is a summary of current bounds on εS,T [2]:

• The most stringent constraint from the beta asymmetry in pure Gamow-Teller tran-

sitions (ÃGT) arises from 60Co measurements and implies [54]

− 2.9× 10−3 < gT εT < 1.5× 10−2 (90% C.L.) . (23)

Similar bounds can be obtained from measurements of ÃGT in 114In decay [55]: −2.2×

10−2 < gT εT < 1.3× 10−2 (90 % C.L.).

• Measurements of the ratio PF/PGT of longitudinal polarization in the positron emitted

in pure Fermi and Gamow-Teller transitions [56, 57] imply

− 0.76× 10−2 < gS εS +
4

λ
gT εT < 1.0× 10−2 (90% C.L.) . (24)

• Preliminary results have been reported on the measurement of the longitudinal polar-

ization of positrons emitted by polarized 107In nuclei [58]. The corresponding 90 %

C.L. sensitivity to tensor interactions, |gT εT | < 3.1×10−3, is quite promising although

not yet competitive with the radiative pion decay.

• Finally, the beta-neutrino correlation a has been measured in a number of nuclear

transitions [59–62]. The resulting constraints on scalar and tensor interactions are

nicely summarized in Fig. 7 of Ref. [59]. In terms of the coupling constants used here,

the 90 % C.L. combined bound on the tensor interaction reads |gT εT | < 5 × 10−3,

again not competitive with the radiative pion decay.



18

We observe that in order to improve on the existing bound on εT from π → eνγ, future

measurements sensitive to bGT should aim at sensitivities of δbGT <∼ 6.3 × gT × 10−3. For

example, a 10−3 measurement of bGT (such as the one planned at CENPA using 6He [63])

would probe gT εT at the 2× 10−4-level, providing a very competitive bound.

4. Constraints on εS,P,T from π → eν

The ratio Rπ ≡ Γ(π → eν[γ])/Γ(π → µν[γ]) probes more than just the effective low-

energy pseudoscalar coupling εP defined earlier as the coefficient of the operator ē(1−γ5)νe ·

ūγ5d. In fact, since (i) Rπ is defined as the ratio of electron-to-muon decay and (ii) the

neutrino flavor in both the decays is not observed, this observable is sensitive to the whole

set of parameters εαβP defined by

Leff ⊃ GF√
2
Vud ε

αβ
P ēα(1− γ5)νβ · ūγ5d , (25)

where α ∈ {e, µ} refers to the flavor of the charged lepton and β ∈ {e, µ, τ} refers to the neu-

trino flavor. One generically expects SM extensions to generate non-diagonal components in

εαβP,S,T , In the new notation the previously defined pseudoscalar, scalar, and tensor couplings

reads εP,S,T ≡ εeeP,S,T . It is important to note here that only εeeP and εµµP can interfere with

the SM amplitudes, while the remaining εαβP contribute incoherently to both the numerator

and denominator in Rπ.7 In summary, allowing for non-standard interactions and factoring

out the SM prediction for Rπ, one can write8:

Rπ

RSM
π

=

[(
1− B0

me
εeeP

)2

+
(
B0

me
εeµP

)2

+
(
B0

me
εeτP

)2
]

[(
1− B0

mµ
εµµP

)2

+
(
B0

mµ
εµeP

)2

+
(
B0

mµ
εµτP

)2
] . (26)

In the above equation the factors of B0/me,µεP represent the ratio of new-physics ampli-

tude over SM amplitude. The latter is proportional to the charged-lepton mass due to

angular-momentum conservation arguments, while the former is proportional to 〈0|ūγ5d|π〉,

7 While in our setup the incoherent contribution arises from “wrong-flavor” neutrinos, in general it could

have a different nature. For example, the incoherent contribution to Rπ discussed in Refs. [23, 26] is due

to a right-handed light neutrino.
8 Here we are neglecting the overall effect of vL/R, not enhanced by helicity arguments.
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characterized by the scale- and scheme-dependent parameter9

B0(µ) ≡ M2
π

mu(µ) +md(µ)
. (27)

Since BMS
0 (µ = 1 GeV) = 1.85 GeV and consequently B0/me = 3.6× 103, Rπ has enhanced

sensitivity to εαβP , and one needs to keep quadratic terms in these new physics coefficients.10

Inspection of Eq. (26) reveals that if the new-physics couplings respect εeαP /me = εµαP /mµ,

then Rπ/R
SM
π = 1, and there are no constraints on these couplings. On the other hand,

if the effective couplings εαβP are all of similar size, one can neglect the entire denominator

in Eq. (26), a it is suppressed with respect to the numerator by powers of me/mµ. We

will assume to be in this second scenario. In this case the constraint in Eq. (26) forces the

couplings εeeP , ε
eµ
P , ε

eτ
P to live in a spherical shell of radius me/B0

√
Rexp
π /RSM

π ≈ 2.75 × 10−4

centered at εeeP = me/B0 ≈ 2.75 × 10−4, εeµP = εeτP = 0. The thickness of the shell is

numerically 1.38×10−6 and is determined by the current combined uncertainty in Rexp
π [64,

65] and RSM
π [66, 67]: Rexp

π /RSM
π = 0.996(5) (90% C.L.). This is illustrated in Fig. 1, where

we plot the allowed region in the two-dimensional plane given by εeeP and a generic “wrong-

flavor” coupling denoted by εexP . Note that the allowed region is given by the thickness

of the curve in the figure, thus enforcing a strong correlation between εeeP and εexP . Since

εα 6=βP are essentially unconstrained by other measurements and can be of order 10−3, we can

marginalize over either one of the couplings to obtain a bound on the other. The resulting

90%-C.L. bounds are

− 1.4× 10−7 < εeeP < 5.5× 10−4, or − 2.75× 10−4 < εeαP < 2.75× 10−4 (α 6= e) , (28)

in qualitative agreement with the findings of Refs. [23, 26].

As originally discussed in Refs. [25–27], the pseudoscalar coupling εeeP can be radiatively

generated starting from nonzero εS,T . Hence, the stringent constraint in Eq. (28) puts

constraints on the same εS,T that can be probed in beta decays. The physics of this effect is

9 Note that the scale and scheme dependence of B0(µ) is compensated in physical quantities by the scale

and scheme dependence of the Wilson coefficients εαβP .
10 This feature is specific to purely leptonic decays of pseudoscalar mesons. In beta decays one never

encounters relative enhancement factors such as B/me, because εP is always multiplied by nucleon velocity

factors and the SM amplitude does not suffer anomalous suppression (as the helicity argument implies in

the case of π → eν).
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FIG. 1: The allowed region in the two-dimensional plane εeeP -εexP determined by Rπ is given by an

annulus of thickness 1.38 × 10−6. In the absence of information on εexP , the 90 % C.L. bound on

εeeP is −1.4× 10−7 < εeeP < 5.5× 10−4.

very simple: once the scalar, pseudoscalar, and tensor operators are generated by some non-

standard physics at the matching scale Λ, electroweak radiative corrections induce mixing

among these three operators. So even if one engineers a small pseudoscalar contribution

εP (Λ) at the matching scale, known SM physics generates a nonzero εP (µ) at some lower

energy scale µ via loop diagrams. The general form of the constraint can be worked out by

using the three-operator mixing results from Ref. [27]11. The leading-order result is

εαβP (µ) = εαβP (Λ)

(
1 + γPP log

Λ

µ

)
+ εαβS (Λ) γSP log

Λ

µ
+ εαβT (Λ) γTP log

Λ

µ
(29a)

γPP =
3

4

α2

π
+

113

72

α1

π
≈ 1.3× 10−2 (29b)

γSP =
15

72

α1

π
≈ 6.7× 10−4 (29c)

γTP = −9

2

α2

π
− 15

2

α1

π
≈ −7.3× 10−2 , (29d)

where α1 = α/ cos2 θW and α2 = α/ sin2 θW are the U(1) and SU(2) weak couplings, ex-

11 The authors of Ref. [27] focused only on the phenomenology of scalar-to-pseudoscalar mixing.
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pressed in terms of the fine-structure constant and the weak mixing angle. Setting εeeP (Λ) = 0

and neglecting the small O(α/π) fractional difference between εS,T (Λ) and the observable

εS,T (µ) at the low scale, the 90% C.L. constraint on the εS-εT plane reads

−1.4× 10−7

log(Λ/µ)
< γSP εS + γTP εT <

5.5× 10−4

log(Λ/µ)
. (30)

Even assuming log(Λ/µ) ∼ 10 (e.g. Λ ∼ 10 TeV and µ ∼ 1 GeV), using the numerical values

of γSP,TP , one can verify that the individual constraints are at the level of |εS| <∼ 8× 10−2

and |εT | <∼ 10−3, implying that this constraint on εT is roughly equivalent to the one

arising from π → eνγ. Of course, these bounds become logarithmically more stringent as

the new-physics scale Λ grows.
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FIG. 2: 90% C.L. allowed regions in the εS-εT plane implied by (i) the existing bound on b0+ (green

horizontal band); (ii) projected 10−3-level limits on b (red band), bν − b (blue band, left panel),

and bν (blue band, right panel). The hadronic form factors are taken to be gS = gT = 1 in the

ideal scenario of no uncertainty. The impact of hadronic uncertainties is discussed in Section VI.

B. The impact of future b and B neutron measurements

The discussion in the preceding subsection has shown that currently the most stringent

low-energy constraints on novel scalar and tensor interactions arise, respectively, from the

Fierz interference term in 0+ → 0+ nuclear beta decays (Eq. (20)) and from the radiative

pion decay π → eνγ (Eq. (22)). It is important to realize that the allowed εS interval derived
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FIG. 3: 90% C.L. allowed regions in the εS-εT plane implied by (i) the existing bound on b0+ (green

horizontal band); (ii) projected 10−4-level limits on b (red band), bν − b (blue band, left panel),

and bν (blue band, right panel). The hadronic form factors are taken to be gS = gT = 1 in the

ideal scenario of no uncertainty. The impact of hadronic uncertainties is discussed in Section VI.

from Eq. (20) depends on the nucleon form factor gS (as do all the constraints arising from

neutron and nuclear beta decays). For a given experimental accuracy, the constraint on the

short-distance couplings εS,T becomes stronger as δgS,T/gS,T → 0. In this section, we will

first explore the maximal constraining power of nuclear and neutron measurements in the

ideal scenario of no uncertainty on gS,T , and for illustrative purposes we assume the central

values gS = gT = 1. We will quantify the implications of finite uncertainties on gS,T on the

εS,T constraints in Section VI.

With the above assumptions on gS,T , the currently allowed region (at 90% C.L.) on

the εS-εT plane is given by the green horizontal band in Figs. 2 and 3. The vertical (εS)

boundaries of this region are determined by the constraint from b0+ , while essentially the

entire horizontal (εT ) range on the scale of these plots is allowed by the π → eνγ limit (see

Eq. (22)).

In this ideal scenario of no uncertainty on gS,T , we can quantify the impact of future

neutron measurements by plotting the 90% C.L. allowed region in the εS-εT plane implied

by projected limits on b, bν − b, and bν . The neutron constraints are derived using Eqs. (11)

and in generating the plots we use the central value λ = 1.269. In Fig. 2 we focus on the

case in which the experimental sensitivity on b, bν − b, and bν is at the 10−3 level. In the
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left panel we show the constraints from the existing b0+ limit (green horizontal band) and

10−3-level limits on b and bν − b, (red and blue bands, respectively). In the right panel

we replace the 10−3-level limit on bν − b with the 10−3 limit on bν , which in principle can

be isolated experimentally [42]. In Fig. 3 we plot the constraints resulting from projected

limits on b, bν − b, and bν at the 10−4 level. The intersection of the various bands in Figs. 2

and 3 denotes the combined allowed region in the εS-εT plane that would result after future

neutron measurements. Two important remarks are in order here:

• For a given experimental sensitivity, the combination bν − b gives weaker constraints

on εS,T than b or bν . This is easily understood: by taking the difference of Eqs. (11)

one sees that bν − b ∝ λ− 1, which for λ ≈ 1.27 provides a suppression factor.

• There is an almost exact “degeneracy” in the constraints from b and bν , again controlled

by the form of Eqs. (11) and the numerical value of λ. For the purposes of constraining

εS,T , an upper limit on b is essentially equivalent to an upper limit on bν . This provides

strong motivation to pursue experimental determinations of both bν − b and bν via

neutrino asymmetry (B) measurements. From the theoretical point of view, we can

use either b or bν , and in subsequent sections we will use b for illustrative purposes.

Fig. 2 clearly illustrates that with experimental sensitivity in neutron decay at the 10−3

level, the most stringent constraint arises from a combination of b0+ and b or b0+ and bν . The

complementarity of these measurements would lead to a significant (four-fold) improvement

in the bound on εT , compared to Eq. (22). The impact of 10−4 measurements of b, bν , and

bν − b in neutron decay is even more dramatic (Fig. 3), as in that case the constraint from

b0+ would become irrelevant and the combination of b and bν − b or b and bν would imply

an improvement of one order of magnitude in the bound on εT and a factor of two in εS.

In Section VI we will revisit the impact of proposed neutron measurements on εS,T in

light of nonzero uncertainties in the hadronic matrix elements gS,T .

V. LATTICE CALCULATION OF MATRIX ELEMENTS

To connect the measurements of b and bν in neutron decays to new physics at the TeV

scale requires precision measurements of the matrix elements of isovector bilinear quark

operators between an initial neutron and final proton state, in particular of the scalar and
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tensor operators. Lattice QCD is a path-integral formulation of QCD on a discrete, four-

dimensional Euclidean spacetime, and numerical simulations of it provide the best nonper-

turbative method for evaluating these matrix elements. It has been successfully employed to

calculate hadron masses and their decay properties, such as matrix elements, with control

over statistical and all systematic errors, in many cases at higher precision than can be

measured experimentally [68, 69].

To obtain continuum results, estimates from LQCD obtained at a number of values of

lattice spacing a and spacetime volume L3 × T are extrapolated to a → 0 and L → ∞ to

eliminate the artifacts introduced by formulating QCD in a finite discretized box. Another

source of systematic uncertainty is introduced when estimates obtained at multiple values

of u and d quark masses heavier than in nature are extrapolated to the physical point.

One typically uses chiral perturbation theory to carry out this extrapolation, with low-

energy constants determined by over-constraining the fits using experimental and lattice

data [70]. Current state-of-the-art simulations are beginning to provide results at physical

light-quark masses obviating the need for a chiral extrapolation. Recent calculations by the

BMW collaboration [71, 72] at multiple lattice spacings, volumes and pion masses as light

as 120 MeV provide an excellent demonstration of how hadronic properties can be extracted

with fully understood and controlled systematics.

In this section we review current LQCD calculations of the nucleon isovector matrix

elements in order to highlight what needs to be done to obtain the precision required to probe

new physics at the TeV scale in neutron-decay experiments. We also present our current

best estimates of gS and gT , which are used in the phenomenological analysis presented in

Sec. VI.

A. Lattice methodology

A lattice calculation proceeds in two steps: First, a Monte-Carlo sampling of the QCD

vacuum, called an “ensemble of gauge-field configurations”, is generated using an appropriate

discretization of the gauge and fermion actions. The particular choices of the actions have

important implications for the computational cost of the calculation, for the size of the

discretization errors and for which symmetries are violated at finite lattice spacing. We will

review the existing calculations, summarized in Table I, with two light flavors (2-flavor) and



25

two light and one strange flavor (2+1-flavor) as these are close approximations to the real

world.

The second step is to calculate expectation values on these ensembles of gauge configura-

tions and from these extract estimates of the desired observables. For hadronic observables,

the fermion action used at this stage may differ from the one used in producing the gauge

configurations, in which case it is called a “mixed-action” calculation. Further details on

the domain-wall fermion (DWF) formulation are given in Refs. [73–77]; clover fermions in

Ref. [78]; twisted-mass fermions in Ref. [79]; and improved staggered fermions in Refs. [80–

82].

Calculation of the isovector nuclear matrix elements requires two separate optimizations

in addition to the choice of the actions. The first is to tune the size of smearing applied to

the local interpolating operator with the correct quantum numbers of the nucleon

χN(x) = εabc[ψ
aT
1 (x)Cγ5ψ

b
2(x)]ψc1(x), (31)

where a, b, c are color indices, C is the charge-conjugation matrix, and ψ1 and ψ2 are u or

d quarks; for example, to create a proton, we want ψ1 = u and ψ2 = d. This local operator,

unfortunately, couples to the nucleon and all its excited states with the same quantum

numbers. To improve the overlap with the desired ground state, the quark fields in this

operator may be “smeared” around the point x. The goal of this smearing is to approximate

the ground-state nucleon wavefunction. We adopt the commonly used application of the

three-dimensional gauge-invariant Laplacian to smear around the source point x and tune

the smearing size to improve the overlap with the ground-state nucleon in the two- and three-

point correlation functions. The two-point function, projected to a definite momentum at

either the source or sink time by making a three-dimensional Fourier transformation, is given

by

Γ
(2)
AB(t;p) =

〈
χNA (t,p)(χNB )†(p)

〉
=
∑
n

〈
0|χNA (t,p)|n

〉 〈
n|(χNB )†(0)|0

〉 1

2En(p)
e−En(p)t, (32)

where the indices A and B indicate the choice of operator smearing. The nucleon states are

normalized as 〈0|(χNA )†|p, s〉 = XAus(p) where XA is the overlap of the operator with the

state, and the spinors satisfy
∑

s us(p)us(p) = E(p)γt − iγ · p + m. In the limit of large

time separation t, the correlator is dominated by the ground-state nucleon, and the above
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form simplifies to

Γ
(2)
AB(t;p) =

E(p) +Mn

2E(p)
XA(p)XB(p)e−E(p)t. (33)

To calculate the nucleon matrix elements, we also need to construct nucleon three-point

functions with insertion operators OΓ(x) ≡ ZΓO
b
Γ = ZΓu(x)Γd(x), where Ob is the bare oper-

ator, Γ represents one of the sixteen Dirac matrices and ZΓ is the associated renormalization

constant of the operator. The three-point functions take the form

Γ
(3)
AB(ti, t, tf ;pi,pf ) = ZΓ

〈
χNB (tf ,pf )O

b
Γ(t)χNA (ti,pi)

〉
. (34)

By inserting a complete set of states {n, n′} between the operators, this three-point function

can be written as

Γ
(3),T
AB (ti, t, tf ,pi,pf ) = a3ZΓ

∑
n

∑
n′

Xn′,B(pf )Xn,A(pi)

4E ′n(pf )En(pi)
e−(tf−t)E′n(pf )e−(t−ti)En(pi)

×
∑
s,s′

Tαβun′(pf , s
′)β
〈
Nn′(pf , s

′)
∣∣Ob

Γ

∣∣Nn(pi, s)
〉
un(pi, s)α,

(35)

where T is an appropriate projection on the baryon spinors. At sufficiently large source-sink

separation (tsep = tf − ti), the signal due to excited states dies out exponentially, and the

sum over states reduces to just the ground states n = n′ = 0. The operator overlap factors

XA,B and the exponential time dependence can be canceled out by constructing a ratio of

three- and two-point functions, which for the simple case of pi = pf = 0 is

RO =
Γ

(3),T
AB (ti, t, tf ;pi = 0,pf = 0)

Γ
(2),T
AB (ti, tf ;p = 0)

. (36)

In practice, choosing a sufficiently large source-sink separation tsep to make the excited-state

contamination negligible is challenging because the statistical signal in both the two- and

three-point functions involving nucleons degrades exponentially with tsep. Thus, the second

optimization required is over tsep. In ongoing LQCD calculations we are exploring multiple

values of tsep and will explicitly include excited states in our analysis to understand and

reduce this systematic error.

B. Issues in extracting the matrix elements

The matrix elements of most interest to us are those of the scalar and tensor bilinear

operators, ūd and ūσµνd; however, we are calculating all five Lorentz structures as the
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Collaboration Action Nf Mπ (MeV) L (fm) (MπL)min a (fm) gΓ Calculated

QCDSF[83] clover 2 595–1000 1.0–2.0 4.6 0.07–0.116 gA

QCDSF[84] clover 2 170–270 2.1–3.0 2.6 0.08–0.116 gA, gT

CLS[85] clover 2 290–575 1.7–3.4 4.2 {0.05, 0.07, 0.08} gA

ETMC[86] twisted Wilson 2 260–470 {2.1, 2.8} 3.3 {0.056, 0.070, 0.089} gA

RBC[87] DWF 2 490–695 1.9 4.75 0.117 gA, g∗P , gT , gV

RBC/UKQCD[88, 89] DWF 2+1 330–670 {1.8, 2.7} 3.8 0.114 gA, gT

LHPC[90–92] DWF on staggered 2+1 290–870 {2.5, 2.7} 3.68 0.1224 gA, g∗P , gT

QCDSF[93] clover 2+1 350–480 1.87 3.37 0.078 gA

HSC[94] anisotropic clover 2+1 450–840 2.0 4.57 0.125 (at = 0.036) gA

TABLE I: A summary of recent LQCD calculations of gA, g∗P and gT by different collaborations

using two and three flavors of dynamical quarks and O(a)-improved actions. For brevity, we use

g∗P for the induced-pseudoscalar charge discussed in Sec. V D and (MπL)min for the minimum value

of MπL used in that set of calculations.

additional cost is negligible. There is independent interest in high-precision measurements

of gA, and it provides a cross-check of the lattice systematics. The three-point correlation

functions of the vector operator will be used to construct ratios of matrix elements and

renormalization constants to reduce systematic errors. In this section we summarize issues

relevant to the LQCD calculations of these matrix elements.

The desired matrix elements of isovector bilinear operators OΓ(x) = ZΓu(x)Γd(x) have a

number of simplifying features and allow us to make certain approximations:

• There are no disconnected Feynman diagrams contributing to the three-point func-

tions. These typically arise when quark fields in composite operators can be contracted

between themselves.

• There are no lower-dimensional operators with which isovector bilinear operators mix,

so there are no power-law divergences. Only multiplicative renormalization factors ZΓ

need to be calculated.

• Current lattice simulations are done with degenerate u, d quarks, at zero momen-

tum transfer, and do not include electromagnetic effects. The momentum transfer in

neutron decay, q2 = 1.7 MeV2 is sufficiently small that the matrix elements can be

calculated at qµ = 0. Also, the isospin-breaking and electromagnetic contributions are

expected to be smaller than the statistical errors.
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• Protons and neutrons are both stable asymptotic states of strong interactions, so there

are no other hadronic final states that complicate the calculations.

The issues that need to be addressed to obtain precision results are the following:

• The signal-to-noise ratio in both two- and three-point correlators decreases rapidly

with the time separation tsep between the source and the sink in Eq. 36. It is, therefore,

necessary to improve the signal by increasing the overlap of the operators used as

sources/sinks with the nucleon ground state. As discussed in Sec. V A, our current

approach is to (i) smear the quark fields in the interpolating operator given in Eq. 31

and tune the smearing size, and (ii) explicitly include excited states in the analysis.

• A careful optimization of the Eucledian time interval tsep between the source and sink

in the three-point functions has to be carried out for each lattice spacing a and light-

quark mass. On the one hand, this interval should be as large as possible to isolate the

nucleon ground state on either side of the operator insertion, and on the other hand

the statistical noise limits the time separation. While there is no a priori minimum

value of tsep as it depends on how well the source and sink operators are tuned, in

Sec. V C we show that current data suggest that asymptotic estimates are obtained

with tsep ≥ 1.2 fm for the operators used. Our focus will be on improving the operators

and investigating 2–3 values of tsep to reduce and quantify this systematic error.

• One needs to demonstrate that the lattices are large enough that finite-size effects are

under control, especially for proposed calculations with pions masses below 350 MeV.

When the spatial volume used is too small, finite-volume effects arise due to the

coarseness of the available lattice momenta, squeezing of the wavefunction due to the

interaction of a spatially extended particle with itself and contamination from partons

wrapping around the lattice. Previous studies have shown, as a rule of thumb, that

finite-size effects are smaller than statistical errors for MπL & 4. The detailed form of

the finite-volume corrections is quantity-dependent.

• Very high-statistics measurements, typically on a few thousand gauge configurations,

will be needed to improve the signal in the two- and three-point correlation functions

to overcome the rapid growth in noise with tsep. Our ongoing calculations show that



29

the statistics needed will be determined by gS as it has the smallest signal-to-noise

ratio.

• The calculations need to be performed at a sufficient number of values of the light-

quark mass to extrapolate results to the physical value ml = 0.037ms, and at sufficient

number of values of the lattice spacing a to extrapolate to the continuum limit.

• The renomalization constants ZΓ depend on the choice of both the gauge and fermion

actions and have to be calculated for each ensemble of gauge configurations. In past

calculations, ZA typically varied between 0.75–0.9 for the lattice spacings that have

been simulated. The scale-dependent ZS, ZP , and ZT (given in the MS scheme at

2 GeV) show larger variations and dependence on the lattice action. One-loop tad-

pole improved perturbation theory can underestimate corrections to |1−ZΓ| by 50%.

Nonperturbative methods, such as calculating ZΓ in the RI-MOM scheme [95–97], are

preferred as they reduce this uncertainty to a few percent, and we will use them in

our calculations.

In the next four sub-sections we summarize the extent to which these issues are under control

in current calculations of each of the matrix elements in order to highlight what needs to be

done to achieve the desired precision of 10–20%. The analyses of gA, gP and gT are reviews

of existing calculations, and the new estimate of gS we present is preliminary.

C. Nucleon axial charge gA

The axial charge of the nucleon gA ≡ gA(q2 = 0), defined in Eq. 5, is a fundamental

hadronic observable, well measured in neutron beta-decay experiments: gA = 1.2695(29) ×

gV [98], where the vector charge gV = 1 since Vud has been factored out in the Lagrangian

given in Eq. (3). Since the axial charge is experimentally well known, it has long served as a

benchmark quantity for LQCD calculations, particularly for estimating systematic errors in

other nucleon matrix elements that are either poorly measured in experiments or completely

unknown.

Many groups worldwide have calculated gA using various gauge ensembles and fermion

actions as summarized in Table I and shown in the first two panels of Fig. 4 for two- and three-

flavor simulations, respectively. The results from each study, after a chiral extrapolation to
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the physical pion mass, are shown in the third panel of Fig. 4.

The overall observations are: (i) The central values vary between 1.12 < gA < 1.26, and

the errors are much larger than the experimental uncertainty. The deviations from the ex-

perimental value are large, considering that corrections due to strong interactions determine

gA− 1. (ii) There is no significant difference between 2- and 2+1-flavor estimates or depen-

dence on the light-quark mass at these unphysically large M2
π ∝ mq. More high-precision

calculations are needed to determine whether the chiral behavior changes at smaller quark

masses and to gain control over the extrapolation to the physical Mπ. (iii) Within errors,

the lattice data are consistent between the different groups (with different lattice actions),

different lattice spacings and between 2- and 2 + 1-flavor theories. Our understanding of

systematic errors, discussed in Sec. V B, are summarized next.

Investigations of finite-volume effects have been carried out by the RBC/UKQCD col-

laboration [88]. They used domain-wall fermions at a fixed lattice spacing of 1/a = 1.73(3)

GeV (equivalently, a = 0.114(2) fm) on two lattice sizes L = 1.8 and 2.7 fm. They found

that at fixed M2
π ∼ 0.1 GeV2 there are significant finite-volume effects for L < 2.5 fm, and

these lower the value of gA. They also analyzed gA as a function of MπL and found that the

data scale in this variable; i.e. data from a given action and for a given number of flavors

collapse onto a single curve. For small MπL, the value of gA is underestimated and to get

within 1% of the infinite-volume result requires MπL >∼ 6.

The QCDSF collaboration [83] analyzed gA at four lattice spacings ranging from 0.07 to

0.116 fm, and found no significant dependence on the lattice spacing. They, and the ETMC

collaboration [86], have also analyzed their data using finite-volume corrections suggested

by heavy-baryon chiral perturbation theory (HBχPT) with small-scale expansion. They

find that correcting their data for finite-volume effects at each lattice spacing improves their

extrapolation to the physical pion mass. On the other hand, the RBC collaboration [87] finds

that such corrections do not account for their data either qualitatively or quantitatively. An

understanding of finite-volume effects, therefore, needs more work.

A source of potentially large systematic error is excited-state contamination when the

source-sink separation (tsep = tf − ti) is insufficient. The 2008 RBC 2-flavor study [87] used

t ≈ 1.0 and 1.2 fm to check whether there is any significant dependence of gA on tsep. In this

case, the values of gA were consistent within statistical error, and the central values increase

by less than 5% between tsep = 1.0 and 1.2 fm. Similarly, LHPC [92] observe a tiny shift
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of the central value when changing tsep from 1.1 to 1.2 fm. The recent work by the CLS

collaboration [85] investigated smaller source-sink separations, tsep ≈ 0.56, 0.70 and 1.05 fm,

on their a ≈ 0.07 fm lattices. They find that the value of gA increases by about 10% with

tsep, and at the same time the statistical error increases by a factor of 5. They use a linear

extrapolation in tsep to reduce the effect of excited-state contamination and conclude that

for the interpolating operators used tsep > 1.1 fm is needed to approximate the asymptotic

value. In any case, one should include the excited states explicitly in the analysis of the

matrix elements as demonstrated in Refs. [85, 94].

The uncertainty in the lattice determinations of gA, which still do not fully include all

systematic errors discussed in Sec. V B, is much larger than the experimental one, limiting

its utility as a probe for physics beyond the Standard Model. Our conclusion is that a

combination of high statistics, use of multiple tsep and investigation of correlators with

different overlap of source with ground versus excited states will be needed to extract the

matrix elements with high precision. A promising direction for reducing the statistical error

in gA is to use a simultaneous chiral extrapolation of the octet baryons since the axial

charges of the Σ and Ξ baryons are calculated with significantly smaller errors [99]. A

major limitation to testing whether excited-state contamination is a significant factor in

the underestimate of gA is the computational resources needed to simulate close to (and

eventually at) the physical light-quark masses, high statistics and extrapolations to the

continuum limit. The U.S. national report on the future of extreme-scale computing [100]

has made the high-precision calculation of gA a milestone to achieve, so we anticipate steady

improvement in lattice estimates of all such matrix elements with increasing computational

power.

D. Nucleon induced-pseudoscalar charge g∗P

There has been renewed interest in the induced-pseudoscalar form factor g̃P (q2), defined

in Eq. 5b, due to the recent MuCap Collaboration [101] high-precision experiment studying

ordinary muon capture (OMC) by protons, µ−p→ νµn. We define the induced-pseudoscalar

coupling as

g∗P =
mµ

2MN

g̃P (q2 = 0.88m2
µ), (37)
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FIG. 4: (Upper row) The axial charge versus M2
π from Nf = 2 [83–87] (left) and Nf = 2 +

1 [88, 90, 92–94] (right) calculations with different types of O(a)-improved fermion actions. The

filled symbols and solid errorbar (open symbols and dashed errorbar) denote results taken from

published papers (the latest lattice proceedings). (Lower panel) Comparison of the published values

of gA with experimental measurements [98] (vertical band). The solid lines indicate statistical error

while the dashed lines include systematic errors. The analysis of systematic errors does not include

all sources of uncertainty. For example, only the QCDSF and ETMC calculations have been done

at multiple values of the lattice spacing. Also, the chiral extrapolation is different in the different

calculations. Lin et al. [99] find that an SU(3)-constrained fit to the gA for octet baryons reduces

the statistical error in the chiral extrapolation. This is illustrated by the larger errors in the LHPC

result [92] compared to those in Ref. [99], which are obtained using similar lattice parameters.
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FIG. 5: (Left) The induced-pseudoscalar charge of the nucleon g∗P from experimental measure-

ments [101, 102, 104–106] and an earlier estimation from HBχPT [103]. (Right) Comparison of

lattice estimates of g∗P using the DWF fermion action [87, 107, 108] with MuCap data.

where mµ is the muon mass. Improved calculations of electroweak radiative corrections [102]

allow precise extraction of the form factor from these experiments. The new MuCap ex-

periment yields g∗P = 7.3 ± 1.1 [101, 102], which is consistent with the value predicted by

heavy-baryon chiral perturbation theory g∗χPT
P = 8.26 ± 0.16 [103]. However, it is much

smaller than the earlier world average for OMC, [g∗OMC
P ]ave = 10.5± 1.8 given in Ref. [104],

and the value obtained from a TRIUMF experiment with radiative muon capture (RMC),

µ−p → νµnγ, which gave g∗RMC
P = 12.4 ± 1.0 [105]. After reanalyzing the TRIUMF data,

Clark et al. [106] found g∗P = 10.6 ± 1.1. When combined with the new MuCap result, the

world average is 8.7± 1.0 [102].

There have been few calculations of the induced charge g∗P in lattice QCD. Unlike gA, we

need to calculate the form-factor at several q2 to extrapolate g̃P (q2) to the same q2 as those

probed in experiments. The Nf = 2 [87] and 2+1-flavor [108] DWF calculations (Table I) of

g∗P evaluated at (q2 = 0.88m2
µ) by studying the momentum dependence of the axial matrix

elements give 7.7(1.0) and 6.6(1.2), respectively. These central values are about 1σ smaller

than the world-averaged MuCap estimate, as shown on the right-hand side of Fig. 5.

Direct calculations of the pseudoscalar charge gP defined in Eq. 5d have not been done

using LQCD due to the lack of experimental motivation. One technical challenge has been

removing the contribution of the pion pole to the amputated vertex in the calculation of ZP

in RI-MOM schemes. This has recently been overcome by using non-exceptional momenta

in the external quark legs. We, therefore, expect to provide estimates for gP at the same
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level of precision as gT .

E. Nucleon tensor charge gT

The tensor charge gT is the zeroth moment of transversity, and can be studied through

processes such as SIDIS (semi-inclusive deep inelastic scattering). The HERMES and COM-

PASS experiments [109–111] presented their first estimates of gT from data collected at

Q2 = 2.4 GeV2. Experimentally, to estimate gT one first extracts the contribution of indi-

vidual quarks as a function of the quark momentum fraction x at a particular Q2. To obtain

the contribution of each quark, the results, estimated from measurements at a finite number

of values of x, are integrated over the full range 0 ≤ x ≤ 1. The isovector tensor charge

is then given by the difference between the up and down quark contributions. Since this

analysis requires data over the full range of x, and the low-x and high-x values are not well

known, improvements in precision await future experiments. Current extracted numbers are

highly model-dependent. Combining SIDIS (HERMES and COMPASS) results with Belle

e+e− analysis [109, 112] of data collected at Q2 = 110 GeV2, the best experimental estimate

of gT at Q2 = 0.8 GeV2 (instead of Q2 = 0) is 0.77+0.18
−0.36.

There are also estimates from purely theoretical models. These include the Nambu–Jona-

Lasinio model [113] and the chiral-quark soliton model [114]; unfortunately, they are not

consistent with each other. Estimates from QCD sum rules [115] have a large uncertainty.

There are several LQCD estimates of gT , and we review those listed in Table I. The

QCDSF collaboration’s 2-flavor calculations with clover fermions [84, 116], over a large

range of pion masses (170–1170 MeV) and 3 lattice spacings [84], show a mild increase

in gT with M2
π . RBC’s 2-flavor DWF calculation [87] shows a similar trend and gave

gT (MS, 2 GeV) = 0.93(6) after extrapolation to the physical pion mass and using ZT

calculated nonperturbatively in the RI-MOM scheme. These results are summarized on the

top of Fig. 6.

The 2+1-flavor results from the LHPC [91, 92] and RBC/UKQCD [89] collaborations

are summarized in the second of Fig. 6. RBC/UKQCD used DWF for both dynamical

and valence quarks, while LHPC used the mixed-action approach, DWF on a 2+1-flavor

staggered (asqtad) gauge ensemble. The lattice spacings in the two calculations are similar,

0.1224 fm and 0.114 fm; thus, we expect similar lattice-discretization errors. The range



35

of pion masses explored is also comparable, 290–760 MeV by LHPC and 330–670 MeV by

RBC/UKQCD. Both find the dependence on the pion-mass to be small except at the lightest

pion-mass points, 290 and 330 MeV, respectively. At these points, the observed downward

dip could be indicative of the onset of chiral logs; however, it is not yet clear whether these

points suffer from finite-volume and excited-state effects. Further studies at lighter pion

masses are needed to resolve these issues.

To extrapolate the tensor charge to the physical pion mass, we employed the heavy-baryon

chiral perturbation theory formulation [117, 118]. The resulting formula for gT contains

one low-energy constant and two scales at lowest order in chiral logs [118]. Analogous

formulae for the other twist-two matrix elements, the quark momentum fraction 〈x〉 and

helicity distribution function 〈∆x〉, which can be obtained from x-dependent measurements

of polarized and unpolarized form factors, work well in describing the lattice data. We,

therefore, analyzed the combined RBC/UKQCD and LHPC gT data using the HBχPT

ansatz. The fits are highly sensitive to the data points selected, since the chiral log is

sensitive to only one point at the lightest Mπ. This lack of sensitivity to chiral logs is

illustrated by the linear fit to the 2 + 1-flavor data shown in Fig. 6. It fits all points except

the one at lowest Mπ and gives gT = 1.05(2). Given this lack of sensitivity to the chiral-log

term and the high pion masses used relative to the expected range of validity of this order

of HBχPT, we have little reason to believe that such an extrapolation is well controlled.

We include in Fig. 6 a HBχPT extrapolation consistent with the data in order to illustrate

the relative size of the chiral log, which may be quite large and appear at pion masses not

much smaller than those currently available. For our best estimate we use gT = 1.05(35)

where the central value is from the linear fit and the uncertainty includes the systematic

error associated with the extrapolation in M2
π . Clearly data at smaller M2

π are needed.

F. Nucleon scalar charge gS

The nucleon isovector scalar charge gS has not been analyzed in lattice calculations, in

contrast to its isoscalar partner, the scalar density (or the nucleon-σ term). There are no

experimental measurements of this quantity, and theoretical estimates [20] (from different

model approximations) give rather loose bounds: 0.25 ≤ gS ≤ 1. Our preliminary lattice

calculations [119, 120] show that gS has the noisiest signal. On four ensembles, at two
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FIG. 6: Summary of LQCD estimates of gT usingNf = 2 [84, 87, 116] (top) andNf = 2+1 [89, 92]

(bottom) O(a)-improved fermion actions. Two chiral extrapolations of gT are shown using the

combined RBC/UKQCD DWF data on their 2.7-fm ensemble [89] and the LHPC mixed-action

data [92]. The value at the physical pion mass from the linear fit is shown by the red diamond.

Fits using the HBχPT ansatz are very sensitive to removing points at large Mπ so no error band

is shown. For the g2f
T data, the filled symbols and solid error bars (open symbols and dashed error

bars) denote results taken from the published papers (the latest lattice proceedings).
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lattice spacings with two quark masses each, with 400–500 configurations we find that the

statistical error in gS is 5–6 times that in gT and gA. The calculation of gS will, therefore,

drive the size of the statistical ensemble for the required precision in the matrix elements.

To get a first estimate of gS, we have performed calculations on two sets of gauge en-

sembles. The first uses the anisotropic clover lattices generated by the Hadron Spectrum

Collaboration (HSC) [121, 122] with pion masses ranging from 390 to 780 MeV. The second

uses Nf = 2 + 1 asqtad ensembles but calculates matrix elements with domain-wall valence

quarks with Mπ ∈ {350, 700} MeV. The number of configurations analyzed range between

200 and 650. These results are summarized in Fig. 7. The error bars shown are statistical.

There is no clear guidance on how to perform a chiral extrapolation to the physical pion

mass since the data show no evidence for chiral logs. We, therefore, made fits assuming a

behavior linear or constant in M2
π on the full and different subsets of the data. In Fig. 7, we

show two fits, a linear one using all the data and a constant fit to the five lightest M2
π values.

The extrapolated value from such fits to different subsets of data obtained by removing the

points corresponding to the heaviest and lightest Mπ varies between 0.6–1.0. We take the

mean as the central value and 0.2 as an estimate of the error associated with the mass

extrapolation.

In addition to the large statistical error, there is significant uncertainty in the estimate

of the renormalization constant ZS. We have used the tadpole-improved tree-level value

ZS = u0, where the tadpole factor u0 is the fourth root of the expectation value of the 1× 1

Wilson loop. For the HSC and DWF ensembles, u0 = 0.945 and 0.938, respectively. A

recent nonperturbative estimate of ZS for the DWF action on lattices with a similar cutoff

a as in our calculations, converted to the MS scheme at 2 GeV, gives 0.65 [123]. We expect

a value closer to unity due to the smearing of links in the formulation of the lattice actions

we use. Nevertheless, based on current nonperturbative estimates with different actions and

link smearings, our estimate is ZS = 0.7(2) in the MS scheme at 2 GeV. Using this value

would lower gS by about 25%. We take the uncertainty in ZS into account by doubling the

error estimate, and use gS = 0.8(4).
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FIG. 7: The scalar charge gS from Nf = 2 + 1 anisotropic clover and DWF/asqtad lattices. We

also show a linear fit to the full data set and a constant fit to the data at the five smallest values

of M2
π . The extrapolated values are shown using red diamonds.

G. Lattice estimates of tensor and scalar charges for εS,T

LQCD calculations of gS and gT discussed in the previous sections, while theoretically

clean, require reducing a number of systematic errors. Our current understanding is that

finite-volume effects are small for MπL >∼ 4, and there is little evidence for discretization

errors at current statistics; contributions due to excited states are smaller than statistical

errors once the time separation tsep > 1.2 fm for the current source operators and lattice

parameters; and chiral extrapolations gives rise to the biggest uncertainty in the current

data as shown in Figs. 6 and 7. Thus, we need high-statistics calculations on large lattices

with light-quark masses close to the physical values. Lastly, nonperturbative calculations of

renormalization constants are essential.

Based on the above analysis, preliminary LQCD estimates are

gT (MS, µ=2 GeV) = 1.05(35) , gS(MS, µ=2 GeV) = 0.8(4). (38)

These are used in the next section to explore bounds on new physics at the TeV scale.
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We emphasize that our focus at this point, given the preliminary nature of the estimates,

is on the variation in the bounds under different scenarios of reduction of errors in lattice

calculations.

VI. IMPACT OF LATTICE RESULTS ON PHENOMENOLOGY

In Section IV B, while studying the low-energy phenomenology of εS,T , we ignored the

uncertainty in the charges gS,T . Clearly, the impact on εS,T of future 10−3-level neutron

measurements of b, bν , and bν − b depends on how well we know the nucleon matrix ele-

ments gS,T . Since gS,T always multiply factors of the short-distance couplings in physical

amplitudes, they determine the slope of the bands on the εS-εT plane represented in Figs. 2

and 3. Moreover, if one accounts for the uncertainty in gS,T the bands in Figs. 2 and 3

acquire additional theory-induced thickness and their boundaries are mapped into charac-

teristic “bow-tie” shapes. We illustrate this in Fig. 8, assuming experimental sensitivities

in b and bν − b at the 10−3 level. For the scalar and tensor charges we use in the left panel

the ranges quoted in Ref. [23] (based on earlier quark-model estimates): 0.25 < gS < 1.0,

0.6 < gT < 2.3; while in the right panel we use the lattice estimates gS = 0.8(4) and

gT = 1.05(35), corresponding to δgS/gS ∼ 50% and δgT/gT ∼ 35%. Comparing these plots

to the ones in Fig. 2 the loss of constraining power is quite evident. Especially in the left

panel one sees that the impact of neutron measurements is greatly diluted.

In Fig. 9 we summarize the low-energy constraints on εS,T , taking into account the ef-

fects of hadronic uncertainties. We plot the combined 90% C.L. regions in the εS-εT plane

allowed by the current limit on b0+ and future 10−3-level measurements of b and bν − b in

neutron decay. The different curves reflect four different scenarios for the hadronic matrix

elements: the outer-most curve corresponds the range of Ref. [23], while the three inner

curves correspond to lattice results with current central values from Eq. (38) and three

different uncertainties: δgS/gS ∈ {50%, 20%, 10%} with δgT/gT = 2/3 δgS/gS (this choice

assumes that the ratio of fractional uncertainties in gS and gT will remain approximately

constant as these uncertainties decrease).

The confidence intervals on εS,T are obtained using the so-called R-Fit method, as de-

scribed in Ref. [124]. In this approach the QCD parameters gS,T are bound to remain within

allowed ranges determined by the lattice calculations and estimates of systematic uncertain-
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ties (in the case at hand the ranges are 0.4 ≤ gS ≤ 1.2 and 0.7 ≤ gT ≤ 1.4). The chi-squared

function

χ2(εS, εT , gS, gT ) =

Nobs∑
i=1

(
Oexp
i −Oth

i (εS, εT , gS, gT )

σexp
i

)2

(39)

is then minimized with respect to gS,T (varying gS,T in their allowed ranges), leading to

χ̄2(εS, εT ) = mingS,T χ
2(εS, εT , gS, gT ) . (40)

Finally, the confidence intervals on εS,T are deduced applying the standard procedure [98] to

χ̄2(εS, εT ), with an effective number of degrees of freedom given by min(Nobs−Ng, Nε), where

Nobs is the number of experimental constraints, Ng = 2 is the number of QCD parameters

(gS,T ), and Nε = 2 is the number of parameters we wish to constrain (εS,T ).

From Fig. 9 several clear messages emerge:

• Hadronic uncertainties in gS,T strongly dilute the significance of new 10−3-level experi-

ments. Experimental progress without theoretical progress will not lead to competitive
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FIG. 8: Left panel: 90% C.L. allowed regions in the εS-εT plane implied by (i) the existing bound

on b0+ (green horizontal band); (ii) projected measurements of b and bν − b in neutron decay

(red bow-tie shape and blue region) at the 10−3 level; (iii) hadronic matrix elements taken in the

ranges 0.25 < gS < 1.0, 0.6 < gT < 2.3 [23]. Right panel: same as left panel but with scalar and

tensor charges taken from lattice QCD: gS = 0.8(4) and gT = 1.05(35). Note that by reducing

the uncertainty in gS the constraint on εS from b0+ becomes stronger, independent of any future

neutron measurement. The effective couplings εS,T are defined in the MS scheme at 2 GeV.
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FIG. 9: Combined 90% C.L. allowed regions in the εS-εT plane based on: (i) existing limit on b0+

from 0+ → 0+ nuclear decays; (ii) future neutron decay measurements with projected sensitivity of

10−3 in b and bν− b. The four curves correspond to four different scenarios for the hadronic matrix

elements: quark model estimates 0.25 < gS < 1.0, 0.6 < gT < 2.3 [20, 23]; lattice results with

current central values from Eq. (38) and δgS/gS = 50%, 20%, 10% with δgT /gT = 2/3 δgS/gS (this

choice assumes that the ratio of fractional uncertainties in gS and gT will remain approximately

constant as these uncertainties decrease). The effective couplings εS,T are defined in the MS scheme

at 2 GeV.

constraints on the short-distance scalar and tensor interactions.

• Our preliminary lattice results (curve labeled by δgS/gS = 50%) already provide a

significant improvement over previous knowledge of gS,T summarized in Ref. [23].

• In order to fully exploit the constraining power of planned 10−3 measurements of b

and bν , the uncertainty on gS should be reduced to 20%. Improvement beyond this

level would not significantly increase the constraining power (see difference between

the curves labeled as δgS/gS = 20% and δgS/gS = 10%).
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VII. COLLIDER LIMITS

The contact interactions probed at low energy can also be directly probed at high-energy

colliders. The rate, however, depends on whether the particles that generate the 4-fermi

interaction are kinematically accessible at the collider energies. We begin in Section VII A

under the assumption that the scalar and tensor interactions remain point-like at TeV scale

energies. Then in Section VII B we derive a relation between εS and the production cross-

section, Eq. 54 , when the scalar interaction is generated by the exchange of a resonance

that is kinematically accessible at the LHC.

A. Model-independent limits

Assuming that the scalar and tensor interactions remain point-like at TeV-scale energies,

we can employ the operator formalism to put bounds on εS,T,P from collider physics. SU(2)

gauge invariance implies that εS,T,P control not only charged-currrent processes but also the

corresponding neutral-current versions, as the weak-scale effective Lagrangian includes terms

proportional to (εS − εP )ēReLd̄LdR, (εS + εP )ēReLūRuL, and εT ēRσ
µνeLūRσµνuL. Exploiting

this property, from an early CDF analysis [125] of contact interactions in pp̄ → e+e− + X,

after matching the different conventions for the effective couplings, we obtain the 90% C.L.

limit |εS| < 0.135. There are a number of LHC searches for contact interactions, specifically

in dijet [126–128] and dimuon [129] final states. All of these studies, however, focus only

on specific vector-like interactions and do not consider scalar (i.e, helicity flipping) contact

interactions.

Here we focus for definiteness on the charged-current part of the scalar and tensor effective

operators. These contact interactions fall into the signature class of collider searches for an

exotic W ′ gauge boson, since they both can contribute to the signature pp → eν + X. We

will use the analyses and results of searches for this process to obtain bounds on εS and εT .

In the limit ml = 0 the analysis is simplified, since these operators do not then interfere with

SM processes. We do include the interference between the scalar and tensor interactions,

which does not vanish in the chiral limit. The relevant part of the effective Lagrangian is

given by

L = − ηS
Λ2
S

Vud(ud)(ePLνe)−
ηT
Λ2
T

Vud(uσ
µνPLd)(eσµνPLνe) + h.c. (41)
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where σµν = i[γµ, γν ]/2, and ηS, ηT = ± denotes the sign of the coefficients of the scalar and

tensor operators. The relations between ΛS,T and the effective couplings εS,T at µ = 1 TeV

are given by εS ≡ 2ηSv
2/Λ2

S and εT ≡ ηTv
2/Λ2

T . Note that since collider searches set lim-

its on the effective couplings εS,T at the high renormalization scale µ = 1 TeV, a direct

comparison with the low-energy constraints requires an appropriate rescaling down to the

hadronic scale. Using the one-loop anomalous dimensions for scalar and tensor operators

(see [130] and references therein), the one-loop beta function for the strong coupling con-

stant, and including the appropriate heavy quark thresholds, we find in the MS scheme

εS(1 TeV)/εS(2 GeV) = 0.56 and εT (1 TeV)/εT (2 GeV) = 1.21. We will use these factors to

rescale the collider limits and compare them to low-energy limits in Figs. 10 and 11.

To determine the transverse mass distribution of the electron–neutrino pair we start with

[131]

d3σ

dy dy′ dm2
T

=
1

64πs2

∑
ij

fi(x1)

x1

fj(x2)

x2

〈|M|2〉 (42)

where i and j are summed over the initial partons (with parton distribution functions (PDF)

fi,j and momentum fractions x1,2), and y, y′ are the rapidities of the electron and neutrino.

One finds x1 = mT (ey + ey
′
)/2
√
s, x2 = mT (e−y + e−y

′
)/2
√
s. We also used the observation

that the transverse mass of the electron and neutrino, mT ≡
√

2Ee
TE

ν
T (1− cos ∆φeν) (where

Ee,ν
T is the transverse energy of the electron or neutrino, and ∆φeν is the azimuthal angle

between the two leptons), is simply mT = 2pT at leading order, where pT is the transverse

momentum of the electron.

To leading order (LO), the contributions of the color- and spin-averaged scalar and tensor

matrix elements to the parton-level process ūd→ e−ν̄, including the interference term, is

〈|M|2〉
|Vud|2

=
2

3

1

Λ4
S

(p · p′)(k · k′)− 8

3

ηSηT
Λ2
SΛ2

T

[(p · k)(p′ · k′)− (p · k′)(p′ · k)]

+
16

3

1

Λ4
T

[2(p · k)(p′ · k′) + 2(p · k′)(p′ · k)− (p · p′)(k · k′)] (43)

where p, p′ are the momenta of the incoming partons, and k, k′ are the momenta of the

electron and neutrino. The interference term is antisymmetric under k ←→ k′, so it does

not contribute to the transverse mass distribution obtained by integrating over y and y′.

After some substitutions this expression becomes

〈|M|2〉
|Vud|2

=
1

6

ŝ2

Λ4
S

− ηSηT
3

m2
T ŝ

Λ2
SΛ2

T

sinh(y − y′) +
4

3

ŝ2

Λ4
T

(
1− m2

T

ŝ

)
(44)
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with ŝ = x1x2s and mT is the transverse mass of the lepton-neutrino pair.

Next we need the cross-section with mT greater than a threshold mT,cut. Using (42) and

(44), one finds

σ(mT > mT,cut)=
s

48π

∫ 1

m2
T,cut/s

dτ
√
τ

[
|Vud|2

Λ4
S

√
τ −m2

T,cut/s+
8

3

|Vud|2

τΛ4
T

(
τ −

m2
T,cut

s

)3/2
]

×
∫ − 1

2
ln τ

1
2

ln τ

dyP
[
fu(
√
τeyP )fd(

√
τe−yP ) + (u, d)→ (u, d)

]
, (45)

where the sum over i, j = u, d and i, j = u, d has been done, τ = x1x2, and yP =

0.5 ln(x1/x2).

The ATLAS and CMS experiments have searched for new physics in pp → eν + X by

looking for an excess of events at large transverse mass [132, 133]. The CMS study analyzes

1.03 fb−1 of data for the electron final state, and we begin by following their analysis in

setting limits on the scalar and tensor interactions. The CMS search window is defined by

specifying a cut on mT and counting the number of events detected with transverse mass

larger than the cut. Specifically, they looked for the production of a heavy W ′ with decay

W ′ → eν by searching for events having transverse mass above a variable threshold mT,cut,

finding 1 event for mT,cut = 1 TeV and 1 event for mT,cut = 1.1 TeV. In general the limit on

the number of expected signal events depends on the expected background, nb, which for

this search is quoted to be nb = 2.2 ± 1.1 events for mT,cut = 1 TeV and nb = 1.4 ± 0.80

events for mT,cut = 1.1 TeV 12.

To set a limit we follow Ref. [133] and use Bayesian statistics with a flat prior in the

signal ns. The likelihood function L(n|ns) is given by the Poisson distribution for n detected

events with ns signal and nb background events expected. The expected number of signal

events is given by ns = εσL, where σ is given by (45), L is the integrated luminosity, and

ε is the detection efficiency times the geometric acceptance. Ref. [133] quotes the signal

efficiency for a W ′ to be 80%. Their earlier analysis (Ref. [134]), based on 36 pb−1 of data,

quotes the product of the geometric acceptance and detection efficiency as being greater

than 64% in the W ′ mass range of interest. In the absence of a detector simulation for

12 These nb values are taken from Table 1 of Ref. [133]. Different central values for nb appear in Figure

2 of Ref. [133]: for example nb = 1.15 for mT,cut = 1 TeV. The two sets of nb are consistent within the

quoted error bars and lead to minor (5%) differences in the bounds on εS,T .
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our signal, in what follows we will assume our signal has a 80% detection times geometric

acceptance efficiency.

The credibility level 1− α for a flat prior in the signal is then derived from [98]

1− α =

∫ sup

0
dns L(n|ns)∫∞

0
dns L(n|ns)

(46)

which is equivalent to [98]

α = e−sup

∑n
m=0

1
m!

(sup + nb)m∑n
m=0

1
m!
nmb

(47)

To set a limit on sup, we choose the lower value of mT,cut = 1 TeV in order to maximize

the signal rate. Then for nb = 2.2 expected background events and n = 1 event detected,

one finds that sup = 3.0 at the 90% credibility level. Dividing by ε, we obtain a 90% upper

credibility limit of 3.7 produced signal events.

In Fig. 10 we show the corresponding limits on εS and εT (red, solid curve), using Eq.

(45) with 1.03 fb−1 of integrated luminosity at
√
s = 7 TeV. LO MSTW 2008 [135] PDFs are

used and evaluated at Q2 = 1 TeV2. We also checked that limits obtained using the CTEQ6

PDF set [136] are quantitatively in good agreement. When only one of these operators is

present, the bounds on εS,T correspond to ΛS > 2.5 TeV and ΛT > 2.7 TeV. As illustrated

by Fig. 10, our LHC bound on εS is a factor of 7 stronger than the old CDF limit, but about

4 times weaker than the bound from nuclear beta decay. Similarly, our new collider bound

on εT is a factor of 3 weaker than the bound from radiative pion decay. Moreover, we note

that using SU(2) gauge invariance, bounds on εS ± εP and εT can be obtained by analyzing

pp→ e+e− +X at the LHC [34].

We have performed a parallel analysis using the ATLAS results [132] on W ′ search. Use

of the ATLAS results requires an extra step, since their quoted efficiency for a given mT,cut

includes the fraction of total W ′ → eν events with mT > mT,cut. After determining this

fraction with a leading-order calculation, we infer the ATLAS detection times geometric

acceptance efficiency for mT,cut = 1 TeV to be 80%, the same as quoted by CMS for their

experiment. Using then the fact that for mT > 1 TeV ATLAS observes n = 1 event with

an expected number of background events nb = 0.89(20), we find that the ATLAS limits

on εS,T differ from the CMS ones only at the 5% level, well within the uncertainties of our

leading order calculation. We also estimate that the bounds on εS,T can be reduced by at

least a factor of 2 once the full data set collected at
√
s = 7 TeV is analyzed (see dotted,
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gold line in Fig. 10). We expect that stronger limits can be obtained by a combined analysis

of the ATLAS and CMS data, which goes beyond the scope of this work.

To obtain projected limits at higher luminosities and
√
s = 7 TeV or

√
s = 14 TeV, we

repeat the same LO analysis, assuming the same 80% detection times acceptance efficiency

for the signal as before. We choose an aggressive cut to make the expected background small.

The location of the cut on the transverse mass mT,cut ∼ TeV is estimated by computing at

tree-level the transverse mass distribution of the dominant SM physics background, due to

the production of a high-pT lepton from an off-shell W , and finding the value above which the

expected background is less than 1 event. At
√
s = 7 TeV and with an integrated luminosity

of 10 fb−1, we find that the number of background events drops below one for mT,cut = 1.5

TeV. At
√
s = 14 TeV, with mT,cut = 2.5 TeV and an integrated luminosity of 10 fb−1 we

find 0.5 background events expected above the cut. We also consider an ultimate luminosity

of 300 fb−1, finding that for mT > 4 TeV there are 0.3 expected background events. We

therefore impose mT,cut = 2.5 TeV (4 TeV), and assume an integrated luminosity of 10 fb−1

(300 fb−1). To set a limit we will assume that no events are found, which is consistent with

less than 1 background event expected. From Eqs. (46) and (47) we then obtain a 90%

Credibility Limit of 3 produced events. The anticipated joint 90% credibility level limits on

εS and εT from LHC at
√
s = 14 TeV are shown in Fig. 11.

From an inspection of Fig. 11 we find that at high luminosity and center-of-mass energy

the expected improvement in the limits are nearly an order of magnitude compared to the

existing collider limits. Even with only 10 fb−1 taken at 14 TeV we expect the limits to

improve substantially from the current collider limit. At these energies and luminosities

the bound on εS from the LHC will become stronger than anticipated future bounds from

low-energy experiments. This conclusion is illustrated in Fig. 11, where we also overlay the

projected low-energy bounds presented in Fig. 9.

We expect these projected limits can be tightened, since we have chosen hard cuts to

reduce the expected leading background to below one event, at the cost of significantly

cutting into the signal. Optimizing the choice of the cut to maximize the sensitivity to the

contact interactions will require including additional backgrounds, such as QCD and top

quarks, and more generally, a better understanding of the systematic errors involved.

Our analyses can certainly be improved. Our estimate of the detection times acceptance

efficiency was borrowed from the estimate for a W ′ signal from [133]. Obviously a detector
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simulation of the signal will provide a better estimate of this factor. Moreover, an improved

theoretical analysis would include next-to-leading-order QCD corrections: while these have

small impact on the transverse mass distribution [137], their impact on the overall normal-

ization affects our analysis at the order αs/π. For a discussion of these corrections in the

context of W production at hadron colliders see, for example, Ref. [138].

Finally, the interaction Lagrangian (41) can be generalized to include interactions of

the electron with neutrinos of all flavors, with a corresponding generalization of εS,T →

εαS,T where α ∈ {e, µ, τ}. Because the final states with different neutrino flavors do not

interfere and neither do the scalar and tensor interactions after integrating over the rapidity

distributions, the derived and projected bounds shown in Figs. 10 and 11 now apply to the

quantities
√∑

α(εαS,T )2.

B. Scalar resonance

A larger signal rate is obtained if the particle that generates the scalar interaction is

kinematically accessible at the LHC. In this case there can be a direct relationship between

εS and the production cross-section and mass of the resonance, as we now demonstrate.

We assume that after electroweak symmetry breaking there is a charged scalar φ+ of mass

m, with the following couplings to first-generation quarks and leptons:

L = λSVudφ
+ud+ λPVudφ

+uγ5d+ λlφ
−ePLνe + h.c. , (48)

where φ− ≡ (φ+)∗. At low energies the exchange of φ+ generates a scalar operator with

εS = 2λSλl
v2

m2
(49)

and a pseudoscalar operator with

εP = 2λPλl
v2

m2
. (50)

To proceed, at leading order the cross-section for the on-shell production of φ, which then

decays to lν (of a given sign), is given in the narrow-width approximation by

σ · BR = λ2
l

(
λ2
S + λ2

P

)
|Vud|2

m

48sΓφ
L(τ) (51)
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FIG. 10: Joint 90% CL limit on εS and εT implied by: (i) current bounds from nuclear β decay

0+ → 0+ and radiative pion decay (blue, dashed); (ii) CMS search [133] in the channel pp→ eν+X

at
√
s = 7 TeV with 1.03 fb−1 of data. The limit is obtained by requiring less than 3.7 eν-produced

events having mT > 1 TeV (red, solid). LO MSTW 2008 [135] parton distribution functions are

used; (iii) projected LHC searches in the channel pp → eν + X at
√
s = 7 TeV with 10 fb−1 of

data (gold, dotted). The limit is obtained by requiring less than 3 eν-produced signal events with

mT > 1.5 TeV and assuming that no events are observed. The cut is chosen to reduce the expected

leading background to be below 1 event. The effective couplings εS,T are defined in the MS scheme

at 2 GeV.

with τ = m2/s, L(τ) =
∫ 1

τ
dxfq(x)f ′q(τ/x)/x, and where Γφ is the total decay width of φ.

Next, note that since φ may decay to other particles (not just to lν and ud) ,

Γφ ≥ Γl + Γq =
(
λ2
l + 2Nc(λ

2
S + λ2

P )|Vud|2
) m

16π
(52)

with Nc = 3. Next note that m/Γφ ≤ 16π/(λ2
l + 2Nc(λ

2
S + λ2

P )|Vud|2), and then

use the arithmetic-geometric inequality
√

2Ncλφλl <
1
2
(λ2

l + 2Nc(λ
2
S + λ2

P )|Vud|2), where
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FIG. 11: Projected joint 90% credibility level limit on εS and εT from the LHC at
√
s = 14 TeV,

obtained from requiring less than 3 eν-produced signal events with: (i) mT > 2.5 TeV and 10 fb−1

of integrated luminosity (solid, red ellipse); and (ii) mT > 4 TeV and 300 fb−1 (dashed, yellow

ellipse). Cuts are chosen to reduce the expected leading background to be below 1 event. To

obtain the projection it is assumed no events are found. Same PDFs are used as in Fig. 10. Note

the change in scale between these two figures. Anticipated bounds from low-energy experiments

and reduced LQCD uncertainties, redrawn from Fig. 9, are shown for comparison. The effective

couplings εS,T are defined in the MS scheme at 2 GeV.

λφ =
√
λ2
S + λ2

P |Vud|, to finally obtain our main result of this subsection,

σ · BR ≤ |Vud|
12v2

π√
2Nc

(√
ε2S + ε2P

)
τL(τ) (53)

Because of the severe constraint imposed by π → eν, the coupling λP of φ to the pseudoscalar

quark scalar density must be significantly suppressed. In the limit εP � εS one then has

σ · BR ≤ |Vud|
12v2

π√
2Nc

|εS|τL(τ) (54)

This expression can be rearranged to obtain a lower bound on εS, that is stronger after

summing in L over both charged-particle final states. The bound depends only on τ and
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FIG. 12: Projected lower bound on |εS | (at µ = 2 GeV), for a discovery cross-section of σ(pp →

e+ MET +X) = 10 fb (blue, solid), 1 fb (red, dashed) and 0.1 fb (black, dotted), as a function of

τ = m2/s. Shaded region (green) shows the current experimental exclusion on εS from 0+ → 0+

nuclear β decay.

σ · BR. Figure 12 shows the bound as a function of τ for several choices of σ · BR that will

be probed by the LHC. Equivalent limits are shown in Figs. 13 and 14, where we show the

dependence of the bound on the mass of the resonance, for several values of σ · BR and at
√
s = 7 and 14 TeV. LO CTEQ6 [136] parton distribution functions are used for all these

figures.

We have shown that if a signal is observed in pp→ e+missing energy (MET)+X, then a

lower bound on εS can be obtained, provided the signal is due to the on-shell production of a

scalar, which decays to an electron and missing energy provided by an electron neutrino, and

whose pseudoscalar coupling to quarks is suppressed compared to its scalar coupling. That

the resonance couples to an electron neutrino is important in deriving the above relation

to εS, since at linear order in the ε’s, neutron-decay experiments do not probe couplings to

other neutrino flavors ε
α∈{µ,τ}
S .

Further confidence that the signal is due to the production of an on-shell particle can

be established by the detection of an edge in the transverse electron-neutrino mass distri-

bution, and through the detection of a resonance in dijets. The only additional theoretical

assumption used to obtain the lower limit (54) is that the charged resonance φ is interpreted
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FIG. 13: Projected lower bound on |εS | (at µ = 2 GeV) for
√
s = 7 TeV and a discovery cross-

section of σ(pp→ e+ MET+X) = 5 fb (blue, solid), 1 fb (red, dashed) and 0.5 fb (black, dotted).

Shaded region (green) shows the current experimental exclusion on εS from 0+ → 0+ nuclear β

decay. The bound scales linearly with σ · BR.
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FIG. 14: Same as Fig. 13 but for
√
s = 14 TeV and σ · BR = 100 fb (blue, solid), 10 fb (red,

dashed) and 2 fb (black, dotted).
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as a scalar and not as a vector or a tensor. Measurements of the rapidity distribution of the

electron should determine the spin of φ.

If a signal is discovered in pp→ e + MET + X then neutron and nuclear β-experiments

will be crucial in order to pin down the properties of the resonance and of the MET. As an

illustration, suppose the measured cross-section and mass imply an εS in excess of existing

neutron decay bounds, then either: (i) the resonance does not have spin 0; or (ii) as already

described above, since the outgoing neutrino flavor is not identified, the relationship between

the cross-section and εS can be undone simply if the scalar φ couples preferentially to muon

and tau neutrinos rather than to the electron neutrino; or (iii) there are additional scalars

at the TeV scale or a scalar contact interaction, such that partial cancellations occur in

summing the multiple contributions to εS.

VIII. DISCUSSION

It is anticipated that the next generation of neutron β-decay experiments will increase

their sensitivity to BSM scalar and tensor interactions by an order of magnitude, through

improved measurements of the neutrino asymmetry parameter B and the Fierz interference

term b (see Figs. 2, 3, and 9). In order to assess the impact of these future experiments, we

have performed a comprehensive analysis of constraints on scalar and tensor BSM interac-

tions from a broad range of low-energy probes (neutron decay, nuclear decays, pion decays)

as well as collider searches.

Extracting bounds on scalar and tensor BSM couplings from neutron and nuclear beta

decays requires knowledge of the nucleon scalar and tensor form factors at zero momentum

transfer. In this paper we have provided the first lattice-QCD estimate of the scalar form-

factor, gS = 0.8(4), and a new average of existing tensor form-factor results, gT = 1.05(35).

We find that to fully exploit the increased experimental sensitivity will require understanding

the lattice-QCD estimates of the proton-to-neutron matrix elements at the level of 10–20%

(see Fig. 9). To do that will require analyzing a few thousand samples at each value of the

simulation parameters using a combination of decorrelated lattices and multiple source points

on each lattice, improvements in source and sink interpolating operators for nucleons, and

simulations close to physical light-quark masses. With the anticipated increase in computing

power and resources, we estimate calculations will reach this precision in 2–4 years.
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In our survey of probes of BSM scalar and tensor interactions, we have found that the

currently strongest bounds arise from nuclear β decay (εS) and radiative pion decay (εT ),

probing effective scales ΛS > 4.7 TeV and ΛT > 5 TeV, respectively. We also find that

within a specific model for the lepton flavor structure of the scalar and tensor interactions,

significantly stronger bounds arise from π → eν decay, a conclusion in agreement with

previous literature.

We have used LHC data to obtain constraints on the scalar and tensor interactions, finding

bounds within sight of current limits obtained from low-energy measurements (see Fig. 10).

We have also provided a preliminary estimate of expected future bounds from the LHC,

finding that an order of magnitude improvement should ultimately be achievable and that

the future collider constraints (associated with effective scales ΛS,T ∼ 7 TeV) will compete

with improved neutron-decay constraints based on experimental sensitivities δb, δbν ∼ 10−3

(see Fig. 11). Finally, if a charged resonance decaying to an electron plus missing energy

is discovered at the LHC, we have shown how, with some theoretical assumptions, the

production cross-section provides a lower bound on the scalar interaction probed at low

energy (see Figs. 12, 13, and 14).

Our analysis shows that in order to compete with upcoming collider bounds on scalar

and tensor interactions, future neutron-decay experiments should aim at the very least to

sensitivities δb, δbν ∼ 10−3 in the Fierz interference term and neutrino asymmetry. Moreover,

experiments aiming for δb, δbν ∼ 10−4 would provide an unmatched discovery potential for

new scalar and tensor interactions, and therefore should be vigorously pursued.
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Appendix A: SU(2)× U(1) invariant operators contributing to charged-current

processes

The building blocks to construct gauge-invariant local operators are the gauge fields

GA
µ , W

a
µ , Bµ, corresponding to SU(3)×SU(2)L×U(1)Y , the five fermionic gauge multiplets,

li =

 νiL

eiL

 ei = eiR qi =

 uiL

diL

 ui = uiR di = diR , (A1)

the Higgs doublet ϕ

ϕ =

 ϕ+

ϕ0

 , (A2)

and the covariant derivative

Dµ = I ∂µ − igs
λA

2
GA
µ − ig

σa

2
W a
µ − ig′Y Bµ . (A3)

In the above expression λA are the SU(3) Gell-Mann matrices, σa are the SU(2) Pauli

matrices, gs, g, g
′ are the gauge couplings and Y is the hypercharge of a given multiplet.

The minimal set of operators contributing to low-energy charged current processes can

be divided into two groups: four-fermion operators

O
(3)
lq = (lγµσal)(qγµσ

aq) (A4a)

Oqde = (`e)(dq) + h.c. (A4b)

Olq = (l̄ae)ε
ab(q̄bu) + h.c. (A4c)

Ot
lq = (l̄aσ

µνe)εab(q̄bσµνu) + h.c. (A4d)
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and vertex corrections

Oϕϕ = i(ϕT εDµϕ)(uγµd) + h.c. , (A5a)

O(3)
ϕq = i(ϕ†Dµσaϕ)(qγµσ

aq) +h.c. , (A5b)

O
(3)
ϕl = i(ϕ†Dµσaϕ)(lγµσ

al) +h.c. . (A5c)

Moreover, the extraction of the Fermi constant from muon decay (needed for weak univer-

sality tests) is affected by an additional four-lepton operator:

O
(3)
ll =

1

2
(lγµσal)(lγµσ

al) . (A6a)

In terms of the coefficients of the above operators, the low-energy effective couplings

appearing in LCC (see Eq. 2) are given by

Vij · [vL]``ij = 2Vij

[
α̂

(3)
ϕl

]
``

+ 2Vim
[
α̂(3)
ϕq

]∗
jm
− 2Vim

[
α̂

(3)
lq

]
``mj

(A7a)

Vij · [vR]``ij = − [α̂ϕϕ]ij (A7b)

Vij · [sL]``ij = − [α̂lq]
∗
``ji (A7c)

Vij · [sR]``ij = −Vim [α̂qde]
∗
``jm (A7d)

Vij · [tL]``ij = −
[
α̂tlq
]∗
``ji

. (A7e)

Appendix B: Details of neutron decay distribution

The effective Fierz interference term b̄ and effective energy-dependent correlation coeffi-

cients ā(Ee), Ā(Ee), B̄(Ee) and C̄(aa,aA,aB)(Ee) introduced in Eq. 9 are [37, 38]:

b̄ = bSM + bBSM (B1a)

ā(Ee) =

(
aLO(λ̃) + c

(a)
0 + c

(a)
1

Ee
MN

)(
1 +

α

2π
δ(2)
α (Ee)

)
(B1b)

Ā(Ee) =

(
ALO(λ̃) + c

(A)
0 + c

(A)
1

Ee
MN

)(
1 +

α

2π
δ(2)
α (Ee)

)
(B1c)

B̄(Ee) = BLO(λ̃) + c
(B)
0 + c

(B)
1

Ee
MN

+
me

Ee

(
bSM
ν + bBSM

ν

)
(B1d)

C̄(aa)(Ee) = c
(aa)
1

Ee
MN

(B1e)

C̄(aA)(Ee) = c
(aA)
1

Ee
MN

(B1f)

C̄(aB)(Ee) =

(
c

(aB)
0 + c

(aB)
1

Ee
MN

)
. (B1g)
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In these expressions the subscript LO indicates the well-known leading-order contributions

that survive if we neglect the radiative corrections, recoil effects and new-physics contribu-

tions13

aLO(λ) =
1− λ2

1 + 3λ2
, ALO(λ) =

2λ(1− λ)

1 + 3λ2
, BLO(λ) =

2λ(1 + λ)

1 + 3λ2
. (B2)

As discussed in the main text, the linear new-physics effect due to the εR coupling has been

included in the replacement λ→ λ̃ = λ(1− 2εR). The only other linear BSM effects in the

differential distribution are bBSM and bBSM
ν , whose expressions are shown in the main text,

Eqs. (11).

Radiative corrections are encoded in the function δ
(2)
α (Ee) [37], while recoil corrections

13 In that limit, of course λ̃→ λ in aLO, ALO and BLO.
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are encoded in the coefficients ca,A,B,aa,aA,aB0,1 , bSM and bSM
ν , whose explicit expressions are [38]

c0 = −2λ(λ+ µV )

1 + 3λ2

E0

MN

(B3)

c1 =
3 + 4λµV + 9λ2

1 + 3λ2
(B4)

c
(a)
0 =

2λ(λ+ µV )

1 + 3λ2

E0

MN

(B5)

c
(a)
1 = −4λ(3λ+ µV )

1 + 3λ2
(B6)

c
(A)
0 =

(λ− 1)(λ+ µV )

1 + 3λ2

E0

MN

(B7)

c
(A)
1 =

µV (1− 3λ) + λ(7− 5λ)

1 + 3λ2
(B8)

c
(B)
0 = −2λ(λ+ µV )

1 + 3λ2

E0

MN

(B9)

c
(B)
1 =

µV (1 + 3λ) + λ(5 + 7λ)

1 + 3λ2
(B10)

c
(aB)
0 =

(1 + λ)(λ+ µV )

1 + 3λ2

E0

MN

(B11)

c
(aB)
1 = −(µV + 7λ)(1 + λ)

1 + 3λ2
(B12)

c
(aa)
1 = −3(1− λ2)

1 + 3λ2
(B13)

c
(aA)
1 =

(λ− 1)(µV + 5λ)

1 + 3λ2
(B14)

bSM = − me

MN

1 + 2µV λ+ λ2

1 + 3λ2
(B15)

bSM
ν = − me

MN

(1 + λ)(µV + λ)

1 + 3λ2
(B16)

In the above relations µV represents the difference between the proton and neutron magnetic

moments. Numerically, one has bSM = −1.35(1)× 10−3 and bSM
ν = −1.27(1)× 10−3.
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