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Abstract

Results of a high-statistics, multi-volume Lattice QCD exploration of the deuteron, the di-neutron,

the H-dibaryon, and the Ξ−Ξ− system at a pion mass of mπ ∼ 390 MeV are presented. Calculations

were performed with an anisotropic nf = 2+1 Clover discretization in four lattice volumes of spatial

extent L ∼ 2.0, 2.5, 2.9 and 3.9 fm, with a lattice spacing of bs ∼ 0.123 fm in the spatial-direction,

and bt ∼ bs/3.5 in the time-direction. Using the results obtained in the largest two volumes,

the Ξ−Ξ− is found to be bound by BΞ−Ξ− = 14.0(1.4)(6.7) MeV, consistent with expectations

based upon phenomenological models and low-energy effective field theories constrained by nucleon-

nucleon and hyperon-nucleon scattering data at the physical light-quark masses. Further, we

find that the deuteron and the di-neutron have binding energies of Bd = 11(05)(12) MeV and

Bnn = 7.1(5.2)(7.3) MeV, respectively. With an increased number of measurements and a refined

analysis, the binding energy of the H-dibaryon is BH = 13.2(1.8)(4.0) MeV at this pion mass,

updating our previous result.
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I. INTRODUCTION

A major objective for nuclear physicists is to establish the technology with which to reliably

calculate the properties and interactions of nuclei and to be able to quantify the uncertain-

ties in such calculations. Achieving this objective will have broad impact, from establishing

the behavior of matter under extreme conditions such as those that arise in the interior of

neutron stars, to refining predictions for the array of isotopes produced in nuclear reactors,

and even to answering anthropic questions about the nature of our universe. While nuclear

phenomenology generally describes experimentally measured quantities, its ability to make

high precision and accurate predictions for quantities that cannot be accessed experimen-

tally is limited. This situation is on the verge of dramatically improving. The underlying

theory of the strong interactions is known to be quantum chromodynamics (QCD), and

the computational resources now available are beginning to allow for ab initio calculations

of basic quantities in nuclear physics. With further increases in computational power and

advances in algorithms, this trend will continue and our understanding of, and our ability

to calculate, light and exotic nuclei will be placed on a solid foundation.

In nature, two nucleons in the 3S1 −3D1 coupled channels bind to form the simplest

nucleus, the deuteron (Jπ = 1+), with a binding energy of Bd = 2.224644(34) MeV, and

nearly bind into a di-neutron in the 1S0 channel. However, little is known experimentally

about possible bound states in more exotic channels, for instance those containing strange

quarks. The most famous exotic channel that has been postulated to support a bound state

(the H-dibaryon [1]) has the quantum numbers of ΛΛ (total angular momentum Jπ = 0+,

isospin I = 0 and strangeness s = −2). In this channel, all six quarks in naive quark models,

like the MIT bag model, can be in the lowest-energy single-particle state. Additionally, more

extensive analyses using one-boson-exchange (OBE) models [2] and low-energy effective field

theories (EFT) [3, 4], both constrained by experimentally measured nucleon-nucleon (NN)

and hyperon-nucleon (YN) cross-sections and the approximate SU(3) flavor symmetry of

the strong interactions, suggest that other exotic channels also support bound states. In the

limit of SU(3) flavor symmetry, the 1S0-channels are in symmetric irreducible representations

of 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1, and hence the Ξ−Ξ−, Σ−Σ−, and nn (along with

nΣ− and Σ−Ξ−) all transform in the 27. YN and NN scattering data along with the leading

SU(3) breaking effects, arising from the light-meson and baryon masses, suggest that Ξ−Ξ−
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and Σ−Σ− are bound at the physical values of the light-quark masses [2–4].

Recently, the first steps have been taken towards calculating the binding energies of light

nuclei directly from QCD. Early exploratory quenched calculations of the NN scattering

lengths [5, 6] performed more than a decade ago have been superseded by nf = 2 + 1

calculations within the last few years [7, 8] (and added to by further quenched calculations [9,

10] 1). Further, the first quenched calculations of the deuteron [12], 3He and 4He [13]

have been performed, along with nf = 2 + 1 calculations of 3He [14] and multi-baryon

systems containing strange quarks [14]. Efforts to explore nuclei and nuclear matter using

the strong coupling limit of QCD have led to some interesting observations [15]. Recently,

nf = 2 + 1 calculations by us (NPLQCD) [16], and subsequent nf = 3 calculations by

the HALQCD collaboration [17, 18], have provided evidence that the H-dibaryon (with the

quantum numbers of ΛΛ) is bound at a pion mass of mπ ∼ 390 MeV at the physical value

of the strange quark mass [NPLQCD], and over a range of SU(3) degenerate light quark

masses with mπ ∼ 469−1171 MeV [HALQCD] 2. Extrapolations to the physical light-quark

masses suggest a weakly bound H-dibaryon or a near threshold resonance exists in this

channel [19, 20].

In this work, which is a continuation of our high-statistics Lattice QCD (LQCD) ex-

plorations [8, 14, 21, 22], we present evidence for Ξ−Ξ−(1S0) and H-dibaryon (refining of

our results presented in Ref. [16]) bound states, and weak evidence, at the ∼ 1σ-level, for a

bound deuteron and di-neutron at a pion mass of mπ ∼ 390 MeV. The results were obtained

from four ensembles of nf = 2+1 anisotropic clover gauge-field configurations with a spatial

lattice spacing of bs ∼ 0.123 fm, an anisotropy of ξ ∼ 3.5 and with cubic volumes of spatial

extent L ∼ 2.0, 2.5, 2.9 and 3.9 fm.

In section II, a concise description of the specific LQCD technology and computational

details relevant to the present two-body bound state calculations are given. Section III

presents the results of the LQCD calculations of the single baryon masses and dispersion

1 The HALQCD collaboration has produced energy-dependent, local and sink-operator dependent quantities

(or equivalently energy-independent, non-local and sink-operator dependent quantities) from lattice spatial

correlation functions (see, e.g. Ref. [10, 11]) that contain the same, but no more, information than the

NN energy eigenvalues in the lattice volume(s) and the associated phase-shifts via Lüscher’s eigenvalue

equation.
2 One should note that both calculations were performed at approximately the same spatial lattice spacing

of b ∼ 0.12 fm.
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relations (critical for understanding bound systems), and in section IV the results for the

bound states are presented. Discussions and our conclusions can be found in section V.

II. LATTICE QCD CALCULATIONS

Lattice QCD is a technique in which space-time is discretized into a four-dimensional grid

and the QCD path integral over the quark and gluon fields at each point in the grid is

performed in Euclidean space-time using Monte Carlo methods. A LQCD calculation of a

given quantity will differ from its actual value because of the finite volume of the space-time

(with L3 × T lattice points) over which the fields exist, and the finite separation between

space-time points (the lattice-spacing). However, such deviations can be systematically

removed by performing calculations in multiple volumes with multiple lattice spacings, and

extrapolating using the theoretically known functional dependences on each. In the following

subsections, we review the details of LQCD calculations relevant to the current work and

introduce the ensembles studied herein.

A. Lüscher’s Method for Two-Body Systems Including Bound States

The hadron-hadron scattering amplitude below the inelastic threshold can be determined

from two-hadron energy levels in the lattice volume using Lüscher’s method [23–25]. In

the situation where only a single scattering channel is kinematically allowed, the deviation

of the energy eigenvalues of the two-hadron system in the lattice volume from the sum of

the single-hadron energies is related to the scattering phase shift, δ(k), at the measured

two-hadron energies. For energy eigenvalues above kinematic thresholds where multiple

channels contribute, a coupled-channels analysis is required as a single phase shift does not

parameterize the S-matrix. Such analyses can be performed, but they are not required in

the current context. The energy shift for two particles A and B, ∆E = EAB−EA−EB, can

be determined from the correlation functions for systems containing one and two hadrons.

For baryon-baryon systems, correlation functions of the form

CB;Γ(p, t) =
∑
x

eip·x Γβα 〈Bα(x, t) Bβ(x0, 0)〉 (1)

CB1,B2;Γ(p1,p2, t) =
∑
x1,x2

eip1·x1eip2·x2Γα1α2
β1β2
〈B1,α1(x1, t)B2,α2(x2, t)B1,β1(x0, 0)B2,β2(x0, 0)〉 ,
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are used, where B denotes a baryon interpolating operator, αi and βi are Dirac indices, and

the Γ are Dirac matrices that typically project onto particular parity and angular momentum

states. The 〈...〉 denote averaging over the gauge-field configurations and x0 is the location

of the source. The interpolating operators are only constrained by the quantum numbers of

the system of interest (angular momentum, baryon number, isospin, strangeness), and the

forms are

pα(x, t) = εijkuiα(x, t)
[
ujT(x, t)Cγ5d

k(x, t)
]
,

Λα(x, t) = εijksiα(x, t)
[
ujT(x, t)Cγ5d

k(x, t)
]
,

Σ+
α (x, t) = εijkuiα(x, t)

[
ujT(x, t)Cγ5s

k(x, t)
]
,

Ξ0
α(x, t) = εijksiα(x, t)

[
ujT(x, t)Cγ5s

k(x, t)
]
, (2)

where C is the charge-conjugation matrix and ijk are color indices. Other hadrons in the

lowest-lying octet can be obtained from the appropriate combinations of quark flavors. The

brackets in the interpolating operators indicate contraction of spin indices into a spin-0

“diquark”. Away from the time slice of the source (in this case t = 0), these correlation

functions behave as

C
(i,f)
HA (p, t) =

∑
n

Z
(i)
n;A(p) Z

(f)
n;A(p) e−E

(A)
n (p) t , (3)

C
(i,f)
HAHB(p,−p, t) =

∑
n

Z
(i)
n;AB(p) Z

(f)
n;AB(p) e−E

(AB)
n (0) t , (4)

where E
(A)
0 (0) = mA and E(AB)

n (0) are the energy eigenvalues of the two-hadron system

at rest in the lattice volume. The quantities Z
(i)
n;X (Z

(f)
n;X) are determined by the overlap of

the source (sink) onto the nth energy eigenstate with the quantum numbers of X. At large

times, the ratio

C
(i,f)
HAHB(p,−p, t)

C
(i,f)
HA (0, t)C

(i,f)
HB (0, t)

t→∞−→ Z̃
(i)
0,AB(p)Z̃

(f)
0,AB(p) e−∆E

(AB)
0 (0) t (5)

decays as a single exponential in time with the energy shift, ∆E
(AB)
0 (0). The Z̃

(k)
0,AB(p) are

combinations of the two-body and one-body Z-factors in eq. (3). In what follows, only the

case p = 0 is considered. The energy shift of the nth two-hadron state,

∆E(AB)
n ≡ E(AB)

n (0)−mA −mB =
√
k2
n +m2

A +
√
k2
n +m2

B −mA −mB , (6)
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determines a squared momentum, k2
n (which can be either positive or negative). Below

inelastic thresholds, this is related to the real part of the inverse scattering amplitude via 3

kn cot δ(kn) =
1

π L
S

(
k2
n

(
L

2π

)2
)
, (7)

where

S(x) = lim
Λ→∞

|j|<Λ∑
j

1

|j|2 − x
− 4π Λ , (8)

thereby implicitly determining the value of the phase shift at the energy ∆E(AB)
n (or the

momentum of each particle in the center of momentum (CoM) frame, kn), δ(kn) [23–27].

Thus, the function k cot δ that determines the low-energy elastic-scattering cross-section,

A(k) ∝ (k cot δ(k)− i k)−1, is determined at the energy ∆E(AB)
n .

In a channel for which one pion exchange (OPE) is allowed by spin and isospin consider-

ations, the function k cot δ(k) is an analytic function of |k|2 for |k| ≤ mπ/2, as determined

by the t-channel cut in the scattering amplitude. In this kinematic regime, k cot δ(k) can be

expressed in terms of an effective range expansion (ERE) of the form

k cot δ(k) = −1

a
+

1

2
r0 |k|2 + ... , (9)

where a is the scattering length (with the nuclear physics sign convention) and r0 is the

effective range. While the magnitude of the effective range (and higher terms) is set by

the pion mass, the scattering length is unconstrained. For scattering processes where OPE

does not contribute, the radius of convergence of the ERE of k cot δ is set by the lightest

intermediate state in the t-channel (or by the inelastic threshold).

In the situation where a channel supports a bound state, the energy of the bound state

at rest is determined by eq. (7). For k2
−1 < 0, and setting k−1 = iκ, eq. (7) becomes

k cot δ(k)|k=iκ + κ =
1

L

∑
m 6=0

1

|m|
e−|m|κL =

1

L
F (0)(κL) , (10)

3 Calculations performed on anisotropic lattices require a modified energy-momentum relation, and, as a

result, eq. (6) becomes

∆E(AB)
n ≡ E(AB)

n −mA −mB =
√
k2n/ξ

2
A +m2

A +
√
k2n/ξ

2
B +m2

B −mA −mB ,

where ξA,B are the anisotropy factors for particle A and particle B, respectively, determined from the

appropriate energy-momentum dispersion relation. The masses and energy splitting are given in terms of

temporal lattice units and kn is given in spatial lattice units.
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where

F (0)(κL) = 6 e−κL + 6
√

2 e−
√

2κL +
8√
3
e−
√

3κL + ... . (11)

Perturbation theory can be used to solve eq. (10) when the extent of the volume is much

larger than the size of the bound system, giving [26, 27]

κ = κ0 +
Z2
ψ

L
F (0)(κ0L) + O

(
e−2κ0L/L

)
with Zψ =

1√
1− 2κ0

d
dk2
k cot δ|iκ0

.(12)

κ0 is the solution to

k cot δ(k)|k=iκ0
+ κ0 = 0 , (13)

which recovers cot δ(k)|k=iκ0
= +i, and is the infinite-volume binding momentum of the

system. This analysis has recently been extended to bound systems that are moving in the

lattice volume [28, 29].

B. Computational Overview

Anisotropic gauge field configurations have proven useful for the study of hadronic spec-

troscopy, and as the calculations required for studying multi-hadron systems rely heavily

on spectroscopy, considerable effort has been put into calculations with clover-improved

Wilson fermion actions with an anisotropic discretization. In particular, the nf = 2 + 1

flavor anisotropic Clover Wilson action [30, 31] with two steps of stout-link smearing [32]

of the spatial gauge fields in the fermion action with a smearing weight of ρ = 0.14 has

been used [33, 34]. The gauge fields entering the fermion action are not smeared in the time

direction, thus preserving the ultra-locality of the action in the time direction. Further, a

tree-level tadpole-improved Symanzik gauge action without a 1 × 2 rectangle in the time

direction is used. Anisotropy allows for a better extraction of the excited states as well as

additional confidence that plateaus in the effective mass plots (EMPs) formed from the cor-

relation functions have been observed, significantly reducing the systematic uncertainties.

The gauge field generation was performed by the Hadron Spectrum Collaboration (HSC)

and by us, and these gauge field configurations have been extensively used for excited hadron

spectrum calculations by HSC [35–40].

8



The present calculations are performed on four ensembles of gauge configurations with

L3 × T of 163 × 128, 203 × 128, 243 × 128 and 323 × 256 lattice sites, with an anisotropy

of bt = bs/ξ with ξ ∼ 3.5. The spatial lattice spacing of each ensemble is bs ∼ 0.1227 ±

0.008 fm, giving spatial lattice extents of L ∼ 2.0, 2.5, 2.9 and 3.9 fm respectively. The same

input light-quark mass parameters, btml = −0.0840 and btms = −0.0743, are used in the

production of each ensemble, giving a pion mass of mπ ∼ 390 MeV. The relevant quantities

to assign to each ensemble that determine the impact of the finite lattice volume are mπL

and mπT , which for the four ensembles are mπL ∼ 3.86, 4.82, 5.79 and 7.71 respectively, and

mπT ∼ 8.82, 8.82, 8.82 and 17.64.

For the four lattice ensembles, multiple light-quark propagators were calculated on each

configuration. The source location was chosen randomly in order to minimize correlations

among propagators. On the {163 × 128, 203 × 128, 243 × 128, 323 × 256} ensembles, an

average of {224, 364, 178, 174} propagators were calculated on each of {2001, 1195, 2215,

739} gauge field configurations, to give a total number of ∼ {4.5, 4.3, 3.9, 1.3} × 105 light-

quark propagators, respectively 4.

III. BARYONS AND THEIR DISPERSION RELATIONS

The single hadron masses calculated in the four different lattice volumes are given in Table I.

Detailed discussions of the fitting methods used in the analysis of the correlation functions

are given in Ref. [8, 14, 21, 41]. Infinite volume extrapolations of the results obtained from

all four ensembles were performed in Ref. [22], and are shown in the right-most column in

Table I. The difference between a mass calculated in a finite lattice volume and its infinite-

volume extrapolation is due to contributions of the form ∼ e−mπL. Such deviations must be

small compared to the two-body binding energies to ensure that the finite volume bindings

are due to the T-matrix [42, 43] and not from finite volume distortions of the forces. It has

been shown [16, 22] that the largest two volumes, the 243 × 128 and 323 × 256 ensembles,

are sufficiently large to render the ∼ e−mπL modifications to Lüscher’s eigenvalue relation

negligible at the level of precision we are currently able to achieve. In what follows, we only

consider results from these ensembles.

4 One propagator is defined to include the four spin and three color degrees of freedom, i.e. it is the

propagator for all 12 spin-color components.
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TABLE I: Results from the Lattice QCD calculations in four lattice volumes with a pion mass of

mπ ∼ 390 MeV, a spatial lattice spacing of bs ∼ 0.123 fm, and with an anisotropy factor of ξ ∼ 3.5.

Infinite-volume extrapolations [22] are shown in the right column. The masses are in temporal

lattice units (t.l.u).

L3 × T 163 × 128 203 × 128 243 × 128 323 × 256 Extrapolation

L (fm) ∼ 2.0 ∼2.5 ∼2.9 ∼3.9 ∞

mπL 3.86 4.82 5.79 7.71 ∞

mπT 8.82 8.82 8.82 17.64 ∞

MN (t.l.u.) 0.21004(44)(85) 0.20682(34)(45) 0.20463(27)(36) 0.20457(25)(38) 0.20455(19)(17)

MΛ (t.l.u.) 0.22446(45)(78) 0.22246(27)(38) 0.22074(20)(42) 0.22054(23)(31) 0.22064(15)(19)

MΣ (t.l.u.) 0.22861(38)(67) 0.22752(32)(43) 0.22791(24)(31) 0.22726(24)(43) 0.22747(17)(19)

MΞ (t.l.u.) 0.24192(38)(63) 0.24101(27)(38) 0.23975(20)(32) 0.23974(17)(31) 0.23978(12)(18)

Lüscher’s method assumes that the single-hadron energy-momentum relation is satisfied

over the range of energies used in eq. (7). In order to verify that the energy-momentum

relation is satisfied, single hadron correlation functions were formed with well-defined lattice

spatial momentum p = 2π
L
n for |n|2 ≤ 5. Retaining the leading terms in the energy-

momentum relation, including the lattice anisotropy ξ, the energy and mass of the hadron

(in temporal lattice units (t.l.u)), and the momentum in spatial lattice units (s.l.u) are

related by

(
btEH

(
|n|2

))2
= (btMH)2 +

1

ξ2

(
2π bs
L

)2

|n|2 , (14)

using the continuum dispersion relation, and by

(
btEH

(
|n|2

))2
= (btMH)2 +

1

ξ2

∑
j

sin2

(
2π bs
L

nj

)
, (15)

using the lattice dispersion relation. The calculated single hadron energies (squared) are

shown in fig. 1 as a function of |n|2, along with the best linear fit. The extracted values

of ξH are given in Table II, and are seen to be consistent with each other within the un-

certainties of the calculation (the value for the nucleon is somewhat larger). Notice that

the lattice dispersion relation gives rise to ξH that slightly smaller than those from the

continuum dispersion relation, and with somewhat larger uncertainties. The values of ξH
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FIG. 1: The squared energy (in (t.l.u.)2) of the single baryon states as a function of n2 = |n|2,

related to the squared-momentum, |p|2 =
(

2π
L

)2
|n|2, calculated with the 323× 256 ensemble. The

blue points are the results of the LQCD calculations with the inner (outer) uncertainties being the

statistical uncertainties (statistical and systematic uncertainties combined in quadrature). The red

curves correspond to the best linear-fits.

TABLE II: The anisotropy parameter, ξH , of each hadron from the 323 × 256 ensemble using the

continuum dispersion relation in eq. (14) and the lattice dispersion relation in eq. (15). The result

for the π is included for purposes of comparison.

N Λ Σ Ξ π

ξH (continuum) 3.559(27)(08) 3.465(31)(06) 3.456(35)(07) 3.4654(55)(14) 3.466(13)(02)

ξH (lattice) 3.487(34)(10) 3.399(63)(16) 3.387(72)(15) 3.396(40)(07) 3.435(25)(10)

from the continuum dispersion relation are used to convert the two-hadron energies and

energy differences from temporal lattice units into spatial lattice units which are then used
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in the Lüscher eigenvalue relation. In physical units, using the continuum values of ξH given

in Table II, the extrapolated baryon masses are MN = 1170.0(1.1)(1.0)(7.5)(9.3) MeV,

MΛ = 1229.5(0.8)(1.1)(8.1)(11.2) MeV, MΣ = 1264.2(1.0)(1.1)(8.3)(13.1) MeV, and MΞ =

1336.3(0.7)(1.0)(8.8)(21.9) MeV, where the first uncertainty is statistical, the second is sys-

tematic, the third is from the lattice spacing and the fourth is from ξH .

IV. TWO-BODY BOUND STATES

Of the baryon-baryon channels that we have explored at this pion mass, the states that have

an energy lower than two isolated baryons in both the 243 × 128 and 323 × 256 ensembles

and suggest the existence of bound states are the deuteron, the di-neutron, the H-dibaryon,

and the Ξ−Ξ−. While a negative energy shift can indicate either a scattering state with an

attractive interaction or a bound state, Lüscher’s eigenvalue relation allows us to distinguish

between the two possibilities. For a bound system in the large-volume limit, the calculated

value of the energy splitting (or binding momentum) gives rise to −i cot δ → +1. We now

examine each of these channels.

A. The Deuteron

The deuteron is the simplest nucleus, comprised of a neutron and a proton. At the physical

light-quark masses its binding energy is B = 2.224644(34) MeV which corresponds to a

binding momentum of κ0 ∼ 45.70 MeV (using the isospin averaged nucleon mass of MN =

938.92 MeV). As it is a spin-1 system composed of two spin-1
2

nucleons, its wavefunction

is an admixture of s-wave and d-wave, but at the physical quark masses it is known to

be predominantly s-wave with only a small admixture of d-wave induced by the tensor

(L = S = 2) interaction.

The EMPs associated with the nucleon and the neutron-proton system in the 3S1 −3D1

channel are shown in the left panels of fig. 2 and fig. 3 for the two ensembles. The correla-

tion functions that give rise to these EMPs are linear combinations of correlation functions

generated using eq. (1) but with different smearings of the sink operator(s). The combina-

tions of correlation functions have been chosen to maximize the extent of the ground-state
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plateaus 5. Extended plateaus are observed in both the one and two nucleon correlation
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FIG. 2: The left panel shows an EMP of the nucleon and of the neutron-proton system in the

3S1 −3D1 coupled channels calculated with the 243 × 128 ensemble (in t.l.u.). The right panel

shows the |k|2 (in (s.l.u.)2) of the neutron-proton system calculated with this ensemble, along with

the fits.

5 The EMPs result from a matrix-Prony analysis [21] of multiple correlation functions. In particular, the

matrix-Prony analysis is used to determine the linear combination of correlation functions that optimizes

the ground state plateau. The EMP’s that are shown for each system result from these linear combinations

and not from the energy-eigenvalues resulting from the matrix-Prony analysis. In determining the binding

energies, multi-exponential fitting and generalized pencil of function (GPoF) methods [44, 45] are used in

addition to Matrix-Prony and provides consistent results in each case.
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FIG. 3: The left panel shows an EMP of the nucleon and of the neutron-proton system in the

3S1 −3D1 coupled channels calculated with the 323 × 256 ensemble (in t.l.u.). The right panel

shows the |k|2 (in (s.l.u.)2) of the neutron-proton system calculated with this ensemble, along with

the fits.

functions. The right panels of fig. 2 and fig. 3 show the binding momentum of each parti-

cle in the CoM obtained by taking ratios of the two-baryon and single-baryon correlation

functions. The deuteron binding energies in each volume calculated with LQCD are

B
(L=24)
d = 22.3± 2.3± 5.4 MeV , B

(L=32)
d = 14.9± 2.3± 5.8 MeV . (16)

The known finite-volume dependence of loosely bound systems, given in eq. (10), and the

perturbative relations that follow, allow for an extrapolation of the results in eq. (16) to the

infinite-volume limit, as shown in fig. 4, giving

B
(L=∞)
d = 11± 5± 12 MeV (17)

where the first uncertainty is statistical and the second is systematic, accounting for fitting,

anisotropy, lattice spacing and the infinite volume extrapolation. Despite having statistically

significant binding energies in the two lattice volumes, the exponential extrapolation to the

infinite volume limit produces a deuteron binding energy with significance at ∼ 1σ. From

the curvature of the results of the LQCD calculations in fig. 4, it is clear the both of these

volumes significantly modify the deuteron at this pion mass. Calculations in somewhat larger

volumes, or of moving systems [29], would significantly reduce the uncertainty introduced

by the volume extrapolation.

14



ææ

-0.2 -0.1 0 0.10

1.0

0.8

0.6

0.4

0.2

0

HÈkÈ�mΠL2

-
ic

ot
H∆

L

L = ¥
L = 32
L = 24

FIG. 4: Results of the Lattice QCD calculations of −i cot δ versus |k|2/m2
π in the deuteron channel

obtained using eq. (7), along with the infinite-volume extrapolation using eq. (10). The inner

uncertainty associated with each point is statistical, while the outer corresponds to the statistical

and systematic uncertainties combined in quadrature.

It is interesting to note that while the ground-state energies obtained in both the 243×128

and 323 × 256 ensembles are clearly negatively shifted in energy and lie on the bound-state

branch of the S-function (k2 < 0 with k cot δ < 0) in eq. (8), the result from the 203 × 128

ensemble is consistent with both a bound state or a continuum state. It is important for

future LQCD calculations in this channel to precisely determine the volume dependence of

the ground-state energies in order to better quantify the exponential corrections to Lüschers

energy-eigenvalue relation.

Our nf = 2 + 1 result and the recent quenched (nf = 0) result of Ref. [12] are shown

in fig. 5, along with the physical deuteron binding energy. Clearly, the large uncertainty

of our present result does not provide much constraint on the dependence of the deuteron

binding energy as a function of the light-quark masses, other than to demonstrate that the

deuteron is likely bound at mπ ∼ 390 MeV, qualitatively consistent with the quenched result

at mπ ∼ 800 MeV [12].

A number of groups have attempted to determine how the deuteron binding energy (and

the binding of other nuclei) varies as a function of the light-quark masses using EFT [46–49]

and hadronic models [50]. Such a variation impacts the constraints that can be placed on
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FIG. 5: The deuteron binding energy as a function of the pion mass. The black circle denotes

the experimental value. The blue point and uncertainty results from the quenched calculations of

Ref. [12], while the red point and uncertainty (the inner is statistical and the outer is statistical

and systematic combined in quadrature) is our present nf = 2 + 1 result.

possible time-variations of the fundamental constants of nature from the abundance of ele-

ments produced in Big Bang Nucleosynthesis (BBN) (see Refs. [51, 52] for recent constraints

from BBN). With the exception of the analysis of Ref. [49], both of the EFT analyses, which

use naive dimensional analysis (NDA) to constrain the quark-mass dependent dimension-six

operators that contribute at next-to-leading order (NLO) in the chiral expansion, and the

hadronic models of Ref. [50], suggest that the deuteron becomes less bound as the quarks

become heavier near their physical values. The present LQCD calculation at a pion mass

of mπ ∼ 390 MeV is somewhat beyond the range of applicability of the EFT analyses and

so cannot be directly translated into constraints on the coefficients of local operators with

confidence. Further, the uncertainty in our calculation is too large to be useful in a quanti-

tative way. Nevertheless, our result conflicts with the trend suggested in most of the EFT

and model analyses, and further studies are necessary to resolve this issue.
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B. The Di-Neutron

In nature, the di-neutron (nn 1S0) is very nearly bound. The unnaturally large scatter-

ing lengths in the 1S0-channel indicate that a very small increase in the strength of the

interactions between neutrons would bind them into an electrically neutral nucleus. If the

binding was deep enough, it would have profound effects on nucleosynthesis. Analyses with

NNEFT allow for the possibility of both bound and unbound di-neutrons for light-quark

masses larger than those of nature, while indicating an unbound di-neutron for lighter quark

masses [46–48]. In contrast, a model-dependent calculation indicates that the di-neutron re-

mains unbound for all light-quark masses [50].

The EMPs associated with the nucleon and the di-neutron system are shown in the left

panels of fig. 6 and fig. 7. The di-neutron binding energies extracted from the LQCD
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FIG. 6: The left panel shows an EMP of the neutron and of the neutron-neutron system calculated

with the 243× 128 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of the neutron-

neutron system calculated with this ensemble, along with the fits.

calculations are

B(L=24)
nn = 10.4± 2.6± 3.1 MeV , B(L=32)

nn = 8.3± 2.2± 3.3 MeV . (18)

The volume extrapolation of the results in eq. (18) is shown in fig. 8, and results in an

extrapolated di-neutron binding energy of

B(L=∞)
nn = 7.1± 5.2± 7.3 MeV (19)

where the first uncertainty is statistical and the second is systematic. This result is suggestive
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FIG. 7: The left panel shows an EMP of the neutron and of the neutron-neutron system calculated

with the 323× 256 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of the neutron-

neutron system calculated with this ensemble, along with the fits.
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FIG. 8: The results of the Lattice QCD calculations of −i cot δ versus |k|2/m2
π in the di-neutron

channel obtained using eq. (7), along with the infinite-volume extrapolation using eq. (10). The

inner uncertainty associated with each point is statistical, while the outer corresponds to the

statistical and systematic uncertainties combined in quadrature.

of a bound di-neutron at this pion mass, but at the present level of precision an unbound

system is also possible. In the L ∼ 2.5 fm volume, the di-neutron ground state is found to

be positively shifted in energy at the 1σ-level [8], consistent with both a bound state or a

continuum state. Further computational resources devoted to the smaller-volume ensemble
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would allow for better understanding of the volume-dependence of this state, and in general,

would be a valuable component of future studies.
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FIG. 9: The di-neutron binding energy as a function of the pion mass. The blue point and

uncertainty results from the quenched calculation of Ref. [12], while the red point and uncertainty

(the inner is statistical and the outer is statistical and systematic combined in quadrature) is our

present nf = 2 + 1 result.

Our nf = 2 + 1 result and the recent quenched (nf = 0) result of Ref. [12] are shown

in fig. 9. Clearly, the large uncertainty of our present result does not provide a significant

constraint on the binding of the di-neutron as a function of the light-quark masses. However,

the LQCD results suggest that the di-neutron is bound at quark masses greater than those

of nature. This has implication for future LQCD calculations as there are likely light-quark

masses for which the di-neutron unbinds, and hence the scattering length becomes infinitely

large. This implies that, at some point in the future, LQCD may be able to explore strongly

interacting systems of fermions near the unitary limit. However, if the deuteron remains

bound at heavier quark masses, as suggested by the current work, it may not be possible

to tune the light-quark masses (including isospin breaking) to produce infinite scattering

lengths in the 3S1−3D1 and 1S0 channels simultaneously and hence eliminating the possibility

of the triton having an infinite number of bound states for such a specific choice of light-quark

masses (unless the deuteron is also unbound for an intermediate range of quark masses) 6.

6 Such bound states would be the manifestation of an infrared renormalization group limit cycle in QCD,
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C. The H-Dibaryon

The prediction of a relatively deeply bound system with the quantum numbers of ΛΛ (called

the H-dibaryon) by Jaffe [1] in the late 1970s, based upon a bag-model calculation, started

a vigorous search for such a system, both experimentally and also with alternate theoretical

tools. As all six quarks, uuddss, can be in an s-wave and satisfy the Pauli principle, such

a channel may support a state that is more deeply bound than in channels with different

flavor quantum numbers. Reviews of experimental constraints on, and phenomenological

models of, the H-dibaryon can be found in Refs. [54–57]. While experimental studies of

doubly-strange (s = −2) hypernuclei restrict the H-dibaryon to be unbound or to have a

small binding energy, the most recent constraints on the existence of the H-dibaryon come

from heavy-ion collisions at RHIC [58], effectively eliminating the possibility of a loosely-

bound H-dibaryon at the physical light-quark masses. However, the analysis that led to

these constraints was model-dependent, in particular in the production mechanism, and

may simply not be reliable. Recent experiments at KEK indicate that a near threshold

resonance may exist in this channel [59].

A number of quenched LQCD calculations [60–65] have previously searched for the H-

dibaryon, but without success. Recently, we and the HALQCD collaboration have reported

results that show that the H-dibaryon is bound for a range of light-quark masses that are

larger than those found in nature [16, 17]. At present, neither of these calculations are

extrapolated to the continuum, with both calculations being performed at a spatial lattice

spacing of bs ∼ 0.12 fm. Chiral extrapolations in the light-quark masses of these two LQCD

calculations were performed in Refs. [19, 20] to make first QCD predictions for the binding

energy of the H-dibaryon at the physical light-quark masses. 7

as conjectured by Braaten and Hammer [53].
7 These extrapolations are significantly less reliable (rigorous) than the chiral extrapolation of simple quan-

tities (such as hadron masses) calculated with LQCD. While for a deeply bound H-dibaryon with a radius

that is much smaller than the inverse pion mass it is possible to arrive at a chiral EFT construction with

which to calculate the light-quark mass dependence of H-dibaryon mass in perturbation theory, the same

construction would not be valid when the radius becomes comparable to or larger than 1/mπ. A weakly

bound state can only be generated nonperturbatively, and consequently the quark-mass dependence of the

binding energy is nontrivial, as is clear from the analyses in the two-nucleon sector, e.g. Refs. [46–48, 66].

As a result, the assumption of compactness of the state made in Ref. [20] is difficult to justify over a

significant range of predicted binding energies. Further, the simple polynomial extrapolations in Ref. [19]

are meant to provide estimates alone and cannot be used to reliably quantify extrapolation uncertainties.
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In the absence of interactions, the ΛΛ-ΞN -ΣΣ coupled system (all three have the same

quantum numbers) is expected to exhibit three low-lying eigenstates as the mass-splittings

between the single-particle states are (from the 323 × 256 ensemble)

2(MΣ −MΛ) = 0.01317(13)(19) t.l.u ,

MΞ +MN − 2MΛ = 0.003397(61)(65) t.l.u . (20)

However, if the interaction generates a bound state, it is unlikely that a second or third

state will also be bound, and therefore the splitting between the ground state and the two

additional states will likely be larger than estimates based upon the single-baryon masses.

The EMPs associated with the Λ and the system with the quantum numbers of the ΛΛ are

shown in the left panels of fig. 10 and fig. 11. The binding energies extracted from the
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FIG. 10: The left panel shows an EMP of the Λ and of the lowest state in the ΛΛ-ΞN -ΣΣ system

calculated with the 243 × 128 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of

the ΛΛ-ΞN -ΣΣ system calculated with this ensemble, along with the fits.

LQCD calculations are

B
(L=24)
H = 17.52± 0.88± 0.68 MeV , B

(L=32)
H = 14.5± 1.3± 2.4 MeV , (21)

which agree within uncertainties with the values given in our earlier paper [16]. The volume

extrapolation of the results in eq. (21) is shown in fig. 12, and gives an extrapolated H-

dibaryon binding energy of

B
(L=∞)
H = 13.2± 1.8± 4.0 MeV (22)

21



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

t Ht.l.u.L

E
Ht.

l.u
.L

LL

L

0 10 20 30 40

-0.02

-0.010

0

0.010

0.02

t Ht.l.u.L

Èk
È2

Hs.
l.u

.L2

FIG. 11: The left panel shows an EMP of the Λ and of the lowest state in the ΛΛ-ΞN -ΣΣ system

calculated with the 323 × 256 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of

the ΛΛ-ΞN -ΣΣ system calculated with this ensemble, along with the fits.
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FIG. 12: The results of the LQCD calculations of −i cot δ versus |k|2/m2
π in the H-dibaryon channel

obtained using eq. (7), along with the infinite-volume extrapolation using eq. (10). The inner

uncertainty associated with each point is statistical, while the outer corresponds to the statistical

and systematic uncertainties combined in quadrature.

where the first uncertainty is statistical and the second is systematic. In Ref. [16], B
(L=∞)
H

was assigned a volume extrapolation uncertainty of ±1 MeV. In the present analysis, this

systematic uncertainty has been reduced to ±0.3 MeV by keeping the first three terms

in the volume expansion [29] given in eq. (11) (only the first term in eq. (11) was used
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in the extrapolation performed in Ref. [16]). The uncertainty in the energy-momentum

relation is unchanged, and is estimated to be ±0.6 MeV. The updated result in eq. (22) at

mπ ∼ 390 MeV and the result of the nf = 3 calculation at mπ ∼ 837 MeV [17] 8 are shown

in fig. 13. Also shown in this figure are two naive extrapolations, one that is linear in mπ

and one that is quadratic in mπ, as discussed in Ref. [19]. The extrapolations indicate that
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FIG. 13: Extrapolations of the LQCD results for the binding of the H-dibaryon. The left panel

corresponds to an extrapolation that is quadratic in mπ, of the form BH(mπ) = B0 + d1m
2
π.

The right panel is the same as a left panel except with an extrapolation of the form BH(mπ) =

B̃0+d̃1mπ. In each panel, The blue point and uncertainty results from the nf = 3 LQCD calculation

of Ref. [17], while the red point and uncertainty is our present nf = 2 + 1 result. The green dashed

vertical line corresponds to the physical pion mass.

the LQCD calculations are presently not at sufficiently small quark masses to determine if

the H-dibaryon is bound at the physical light-quark masses.

D. Ξ−Ξ−

Experimental information on the hyperon-hyperon interactions in the s < −2 sector does

not exist, presenting a significant handicap to studies of the composition of neutron star

matter. As an example of the importance of these interactions, Ref. [67] shows that when

8 In extrapolating to the physical values of the light-quark masses, and in the absence of an extrapolation

form that describes the full three-flavor dependence, we use the result from the HALQCD collaboration

with a strange quark mass that is closest to its physical value, and perform an extrapolation in the up-

and down-quark masses in the isospin limit. For further discussion of this selection, see Ref. [19].
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a strongly attractive ΞΞ interaction is used in the Tolman-Oppenheimer-Volkoff equation,

new stable solutions appear, corresponding to compact hyperon stars with masses similar to

neutron stars but with smaller radii. From the theoretical point of view, the approximate

flavor SU(3) symmetry of QCD indicates that a bound state in the Ξ−Ξ− channel is likely.

Phenomenological analyses of NN scattering and YN scattering provide a determination of

the strength of the interaction for two baryons in the 27 irreducible representation of flavor

SU(3) that also contains the Ξ−Ξ− system. The OBE model developed by the Nijmegen

group, NSC99 [2] 9, which include explicit breaking of flavor SU(3) symmetry by using the

physical meson and baryon masses, and chiral EFT [68], predicts a bound state in the Ξ−Ξ−

channel [3, 4] at the physical pion mass 10. However, only moderate attraction is obtained

within a constituent quark model [69]. A small Ξ−Ξ− interaction was calculated in the

203 × 128 ensemble [8] used in this work but may be subject to significant finite volume

uncertainties. LQCD calculations performed in the flavor SU(3) limit [70], in volumes of

163×32 with a lattice spacing of bs ∼ 0.12 fm and at pion masses of 1014 and 835 MeV found

attractive interactions in the flavor singlet t-channel responsible for Ξ−Ξ− interactions.

Our present LQCD calculations provide clear evidence for a bound Ξ−Ξ− state at a pion

mass of mπ ∼ 390 MeV. The EMPs associated with the Ξ and the Ξ−Ξ− system are shown

in the left panels of fig. 14 and fig. 15.

9 The recently developed extended soft-core models do not yet include the s < −2 sectors.
10 The ΞΞ(3S1) and NN(3S1) states belong to different irreducible representations (10 and 10, respectively)

and therefore SU(3) flavor symmetry alone is unable to predict whether an analog of the deuteron in the

s = −4 sector exists.
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FIG. 14: The left panel shows an EMP of the Ξ and of the Ξ−Ξ− system calculated with the

243 × 128 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of the Ξ−Ξ− system

calculated with this ensemble, along with the fits.
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FIG. 15: The left panel shows an EMP of the Ξ and of the Ξ−Ξ− system calculated with the

323 × 256 ensemble (in t.l.u.). The right panel shows the |k|2 (in (s.l.u.)2) of the Ξ−Ξ− system

calculated with this ensemble, along with the fits.

The Ξ−Ξ− binding energies extracted from the LQCD calculations are

B
(L=24)
Ξ−Ξ− = 11.0± 1.3± 1.6 MeV , B

(L=32)
Ξ−Ξ− = 13.0± 0.5± 3.9 MeV . (23)

The volume extrapolation of the results in eq. (23) is shown in fig. 16, and results in an

extrapolated Ξ−Ξ− binding energy of

B
(L=∞)
Ξ−Ξ− = 14.0± 1.4± 6.7 MeV (24)
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where the first uncertainty is statistical and the second is systematic. This indicates that,

at the ∼ 2σ level, the Ξ−Ξ− channel supports a bound state. The fact that the binding
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FIG. 16: The results of the Lattice QCD calculations of −i cot δ versus |k|2/m2
π in the Ξ−Ξ−

system obtained using eq. (7), along with the infinite-volume extrapolation using eq. (10). The

inner uncertainty associated with each point is statistical, while the outer corresponds to the

statistical and systematic uncertainties combined in quadrature.

energy calculated in the 243 × 128 ensemble has k cot δ>∼ 0 indicates that this volume is

significantly modifying the Ξ−Ξ− bound state, and that calculations in larger volumes, or

with non-zero total momentum, would refine the volume extrapolation. A positively-shifted

ground state energy at the 2σ-level was obtained from the 203 × 128 ensemble [8], which

appears to be inconsistent with the results obtained from the 243 × 128 and 323 × 256

ensembles. We attribute this discrepancy to a combination of the L ∼ 2.5 fm volume being

too small to accommodate a Ξ−Ξ− bound state, to the exponential corrections to Lüschers

energy-eigenvalue relation being large for this system, and to statistical fluctuations. The

later contribution could be explored with increased computational resources being devoted

to the ensemble. One further possibility for the positively-shifted ground state energy in the

203×128 ensemble is that it was the lowest-lying continuum state, and not the ground-state

of the system that had been identified. An important component of future work on these

systems will be a systematic exploration and quantification of each of the possible issues.

This result and the predictions of OBE models and leading order (LO) EFT are shown
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FIG. 17: The Ξ−Ξ− binding energy as a function of the pion mass. The black line denotes

the predictions of the NSC97a-NSC97f models [2] constrained from nucleon-nucleon and hyperon-

nucleon scattering data. The orange line denotes the range of predictions by Miller [3], and the

green line denotes the leading order EFT prediction by Haidenbauer and Meißner (HM) [4]. The red

point and uncertainty (the inner is statistical and the outer is statistical and systematic combined

in quadrature) is our present nf = 2 + 1 result. The OBE model and EFT predictions at the

physical pion mass are displaced horizontally for the purpose of display.

in fig. 17. It is important to note that the uncertainty (and significance) of the LQCD

result is comparable to that of the OBE models and EFT results. Further, this result

demonstrates that LQCD is rapidly approaching the situation where it will provide more

precise constraints on exotic systems than can be achieved in the laboratory. It will be

interesting to see whether J-PARC [71] or FAIR [72] can provide constraints on the s = −3

and s = −4 systems, as well as on the possible H-dibaryon [73]. The binding energy in

eq. (24) provides strong motivation to return to OBE models and EFT frameworks and

determine the expected dependence on the light-quark masses.

E. Σ−Σ−

As the Σ−Σ− (1S0) system is in the 27 irreducible representation of flavor SU(3), it

is also expected to be bound, but by somewhat less than the Ξ−Ξ− system. While
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the NSC97a-NSC97f models [2] estimate the Σ−Σ− binding, BΣ−Σ− , to lie in the range

1.5 MeV<∼ BΣ−Σ−<∼ 3.2 MeV, large and negative scattering lengths are found in the Σ−Σ−

channel with LO EFT [74] in the absence of Coulomb interactions and isospin breaking

(these results exhibit non-negligible dependence on the momentum cut-off). On the other

hand, the constituent quark model of Ref. [69] finds strong similarities between the behav-

ior of the Σ−Σ− and nn interactions, leading to similar values for the phase shifts. Our

LQCD calculations in this channel are inconclusive. While the ground state in the 243×128

ensemble is negatively shifted at the 1σ-level, the ground state in the 323 × 256 ensemble

is consistent with zero, and thus is consistent with both a scattering state and a bound

state. However, the large and positive energy-shift obtained from the 203× 128 ensemble [8]

suggests that the Σ−Σ− state we have identified is a scattering state and not a bound state,

assuming that the exponential volume modifications to Lüschers energy-eigenvalue relation

are small.

V. CONCLUSIONS

We have performed precise Lattice QCD calculations of baryon-baryon systems at a pion

mass of mπ ∼ 390 MeV in four ensembles of anisotropic Clover gauge-field configurations

with a spatial lattice spacing of bs ∼ 0.123 fm, an anisotropy of ξ ∼ 3.5 and cubic spatial

lattice volumes with extent L ∼ 2.0, 2.5, 2.9 and 3.9 fm. These calculations have provided

evidence, with varying levels of significance, for the existence of two-baryon bound states

from QCD, which are summarized in Table III. Our LQCD calculations were performed

TABLE III: A summary of the two-body binding energies determined in this work.

Deuteron Di-neutron H-dibaryon Ξ−Ξ−

Binding Energy (MeV) 11(05)(12) 7.1(5.2)(7.3) 13.2(1.8)(4.0) 14.0(1.4)(6.7)

at one lattice spacing, bs ∼ 0.123 fm, but discretization effects are expected to be small

as they scale as O (b2
s) for the Clover action. Consequently, we do not expect them to

significantly alter our conclusions. A second lattice spacing is required to quantify this

systematic uncertainty.

By far the most significant result is that the H-dibaryon is bound at the 3σ level at this
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pion mass, improving on results we have already presented in Ref. [16]. At the ∼ 2σ level of

significance, we find that the Ξ−Ξ− system is also bound, which is qualitatively consistent

with an array of hadronic models and EFT analyses of this system at the physical light-quark

masses. It is interesting to note that the level of precision of the Ξ−Ξ− binding from LQCD

is comparable to the level of precision associated with the phenomenological predictions.

With increasing computational resources directed at these two-baryon systems, the QCD

prediction will become more precise and eventually become input for phenomenological

models and will be used to constrain the coefficients appearing in the effective field theories.

A major goal of Lattice QCD is to postdict the anomalously small binding energy of the

deuteron. We have presented ∼ 1σ level evidence for a bound deuteron from QCD, which is

well below “discovery level”, and our result should be considered a first step toward a defini-

tive calculation. Nevertheless, it is now unambiguously clear that a precise determination

of the deuteron binding energy can be performed with sufficient computational resources.

Our result hints that the deuteron is bound, as does the result of a previous quenched cal-

culation, at heavy pion masses, in contrast with phenomenological analyses and with EFT

predictions. We also find suggestions of a bound di-neutron which are far from definitive,

but are consistent with the quenched result at a heavier pion mass [12]. If this remains the

case when the calculation is refined, there are light-quark masses between mπ ∼ 140 MeV

and mπ ∼ 390 MeV for which the scattering length in this channel would be infinite and

the system would be scale-invariant at low energies.

Phenomenology based upon flavor SU(3) symmetry indicates that the Ξ−Ξ− system

should be more bound than the Σ−Σ− system, which in turn should be more bound than

the di-neutron (which is nearly bound) at the physical light-quark masses, as these three

systems are all members of the same 27 irreducible representation of SU(3). Our results are

consistent with this within the uncertainties of the LQCD calculations, but further work is

required before definitive conclusions can be drawn.

The results of the Lattice QCD calculations presented in this paper, which refine and

broaden our previous work [16], provide clear evidence for bound-states of two baryons

directly from QCD. With the suggestion of a deuteron and a bound di-neutron at this heavier

pion mass, there is compelling motivation to invest larger computational resources into

pursuing Lattice QCD calculations at light-quark masses, and to perform such calculations in

multiple volumes and with multiple lattice spacings. It is clear that enhanced computational
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resources will enable calculations of the properties and interactions of nuclei from QCD with

quantifiable and systematically removable uncertainties.
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