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We give results for the Upsilon spectrum from lattice QCD using an improved version of the
NRQCD action for b quarks which includes radiative corrections to kinetic terms at O(v*) in the
velocity expansion. We also include for the first time the effect of up, down, strange and charm
quarks in the sea using ‘second generation’ gluon field configurations from the MILC collaboration.
Using the T 25 — 1S splitting to determine the lattice spacing, we are able to obtain the 1P — 1.5
splitting to 1.4% and the 35S — 15 splitting to 2.4%. Our improved result for M (Y) — M (n) is 70(9)
MeV and we predict M (Y') — M (n;) = 35(3) MeV. We also calculate 7, K and 7 correlators using
the Highly Improved Staggered Quark action and perform a chiral and continuum extrapolation to
give values for M, (0.6893(12) GeV) and f,, (0.1819(5) GeV) that allow us to tune the strange
quark mass as well as providing an independent and consistent determination of the lattice spacing.
Combining the NRQCD and HISQ analyses gives my/ms = 54.7(2.5) and a value for the heavy

quark potential parameter of r1 = 0.3209(26) fm.

I. INTRODUCTION

Lattice QCD calculations have developed rapidly both
in accuracy and in scope in the last few years. This
growth has built on the first demonstration that numer-
ical simulations including u, d and s quarks in the sea
with light enough w/d quarks give results in agreement
with experiment for simple ‘gold-plated’ quantities across
the full range of hadron physics [1]. Errors at the level of
a few % make this highly non-trivial. A key element of
those calculations was the determination of the T spec-
trum because there are many gold-plated states below
threshold for strong Zweig-allowed decay. In addition ra-
dial and orbital excitation energies are very insensitive
to quark masses (including that of the b itself) making
them useful for determining the lattice spacing, a, with-
out a complicated tuning process. A further incentive
for lattice Y studies is the importance of testing b quark
physics from lattice QCD so that the same action can
be used for results in B physics required, in conjunction
with experiment, for the determination of elements of the
Cabibbo-Kobayashi-Maskawa matrix. Here we give new
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results for the T spectrum improving on those earlier re-
sults in several ways to keep pace with improvements in
other areas of lattice QCD. We have improved statistical
errors, improved the NRQCD action and we are also now
using ‘second generation’ gluon field configurations that
include charm quarks in the sea.

The b quarks in these first calculations that included
the full effect of sea quarks [2, 3] were implemented us-
ing lattice Nonrelativistic QCD (NRQCD) with an action
accurate through v* in the velocity expansion for the b
quark [4]. The coefficients of the v* terms were matched
to full QCD at tree level, having removed the most signif-
icant source of radiative corrections, that of tadpole dia-
grams generated in lattice QCD from the form of the lat-
tice gluon field, by the use of ‘tadpole-improvement’ [5].
The gluon field configurations used were generated by
the MILC collaboration [6] using a Symanzik-improved
gluon action in which radiative corrections at O(asa?)
were included except for radiative corrections from quark
loops [7] (O(nfasa?) where ny is the number of sea quark
flavors), which were omitted. Configurations at three dif-
ferent values of the lattice spacing were available: ‘super-
coarse’ (a ~ 0.18fm); ‘coarse’ (a & 0.12fm) and ‘fine’ (a =~
0.09fm). wu/d and s sea quarks were included using the
improved staggered (asqtad) action [8-10] which is nu-
merically relatively fast. A range of u/d masses (taken
to be the same) were used ranging down to a ratio with
the s sea quark mass of around 0.2. The key mass split-
tings in the bottomonium spectrum studied were those
between the ground S-wave states and the first radially
excited S-wave states, the 25 — 1S splitting, and that
between the first P-wave states and the ground S-wave
states, the 1P — 15 splitting. The statistical errors from



the lattice calculation for these splittings were 1-2% (i.e.
5-10 MeV) and systematic errors were estimated to be
similar to this or smaller, depending on the lattice spac-
ing. Within these errors, agreement with experiment was
confirmed.

More recently the T spectrum has been calculated us-
ing the same NRQCD action on gluon configurations at
a ‘coarse’ (a ~ 0.11 fm) and a ‘fine’ (@ ~ 0.09 fm) lat-
tice spacing generated by the RBC/UKQCD collabora-
tion using the Iwasaki gluon action and 241 flavors of
sea quarks implemented with the domain wall formal-
ism [11, 12]. Results in close agreement and with similar
errors to those found on the MILC configurations are ob-
tained, confirming the independence of the results from
the sea quark formalism.

The systematic errors in the calculation of the T
25 — 1S5 and 1P — 15 splittings were studied in some de-
tail in [2]. Sources of error there were missing radiative
corrections to the v* terms in the lattice NRQCD ac-
tion (beyond tadpole-improvement), as well as radiative
corrections to discretisation correction terms and from
higher order (v®) missing relativistic corrections. In ad-
dition systematic errors from the missing radiative cor-
rections to the improvement terms in the gluon action
were estimated. These errors were typically each of order
1% in the 1P — 15 splitting on the fine lattices and about
half that for the 25 — 1.5 splitting because of some can-
cellation between 1S and 25 states. Errors were similar
for the radiative and relativistic errors on coarser lattices
but of course the discretisation errors were larger.

Subsequent to this, we have made estimates of the ef-
fect of missing ¢ quarks in the sea [13, 14]. These have
negligible effect on mesons apart from bottomonium,
where internal momenta can be large enough to gener-
ate ¢ quarks from the vacuum. We found the shift in the
ground-state S wave masses might be of O(5MeV) [14]
(it is spin-independent) with approximately half the shift
for 2.5 states because of a smaller ‘wave-function at the
origin’ and no shift for 1P states. This would give rise to
systematic errors of 0.5% for the 25 — 1.5 splitting and
1% for the 1P — 15 splitting, similar to the systematic
errors from other effects quoted above.

The conclusion from these results is that the errors
in bottomonium masses and radial and orbital mass
splittings have been pinned down and tested from this
NRQCD action at the level of 5-10 MeV. There is also a
contribution to systematic errors at the same level com-
ing from the gluon field configurations. The NRQCD
systematic errors also feed in to the calculation of B, B,
and B, meson masses using NRQCD b quarks. The state-
of-the-art calculation for the masses of these mesons has
O(10 MeV) errors dominated by systematic errors from
this NRQCD action [14, 15].

In the last five years, however, other lattice QCD cal-
culations have become increasingly accurate. For exam-
ple the mass of the Dy meson was recently calculated by
HPQCD with combined statistical and systematic errors
of 3 MeV and its decay constant calculated to 1% [13].

These errors are at the level where we must allow for
missing electromagnetism from lattice QCD.

There have been several contributions to this progress.
Advances in computational speed have meant better sta-
tistical errors from calculating many more meson correla-
tors on larger samples of configurations. It has also been
possible to generate lattices with smaller lattice spacing,
so that the Dy calculation includes ‘superfine’ (a =~ 0.06
fm) and ‘ultrafine’ (a ~ 0.045 fm) lattices [6]. Significant
improvements have been made to relativistic quark ac-
tions too. For example, the D; meson mass calculation
used the Highly Improved Staggered Quark (HISQ) ac-
tion for both valence quarks. The HISQ action [16] has
smaller discretisation errors than the asqtad action by
about a factor of 3 and can be used for quarks as heavy
as charm on lattices with a lattice spacing of 0.1fm or
smaller. This has revolutionised charm physics calcula-
tions [17] in lattice QCD and is having an impact also
on calculations for mesons containing a b quark through
a combination of an extrapolations in the mass of the
heavy HISQ quark acting as the ‘b’ to the physical point
for the real b quark, combined with extrapolations to the
continuum (a¢ — 0) limit from results at many values
of a [18]. The heavy HISQ calculations are computa-
tionally much more expensive than those using NRQCD
and this currently limits their utility. The results for B
and B, meson masses have comparable errors to the ex-
isting NRQCD results, but are dominated by statistical
and a — 0 extrapolation uncertainities. They then pro-
vide a complementary way of testing b physics to that of
NRQCD and it is clear that combining the strengths of
both methods will be optimal in future.

Meanwhile the MILC collaboration have moved on to
the production of ‘second generation’ gluon field config-
urations which have a number of improvements over the
earlier ensembles [19]. They include a more highly im-
proved gluon action [20], HISQ quarks in the sea with
the addition of ¢ quarks as well as u, d and s and with
lighter u and d masses than before.

The availability of these configurations along with the
incentives discussed above to improve errors in Y and B
physics using NRQCD b quarks has meant that we have
begun a new programme of improved NRQCD calcula-
tions. Here we present the first results, giving the radial
and orbital splittings in the T spectrum, tuning the lat-
tice b quark mass and determining the lattice spacing
from the (25 —15) splitting. As well as using the second
generation gluon field configurations we have improved
the NRQCD action by adding radiative corrections to
the v* kinetic terms including discretisation errors. We
also have improved statistics and improved methods for
tuning the b quark mass. This has meant that we can
test the effect of radiative corrections to the v* kinetic
terms on the meson dispersion relation. Using both per-
turbative and nonperturbative methods for determining
the radiative corrections to spin-dependent terms we are
able to improve the determination of the Y hyperfine
splitting.



A useful complementary method for determining the
lattice spacing was developed in [21]. It uses the ficti-
tious ss pseudoscalar particle known as the n,. This par-
ticle does not exist in the real world because of mixing
with light quarks to form the 7 and 1’ but on the lattice
this can be prevented. The mass and decay constant of
the ns can be determined accurately in a lattice QCD
calculation using the Highly Improved Staggered Quark
(HISQ) action and their physical values fixed from M,
My, fr and fx from a simultaneous chiral and contin-
uum extrapolation. Here we update the results of [21] for
these 2+1+1 configurations and use these also to give a
determination of the lattice spacing.

The two different methods for determining the lattice
spacing can be combined through the use of a third quan-
tity, 71 [22], which can be derived accurately from deter-
mination of the heavy quark potential [23]. 71/a values
are provided for these configurations by the MILC col-
laboration [24]. r1/a provides a good determinant of the
relative lattice spacing between different sets of gluon
configurations but its physical value must be determined
from other quantities. From the separate determination
of the lattice spacing from the two methods above we
have two sets of results for r; in fm as a function of lat-
tice spacing. From this we are able to test that the two
methods give the same result in the continuum and chi-
ral limits (which they do) and provide a physical value
of r1 that could be used, in the absence of either of the
other methods, to determine the lattice spacing on other
ensembles with 2+1+1 flavors of sea quarks.

We also combine results for tuned b quark masses in
NRQCD and tuned s quark masses from HISQ along with
one-loop renormalisation constants to give a value for
mp/ms for comparison to other results obtained purely
from the HISQ action.

The layout of the paper is as follows. Section II dis-
cusses the second-generation gluon field ensembles giving
more details of the improvements present there. Sec-
tion IIT describes the improvements to the NRQCD cal-
culations and results for the T spectrum. Section IV dis-
cusses the 7w, K, 1, analysis on these same configurations
and the additional information that provides to deter-
mine the lattice spacing. This is tied together via the
determination of the heavy quark potential parameter,
r1, in section V and my/my in section VI. Section VII
provides our conclusions.

II. SECOND GENERATION 24141 GLUON
FIELD ENSEMBLES

The gauge configurations used in this calculation are
listed in Table I [19]. These were generated by the MILC
collaboration using a tadpole-improved Liischer-Weisz
gauge action with coefficients corrected perturbatively
through O(a;) including pieces proportional to ny, the
number of quark flavors in the sea [20] (see Appendix A).
The gauge action is then improved completely through

TABLE I: Details of the MILC gluon field ensembles used
in this paper. 8 = 10/g* is the SU(3) gauge coupling and
L/a and T'/a are the number of lattice spacings in the space
and time directions for each lattice. am;,ams and am. are
the light (up and down taken to have the same mass), strange
and charm sea quark masses in lattice units. r1/a is the static-
quark potential parameter in lattice units determined by the
MILC collaboration [19, 24]. Note that this has not been
‘smoothed’. The ensembles 1 and 2 will be referred to in the
text as “very coarse”, 3 and 4 as “coarse” and 5 as “fine.”

Set ri/a amy ams am. L/axT/a

1 5.80 2.041(10) 0.013 0.065 0.838 16x48
5.80 2.0621(45) 0.0064 0.064 0.828 24x48
6.00 2.574(5) 0.0102  0.0509 0.635 24x64

6.00 2.623(11) 0.00507 0.0507 0.628 32x64
6.30 3.549(13) 0.0074 0.037 0.440 32x96

UY > W N

O(asa?), unlike the earlier asqtad configurations. Sea
quarks are included with the HISQ action [16] which also
has smaller discretisation errors compared to the asqtad
action (see the discussion in section IV). The configura-
tions include a sea charm quark in addition to up, down
and strange. These configurations are then said to have
2+1+41 flavors in the sea, since the v and d quarks are
taken to have the same mass, which is heavier than av-
erage u/d mass in the real world, and the s and ¢ masses
are tuned as closely as possible to their correct values at
that lattice spacing. The tuning of the sea s quark mass
is much more accurately done — to better than 5% — than
on the previous asqtad configurations. This means that
the u/d quark mass (denoted m; here) can be more accu-
rately calibrated in terms of the s quark mass for chiral
extrapolations. Here we use a ratio of m;/ms as low as
one tenth (see Table I) whereas in our previous work on
the asqtad configurations our most chiral ensemble had a
ratio of the my seq/Ms physicar Of one quarter. This means
that we have a much smaller chiral extrapolation to do
to reach the physical u/d mass (where m; = mg/27 [6])
than before.

The sea quarks are included with the standard method
of incorporating the determinant of the quark matrix
raised to the one quarter power for each flavor, in or-
der to implement the correct counting for sea staggered
quarks. The algorithm used for including the sea quarks
has now been improved by MILC to the exact RHMC
algorithm [19] i.e. all errors in the time step for the up-
dating algorithm have been removed.

The configurations are separated by 5 trajectories in
the time units of the updating algorithm for the very
coarse and coarse ensembles and by 6 trajectories for the
fine ensemble. In subsections IIIB and IV A we will
study the autocorrelations in our meson correlators to
show how independent the configurations are for different
observables.

The r1/a values given in Table I are determined by
the MILC collaboration after extraction of the potential
between two infinitely heavy (static) quarks at separation



r/a in lattice units. 71 /a is defined [22] as the point where
the force F'(r) derived from the derivative of the potential
satisfies

r?F(r) = 1. (1)

The values of r;/a for these ensembles have been chosen
to match approximately those of the previous results in-
cluding 2+1 flavors of asqtad quarks and can be used to
determine the lattice spacing if the physical value for rq
is known. Using the 71 value determined previously on
configurations with 2+1 flavors of sea quarks, this means
that the lattice spacing values will be approximately 0.15
fm, 0.12fm and 0.09fm. The physical spatial size of the
lattices then exceeds 2.5 fm and is as high as 3.8 fm on the
ensembles that correspond to m;/ms = 0.1. In section V
we will derive a physical value for r; based on the results
from sections III and IV to calibrate more accurately the
lattice spacing values for these configurations.

III. THE UPSILON SPECTRUM
A. The NRQCD action

The spectrum of bottomonium mesons is extracted by
computing appropriate correlators constructed from b-
quark propagators on the gluon field ensembles listed in
Table I. We make use of NRQCD, an effective field theory
that gives an expansion of the Dirac action in powers of
the heavy quark velocity, v. This is discretised onto a
space-time lattice as lattice NRQCD [4, 25] and is a
good formalism to use for b quarks since they are known
to be very nonrelativistic inside their bound states (v? ~
0.1). As used on the lattice NRQCD has the advantage
that propagators can be generated using a simple time
evolution equation rather than having to invert the Dirac
matrix. The quark and antiquark fields are separated in
this formalism as 2-component spinors.

The NRQCD Hamiltonian we use is given by:

aH = aHy+ adH,;

A?2)
aHo = — 5
2amy
(A(2))2 i - -
§H — — ( BE-B. )
“ Cl8(amb)3+c28(amb)2 v v
1 - -
—es——- (VxE—-E v)
ng(amb)sz ( X X
- A
_ .B
“ams ” T %amy
(A@)2

(2)

o 16n(amy)?’

Here V is the symmetric lattice derivative and A(?) and
AM™ the lattice discretization of the continuum Y, D2

and ), D} respectively. amy is the bare b quark mass. E

4

and B are the chromoelectric and chromomagnetic fields
calculated from an improved clover term [2]. The B and
E are made anti-hermitian but not explicitly traceless,
to match the perturbative calculations done using this
action.

In terms of the velocity expansion Hy is O(v?) and 6 H
is O(v*), including discretisation corrections. Hy con-
tains the bare quark mass parameter which is nonpertur-
batively tuned to the correct value for the b quark as dis-
cussed below in subsection III C. The terms in § H have
coefficients ¢; whose values are fixed from matching lat-
tice NRQCD to full QCD. This matching takes account
of high momentum modes that differ between NRQCD
and full QCD and so it can be done perturbatively, giv-
ing the ¢; the expansion 1+ cgl)as + O(a?). In previous
calculations [2] we used the tree level value of 1 for all
the ¢;, after tadpole-improving the gluon fields. This
means dividing all the gluon fields, U, (z) by a tadpole-
parameter, ug, before constructing covariant derivatives
or E and B fields for the Hamiltonian above. The wug
parameter corrects for tadpole diagrams that arise in a
universal way from the way in which the lattice gluon
field is constructed. For ug we took the mean trace of
the gluon field in Landau gauge, ugy,. With tadpole-
improvement in place we expect the radiative corrections
to the ¢; coefficients to be of normal size i.e. O(1) [26];
without this they can be rather large.

Here, on top of tadpole-improvement with ugr,, we use
O(as) corrected coefficients for the kinetic terms, i.e. ¢,
¢s and cg, so improving on the NRQCD action used previ-
ously, and significantly reducing the systematic errors in
the tuning of the b quark mass and in the determination
of the radial and orbital mass splittings. The calculation
of the cl(-l) for ¢ = 1,5,6 is discussed in Appendix B [27].
Table II gives the values for ¢1, ¢5 and c¢g that we use on
the very coarse, coarse and fine lattices as a result. As ex-
pected, after tadpole-improvement, the coefficients cggﬁ
are not large and they are well-behaved as a function of
the b quark mass. In subsection III C we test these coeffi-
cients through a precision study of the dispersion relation
for T and 7, mesons.

The other coefficients in the NRQCD action are cag,
cs and c¢4. c3 and ¢4 multiply spin-dependent terms
that give rise respectively to spin-orbit and spin-spin fine
structure in the spectrum. Most of the splittings we will
discuss here are ‘spin-averaged’ to remove the effect of
these terms and so we will generally set c3 and c4 to
their tree level values of 1. However, in section IITE 3
we will discuss the hyperfine splitting (M (Y) — M (n))
and show results for both perturbatively improved and
nonperturbatively determined c4. The calculation of the
appropriate cfll) [28] is discussed in Appendix B, and
the nonperturbative determination of ¢4 and c3 in Ap-
pendix C. The nonperturbative studies indicate that the
value of c3 is very close to 1 for this NRQCD action.
co multiplies a spin-independent term, the Darwin term,
which can affect spin-independent splittings such as ra-



TABLE II: The coefficients c1, ¢5 and ¢g used in the NRQCD
Hamiltonian of equation 2 on the very coarse (sets 1 and 2),
coarse (sets 3 and 4) and fine (set 5) ensembles. Other coeffi-
cients had values 1 except for calculations in which we specif-
ically changed their values to test the effect, as described in
the text.

Set C1 Cs Cg

Very coarse 1.36 1.21 1.36
coarse 1.31 1.16 1.31
fine 1.21 1.12 1.21

dial and orbital excitation energies. Because the Darwin
term is field-dependent we do not expect it to have such a
large effect as kinetic terms, and therefore do not expect
radiative corrections to cs to be as important as for ¢y, cx
and cg. However, in subsection III C we will investigate
the effect of changing cy so that we can estimate con-
cretely the systematic error from not knowing its O(ay)
correction.

Given the NRQCD action above, the time evolution of
the heavy quark propagator is given by:

<1 - a‘;H> (1 = C;{Lo)n U ()

Gx,t+1) =

with starting condition:

G(x,0) = ¢(x)1. (4)

The smearing function ¢(x) is used to improve the pro-
jection onto a particular state in the spectrum. Includ-
ing a variety of smearing functions is essential to obtain
accurate results for the splittings between the low lying
excited states. Full details of the smearing functions used
will be given in subsection ITIB. The 1 in equation 4 is
the unit matrix in color and (2-component) spin space.
The parameter n has no physical significance, but is in-
cluded for improved numerical stability of high momen-
tum modes that do not contribute to bound states [4].
In [2] it was demonstrated that radial and orbital mass
splittings were the same within the statistical errors avail-
able there for n = 2 and n = 4 on coarse lattices. The
minimum value of n for stability increases as the b quark
mass in lattice units falls on finer lattices. Rather than
varying n as we change the quark mass, here we use n = 4
throughout which is the value appropriate to the fine lat-
tices. At zero spatial momentum the anti-quark propa-
gator is the complex conjugate of the quark propagator
for a source of the kind given in equation 4.

Details of various parameters used in our calculation
are listed in table ITI. Tuning of the bare b quark
mass will be discussed in subsection IIIC. The tad-
pole parameters ugy, were calculated by fixing a subset of
each ensemble to lattice Landau gauge using a Fourier-
accelerated steepest descents algorithm [29] to maximise

TABLE III: Parameters used in the NRQCD action for our
calculations that included a full 5 x 5 matrix of correlators.
Other parameters have been used in subsidiary test calcula-
tions as described in the text. amp is the bare b quark mass
and uor the Landau link tadpole-improvement factor used in
the NRQCD action. The different number of digits given in
the uopr, column reflect the precision with which it was deter-
mined. nce gives the number of configurations used in each
ensemble and n; is the number of starting time sources per
configuration. 7T, is the time length of each propagator in
lattice units. asm, is the parameter for the smearing function
described in subsection III B.

Set amyp UL Netg e Ty Asm
1 3.42 0.8195 1021 16 40 0.79
3.39 0.82015 1000 16 40 0.80
2.66 0.834 1053 16 40 1.0
2.62 0.8349 1000 16 40 1.0
1.91 0.8525 874 16 48 1.37

UY > W N

the average trace link (3_,_; 4., TrUy,(z)), which value,
normalised, then becomes ugz,. The whole ensemble was
then fixed to Coulomb gauge by using the same algorithm
to maximise the spatial trace link (3_,_, ., TrU;(x)) to
allow us to use ‘wave-function’ smearing operators, with
parameter a,, as described in subsection III B. Propaga-
tors were calculated from 16 time sources on each configu-
ration to minimise statistical errors. Because in NRQCD
we operate a simple time evolution we can choose the
time length of each propagator. This we take to be
greater than or equal to half the time extent of the lattice
as detailed in Table III.

B. Smearing functions and multiexponential fits

Quark propagators are generated using three different
smearing functions which we label as local, ground state
and excited state. They are chosen to improve the pro-
jection onto different radially excited states and previous
experience has shown that ‘hydrogen-like’ wavefunctions
work well [2].

(bl(?“) = 57",0
Ggs(r) = exp(—r/asm)
Ges(r) = (2asm — 1) exp(—7/asm)- (5)

asm is the smearing radius and is chosen to be approx-
imately the same in physical units for each ensemble.
Values are given in Table III. Since a different smearing
function can be applied separately to the quark and anti-
quark we can make five different combinations as detailed
in Table IV.

A different smearing can also be applied at the source
and the sink making correlator cominations labelled by
e.g. lgle,gG. The different smearing combinations allow
the construction of up to a 5 x 5 matrix of correlators
for the S-wave states that can be fit simultaneously. The



TABLE IV: Smearing combinations used for either the source
or the sink in the construction of S-wave correlators.

Name| quark |anti-quark
smearing| smearing

1 ] )]

g $gs ol

€ Pes )]

G Pgs bgs

E ¢8 S ¢8 S

cross-correlators provide further useful information be-
yond that in the diagonal terms that can be used in the
fitting to extract the excited states more precisely. The
correlators with quantum numbers of 2S; or 1.S; are dis-
tinguished by the insertion of either a ¢ or a 1 in spin
space at source and sink [30].

To make P-wave states we use only the 1 and g smear-
ings above and apply a symmetric difference operator,
A to the smeared source to give a P-‘wavefunction’.
This propagator is combined with that from a ¢ func-
tion source and a derivative applied at the sink to make
a P-wave meson correlator. The complete set of com-
binations of ¢ matrices with derivatives that are needed
for the P-wave states is given in [30]. On the lattice the
5-dimensional spin 2 representation is split into E and Ts
representations of the lattice rotational group and we fit
these representations separately since differences in mass
between them can arise from discretisation errors on the
lattice.

For the S-wave states, statistical errors were improved
further by using random wall sources in combination with
the smearings discussed above. The delta function quark
source is replaced with a (pseudo-)random colour vector
1.(Z) € U(1) at each spatial point of the initial time
slice. When the meson correlator is constructed, the
white noise property (1, (Z)n) (7)) = 6.40(Z — §) ensures
that the random noise cancels at all points except those
where the initial spatial sites are the same. This can be
combined with the smearing functions by distributing the
random number associated with the centre of each smear-
ing function along with the smearing function. Then once
again the white noise property will mean that the resul-
tant correlator averages over the initial time source the
effect of having a smeared source at every point [31]. Pre-
vious studies have found a significant improvement in the
precision of the Upsilon ground state energy using ran-
dom wall sources [21]. The improvement is less clear for
excited states and therefore we did not use this technique
for the P-wave states.

Propagators were calculated from 16 time sources on
each configuration but to avoid correlations between time
sources, the correlators were binned over all sources on
the same configuration. Autocorrelations between results
on successive configurations in an ensemble were studied

by calculating the autocorrelation function Car [32]:

(ziwiyar) — (@i)(Titar) . (6)

(@F) — (w:)?

Here z; represents a correlator on a given ensemble, i.
Zi+ar is the correlator on an ensemble separated by AT
from 4 in the ordered ensemble i.e. AT = 1 corresponds
to neighbouring configurations in the ensemble. The en-
sembles have been generated taking into account the fact
that autocorrelations increase on finer lattices. Thus
neighbouring configurations are 5 trajectories apart for
very coarse and coarse ensembles but 6 trajectories apart
for the fine ensemble [19]. Car is plotted against AT in
Figure 1 for the case where x is an Y correlator measured
with a time separation on the lattice of approximately
0.6 fm. This value was chosen to correspond to a point
where correlators were dominated by the ground-state.
The picture is qualitatively the same for different time
separations, however. Car drops to zero very rapidly,
within the separation AT = 1. We therefore do not have
to worry about autocorrelations between configurations
but can treat them all as statistically independent.

Bayesian fitting is used to extract the spectrum from
the correlators [33]. The fit function

Car =

Nexp

Gmeson(“sc» Nsks t) = Z a(”sc, /45)(1* (nsk7 k)eiEkt (7)
k=1

is used, where aE} is the energy of the (k — 1)th ra-
dial excitation in lattice units and a(ns. sk, k) are the
corresponding amplitudes labelled by the smearing used
at the source and sink of the correlator, i.e. sc,sk €
{l,9,e,G,E}. We fit the full range of ¢ values for the
correlator from 1 to T},, where T}, values are given for
S-wave fits in Table III and T, = 20 for P-waves. The
number of terms, nexp, in the fit is varied, however, and
Bayesian model selection criteria are applied to deter-
mine which fit is used. In practice, this means adding
additional terms to the fit until the results and the er-
rors stabilise. An example is given in Figure 2.

The Bayesian approach allows the inclusion of prior
data into the fitting procedure. The x2 test function is
amended to

qug = X2 + Xf)rior (8)

and the function Xfmg is minimised. By Bayes’ theo-
rem this corresponds to maximising the posterior prob-
ability p(parameters|data) as opposed to a standard
X2 test which maximises only the likelihood function
p(data|parameters). x3 ., is taken to be

(. — Pr)?
X}Q)rior = Z T =2 (9)
k Upk

for each fit parameter pg. This assumes that the prior
probablility density function for each parameter is a
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FIG. 1: Autocorrelation function Car for T correlators made from different smearing combinations, from left to right: 11, gg
and ee. Different symbols are given to different ensembles according to the key on the right in the ee plot (color online). The
correlators are evaluated at lattice time separation t/a = 4 on very coarse lattices (sets 1 and 2), t/a = 5 on coarse lattices
(sets 3 and 4) and t/a = 8 on fine lattices (set 5). This corresponds to a ¢ value where the gg correlators have reached the
ground-state plateau and the ee correlators have a short plateau corresponding approximately to the first excited state mass.
AT gives the separation at which the autocorrelation is measured in units of numbers in the ordered ensemble list.
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FIG. 2: Energies in lattice units of the low lying T states for
the fine ensemble, set 5, from the full 5 x 5 lgeGE fit plotted
against the number of exponentials, nexp, included in the fit.

Gaussian with central value p;, and width 6,,. The fit
parameters are: the amplitudes, which are taken to have
a prior of 0.141.0; the ground state energies In(Ey) which
are estimated from an effective mass plot and given a suit-
ably wide width; and the splittings In(E,,+; — E,,) which
prior information tells us should be of the order 500 MeV
with a width of 250 MeV. Taking the fit parameters to
be the logarithms of the energy splittings ensures that

the ordering of the states is respected.

Xaug 18 minimised using the singular value decomposi-

tion (SVD) method. In the larger matrix fits, the cor-
relation matrix can become ill-conditioned and it can be

necessary to introduce a cutoff, weyt, on the lowest eigen-
values of the correlation matrix in order to fit the data.
A variation of this method is used in which, instead of
setting eigenvalues below weytwWmax t0 zero, they are set
t0 Wpax times wey:. This is a less severe truncation of
the correlation matrix and it improves the fits in some
cases. Weyt was typically taken to be 10~% for the 5 x 5
matrix fits.

In order to determine whether the inclusion of five dif-
ferent smearing operators actually leads to improved re-
sults, the energies of the low lying T states are plotted
in Figure 3 for a variety of different matrix fits from the
fine ensemble. The effect on the precision of the ground
state is negligible but the full 5 x 5 fit has significantly
smaller errors for the first two excited states.

Because NRQCD is a nonrelativistic effective theory,
there is an energy offset. Thus the energies obtained from
correlators at zero momentum do not correspond to me-
son masses. Energy differences do correspond to mass
differences, however and so, for example, the mass differ-
ence between the T/ and the T (in lattice units) is given
simply by aFy —aFE; from equation 7. To obtain absolute
mass values requires the study of correlators for mesons
at nonzero spatial momentum as discussed in Sec. III C.

C. NRQCD systematics in tuning the b quark mass

In this calculation the parameters of QCD that need to
be determined are the b quark mass and Agcp. In prac-
tice this translates into the fact that we need to tune the
b quark mass parameter in the lattice NRQCD Hamilto-
nian until we obtain the correct value for one calibration
hadron mass and we need to determine the lattice spac-
ing from another calibration hadron mass. After that
is done all other hadron masses are determined with no
further tuning. The two calibration hadrons should be
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chosen with rather different properties. The mass chosen
to fix the b quark mass should ideally be very sensitive
to that value; the mass chosen to determine the lattice
spacing should be as independent of the b quark mass as
possible to avoid a complicated iterative tuning process.
To determine the lattice spacing we choose the radial
excitation energy of the T, i.e. M(Y') — M(Y). This
is known from experiment to be very insensitive to the
heavy quark mass since it changes by only 4% between
the b and the equivalent quantities for the ¢ quark, which
has a mass a factor of 4.5 smaller. The determination of
the lattice spacing from this quantity will be discussed in
section IIT E. Here we focus on the tuning of the b quark
mass and in particular on the effect of the improvements
to the NRQCD action which we have implemented here
for the first time.

As discussed in section IIIB the fitted energy from a
zero momentum hadron correlator made from NRQCD
propagators is not the hadron’s mass because there is
an energy offset. Instead we must determine the ‘kinetic
mass’ from the energy-momentum dispersion relation:

a’P? — (aAFE)?

2aAE ’
where aAFE is the energy difference between the meson
with momentum Pa in lattice units and the meson at

rest. Equation 10 assumes a fully relativistic dispersion
relation, i.e.

aMy,, = (10)

aE(P) =aFE(0) ++\/a?P? + a?MZ2,. (11)

Systematic errors will then be present in the kinetic mass
for lattice NRQCD both because the action is only accu-

rate to a specific order in the expansion in v?/c? and from
lattice discretisation errors. Here we study both of these
effects. First it is worth briefly recapitulating a discus-
sion from the literature (see, for example, [34]) on how
the kinetic mass is built up in a nonrelativistic approach
as successive orders in v?/c? are added to the nonrela-
tivistic expansion, because it provides a useful handle on
systematic errors.

By definition the mass of a meson is given by the sum
of the masses of its constituent quarks plus the binding
energy. The binding energy has contributions from the
internal kinetic energy, i.e. the motion of the constituent
quarks relative to the centre of mass, and from the inter-
action energy. If we write the meson dispersion relation
in the standard nonrelativistic expansion as:

2
EP) =M, +

A +... (12)
then M; is known as the static mass and M5 is the ki-
netic mass, equal to My, in equation 10 up to relativistic
corrections. It should be possible to construct the cor-
rect meson mass from both M; and Ms i.e. the binding
energy contribution needs to feed correctly into both of
them.

To see how this works in outline it is sufficient to study
two free particles. The total energy of the two particle
system is the sum of the masses, m;, plus the kinetic en-
ergies, q7/2m; for each particle. In the center of mass
frame (P = 0) this is simply my + mg plus the inter-
nal kinetic energy. As is well-known, the internal kinetic
energy can be written to leading nonrelativistic order as
p?/2p where p is the momentum of either particle in this
frame and p is the reduced mass (1/p = 1/mq + 1/ms).
Thus M; takes the expected form for this two particle
system. To study M> we must include the motion of the
centre of mass and expand the sum of the two particle
kinetic energies to O(P?). For My to have the correct
form including the leading piece of the internal kinetic
energy we need E(P) to take the form

2

E(P) = mq1+mq2+%+... (13)

P2 p2
s P (1 B )
2(mq1 + mq2) 2p(mq1 + mg2)

i.e. we need to locate a P?p? term in the sum of the
individual particle kinetic energies. This requires the in-
dividual kinetic energies to be expanded beyond leading
order in the nonrelativistic expansion to include terms
at fourth order in the momentum. Thus Ms will have
the correct form to leading order in the internal kinetic
energy if the individual kinetic energy terms are correct
through next-to-leading-order in momentum. In an in-
teracting theory we also need the interaction terms to be
correct through O(v?) to have the binding energy cor-
rectly included in the kinetic mass.

These issues are discussed in some detail in [34] for
heavy quarks using the clover action since there are
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FIG. 4: Kinetic mass values in lattice units obtained on the
coarse ensemble, set 3, for the am; and c¢; values given in
Tables II and III. Kinetic mass values are given separately
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of 9 correspond to momenta with indices (3,0,0) and (2,1, 1).
The higher one is (3,0,0).

important differences in discretisation errors there be-
tween choosing M; or My as the appropriate meson mass
against which to tune the quark mass. In NRQCD we
must use Ma (My;,). The quark Hamiltonian given in
equation 2 has no quark mass term, so to reconstruct
the meson mass from M; would require adding back in
the zero of energy. This is perturbatively calculable but
we wish the tune the quark mass fully nonperturbatively.
M5 on the other hand acquires its quark mass pieces from
the quark kinetic energy terms and so has no zero of en-
ergy problem. As discussed above, My will also correctly
include the internal kinetic energy if the v?* relativistic
corrections to the kinetic energy are included in the quark
Hamiltonian, as they are in equation 2. Indeed we are
now including the radiative corrections to the v* kinetic
terms through adjustments to ¢;, ¢5 and cg, and we will
show below the effect that this has.

We can determine the kinetic mass very precisely by
use of propagators made starting with a random wall
source patterned by an exp(ip-x) factor to give the quark
momentum [31]. We use only a §(x) smearing function
for these calculations so they are very fast, but we must
evolve both a quark and an antiquark propagator be-
cause the complex conjugate of a quark propagator of
momentum p is an antiquark of momentum —p. Typi-
cally we take quark and antiquark momenta to be equal
so that the meson momentum, when they are combined,
is P = 2p.

We fit the meson correlator of momentum P simultane-
ously with the meson correlator at rest so that the energy
difference aAE between the ground state energies can be
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FIG. 5: Spin-averaged values for the kinetic mass in lattice
units obtained on the coarse ensemble, set 3, for am;, = 2.66
(as in Table III). Results for the ¢; values given in Table II
are compared to the results for ¢; = 1. The kinetic mass is
plotted against the square of the lattice momentum in units
of 2wa/L.
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FIG. 6: Spin-averaged values for the kinetic mass in lattice
units obtained on the fine ensemble, set 5, for the amy and ¢;
values given in Tables IT and III, compared to the results for
¢; = 1. The kinetic mass is plotted against the square of the
lattice momentum in units of 27a/L.

determined directly by the fit taking the correlations into
account. In this way we obtain aAFE values with errors
typically in the 5th decimal place. To avoid cluttering
the main body of the text, the detailed tables of values
for T and 7, energies as a function of momentum and
aM,;, are collected in Appendix D. Propagators were



calculated for the full number of configurations given for
each ensemble in Table III, but in some cases we used
fewer time sources per configuration than is given there.

We can then plot out the kinetic mass for a range
of meson momenta to study systematic effects in equa-
tion 10 which would show up as a disagreement between
kinetic masses obtained from different momentum val-
ues. Previous calculations saw no significant differences
in kinetic mass values for momenta up to P?a? = 9 with
errors of around 1% [2]. This is equivalent to a test, as a
function of momentum, of the constancy of the ‘speed of
light’. Here we are able to achieve errors down to 0.1%,
depending on the momentum. Then systematic varia-
tions of aMy;, with momentum can be seen at the 0.5%
level.

aMy;, values for T and 7, mesons on the coarse lat-
tices, set 3, are plotted in Figure 4 and show several
features. One is that there is a systematic difference be-
tween the values of a My, for on-axis (those in one lattice
direction only) and off-axis momenta. This was hinted
at in [2] but the errors were too large for it to be clear.
The on-axis kinetic masses are higher, and this reflects a
breaking of rotational invariance on the lattice which is
a discretisation error. It is particularly obvious for the
momenta with components along the spatial directions
labelled by integers (3,0,0) and (2,2,1), both of which
have P%2a? = 9(2mwa/L)?. The difference is tiny but visi-
ble. We will return to this point below.

Another feature of Figure 4 is that the kinetic mass for
the 7y is above that of the Y which is the opposite way
round to the energy difference at zero momentum and
to experiment. A similar but somewhat smaller effect is
seen on the fine lattices. The discussion above on the
way in which the meson kinetic mass is built up order by
order in the nonrelativistic expansion shows how this has
happened. It results from the fact that the o - B term
that gives rise to the hyperfine splitting is only included
at leading order in our NRQCD action, equation 2. Rel-
ativistic corrections to this term would be needed for it
to feed correctly into the kinetic mass, M. The effect of
the o - B term splitting is correctly incorporated in the
meson energy at zero momentum (M), however, and it
is from differences in M; for T and 7, that we determine
the hyperfine splitting (see subsection III E 3). This small
but non-zero systematic error in My is simply removed
by working instead with the spin-averaged kinetic mass
of the T and n:

3MKin (T) + MKin (nb))
4

M (18) = ¢ (14)
and using this to fix the b quark mass.

The above arguments also allow insight into the effect
of radiative corrections to the v* kinetic terms in the
NRQCD Hamiltonian that we include here for the first
time. Changing the coefficient of the p?/8m} term, ¢y,
from 1 to 1+ O(a,) will modify the amount of the inter-
nal kinetic energy that is incorporated into the meson ki-
netic mass, effectively correcting for an O(«,) mismatch

10

between this contribution to M; and M, from binding
energy effects. The effect of this radiative correction
is seen clearly in Figure 5 where we compare the spin-
averaged kinetic mass with all ¢; set to 1 to that from
having the radiatively improved coefficients given in Ta-
ble II. The difference would be expected to be O(a; x B)
where B is the binding energy of O(500 MeV). This could
in principle be as large as 150-200 MeV. From Figure 5
we see that the effect is somewhat smaller than this on
the coarse ensemble set 3 — a shift of kinetic mass of 0.05
in lattice units corresponds to around 80 MeV on these
lattices. The shift is clearly visible, however. The ra-
diative correction acts to increase the kinetic mass for a
given bare b quark mass. This is because ¢; > 1 and
the binding energy is positive. Thus the correctly tuned
quark mass will be lower (by the same percentage shift as
that for the kinetic mass) when radiative corrections are
included. A similar shift is observed on the fine lattices
as shown in Figure 6.

Remaining systematic errors from higher order radia-
tive corrections to v* terms in the NRQCD action will
be suppressed by a further power of a; beyond the shift
seen here. We therefore expect the remaining error in the
kinetic mass from this source to be O0(0.3%). System-
atic errors from missing higher order, v®, terms at tree
level in the NRQCD action are a factor of v2, or 10%,
smaller than the size of the effect of v* terms, and there-
fore of similar size to missing a?v? terms. They will also
have the effect of correcting for momentum-dependence
in My,,. From Figure 5 we can see that there is a sign
of an upward drift of My, with momentum but the ef-
fect is smaller than the shift of M, with the radiative
correction to the ¢; coefficients.

We now return to the issue of discretisation errors in
the kinetic mass. These arise from the replacement of
time and space derivatives in the NRQCD action with fi-
nite differences on the lattice. The terms with coeflicients
c5 and cg contain a?v* and av* correction terms to re-
move these errors. With the inclusion of radiative correc-
tions to c5 and cg, the remaining errors are at O(a2a?v?)
in this calculation. The term with coefficient cs, i.e. the
term proportional to A is of interest because this is ro-
tationally non-invariant. The signal for a lack of contin-
uum rotational invariance in our results is a disagreement
between the kinetic mass for on-axis momenta, that typ-
ically have a high value for P{, and off-axis momenta.
This was seen in Figure 4 for the coarse lattices. Less
variation is evident on the fine lattices (Figure 6), as ex-
pected for a discretisation effect.

To make clearer the way in which the rotationally non-
invariant discretisation errors depend on the lattice spac-
ing Figure 7 plots the energy difference in physical units
between mesons with momentum (3,0,0) and (2,2,1) as a
function of a? using results from all three values of the
lattice spacing. P?a? = 9(2wa/L)? corresponds to ap-
proximately the same physical momentum at all three
lattice spacing values, so the results should be a good
test of how rotational invariance is restored as a — 0. In
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improved.

fact the energy difference is tiny on all except the very
coarse lattices, where it reaches 1 MeV. The case in which
the ¢y 5,6 coefficients are set to their tree level values of
1 is plotted as well as the case with the c¢; 5 ¢ coefficients
taking the radiatively improved values that we have used
for the rest of our calculation here. The radiatively im-
proved values give very slightly smaller energy splittings,
since they have improved the a? contribution to this er-
ror by one order in a to a?a?v*. The energy difference
between mesons with momentum (3,0,0) and (2,2,1) also
has contributions at O(a?v®), however, and both the ef-
fect of radiative improvement and the shape of the curve
in Figure 7 tend to imply that these a* terms dominate
over any remaining a? terms.

Rotationally invariant discretisation errors would give
rise to a kinetic mass that varied with P2. This is the
same effect as that of relativistic errors, because the cor-
recting operators are the same. Discretisation errors re-
quire an a-dependent coefficient to correct them. How-
ever, as discussed above under relativistic corrections,
there is no sign in our results of such errors to better
than 0.5%.

The conclusion from this subsection is that, to min-
imise systematic errors, we should tune the b quark mass
by calculating the spin-averaged kinetic mass M, (15)
and matching that to experiment. We do this from the
comparison of meson energies at zero momentum and
the ‘maximally off-axis’ momentum (1,1,1) to minimise
discretisation errors. Table V gives results for this ki-
netic mass on all ensembles for the given values of the b
quark mass and coefficients, ¢;. To convert these results
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FIG. 8: Comparison of values obtained for the kinetic mass
from a variety of different parameter values on coarse set 3.

to physical units we need a value for the lattice spacing
to be determined in subsection IITE. Table V gives sta-
tistical/fitting errors on the values. As discussed above,
remaining systematic errors from missing radiative, rel-
ativistic and discretisation errors amount to a total of
0.5%. We are able to pin down the size of these system-
atic errors by using the improved methods described here
to study the dispersion at this level of detail.

Figure 8 compares the results for the spin-averaged ki-
netic mass on the coarse ensemble, set 3 for a variety of
different choices for the coefficients in the NRQCD action
to show the size of variations in the kinetic mass. The
figure shows that we can see the difference between tak-
ing tree-level values for ¢; 56 and radiatively improved
values. Changing ca (the coefficient of the Darwin term)
has very little effect. The effect of changing ¢4 (the co-
efficient of the o - B term which should be spin-averaged
away at leading order in this kinetic mass) is also not
large. Another check of this is given in Table V on set 1.

The experimental result for the T mass is 9.4603(3)
GeV and that of the n,, 9.391(3) GeV, [35] giving a spin-
average of 9.443(1) GeV. The real world includes effects
that are missing from our lattice calculation, however,
and so we must correct for this. Electromagnetism affects
the T and 7, approximately equally and, from a potential
model we estimate that it reduces their masses by 1.6
MeV [14]. In addition the 7, can annihilate to gluons
and we estimate that this effect also reduces its mass by
2.4 MeV, taking the same value as that estimated for the
7 [16]. The ‘experimental’ mass that we should compare
our results to is then increased from above to 9.445(2)
GeV where we allow for a 100% error in our estimate of
the shifts in the masses [60].
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Set amp c156 c2 ¢4 aMyin(Y) aMxin(np) aMkin(1S)
1 342 @ 1 1  7.269(18) 7.405(10) 7.303(15)
1 342 as 1 1.22 7.271(22) 7.472(10) 7.321(18)
2 339 a, 1 1 7.228(10) 7.345(4) 7.257(8)
2 342, 1 1 7.310(14) 7.423(7) 7.338(13)
3 2661 1 1  5.703(17) 5.767(7) 5.719(14)
3 266 a 1 1 5742(17) 5.817(7) 5.761(14)
3 266 a, 1251 5.748(8) 5.823(4) 5.766(7)
3 266 a, 1 1.255767(10) 5.889(4) 5.798(8)
1 262a, 1 1 5706(9) 5761(4) 5.719(7)
4 266, 1 1 5778(11) 5.833(5) 5.792(10)
5 1911 1 1 4.230(13) 4.252(6) 4.236(11)
5 191 a, 1 1  4.256(14) 4.287(6) 4.264(11)
5 20 a. 1 1 4.431(11) 4.466(5) 4.439(10)

TABLE V: Summary of the kinetic masses obtained on different ensembles for a variety of parameter values. We use the energy
difference between lattice momentum zero and momentum ap = (1,1,1) in units of 2wra/L. The column ¢1,5,6 denotes whether
the O(as) improved coefficients were used in the action and the columns ¢z, ¢4 indicate additional values of those coefficients
that were run on coarse set 3 and very coarse set 1 to estimate systematic errors.

D. NRQCD systematics in radial and orbital
splittings

Here we discuss the remaining sources of systematic er-
ror in our calculation of the radial and orbital excitation
energies. These systematic errors will feed subsequently
into the determination of the lattice spacing from the T
2S5 — 15 splitting.

Radial and orbital excitation energies arise at leading
order from the time derivative and Hy in the NRQCD
action (equation 2). The relativistic corrections at v*
in §H thus provide relative O(v?) ~ 10% corrections to
these splittings. Missing radiative corrections to the v*
terms dominated the errors in earlier calculations [2, 11],
since a,v? ~ 2——3% is larger than v* ~ 1% from missing
higher order relativistic corrections. We now include for
the first time the radiative corrections to most of the v*
terms in 0 H. The remaining errors are then largely at
relative O(a?v?), i.e. less than 1%.

Table VI lists the remaining systematic errors from
spin-independent terms in the 25 — 1S and 1P — 15
splittings in more detail following [2]. The errors were
determined using a potential model to make estimates
of the energy shifts in each of the 15, 25 and 1P
states. For example, radiative corrections at O(a?) to
the p*/(8m}) term in the NRQCD action give shifts of
size a? < p* > /4m} where < p* > is the expectation
value of p* in that state.

The effects of the Darwin term term appear at O(av?)
since we have not included a radiative correction to cs.
However, since this term vanishes in the free theory it
is already suppressed by an additional power of a. Its
effects are proportional to the square of the wavefunc-
tion at the origin so it does not affect P-wave states. A
very similar term arises from missing spin-independent
4-quark opertors. The spin-dependent 4-quark operators
are discussed in Appendix B along with the coeflicients
they have in order to match NRQCD to QCD. The spin-

independent ones arise from the same diagrams and the
calculation of their coefficients is in progress. Here we
take an error from missing these 4-quark operators which
is of the same size as the error from radiative corrections
to the Darwin term.

Note that errors cancel to a significant extent between
the 25 and 1.5 states because of their similarities [2]. This
is the reason for focussing on the 2S5 — 1S splitting to
determine the lattice spacing, because it has the smallest
systematic error.

We see from Table VI that the largest remaining sys-
tematic error is now that from missing v® terms. The
key kinetic term at v% that would appear in a higher or-
der NRQCD action is —(A®))3/(16(amy)°) at tree level.
This term is proportional to +(v?)® and so, if it domi-
nates the v® errors, they will have the same sign at ev-
ery value of the lattice spacing. Including this v% term
would act in the direction of reducing both the 25 — 15
and 1P — 15 splitting but the 1P — 1.5 splitting would
be reduced the most.

Table VII similarly quantifies remaining systematic er-
rors from missing a2 radiative corrections to the discreti-
sation correction terms with coefficients ¢5 and cg. These
are significantly reduced over our earlier calculations [2]
now that the a4 radiative corrections are included. In
addition the gluon action is now improved completely
through O(a?a?) [20] and this means that the discreti-
sation errors coming from the gluon action are similarly
reduced.

We can estimate the size of a* errors from the analysis
in subsection ITI C where we study discretisation errors in
the kinetic mass. The energy difference between mesons
of momenta (3,0,0) and (2,2,1) in units of 2wa/L can
be taken as a measure of at least the rotationally non-
invariant a* errors, as discussed there. The energy dif-
ference (Figure 7) is barely visible except on the very
coarse lattices where it amounts to 1 MeV, or 0.2% of
the 25 — 1S splitting. This is much less than the esti-
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Correction relativistic  radiative radiative 4-quark Total
kinetic Darwin spin-independent relativistic
+ radiative
Form 57"/ (ma)” aZ0p" [A(ms)” AmaZG(0)%/(Bmd)  aZp(0)/m?
Est. %age in 25 — 15
very coarse 0.5 0.2 0.4 0.4 0.8
coarse 0.5 0.15 0.3 0.3 0.7
fine 0.5 0.1 0.2 0.2 0.6
Est. %age in 1P — 15
very coarse 1.0 0.7 0.9 0.9 1.8
coarse 1.0 0.5 0.7 0.7 1.5
fine 1.0 0.3 0.4 0.4 1.2

TABLE VI: An estimate of systematic errors in the 25 — 1S and 1P — 18 splittings in the T in our lattice QCD calculation
arising from missing higher order relativistic and radiative corrections to the NRQCD action that we use (equation 2).

Correction discretisation in  discretisation in  discretisation in Total
NRQCD action (i) NRQCD action (ii) gluon action discretisation
Form aZadp? /8n(my)? aZa®spi/12my,  4maZa®+(0)?/15
Est. %age in 25 — 15
very coarse 0.2 0.4 0.3 0.5
coarse 0.1 0.2 0.15 0.3
fine 0.05 0.06 0.05 0.1
Est. %age in 1P — 15
very coarse 0.7 2.0 1.0 2.3
coarse 0.4 1.0 0.5 1.2
fine 0.2 0.3 0.1 0.4

TABLE VII: An estimate of systematic errors in the 25 — 15 and 1P — 15 splittings in the T in our lattice QCD calculation
arising from discretisation errors in the NRQCD and gluon actions.

mate of remaining a? errors in that case so we do not
include it in Table VII.

E. Results
1.  Radial and orbital excitation energies

Our main results for the fitted energies for the ground-
state and first two radial excitations of the T and 7,
are given in Table VIII. The values come from multi-
exponential fits to a 5 X 5 matrix of correlators for each
meson as described in section III B. We take 9 exponen-
tials on sets 1, 2 and 3; 11 exponentials on set 4 and 12
on set 5. We also give the fitted ground-state energy for
the hy(1P) state on sets 3 and 5 from a 5 exponential fit
to 2 X 2 matrix of correlators. The b quark masses and
coefficients, ¢;, used in the NRQCD action are those of
Tables IT and III. Errors are very small on the ground-
state S-wave masses but increase rapidly with the radial
excitation number. The table also includes energy split-
tings in lattice units for radial and orbital excitations.

As explained earlier we can use the radial excitation
energy, M(Y') — M(Y), to fix the lattice spacing, by
setting

. B 0.5630(9)
@ (GeV) = B8y — aB (175

(15)

0.5630(4) GeV is the experimental mass difference and
we have increased the error to allow for a possible rela-
tive shift in the two masses as a result of the electromag-
netic attraction between quark and antiquark missing in
our calculation. As discussed earlier, a potential model
estimate would give a shift of 1.6 MeV to the T from
the electrostatic attraction between quark and antiquark,
and somewhat less for the Y’ since typical separations be-
tween quark and antiquark are larger. We do not shift
the result but allow for an error of 0.8 MeV.

As long as we deal with spin-averaged splittings we
do not have to consider errors in spin-dependent terms.
However, for the 25 — 15 splitting the match to experi-
ment cannot be spin-averaged since no experimental in-
formation is available for the n,(25). In that case we have
to consider sources of systematic error in the hyperfine
splitting that will induce errors in the T and T’ energies.
This will discussed further in subsection IITE 3.

The main source of error is from missing radiative cor-
rections when we take the coefficient of the o - B term,
¢4, to be 1. In section IITE3 we compare results for
cq = 1 to those from ¢4 corrected perturbatively through
O(a,) and nonperturbatively, to give the correct 1°P
fine structure. Both methods for correcting c4 give val-
ues above 1 and increase the lattice result for the hy-
perfine splitting (which is proportional to c2 at leading
order). Thus with ¢4 = 1 the T energy is too low. Since
M(Y) = M(1S)+(M(Y)—M (n))/4, the shift from ¢, in



1 2

3

4 5

aE(11S0) 0.25080(5) 0.25361(3) 0.26096(3) 0.26524(2) 0.25851(2)
aE(2So) 0.6898(16) 0.6909(8) 0.6235(8) 0.6246(6) 0.5248(7)
aB(3'So) 0.975(14) 0.940(22) 0.849(9)  0.854(4) 0.677(11)
aE(1381) 0.28532(6) 0.28809(3) 0.29245(3) 0.29681(2) 0.28405(2)
aE(2381) 0.7078(14) 0.7074(8) 0.6416(7) 0.6393(9) 0.5370(9)
aB(3°5:) 0.988(16) 0.975(8) 0.855(11) 0.867(10) 0.693(10)
aE(2S —15) 0.4266(11) 0.4238(7) 0.3525(6) 0.3467(7) 0.2563(7)
aE(SS— 15) 0.708(12) 0.687(8) 0.569(9) 0.575(8)  0.411(8)
aE(2*Sp — 11 So) 0.4390(16) 0.4373(8) 0.3626(8) 0.3594(6) 0.2663(7)
aBE(3'So — 11S0) 0.724( 14 0.687(22) 0.588(9) 0.588(4) 0.418(11)
aF(235; — 1351) 04225 14 ) 0.4193(8) 0.3492(7) 0.3425(9) 0.2530(9)
aF(3%S; — 1351) 0.703( 16 0.687(8)  0.563(11) 0.570(10) 0.409(10)
Rs 1664(38) 1.638(19) 1.611(32) 1.665(31) 1.617(40)
aA 0.00190(1) 0.00190