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We have been studying QCD with 2 flavours of colour-sextet quarks to distinguish

whether it is QCD-like or conformal. For comparison we are now studying QCD

with 3 flavours of colour-sextet quarks, which is believed to be conformal in the

chiral limit. Here we present the results of simulations of lattice QCD with 3 colour-

sextet quarks at finite temperatures on lattices of temporal extent Nt = 4 and 6, with

masses small enough to yield access to the chiral limit. As for the 2-flavour case, we

find well-separated deconfinement and chiral-symmetry restoration transitions, both

of which move to appreciably weaker couplings as Nt is increased from 4 to 6. If this

theory is conformal, we would expect there to be a bulk chiral transition at a fixed

coupling. For this reason we conclude that for Nt = 4 and 6, the chiral and hence

the deconfinement transitions are in the strong-coupling domain where the theory is

essentially quenched. The similarity between the behaviours of the 2 and 3 flavour

theories suggested that the Nt = 4 and 6 transitions for the 2-flavour theory also lie

in the strong-coupling domain. The phase structure of both theories is very similar.



2

I. INTRODUCTION

With the LHC starting to probe the Higgs sector of the standard model, studies of models

of this sector are timely. We are particularly interested in extensions of the standard model

with strongly-coupled (composite) Higgs sectors. The most promising of these are Techni-

color theories, QCD-like gauge theories with massless fermions, whose pion-like excitations

play the role of the Higgs field, giving masses to the W and Z [1, 2].

It has been pointed out that phenomenological difficulties which plague Technicolor theo-

ries and their extensions can largely be avoided if the fermion content is such that the running

coupling constant evolves very slowly (“walks”) over a considerable range of renormaliza-

tion scales [3–6]. When Technicolor theories are extended to give masses to the quarks and

leptons by adding gauge interactions coupling these standard model fermions to the techni-

quarks, the mass scale associated with these new interactions must be made large enough to

suppress flavour-changing neutral currents. This tends to make the standard model fermion

masses too small unless the chiral condensate of techni-quarks at the extended-Technicolor

scale is enhanced. This can be achieved in walking Technicolor theories if the anomalous

dimension γ of the chiral condensate at the nearby infrared (IR) fixed point is large (of order

one), and the slow evolution of the gauge coupling (walking) keeps γ close to its critical value

as the system evolves from the Technicolor scale to the extended-Technicolor scale.

A Technicolor theory which is simply scaled up QCD makes contributions to the vacuum

polarization for the W , Z and γ propagators, described by the Peskin-Takeuchi parameters

[7, 8], which are too large. Since walking theories are very different and, in particular, have

contributions to these parameters from vector and axial-vector spectral functions over a

larger range of momenta, they need not exhibit the same problems [9–11]. Lattice simulations

of techni-QCD with 6 fundamental techni-quarks do indicate that the S-parameter is reduced

over that for techni-QCD with 2 techni-quarks [12]. (This 6-flavour theory has a coupling

which evolves appreciably slower than the 2-flavour case, and is thus closer to being a

walking theory.) Here we use the term techni-QCD for QCD which has been scaled up so

that fπTC ≈ 246 GeV rather than fπ ≈ 93 Mev for regular QCD.

The most promising candidates for gauge theories which “walk”, are those where the

one-loop contribution to the Callan-Symanzik β function implies asymptotic freedom, while

the two-loop contribution has the opposite sign. If these two terms describe the physics,
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the β function has a second zero at non-zero coupling. Such a zero would be an infrared

(IR) fixed point for massless quarks, implying that the theory is conformal. However, if a

chiral condensate forms before the would-be IR fixed point is reached, the running coupling

starts to increase again and the fixed point is avoided. The theory is then QCD-like, but the

presence of a nearby fixed point means that there is a region where the coupling constant

evolves very slowly and the theory walks.

Since walking is a non-perturbative effect it is best studied by lattice gauge theory simula-

tions. We have been studying techni-QCD with massless colour-sextet techni-quarks. This

is formally identical to QCD with colour-sextet quarks, except for the much larger mass

scale set by fπ(TC). Hence we will refer to it as QCD with colour-sextet quarks for the rest

of this paper. If the number of flavours Nf = 2 or 3, the theory is asymptotically free and

the two-loop term in the β-function has the opposite sign from the one-loop term. Nf = 2

is a candidate walking theory, provided that it is QCD-like. Phenomenological studies such

as those of [13, 14] and the references these contain, indicate that further investigations of

this 2-flavour theory as a model of walking Technicolor, are warranted. If it is QCD-like, it

is also minimal, in the sense that spontaneous symmetry breaking gives rise to 3 massless

(techni)-pions, the minimum number required to give masses to theW and Z. This makes it

a more appealing Technicolor model than theories with fundamental or adjoint techni-quarks

where walking candidates have > 3 Goldstone bosons and some mechanism must be used

to give masses to these additional pion-like excitations. In addition it has been argued that

having fewer techni-quarks should make it easier to satisfy precision electroweak constraints.

Since asymptotic freedom is lost at Nf = 3 3
10
, two-loop perturbation theory predicts

that Nf = 3 has an IR fixed point at a small enough value of the coupling constant that

one might trust perturbation theory. For this reason it is believed that the Nf = 3 theory

probably has an IR fixed point, and is thus a conformal field theory. It is therefore useful

to compare the behaviour of the Nf = 3 and Nf = 2 theories to see whether they show

qualitative differences. We have performed extensive lattice simulations of the Nf = 2

theory at finite temperatures to try and determine whether it is conformal or QCD-like

[15, 16]. These simulations are continuing [17]. Work on the Nf = 2 theory using different

actions is being performed by other groups [18–25]. However, a consensus as to whether

the theory is conformal or QCD-like has yet to be achieved. In this paper we present

simulations of lattice QCD with 3 colour-sextet quarks using the same methods as for the
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2-flavour case, for comparison. We simulate lattice QCD with 3 flavours of staggered colour-

sextet quarks at finite temperature on lattices with Nt = 4 and 6, using the deconfinement

and chiral-symmetry restoration transitions to study the evolution of the running coupling

constant. As in the 2-flavour theory we find widely separated deconfinement and chiral-

symmetry restoration temperatures. Both transitions move to appreciably weaker lattice

(bare) couplings as Nt is increased from 4 to 6. Except that the Nf = 3 transitions are,

as expected, at stronger lattice couplings than their Nf = 2 counterparts, the two theories

behave very similarly. Since we believe the Nf = 3 theory to be conformal, the weak bare

coupling conformal domain should be separated from the chirally broken region by a bulk

chiral transition. Thus the coupling at the chiral transition should be fixed. This strongly

suggests that the Nt = 4 and 6 transitions are in the strong-lattice-coupling domain where

the fermions are bound into a chiral condensate at distances of order the lattice spacing

or less, so that the theory is controlled by quenched dynamics. The evolution of these

couplings at the transitions between Nt = 4 and 6 occurs because these are finite-temperature

transitions of the effectively-quenched theory. It was this observation that suggested to us

that the Nt = 4 and 6 transitions of the Nf = 2 theory might also be in the strong-lattice-

coupling domain. This was born out when we determined the position of its Nt = 8 chiral

transition [16].

The Nf = 3 theory shows a clear 3-state signal in the phase of the Wilson Line(Polyakov

Loop) just above the deconfinement transition. At even larger values of β = 6/g2, the 2

states with complex Wilson Lines disorder into a state with a negative Wilson line. This

phase structure is very similar to that observed for the Nf = 2 theory.

In section 2 we define our lattice action and discuss our simulation methods. Section 3

describes our simulations and results for Nt = 4, while section 4 is devoted to our Nt = 6

simulations. We present our discussion and conclusions in section 5.

II. METHODOLOGY

This section gives a description of our action and simulation methods given in an almost

identical form in our earlier publications [15, 16].
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For the gauge fields we use the standard Wilson (plaquette) action:

Sg = β
∑

2

[

1−
1

3
Re(TrUUUU)

]

. (1)

For the fermions we use the unimproved staggered-quark action:

Sf =
∑

sites





Nf/4
∑

f=1

ψ†
f [D/+m]ψf



 , (2)

where D/ =
∑

µ ηµDµ with

Dµψ(x) =
1

2
[U (6)

µ (x)ψ(x+ µ̂)− U (6)†
µ (x− µ̂)ψ(x− µ̂)], (3)

where U (6) is the sextet representation of U , i.e. the symmetric part of the tensor product

U ⊗ U . When Nf is not a multiple of 4 we use the fermion action:

Sf =
∑

sites

χ†{[D/+m][−D/ +m]}Nf/8χ, (4)

where χ are flavour-singlet colour-sextet staggered fermion fields. The operator which is

raised to a fractional power is positive definite and we choose the real positive root. This

yields a well-defined operator. We assume that this defines a sensible field theory in the zero

lattice-spacing limit, ignoring the rooting controversy. (See for example [26] for a review

and guide to the literature on rooting.)

We use the RHMC method for our simulations [27], where the required powers of the

quadratic Dirac operator are replaced by diagonal rational approximations, to the desired

precision. By applying a global Metropolis accept/reject step at the end of each trajectory,

errors due to the discretization of molecular-dynamics time are removed.

Finite temperature simulations are performed by using a lattice of finite extent Nt in

lattice units in the Euclidean time direction, and of infinite extent Ns in the spatial direction.

In practice this means we choose Ns ≫ Nt. The temperature T = 1/Nta, where a is the

lattice spacing. (In our earlier equations we set a = 1.) Since the deconfinement temperature

Td and the chiral symmetry restoration temperature Tχ should not depend on a, and since

a = 1/NtT , measuring the coupling g at Td or Tχ as a function of Nt gives g(a) for a series

of a values which approach zero as Nt → ∞. If the ultraviolet behaviour of the theory

is governed by asymptotic freedom, g(a) should approach zero as a → 0, i.e. Nt → ∞.

However, for the 3-flavour theory under consideration in this paper, we expect that the
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chiral transition is a bulk transition. If so, the coupling at the chiral transition should be

a constant, independent of Nt. (Since the β value at the deconfinement transition (βd)

is expected to be less than that at the chiral transition (βχ), it follows that βd will also

approach a finite value as Nt → ∞.)

We determine the position of the deconfinement transition as that value of β where the

magnitude of the triplet Wilson Line (Polyakov Loop) increases rapidly from a very small

value as β increases. The chiral phase transition is at that value of β beyond which the chiral

condensate 〈ψ̄ψ〉 vanishes in the chiral limit. Because we are forced to simulate at finite

quark mass, this value is difficult to determine directly. We therefore estimate the position of

the chiral transition by determining the position of the peak in the chiral susceptibility χψ̄ψ

as a function of quark mass, and extrapolating to zero quark mass. The chiral susceptibility

is given by

χψ̄ψ = V
[

〈(ψ̄ψ)2〉 − 〈ψ̄ψ〉2
]

(5)

where the 〈〉 indicates an average over the ensemble of gauge configurations and V is the

space-time volume of the lattice. Since the fermion functional integrals have already been

performed at this stage, this quantity is actually the disconnected part of the chiral suscep-

tibility. Since we use stochastic estimators for ψ̄ψ, we obtain an unbiased estimator for this

quantity by using several independent estimates for each configuration (5, in fact). Our es-

timate of (ψ̄ψ)2 is then given by the average of the (10) estimates which are ‘off diagonal’ in

the noise. Note that the chiral condensates and Wilson Lines that we use as order (pseudo-

order) parameters for these transitions are lattice-regularized quantities, not renormalized

quantities. Because the difference between such lattice quantities and their renormalized

counterparts are short distance (ultraviolet) counterterms, which should be insensitive to

the transitions, it is argued that the normalized and lattice quantities will detect transitions

at the same lattice couplings.

A. Choice of actions

First let us note that, since we wish to compare the behaviour of the Nf = 3 with the

Nf = 2 theory, we need to pick lattice actions in the same class for both values of Nf . For

these studies which try to distinguish finite temperature transitions from bulk transitions, we

need to have a lattice action which is confining with spontaneously broken chiral symmetry
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at strong lattice coupling. If the theory under consideration is QCD-like, this should be

true of all lattice actions. However, if the massless theory is conformal, lattice actions do

not necessarily have such a QCD-like phase. Our unimproved lattice action is QCD-like for

large lattice couplings, for all Nf .

Simulations with this unimproved action are computationally efficient over the whole

range of lattice couplings, enabling us to obtain the statistics needed to accurately determine

the positions of the transitions. Highly improved actions are less efficient in this regard. In

addition, the improvements are targeted at the region of small lattice couplings (small lattice

spacings). At larger couplings they need not improve physics, and often exhibit undesirable

properties which make simulations difficult. Because we are limited to relatively small Nt

values our transitions can occur at relatively strong lattice couplings.

Although the unimproved lattice action has comparatively large flavour (taste) violations,

experience with simulations using fundamental quarks indicates that it still reproduces the

qualitative aspects of the finite temperature phase diagram (such as whether the transtions

are first or second order phase transitions, or crossovers) correctly.

Use of the unimproved action enables us to simulate with Nt as small as 4 without the

effects of ‘squeezing’, which occur when the ranges of interactions in the lattice actions are

>
∼ Nt. (For example, quenched QCD with the standard Wilson plaquette action is squeezed

at Nt = 2 making the transition β anomalously low).

There is an extensive literature on simulations with unimproved fundamental staggered

quarks and a simple plaquette action for the gauge fields, which one can use as a guide.

For example, it was this which enabled us to identify when our couplings were running with

quenched dynamics.

Despite earlier hopes, improving the lattice action does not allow one to run with sig-

nificantly coarser lattices. This is because limiting factors tend to be physical, such as the

size of topological objects (instantons). For these simulations, one such limiting factor is

the length scale associated with chiral symmetry breaking, which determines where scaling

behaviour crosses over from that of full QCD to that of quenched QCD.

Finally we should note that there is not one improved action for QCD with staggered

quarks, but many. Even more actions suggest themselves with sextet quarks rather than

fundamental quarks. We do not have the computing resources or manpower to explore all

of these.
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We consider the use of our unimproved action a compromise. It has large discretization

errors, but one can hope that, since the chiral transition occurs at relatively weak lattice

couplings, that these discretization effects will not mask whether this transition is a finite

temperature transition or a bulk transition. If our simulations indicate that the Nf = 2

theory walks, this should be checked using improved actions.

III. Nt = 4 SIMULATIONS

We simulate lattice QCD with 3 flavours of sextet quarks on 123×4 lattices starting from

an Nf = 2 configuration with a positive Wilson Line (Polyakov Loop) at β = 6/g2 = 7.0.

Three different quark mass values m = 0.02, m = 0.01 and m = 0.005 (in lattice units) are

used to allow continuation to the chiral limit. For m = 0.02 we choose a set of βs covering

the range 5.0 ≤ β ≤ 7.0, for m = 0.01, 5.2 ≤ β ≤ 7.0, while for m = 0.005, 5.27 ≤ β ≤ 7.0.

This covers both the deconfinement and chiral-symmetry restoration transitions. For most

values of (β,m) we find 10,000 trajectories to be adequate. We increase this to 50,000

trajectories for values of (β,m) close to the deconfinement transition.

Figure 1 shows the Wilson Lines and chiral condensates 〈ψ̄ψ〉 as functions of β for each

of the 3 mass values used in our simulations. The qualitative features of these plots are

very clear. At low β values, the Wilson Line is close to zero. At β ≈ 5.3 or just below,

the Wilson Line exhibits a (possibly discontinuous) jump to much larger values. This,

we interpret to herald the deconfinement transition. We note, however, that the chiral

condensate, while showing a small discontinuity, shows no sign of vanishing even in the chiral

limit, at this transition. Hence the deconfinement and chiral transitions are not coincident,

in contrast to what happens for fundamental quarks where all the evidence favours chiral-

symmetry restoration at the deconfinement transition. Pinpointing the chiral transition is

more difficult, since this requires extrapolating the chiral condensate to zero quark mass in

the region where it has strong dependence on the quark mass, to find where it vanishes. A

cursory examination of the figure would suggest that this occurs somewhere around β = 6.

Hence the chiral and deconfinement transitions are far apart with the chiral phase transition

occurring at a much weaker coupling than the deconfinement transition.

Now we turn to more quantitative estimates of the position of the deconfinement tran-

sitions for each of the 3 masses. We do this by examining the evolution of the Wilson
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Lines with molecular-dynamic ‘time’ near the transition and the observation of tunneling.

Such ‘time’ histories are shown in figure 2. Part (a) of this figure shows time evolutions for

m = 0.02. Starting from a cold start at β = 5.3 we observe a tunneling from a cold (small

Wilson Loop) state to a hot (large Wilson Loop) state, after which the system remains in

this hot state for the rest of the run. Starting from a hot state at β = 5.29 the system

tunnels to a cold state and remains there. From this we conclude that β = 5.29 is on the

cold side of the transition and β = 5.3 is on the hot side of the transition. Our best estimate

of the position of the transition is thus β = 5.295(5). Similarly from part (b) of this figure

we deduce that the transition for m = 0.01 lies between β = 5.28 and β = 5.29 giving our

best estimate as β = 5.285(5). Finally in part (c) we show the time evolution from hot

FIG. 1: Wilson Line (Polyakov Loop) and 〈ψ̄ψ〉 as functions of β on a 123 × 4 lattice.
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FIG. 2: a) Evolution of Wilson Line from a cold start at β = 5.3 and from a hot start at β = 5.29

for m = 0.02. b) Evolution of Wilson Line from a cold start at β = 5.29 and from a hot start

at β = 5.28 for m = 0.01. c) Evolution of Wilson Line from cold and hot starts at β = 5.28 for

m = 0.005.

and cold starts at β = 5.28 for m = 0.005. Here there are no tunnelings in either case for

the duration (50,000 trajectories) of each run, from which we conclude that the transition

is close to β = 5.28 – β = 5.280(5). The behaviour shown in this figure (2) strongly sug-

gests a first-order phase transition. However, in the absence of any finite-size analysis, this

observation is not conclusive.

The chiral condensate becomes small and shows a strong dependence on m for large β.
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FIG. 3: Chiral susceptibilities χψ̄ψ as functions of β on a 123 × 4 lattice for m = 0.02, 0.01, 0.005,

for a β range which includes the chiral transition.

However, naive attempts to extrapolate to zero quark mass depend strongly on the analytic

form chosen for extrapolation. While we might expect a first order transition for Nf = 3,

this is not obvious in the ‘data’. We therefore examine the (disconnected part of the) chiral

susceptibilities discussed in section 2. These are plotted in figure 3 for all 3 quark masses.

χψ̄ψ shows a clear peak at β = 6.0 for each quark mass. The height of the peaks increases

with decreasing quark mass, as it should, since the susceptibility will diverge at the chiral

phase transition. Since the β at the peak does not change with mass to the resolution in β



12

of our simulations, we estimate that the chiral transition occurs at β = βχ = 6.0(1).

We also perform a second set of simulations which start from states with the Wilson Line

real and negative at β = 7.0. We achieve this by starting from a 2-flavour configuration

with a real-negative Wilson Line also at β = 7.0. Again we run for 10,000 trajectories at

each β until we get close to the transition from the state with a negative Wilson Line to a

state with a complex Wilson Line with a phase close to ±2π/3, where we increase this to

50,000 trajectories. For all 3 quark masses, this transition occurs at some β in the range

5.5 < β < 5.6. For β below 5.5 we again simulate 10,000 trajectory runs. For β ≤ 5.34 at

m = 0.02 and β ≤ 5.33 at m = 0.01 and m = 0.005 we increase our run lengths to 50,000

trajectories. We perform closely spaced (in β) runs down to β = 5.3. At β = 5.32 and

below for masses m = 0.02, m = 0.01, and β = 5.315 and below for m = 0.005 the complex

Wilson Line state rapidly decays to a positive Wilson Line state and remains there for the

remainder of the run. This we take as an indication that the states with complex Wilson

lines (and presumably those with negative Wilson Lines) are long-lived metastable states.

We also note that just above the β values where this metastability reveals itself, we observe

tunnelings between the 2 complex-Wilson-Line states.

IV. Nt = 6 SIMULATIONS

We simulate lattice QCD with 3 colour-sextet quarks on 123 × 6 lattices, starting from

states with a real positive Wilson Line at β = 7.0, and from states with a real negative

Wilson Line at β = 7.0. We use 3 different quark masses m = 0.02, m = 0.01 and m = 0.005

to enable us to access the chiral (m → 0) limit. The simulations at β = 7.0 are started

from 2-flavour configurations with the same β and the desired Wilson Line orientation. Our

runs for each (β,m) for each initial orientation of the Wilson Line are 10,000 trajectories in

length away from the transitions, increasing to 50,000 trajectories close to the deconfinement

transition, and close to the transitions from states with negative Wilson Lines to states of

complex Wilson Lines. We also found it necessary to increase our statistics at m = 0.01

close to the chiral transition to 25,000 trajectories to accurately determine the position of

the transition. In addition, we used 20,000 trajectories for each (β,m) significantly below

the transition, where we only have runs connected to the start with a positive Wilson line

at β = 7.0.
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As β is increased from its lowest value, chosen to be β = 5.3 for each quark mass, the

magnitude of the Wilson Line increases rapidly near β ≈ 5.4, signaling the deconfinement

transition. Just above this transition, there is a clear 3-state signal in the Wilson Line,

where the phase of this line is close to 0 or ±2π/3. Hence we bin our ‘data’ according to

which of these values the phase of the Wilson Line is closest. We are then able to combine

the 2 complex-Wilson-Line bins by conjugating those Wilson Lines in the phase −2π/3 bin.

Just above the deconfinement transition we observe tunnelings between the 3 states, with

no indication that any state is favoured. Hence, as far as these simulations are concerned,

all 3 states appear stable (in the thermodynamic limit). In the region where this 3-state

tunneling is observed, we combine the ‘data’ from the 2 starts, giving 100,000 trajectories

for each (β,m).

Figure 4 shows the Wilson Lines and chiral condensates 〈ψ̄ψ〉 for the state with a real

positive Wilson Line, for each of the 3 masses. The rapid increase in the Wilson Line near

β = 5.4 is clear. These Wilson Line values continue to increase over the whole range of βs

used in our simulations, and are expected to approach 3 as β → ∞. The deconfinement

transition has little effect on the chiral condensates, which decrease over the range of βs under

consideration. At larger β values these condensates become increasingly mass dependent,

decreasing with decreasing mass, suggesting that they will vanish in the chiral limit. Just

from looking at these graphs, one would suspect that the chiral transition occurs at β just

below 6.5, but it is clear that a more reliable method, such as that provided by examining

the chiral susceptibilities, is needed to determine this βχ with any precision. This qualitative

analysis does indicate, however, that the deconfinement and chiral transitions are still far

apart.

We now turn our attention to the states with complex or real negative Wilson Lines. First

we note that states having Wilson Lines with phases ±2π/3 disorder to a state with a real

negative Wilson Line for β sufficiently large. This occurs for 5.9 <∼ β <∼ 6.0 for m = 0.005

and at slightly higher βs for the larger masses. In figure 5 we show the magnitudes of

the Wilson Lines for states with complex or negative Wilson Lines and the corresponding

chiral condensates as functions of β for each mass. Again the magnitude of the Wilson

Line shows the deconfinement transition for β ≈ 5.4. It also shows the transition from a

complex to a real negative Wilson Line for β ≈ 6. The chiral condensate barely responds to

the deconfinement transition and shows indications that it will vanish in the chiral limit for
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FIG. 4: Wilson Line and 〈ψ̄ψ〉 as functions of β = 6/g2 on a 123 × 6 lattice, in the state with a

real positive Wilson Line, for m = 0.02, 0.01, 0.005.

some β in the neighbourhood of the chiral transition for the positive Wilson Line state.

To more accurately estimate the positions of the deconfinement transition, we histogram

the magnitudes of the Wilson Lines in the vicinity of this transition. We display such

histograms in figure 6. From these we estimate that our transitions occur at β = βd, where

for m = 0.02 βd = 5.410(10), for m = 0.01 βd = 5.395(10) and for m = 0.005 βd = 5.385(10).

If we assume that below βd the magnitudes of the real positive and complex Wilson Lines

should be approximately the same, while above they will differ, we get estimates of βd which

are lower by 1–1.5 standard deviations.

As we have noted, determining the position of the chiral-symmetry restoration phase
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FIG. 5: Magnitude of the Wilson Line and 〈ψ̄ψ〉 as functions of β = 6/g2 on a 123 × 6 lattice, in

the states with complex or negative Wilson Lines, for m = 0.02, 0.01, 0.005.

transition directly from the chiral condensates themselves, is difficult if not impossible,

because we do not have a method of extrapolating the condensates to zero mass which we

trust. Hence, to get an accurate estimate of the β value βχ of the chiral phase transition,

we turn to a consideration of the (disconnected) chiral susceptibility χψ̄ψ. The position

of the peak of χψ̄ψ as a function of mass will approach βχ as m → 0. The value of χψ̄ψ

at the peak will diverge (on a lattice of infinite spatial volume) in this limit, making the

position of the peak easier to determine as the quark mass is decreased. Figure 7 shows

these susceptibilities. What we observe is that the position of the peak does not move very
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FIG. 6: Histograms of the magnitudes of Wilson Lines for β values bracketing the deconfinement

transition on a 123 × 6 lattice for a) m = 0.02, b) m = 0.01, c) m = 0.005.

much as m is decreased, so that the position of the peak at the lowest mass m = 0.005

should give a reasonable estimate of βχ. We therefore estimate that βχ = 6.3(1).
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FIG. 7: Chiral susceptibilities χψ̄ψ as functions of β on a 123 × 6 lattice for m = 0.02, 0.01, 0.005,

for a β range which includes the chiral transition.

V. DISCUSSION AND CONCLUSIONS

We simulate the thermodynamics of QCD with 3 flavours of colour-sextet quarks on 123×4

and 123× 6 lattices. Table I shows our estimates for the positions of the deconfinement and

chiral transitions. First we note that the chiral and deconfinement transitions are far apart

Nt βd βχ

4 5.275(10) 6.0(1)

6 5.375(10) 6.3(1)

TABLE I: Nf = 3 deconfinement and chiral transitions for Nt = 4, 6. In each case we have

attempted an extrapolation to the chiral limit.
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as was the case for 2 flavours. Both transitions move to significantly larger values of β = 6/g2

as Nt is increased from 4 to 6. Since we expect the 3-flavour theory to be conformal, the

chiral transition should be a bulk transition occurring at fixed β. This suggests that we are

in the strong-bare-coupling regime where a chiral condensate forms at a scale near that of the

lattice spacing and the fermions play little part in the dynamics, which is therefore quenched.

We are thus seeing finite temperature transitions of the quenched theory. The move of both

transitions towards weaker coupling is controlled by the asymptotic freedom of the pure

gauge theory. The bulk nature of the continuum chiral transition will not reveal itself until

Nt is sufficiently large that the bulk chiral transition is reached before the temperature is

large enough to drive chiral-symmetry restoration. The similarity in the behaviour of the

Nt = 4 and 6 transitions between the 2-flavour and 3-flavour theories led us to suspect that

both transitions might also lie in the strong-coupling regime for the 2-flavour theory. For 2

flavours we have since obtained results of Nt = 8 simulations which, when combined with

the Nt = 4 and 6 results support this conclusion [16]. Thus 3-flavour simulations can help

with the interpretation of the 2-flavour simulations.

The phase structure of the 3-flavour theory is also similar to the 2-flavour case. Above

the deconfinement transition there is a 3-state signal, a remnant of the Z3 symmetry of the

quenched theory. This is further evidence that the theory is effectively quenched at these

couplings. As in the 2-flavour case, the 2 states with complex Wilson Lines disorder to a

state with a real negative Wilson Line for β sufficiently large. This transition occurs at

β ≈ 5.55 for Nt = 4 and at β ≈ 6.0 for Nt = 6. The fact that this change in β with Nt is far

larger than for either the deconfinement or the chiral transition probably indicates that this

is a lattice artifact as we concluded for Nf = 2. For Nt = 4 as for 2 flavours, only the state

with a positive Wilson Line appears stable; the other states show signs of metastability.

This contrasts with the Nt = 6 case where all states appear stable, which suggests that the

metastability at Nt = 4 is a discretization artifact. The existence of such states where the

Wilson Line has phases ±2π/3 and π in addition to that with phase 0 has been predicted

by Machtey and Svetitsky and observed in their simulations with Wilson fermions [28].

We are now extending these simulations to Nt = 8, after which we will consider extending

them to Nt = 12. This way we hope to observe the bulk chiral transition. If the Nf = 2

theory is QCD-like, we hope that this should be adequate to distinguish the Nf = 2 and

Nf = 3 theories. In addition, we intend to perform a limited set of simulations at Nt = 6
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with a larger spatial volume to check for finite volume effects.

DeGrand, Shamir and Svetitsky have been studying lattice QCD with 2 colour-sextet

quarks using improved Wilson quarks. The Lattice Higgs Collaboration has been study-

ing the 2 flavour theory using improved staggered quarks. Both these collaborations have

concentrated their efforts on the zero-temperature behaviour, except for some very early

work.

Acknowledgments

DKS is supported in part by the U.S. Department of Energy, Division of High Energy

Physics, Contract DE-AC02-06CH11357.

This research used resources of the National Energy Research Scientific Computing Cen-

ter, which is supported by the Office of Science of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231. In particular, these simulations were performed on the

Cray XT4, Franklin and Cray XT5, Hopper, both at NERSC. In addition this research used

the Cray XT5, Kraken at NICS under XSEDE Project Number: TG-MCA99S015.

[1] S. Weinberg, Phys. Rev. D 19, 1277 (1979).

[2] L. Susskind, Phys. Rev. D 20, 2619 (1979).

[3] B. Holdom, Phys. Rev. D 24, 1441 (1981).

[4] K. Yamawaki, M. Bando and K. i. Matumoto, Phys. Rev. Lett. 56, 1335 (1986).

[5] T. Akiba and T. Yanagida, Phys. Lett. B 169, 432 (1986).

[6] T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986).

[7] M. E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990).

[8] M. E. Peskin and T. Takeuchi, Phys. Rev. D 46, 381 (1992).

[9] T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702 (1999) [hep-ph/9806409].

[10] S. D. H. Hsu, F. Sannino and J. Schechter, Phys. Lett. B 427, 300 (1998) [hep-th/9801097].

[11] M. Kurachi and R. Shrock, Phys. Rev. D 74, 056003 (2006) [hep-ph/0607231].

[12] T. Appelquist et al. [LSD Collaboration], Phys. Rev. Lett. 106, 231601 (2011)

[arXiv:1009.5967 [hep-ph]].



20

[13] F. Sannino, K. Tuominen, Phys. Rev. D71, 051901 (2005). [hep-ph/0405209].

[14] D. D. Dietrich, F. Sannino, K. Tuominen, ecision measurements: Predictions for CERN LHC,”

Phys. Rev. D72, 055001 (2005). [hep-ph/0505059].

[15] J. B. Kogut, D. K. Sinclair, Phys. Rev. D81, 114507 (2010). [arXiv:1002.2988 [hep-lat]].

[16] J. B. Kogut, D. K. Sinclair, [arXiv:1105.3749 [hep-lat]].

[17] D. K. Sinclair, J. B. Kogut, [arXiv:1111.2319 [hep-lat]].

[18] Y. Shamir, B. Svetitsky and T. DeGrand, Phys. Rev. D 78, 031502 (2008) [arXiv:0803.1707

[hep-lat]].

[19] T. DeGrand, Y. Shamir and B. Svetitsky, Phys. Rev. D 79, 034501 (2009) [arXiv:0812.1427

[hep-lat]].

[20] T. DeGrand, Phys. Rev. D 80, 114507 (2009) [arXiv:0910.3072 [hep-lat]].

[21] T. DeGrand, Y. Shamir and B. Svetitsky, Phys. Rev. D 82, 054503 (2010) [arXiv:1006.0707

[hep-lat]].

[22] T. DeGrand, Y. Shamir and B. Svetitsky, PoS LATTICE 2011, 060 (2011) [arXiv:1110.6845

[hep-lat]].

[23] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, PoS LATTICE2008, 058 (2008)

arXiv:0809.4888 [hep-lat].

[24] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, arXiv:1103.5998 [hep-lat].

[25] J. Kuti, Talk presented at Lattice2011, Squaw Valley, California (2011).

[26] S. R. Sharpe, PoS LAT2006, 022 (2006) [arXiv:hep-lat/0610094].

[27] M. A. Clark and A. D. Kennedy, Phys. Rev. D 75, 011502 (2007) [arXiv:hep-lat/0610047].

[28] O. Machtey and B. Svetitsky, Phys. Rev. D 81, 014501 (2010) [arXiv:0911.0886 [hep-lat]].


