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Determining low-energy constants in partially quenched Wilson chiral perturbation
theory
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In the low energy effective theory describing the partially quenched extension of two light Wilson
fermions, three low energy constants (LECs) appear in terms proportional to a2 (a being the lattice
spacing). We propose methods to separately calculate these LECs, typically called W ′6, W ′7 and
W ′8. While only one linear combination of these constants enters into physical quantities, different
combinations enter into the description of the spectral density and eigenvalue distributions of the
lattice Dirac operator and its Hermitian counterpart. Thus it is useful to be able to determine the
LECs separately. Our methods require studying certain correlation functions for either two or three
pion scattering, which are accessible only in the partially quenched extension of the theory.
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I. INTRODUCTION AND SUMMARY

Calculations using (improved versions) of Wilson
fermions [1] have successfully approached [2], and even
reached [3], physical light quark masses. The twisted-
mass extension has also been highly successful [4]. Never-
theless, the explicit breaking of chiral symmetry can lead
to significant lattice artefacts that need to be understood
and controlled. For example, studying the long-distance
behavior of Wilson fermions using chiral effective the-
ory [5, 6], one finds that, when quark masses satisfy
m ∼ a2Λ3

QCD (a being the lattice spacing), discretiza-
tion errors lead to a non-trivial phase diagram, with one
scenario (the “first-order scenario”) having a minimum
pion mass, Mmin

π ∼ aΛ2
QCD, and the other having a re-

gion of Aoki phase in which flavor is spontaneously bro-
ken [7]. There have also been numerous studies of the
properties of mesons and baryons using the chiral ef-
fective theory—usually called Wilson chiral perturbation
theory (WChPT)—which provide the functional forms
needed to do simultaneous chiral and continuum extrap-
olations.1

In the unquenched theory with two light flavors (a
class of theories that includes physical QCD if one treats
the strange quark as heavy), the chiral Lagrangian con-
tains only one independent term proportional to a2.
As a result, a2 corrections enter with a single low en-
ergy constant (LEC), denoted c2 in Ref. [5]. The sign
of this constant determines the vacuum structure when
m ∼ a2Λ3

QCD. If one wants to go beyond the phase struc-
ture, however, and use the chiral effective theory to de-
termine discretization errors in the spectral density of the
Hermitian Wilson-Dirac operator [9], or, more generally,
to determine the detailed properties of low lying eigen-
values of the Wilson-Dirac operator [10, 11], then it turns

∗ Email: mth28@uw.edu
† Email: srsharpe@uw.edu
1 For a recent review, see Ref. [8].
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FIG. 1. Quark contractions contributing to π+π+ scattering.
Contractions involving the interchange of the final state pions
are not shown.

out that one must consider the partially quenched (PQ)
extension of WChPT. In this extension, there are three
LECs entering in terms proportional to a2, denoted W ′6,
W ′7 and W ′8 [see Eq. (15) below], of which c2 is a par-
ticular linear combination [see Eq. (16)]. The detailed
properties of the spectrum and eigenvalues depend on all
three LECs and not just on c2. It is thus of interest to
determine the LECs separately, and this is the topic of
the present work.

Our proposal builds upon one of the methods be-
ing used to determine c2. This is to calculate cer-
tain pion scattering lengths (i.e. the scattering ampli-
tudes at threshold), which in the continuum are propor-
tional to m, but which also have contributions propor-
tional to c2a

2 when discretization errors are included [12].
Computationally, the simplest choice is to calculate the
π+π+ → π+π+ scattering amplitude, for this involves no
quark-antiquark annihilation contractions, as illustrated
in Fig. 1. The scattering length can be calculated from
the energy shift δE = E(π+π+)−2Mπ using the method
of Ref. [13]. (More details of this method will be given
below.) Such a calculation is in fact presently being car-
ried out [14].

Our method for calculating two of the LECs is to
consider separately the quark-disconnected contraction
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FIG. 2. Ratios of partially quenched correlation functions
used to extract LECs. Lines show quark propagators, with
the valence flavor indicated by the label [and color]. All in-
terpolating operators are at zero three-momentum, and are
placed at the Euclidean times indicated. Expectation values
are taken with two sea quarks having the same action and
masses as the valence quarks.

of Fig. 1(a) and the quark-connected contraction of
Fig. 1(b). This separation is simple in a numerical sim-
ulation, but it introduces a problem in the theoretical
description. To pick out the separate contractions re-
quires (for the two-flavor theory that we consider) using
a PQ theory. We stress that in this application of partial
quenching the valence quarks are all degenerate with the
sea quarks and have the same action. This is in contrast
with the most common application in which the valence
and sea quark masses (and sometimes also actions) differ.

While well defined as a Euclidean field theory, the PQ
theory is unphysical, and the method of Ref. [13] for de-
termining the scattering lengths does not apply. In par-
ticular, the individual contractions cannot be written as
a sum of exponentials, as is the case for their sum. Our
proposal is instead to directly fit the correlation func-
tions calculated in the simulation to the predictions of
PQWChPT. These predictions depend, at leading order
(LO), on the LECs W ′6 and W ′8, and thus these two con-
stants can be determined from lattice data at sufficiently
small m and a2. This method of comparison was first
introduced in the quenched theory [15]. In both the
quenched and PQ cases, the key point is that the ef-
fective chiral theory reproduces, at long distances, the
unphysical nature of the underlying theory.

Specifically, we suggest calculating the ratios of corre-
lation functions shown in Fig. 2 [and defined in Eqs. (51-
55) below]. This calculation must be done outside the
Aoki phase, if present, as we assume that flavor is not
spontaneously broken. As we show in Sec. IV, at LO in
ChPT the ratios are given by

R
(0)
D (t) = 1 +O(1/L3) + 2w′6

t

4M2
πL

3
, (1)

R
(0)
S (t) = O(1/L3) +

(
w′8 −

M2
π

f2

)
t

4M2
πL

3
, (2)

where w′6,8 are proportional to W ′6,8 [see Eq. (26)], and
f ≈ fπ. Thus these two LECs can be determined from
the terms linear in t. This requires that t be large enough
that contributions from excited pion states, which fall

exponentially, can be neglected. It also requires that
the linear terms in t can be distinguished from quadratic
terms which appear at higher order in ChPT and which
scale as 1/L6. In practice, these conditions seem reason-
able (see, e.g., Ref. [14]).

In a ratio of physical correlation functions, the contri-
bution linear in t is the first term in the expansion of
the exponential exp(−δEt). In the PQ theory, by con-
trast, neither RD(t) nor RS(t) are exponentials. This
is immediately clear for RS(t) due to the absence of an
L-independent constant term and will be shown explic-
itly for RD(t) by calculating the quadratic term—see
Eq. (104). Nevertheless, as long as it is possible to pick
out the term linear in t one can extract the LECs.

In practice, subleading terms in the chiral expansion
are significant at the values of m and a2 used in present
simulations. Thus we have extended the calculation of
the ratios to next-to-next-to-leading order (NNLO) in
the power counting appropriate to the m ∼ a2 regime
(usually called the “large cut-off effects” or LCE regime).
This power-counting is explained in Sec. II. It differs
from the usual continuum power-counting in that one-
loop effects are of NNLO, rather than next-to-leading
order (NLO). The only NLO contributions are from an-
alytic terms.

The LO results are generalized in a fairly simple way.
To describe this, we first define D(s, t, u) and S(s, t, u)
as the infinite volume, PQ scattering amplitudes corre-
sponding to the contractions of Figs. 1(a) and (b) respec-
tively [see Eqs. (9) and (10) below]. We then observe that
the coefficients of t/4M2

πL
3 in Eqs. (1) and (2) are simply

the LO values of D(4M2
π , 0, 0) and S(4M2

π , 0, 0), the am-
plitudes at threshold. What we show in Sec. IV is that
the coefficients of t/(4M2

πL
3), when evaluated to NNLO

in the chiral expansion, continue to equal the infinite-
volume threshold amplitudes, also evaluated to that or-
der.2 In effect, picking out the coefficient of the term
linear in t in the ratios is, for the threshold amplitude,
like performing LSZ reduction.

The full NNLO results are given in Eqs. (104) and
(105). We display here only simplified forms which show

2 This is true up to finite-volume corrections proportional to
exp(−MπL), which are generically present also in unquenched
applications, and are usually small in actual simulations.
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the essential features:

RD(t) = 1 +O
(
M2
π

f2

1

M3
πL

3

)
+D(4M2

π , 0, 0)
t

4M2
πL

3

[
1 +O

(
M2
π

f2

1

MπL

)]
+O

([
M2
π

f2

t

M2
πL

3

]2
)

+O(e−MπL) + exp.suppr. ,

(3)

RS(t) = O
(
M2
π

f2

1

M3
πL

3

)
+ S(4M2

π , 0, 0)
t

4M2
πL

3

[
1 +O

(
M2
π

f2

1

MπL

)]
+O

([
M2
π

f2

t

M2
πL

3

]2
)

+O(e−MπL) + exp. suppr. ,

(4)

where D and S are evaluated to NNLO, and the results
at threshold are given in Eqs. (106) and (107). In our
“big O” notation, M2

π/f
2 may also stand for any of the

terms proportional to a2W ′k, as these are of the same
order in the LCE regime. By “exp. suppr.” we mean
contributions which fall off exponentially with t, e.g. due
to excited states.

As can be seen from Eqs. (3) and (4) there are three
expansions being used. First, there is the usual chiral ex-
pansion (supplemented by powers of a) in the expressions
for D and S. Second, there is an expansion in powers of
t, as indicated in the last lines of (3) and (4). Finally, for
each power of t there is a sequence of subleading terms,
as is shown in the middle line of each equation.

Our calculation in Sec. IV yields the first non-trivial
correction in each of these expansions, namely the chiral
corrections to D and S and the contributions to the ratios
proportional to t2/L6 and t/L4. The latter two are given
explicitly in (104) and (105). We stress again that, if
the numerators in the ratios were physical correlation
functions, then, using the results of Ref. [13], one would
find that the t/L4 and t2/L6 terms would be proportional
to the square of the threshold scattering amplitude. This
is not true in the PQ theory, but one can nevertheless
calculate these terms.

With the NNLO results (3) and (4) in hand, we can
discuss our proposal for determining LECs in more detail.
In order for the term linear in t to dominate over the
quadratic term, it must satisfy

t� f2L3 ∼ (MπL)(fL)2

Mπ
. (5)

Since MπL � 1 and fL & 1 to avoid large finite-
size effects, one sees that the constraint on t is rather
weak. One may also try and fit the ratios including the
quadratic term, and in this regard we note that the co-
efficient of t2 is given by a linear combination of M2

π/f
2

and the LECs W ′6 and W ′8, so that no new parameters
are needed.

Assuming that one can determine the coefficient of t,
one must disentangle its dependence on M2

π and on 1/L
in order to extract the LECs W ′6 and W ′8. Here it is help-
ful that the 1/L correction itself depends on these same
two LECs. At the least, this will allow an a posteriori
estimate of the size of the 1/L correction.

Finally, one must do a chiral extrapolation of the re-
sulting threshold amplitudes, attempting to pick out the
LO terms which give the desired LECs. From Eqs. (106)
and (107), the general chiral behavior is, schematically,

D,S ∼ a2 +M2
π + a3 + aM2

π + a4(1 + logMπ)

+a2M2
π(1 + logMπ) +M4

π(1 + logMπ) . (6)

The coefficients of the chiral logarithms are either fixed
(for the continuum logarithm) or given in terms of all
three W ′k (for the logarithms multiplying factors of a).
The analytic terms involve many other LECs, however,
both from the continuum theory and induced by dis-
cretization errors. Thus it seems very unlikely that one
will be able do more than a fit to the generic form given
above and extract the LO a2 and M2

π terms. This would
allow a determination of W ′6 and W ′8, but not W ′7.

In light of this, we have devised an alternative method
for determining W ′7, in which it contributes at tree-level.
This requires studying a particular three-pion correlation
function. Since this will be challenging to implement in
a simulation, we describe the method only briefly in an
appendix.

We close this section by noting that other methods
for determining W ′6, W ′7 and W ′8 have recently been pro-
posed. These use the eigenvalue distributions of the Her-
mitian Wilson-Dirac operator with Wilson-like fermions
(which are sensitive to all three LECs) [10, 11, 16],
the masses of pions and the scalar correlator in a
mixed-action simulation with overlap valence quarks and
twisted-mass sea quarks (which can determine W ′6 and
W ′8) [17], and the mass of the quark-connected neu-
tral pion with twisted-mass quarks (which determines
W ′8) [18].3 We think that pinning down the LECs will
not be easy, and hope the method proposed here can
contribute along with these other approaches.

The remainder of this article is organized as follows.
In the following section, we give a brief recapitulation of
the pertinent details of PQWChPT, including the power-
counting of the LCE regime. In Sec. III we present our
results for the infinite-volume PQ scattering amplitudes,
which we do for general momentum, and at NNLO in the
LCE power counting. The description and calculation of
the finite-volume correlations functions are presented in
Sec. IV, which forms the core of the technical part of this
paper. We include two appendices. The first contains de-
tails concerning analytic NLO and NNLO contributions
to the scattering amplitudes. The second describes our
proposal for determining W ′7.

3 It has also been shown in Refs. [10, 11, 18] that W ′8 is necessarily
negative.
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II. PARTIALLY QUENCHED WILSON CHIRAL
PERTURBATION THEORY

In this section we define the required PQ scattering
amplitudes and recall the essentials of WChPT for the
partially quenched theory. We consider a theory with
two sea quarks, and introduce four valence quarks, and
their corresponding ghosts, in order to define the desired
amplitudes. All quarks and ghosts are degenerate with
mass m. With this quark content, the chiral field

Σ = exp
(√

2iπ/f
)

(7)

lies in the graded group SU(6|4). We work in the LCE
regime where m ∼ a2, so the Lagrangian is broken into
leading and subleading parts as follows [12]:

LO : p2,m, a2

NLO : p2a,ma, a3

NNLO : p4, p2m,m2, p2a2,ma2, a4 .

(8)

The partially quenched scattering amplitudes of inter-
est correspond to the two contractions shown in Fig. 1.
We label these, respectively, as D and S for double and
single, referring to the number of loops appearing in
quark-flow diagrams. The four valence flavors that we
have introduced allow us to separate the contractions as
illustrated in Fig. 2. The precise definitions are

D(s, t, u)(2π)4δ4(p+ k − p′ − k′) =

〈π12(p′)π21(−p)π34(k′)π43(−k)〉conn,amp (9)

and

S(s, t, u)(2π)4δ4(p+ k − p′ − k′) =

〈π12(p′)π23(−p)π34(k′)π41(−k)〉conn,amp , (10)

where conn indicates that only pion-connected contribu-
tions are included and amp indicates standard amputa-
tion of external propagators. The subscripts on the pion
field indicate their valence flavor and s, t and u are stan-
dard Mandelstam variables,

s = −(p+ k)2, t = −(p− p′)2, u = −(p− k′)2 ,
(11)

with p, k, p′ and k′ all Euclidean four-vectors.
Observe that the term “amplitude” only applies loosely

here because of the unphysical partial quenching. D and
S do not satisfy unitarity constraints and only certain
linear combinations give physical amplitudes. In partic-
ular, the relation of PQ amplitudes to the amplitude for
π+ scattering is

Aπ+(s, t, u) =

D(s, t, u) +D(s, u, t) + S(s, t, u) + S(s, u, t) . (12)

This is found by comparing quark-level Wick contrac-
tions. We use this result to provide a partial check of our
results for D and S by doing an independent computation
of Aπ+ in SU(2) WChPT.

We can also relate the PQ amplitudes to the general
physical scattering amplitude. We recall that, for πi +
πk → πl + πm, with i, k, l,m ∈ {1, 2, 3}, one can write

Aik→lm(s, t, u) =

δikδlmA(s, t, u) + δilδkmA(t, s, u) + δimδlkA(u, t, s) .
(13)

The amplitude A is related to our amplitudes by

A(s, t, u) =

D(t, s, u)− S(s, t, u) + S(u, t, s) + S(t, s, u) . (14)

The result for A at NNLO in WChPT is obtained in
Ref. [12], and this relation allows us to compare our re-
sults to those in that work.

In order to calculate D and S to NNLO we must in-
clude all tree level and one loop diagrams generated by
the LO Lagrangian (LLO) but only the tree level dia-
grams from LNLO and LNNLO. The LO Lagrangian
is [5, 19]

LLO =
f2

4
〈∂µΣ∂µΣ†〉 − χf

2

4
〈Σ + Σ†〉

− â2W ′6〈Σ + Σ†〉2

− â2W ′7〈Σ− Σ†〉2

− â2W ′8〈Σ2 + (Σ†)2〉 .

(15)

Here angle brackets indicate a supertrace (strace), and
χ = 2B0m and â = 2W0a, with B0 and W0 leading-
order LECs. The term linear in a has been removed by
the standard redefinition of m [5]. We use the “small f”
convention in which fπ ≈ 93 MeV.

When the field Σ is restricted to SU(2), the number
of independent terms in LLO is reduced. In particular,
the W ′7 term vanishes and the W ′6 and W ′8 terms become
proportional. As a result, the unquenched amplitudes de-
fined in (12)-(14) can only depend on W ′6 and W ′8 through
the combination 2W ′6 + W ′8. A convenient definition for
this, used in Ref. [12], is

c2 = −32(2W ′6 +W ′8)
W 2

0

f2
. (16)
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The NLO and NNLO Lagrangians are [19, 20]

LNLO = âW4〈∂µΣ∂µΣ†〉〈Σ + Σ†〉
+ âW5〈∂µΣ∂µΣ†(Σ + Σ†)〉
− âχW6〈Σ + Σ†〉2

− âχW7〈Σ− Σ†〉2

− âχW8〈Σ2 + (Σ†)2〉
+ a3−terms

(17)

LNNLO = −L1〈∂µΣ∂µΣ†〉2

− L2〈∂µΣ∂νΣ†〉〈∂µΣ∂νΣ†〉
− L3〈∂µΣ∂µΣ†∂νΣ∂νΣ†〉
+ χL4〈∂µΣ∂µΣ†〉〈Σ + Σ†〉
+ χL5〈∂µΣ∂µΣ†(Σ + Σ†)〉
− χ2L6〈Σ + Σ†〉2

− χ2L7〈Σ− Σ†〉2

− χ2L8〈Σ2 + (Σ†)2〉
− LPQOPQ
+ a2m−terms

+ a2p2−terms

+ a4−terms ,

(18)

where [21]

OPQ = 〈∂µΣ∂νΣ†∂µΣ∂νΣ†〉
+ 2〈∂µΣ∂µΣ†∂νΣ∂νΣ†〉
− (1/2)〈∂µΣ∂µΣ†〉2

− 〈∂µΣ∂νΣ†〉〈∂µΣ∂νΣ†〉 .

(19)

The a3, a2m, a2p2 and a4 terms are discussed in ap-
pendix A.

As above, restriction to Σ ∈ SU(2) reduces the number
of terms in the Lagrangian. As a result, physical ampli-
tudes can only depend on the following combinations of
NLO and NNLO LECs,

2W ′6 +W ′8, 2W6 +W8, 2L6 + L8, (20)

2W4 +W5, 2L4 + L5, (21)

2L1 + L3, L2, (22)

as well as on the LECs from a3, a2m, a2p2 and a4 terms.
In particular, physical amplitudes must be independent
of W ′7, W7, L7 and LPQ because the associated La-
grangian terms vanish when there are only two quarks.

III. INFINITE VOLUME PARTIALLY
QUENCHED SCATTERING AMPLITUDES

In this section we calculate the on-shell PQ amplitudes
through NNLO. Although, as noted earlier, the PQ the-
ory is defined in Euclidean space, we can nevertheless

(g)

(a) (b) (c)

(e) (f)(d)

(h)

FIG. 3. Classes of diagrams contributing to the PQ scattering
amplitudes through NNLO. Filled circles represent vertices
from LLO while filled squares represent vertices from LNLO

and LNNLO.

analytically continue the amplitudes to Minkowski mo-
menta and set them on shell. It turns out that it is these
on-shell amplitudes (evaluated at threshold) which ap-
pear in the coefficient of t in the ratios of Fig. 2.

The diagrams contributing through NNLO are shown
in Fig. 3. At LO, only Fig. 3(a) contributes, and leads
to the following results for the on-shell amplitudes:

D(0) = 2w′6 (23)

S(0)(s) = w′8 +
1

2f2

(
2M2

0 − s
)
. (24)

Here, M0 is the LO pion mass, given by

M2
0 = χ+ f2(2w′6 + w′8) , (25)

where we have introduced rescaled, dimensionless LECs

w′k =
16â2W ′k
f4

k = 6, 7, 8. (26)

Note that, because all quarks and ghosts are degenerate,
all pions have the same mass, whatever their composi-
tion.

Combining Eqs. (23) and (24) according to (14) and
using the on-shell result s+ t+ u = 4M2

0 , we find

A(0)(s) =
s−M2

0

f2
+ 2w′6 + w′8 . (27)

This agrees with the result of Ref. [12].
We now turn to higher-order contributions, consid-

ering first the loop graphs of NNLO and then turning
to the analytic contributions of NLO and NNLO. Non-
analytic contributions to mass and wavefunction renor-
malization arise from the “tadpole” diagrams exemplified
by Fig. 3(b). Including the results from these diagrams
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(and also the analytic analogs in Fig. 3(h)), the form of
the valence-valence propagator near the physical pole is

〈πij(p)πji(−p)〉 ∼
1

(1 + δz)(p2 +M2
π)
, (28)

with ∼ indicating that the two sides differ by terms reg-
ular at the pole. This expression defines both the wave
function renormalization δz and the physical mass Mπ.
It is further convenient to define M2

π = M2
0 + δM2.

Evaluating the tadpole diagrams we find

δM2
loop =

[
1

2
M2

0 −
5

2
f2(2w′6 + w′8)

]
I1 (29)

δzloop = −2

3
I1 , (30)

where

I1 =
1

f2

∫
q

1

q2 +M2
0

→ M2
0

16π2f2
log
(
M2

0 /µ
2
)

(31)

is the standard tadpole integral. Here∫
q

= µε
∫

d4−εq

(2π)4−ε (32)

and the arrow indicates evaluation in a modified minimal
subtraction scheme (MS) in which γE − log(4π) − 1 is
subtracted along with the pole [20].

The result for δM2
loop is the same for all pions (as

required by the graded symmetry group) including the
physical, unquenched pions. It must thus contain dis-
cretization errors proportional to the combination 2w′6 +
w′8, as we see is the case. The result (29) agrees with
that given in Ref. [12].

Non-analytic contributions to the scattering ampli-
tudes arise from the diagrams of Fig. 3(c-f), from wave-
function renormalization, and also from mass renormal-
ization. The latter contribution is, at the order we work,
only present in S, and arises kinematically from the LO
result. To see this explicitly note that the general, off-
shell form of the LO amplitude is

S(0)
off (s, t, u) = w′8 +

1

6f2

(
2M2

0 − 2s+ t+ u
)
. (33)

When going on shell one sets p2 = k2 = p′2 = k′2 to
−M2

π , with Mπ the pion mass at the order being cal-
culated. This implies that s + t + u = 4(M2

0 + δM2).
Substituting this in (33) one finds a NNLO contribution
to S of

S(2)
δM2 =

2δM2

3f2
. (34)

Combining this with the other loop contributions we find
that the entire one-loop contribution to the PQ ampli-

tudes is

D(2)
loop(s, t, u) = −2δzloopD(0) +

2M2
0

9f2
I1

+ (1/36) [I6(s) + I6(t) + I6(u)]

+ [−(10/3)w′6 − 2w′8 + 2w′7] I1

− (4/3)w′6I4(t)

+ (1/3)w̃′8 [I4(s) + I4(u)− 2I4(t)]

+ w′26 [4I2(s) + 4I2(u) + 14I2(t)]

+ 10w′6w̃
′
8I2(t)

+ w̃′28 [I2(s) + I2(u) + (17/2)I2(t)]

(35)

and

S(2)
loop(s, t, u) =

2

3f2
δM2

loop − 2δzloopS(0)(s)

+
10s− 13M2

0

18f2
I1

+ (1/18) [I7(t, u) + I7(u, t)]

− [(11/3)w′6 + (3/2)w′8 + 2w′7] I1

+ (1/3)w′6 [2I4(s)− I4(t)− I4(u)]

− (1/3)w̃′8 [I4(t) + I4(u)]

+ 4w′6w̃
′
8 [I2(s) + I2(t) + I2(u)]

− (5/2)w̃′28 [I2(t) + I2(u)] ,

(36)

where

w̃′8 = w′8 +
M2

0

3f2
. (37)

In each case, the results proportional to I1 are from the
tadpole diagram, Fig. 3(c).

The new integrals that appear, and their values after
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subtraction and going on-shell, are

I2(s) =

∫
q

1

(q2 +M2
0 )(q̃2 +M2

0 )

→ 1

16π2

[
F (s) + 1− log(M2

0 /µ
2)
] (38)

I4(s) =
1

f2

∫
q

−5s+ t+ u− 2q2 − 2q̃2

2(q2 +M2
0 )(q̃2 +M2

0 )

→ I2(s)
4M2

0 − 3s

f2
− 2I1

(39)

I6(s) =
1

f4

∫
q

(3s+ p2 + k2 + q2 + q̃2)

× (3s+ p′2 + k′2 + q2 + q̃2)

(q2 +M2
0 )(q̃2 +M2

0 )

→ I2(s)
(3s− 4M2

0 )2

f4
+ I1

10s− 16M2
0

f2

(40)

I7(s, u) =
1

f4

∫
q

(3(p+ q)2 − p2 − k2 − q2 − q̃2)

× (3(k′ + q)2 − p′2 − k′2 − q2 − q̃2)

(q2 +M2
0 )(q̃2 +M2

0 )

→ I2(s)
3s2 + 3us/2− 12M2

0 s− 6M2
0u+ 16M4

0

f4

+ I1
4s+ 3u− 10M2

0

f2
+

(6M2
0 − s)(4M2

0 − s− 2u)

32π2f4
,

(41)

where q̃ = q+ p+ k. Thus all integrals can be written in
terms of I1 and a function defined in Ref. [12]:

F (s) = −σs log
σs + 1

σs − 1
, σs =

√
1− 4M2

0

s
. (42)

The analytic contributions of NLO and NNLO arise
from Figs. 3(g) and (h). For the mass shift and wave-
function renormalization we find

δM2
an = −(1/2)(2w4 + w5)M2

0 + (2w6 + w8)χ

− (1/2)(2ξ4 + ξ5)M2
0 + (2ξ6 + ξ8)χ

+ δM2
ad

(43)

δzan = (1/2) [(2w4 + w5) + (2ξ4 + ξ5)] + δzad , (44)

where

wk =
16âWk

f2
ξk =

16Lkχ

f2
(k = 4− 8) (45)

are defined in analogy with Eq. (26). δM2
ad and δzad are

the contributions from the “additional” terms, meaning
a3, a2m, a4 and a2p2 terms. They are given in Appendix
A.

Incorporating the corrections from δM2
an and δzan we

determine the NLO and NNLO analytic terms in the PQ

amplitudes to have the explicit form

D(1,2)
an (s, t, u) = (2w4 + w5)(−2w′6) + w4G(t)

+ 2χw6/f
2

+ 8L1G(t)2 + 4L2

(
G(s)2 +G(u)2

)
− 4LPQ

(
G(s)2 +G(t)2 +G(u)2

)
+ (2ξ4 + ξ5)(−2w′6) + ξ4G(t)

+ 2χξ6/f
2 +Dad(t) ,

(46)

S(1,2)
an (s, t, u) = (2w4 + w5)(−w′8 −M2

0 /f
2)

+ w4s/(2f
2)

+ 2χ(w6 + w8)/f2

+ 2L3

(
G(t)2 +G(u)2

)
+ 4LPQ

(
G(s)2 +G(t)2 +G(u)2

)
+ (2ξ4 + ξ5)(−w′8 −M2

0 /f
2)

+ ξ4s/(2f
2)

+ 2χ(ξ6 + ξ8)/f2 + Sad(s) ,

(47)

where

G(s) =
s− 2M2

0

f2
(48)

and Dad(t) and Sad(s) are given in Appendix A. Note
that, due to the great number of LECs, the analytic parts
of the PQ amplitudes are poorly constrained.

The final results are obtained by combining Eqs. (23),
(35) and (46) for

D(s, t, u) = D(0) +D(2)
loop(s, t, u) +D(1,2)

an (s, t, u), (49)

and similarly combining Eqs. (24), (36) and (47) for

S(s, t, u) = S(0)(s) + S(2)
loop(s, t, u) + S(1,2)

an (s, t, u). (50)

These may then be used in Eq. (14) to find A. We find
complete agreement with the result of Ref. [12]. An inter-
esting aspect of this comparison is that the terms linear
in a in D and S (which have the generic form aM2

0 and
as) cancel in A. This is only true when the leading order
amplitude A(0) is expressed in terms of M0 as in Eq (27).

IV. FINITE VOLUME CORRELATION
FUNCTIONS

In this section we calculate, in PQWChPT, the corre-
lation functions appearing in the ratios shown schemat-
ically in Fig. 2. Specifically, we consider a cubic spatial
box of length L with periodic boundary conditions, and
assume that the time direction satisfies Lt � L and is
effectively infinite. Since the PQ theory does not have a
positive transfer matrix, correlation functions cannot be
analyzed by inserting complete sets of states with positive
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norm.4 Furthermore, the scattering amplitudes of the
infinite volume theory are not unitary. Because of these
unphysical features, the standard relation due to Lüscher
between finite volume energy shifts and phase shifts [13]
does not hold—neither energy shifts nor phase shifts can
be defined. Instead, if one wants to “measure” scattering
amplitudes, one can compare results for Euclidean cor-
relation functions (obtained using lattice methods) with
the predictions of PQWChPT. Then the unphysical fea-
tures of the underlying theory are matched by those of
the effective theory. This strategy was introduced in
Ref. [15] to study pion scattering in the quenched ap-
proximation.

To approach infinite-volume scattering as closely as
possible, we consider external pion fields with definite
three-momentum, leaving only their time coordinates un-
transformed. We additionally restrict ourselves to the
simplest case of pions at rest. Specifically, we calculate
the following four-point correlators:

CD(t) = 〈π̃12(t)π̃34(t)π̃21(0)π̃43(0)〉 (51)

CS(t) = 〈π̃12(t)π̃34(t)π̃23(0)π̃41(0)〉 , (52)

with

π̃(t) =

∫
L3

d3xπ(~x, t) . (53)

The subscript on the integral indicates integration over
finite volume. These correlation functions are, roughly
speaking, the finite-volume analogs of the infinite-volume
unamputated scattering amplitudes. In order to more di-
rectly access these amplitudes, we take the ratio of these
correlators to the square of a single-pion correlator, which
is, roughly speaking, the analog of amputation:

RD,S(t) =
CD,S(t)

Cπ(t)2
(54)

Cπ(t) = 〈π̃12(t)π̃21(0)〉 . (55)

These are the ratios shown schematically in Fig. 2. In
this note we will always take t to be positive.

It is instructive to make contact with the more familiar
results in a physical (i.e. unquenched) theory. Adapting
Eq. (12) to finite volume, we find that the π+π+ correla-
tion function is related to our PQ correlators in a simple
way:

Cπ+(t) = 〈π̃+(t)π̃+(t)π̃−(0)π̃−(0)〉
= 2CD(t) + 2CS(t) .

(56)

It follows that

RD(t) +RS(t) = Ze−(Eπ+π+−2Mπ)t + exp. supp., (57)

where Eπ+π+ is the energy of the lightest π+π+ state
with zero total spatial momentum, and the exponentially

4 As seen explicitly in the transfer matrix obtained in Ref. [22].

suppressed terms come from states with higher energies.
At LO in WChPT one finds (as we will show below) that
the overlap factor Z is unity, so that

RD(t) +RS(t) ≈ 1− δEt
δE = Eπ+π+ − 2Mπ .

(58)

This approximation is valid as long as t is large enough
that the exponentially suppressed terms are negligible
but also small enough that the linear term dominates
the Taylor expansion of the leading exponential.

Lüscher’s result relates this shift to the infinite volume
π+ scattering amplitude at threshold [13]:

δE = −Ath
π+

1

4M2
πL

3

[
1 + c1Ath

π+

1

16πMπL
+O(1/L2)

]
+O(e−MπL) , (59)

where c1 ≈ −2.837297 is a numerical constant. The form
of the 1/L2 correction, and some higher order terms, are
known [13], but we do not show them as we will not con-
trol the corresponding terms in our calculation. Note also
the presence of exponentially suppressed finite-volume
corrections.

Although the PQ ratiosRD(t) andRS(t) do not behave
as a sum of exponentials, what we can take over from
the analysis of Rπ+(t) is that it is useful to determine
the coefficient of the term linear in t. In the remainder
of this section we determine the PQWChPT prediction
for the linear terms in RD(t) and RS(t). We work to
NNLO in the momentum power counting of Eq. (8) and
do so controlling not only the leading 1/L3 terms but
also the 1/L4 corrections. We can also control a subset
of the finite volume corrections proportional to e−MπL,
but will not do so systematically.

The PQWChPT diagrams which contribute to the or-
der we work are shown in Fig. 4. These are the same
diagrams as for the infinite-volume amplitudes, Fig. 3,
except for the addition of the disconnected diagrams (a-
c). Our description of the calculation is broken into
three subsections: leading-order results, analytic NLO
and NNLO contributions, and NNLO results from loop
diagrams.

A. Leading-order Results

The pion-disconnected diagram of Fig. 4(a) contributes
only to CD(t), with the result

C
(disc)
D (t) = Cπ(t)2 (60)

Cπ(t) =
L3

2M0
e−M0t (61)

and thus

R
(disc)
D (t) = 1 , R

(disc)
S (t) = 0 . (62)

The factor of L3 in Cπ(t) arises because both ends of the
propagators are integrated over space. Note that, within
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(a)

(d) (f)

(b) (c)

(h) (i) (j)

(e) (g)

FIG. 4. Classes of diagrams contributing to the correlators
CD(t) and CS(t) in ChPT. Diagrams in which initial or final
pions are interchanged are not shown separately. Notation for
vertices as in Fig. 3.

WChPT, there are no explicit contributions from excited
pions at any order. The effect of these states appears
through contact terms proportional to δ(t), which arise
first at NNLO. Since we always consider t large enough
to remove terms which are exponentially suppressed, we
need not include such contact terms.

The tree-level, pion-connected diagram, Fig. 4(d), con-
tributes to both CD and CS . Because the four pion
sources have ~p = 0, only pions at rest contribute. Thus
the pion propagators attaching to the vertex are either

e−M0|t1|

2M0
or

e−M0|t−t1|

2M0
, (63)

where t1 is the time of the vertex. These propagators
have no factors of L3 since only one end is integrated over
space. There is, however, a factor of L3 from integrating
the position of the vertex over space.

The correlator CD(t) is the simplest to consider, be-
cause the LO vertex comes only from the W ′6 term in
LLO [see Eq. (15)] and therefore contains no derivatives.
Based on the discussion above, we find (recalling that t
is positive)

C
(conn,0)
D (t) = 2w′6L

3

∫
dt1

e−2M0|t1|e−2M0|t−t1|

(2M0)4
(64)

= 2w′6L
3 e
−2M0t

(2M0)4

(
1

2M0
+ t

)
. (65)

The factor of t arises from the region 0 ≤ t1 ≤ t in
which the vertex lies between the two sources. The t-
independent terms come from t1 < 0 and t1 > t, where
the contribution drops exponentially.

At this point, it is useful to incorporate a result from
the calculation of subleading orders. The diagrams which
correct pion propagators, Figs. 4(b), (c), (e) and (f), form

part of the geometric series which changes

e−M0|t|

2M0
to Zπ

e−Mπ|t|

2Mπ
. (66)

Here Mπ is the physical pion mass, and Zπ = 1 − δz
is the wavefunction renormalization, to the order we are
working. For the moment we incorporate only the mass-
shift, returning to the effect of Zπ 6= 1 below. Using the
new propagators in both numerator and denominator of
the ratio RD(t), we find

R
(conn,0)
D (t) =

1

4M2
πL

3

(
1

2Mπ
+ t

)
2w′6 , (67)

=
1

4M2
πL

3

(
1

2Mπ
+ t

)
D(0) . (68)

The utility of the ratio is that the overall exponentials
cancel—as noted above, this corresponds to amputation
in a continuum calculation. The physical interpretation
of the t term is that the pions can interact at any inter-
mediate time, while the 1/L3 suppression arises because
the zero-momentum pions must overlap in order to in-
teract. As shown in the second line, the coefficient of
t is, aside from the kinematical factor 1/(4M2

πL
3), the

LO PQ scattering amplitude. This, together with the
disconnected contribution from (62), gives the result (1)
quoted in the introduction.

A similar analysis holds for RS(t), except that we must
now deal with the momentum dependence arising from
the kinetic term in the LO Lagrangian (15). If one eval-
uates the diagram in position space, the derivatives in
the vertex act on the pion propagators of Eq. (63) (with
M0 → Mπ). Thus only time derivatives contribute, and
they yield ±Mπ. Consider first 0 < t1 < t, i.e. the ver-
tex lying between the sources. Derivatives acting on pion
propagators originating at times 0 and t then give −Mπ

and +Mπ, respectively. This implies that s = 4M2
π and

t = u = 0, i.e. on-shell kinematics at threshold. For
t1 < 0 (t1 > 0), by contrast, all derivatives give +Mπ

(−Mπ), and one obtains, in both cases, the amplitude at
off-shell kinematics: s = t = u = 4M2

π . The final result
is

R
(conn,0)
S (t) =

1

4M2
πL

3

[
(w′8 +M2

0 /3f
2)

2Mπ

+

(
w′8 +

M2
0 − 4M2

π

3f2

)
t

]
, (69)

=
1

4M2
πL

3

[
1

2Mπ
S(0)

off (4M2
π , 4M

2
π , 4M

2
π)

+S(0)(4M2
π)t

]
. (70)

This result, together with the vanishing of the discon-
nected contribution, is reported in Eq. (2) of the intro-
duction. Note that, since in (2) we are quoting a LO
result, we can set M0 = Mπ.
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As a check on our results we consider the sum RD(t)+
RS(t). According to the discussion above, this should be
≈ (1 − δEt), with δE = −Ath

π+/(4M2
πL

2) [the LO term
in Eq. (59)]. We find (setting M0 = Mπ)

R
(disc)
D (t) +R

(conn,0)
D (t) +R

(conn,0)
S (t) ={

1 +O
(

1

L3

)
+

1

4M2
πL

3

(
2w′6 + w′8 −

M2
π

f2

)
t

}
. (71)

The coefficient of t/(4M2
πL

3) is indeed the π+ scattering
amplitude at threshold. The 1/L3 corrections to the t-
independent terms (which are not shown in detail) are
the first correction to the Z-factor for the two pion state.

B. Analytic NLO and NNLO contributions

Analytic NLO and NNLO contributions arise from
Figs. 4(b), (e) and (g). Diagrams (b) and (e) give the
analytic parts of mass and wavefunction renormalization,
contributions which are identical to those in infinite vol-
ume. The effect of mass renormalization has already been
discussed above. Wavefunction renormalization partly
cancels in the ratios, leaving a factor of Z2

π = (1− 2δz),
exactly what is needed to renormalize the amplitude as
in infinite volume.

The analytic contributions to the vertex, Fig. 4(g), can
be analyzed by a straightforward generalization of the
method used for the momentum-dependent contribution
to the LO vertex in RS . We find

R
(1,2)
D,an(t) = const +

t

4M2
πL

3
D(1,2)
an (4M2

π , 0, 0) , (72)

R
(1,2)
S,an(t) = const +

t

4M2
πL

3
S(1,2)
an (4M2

π , 0, 0) , (73)

where D(1,2)
an and S(1,2)

an are the infinite-volume analytic
contributions to the two amplitudes given in Eqs. (46)
and (47). We note that, at threshold, these amplitudes
are just linear combinations of a3, aM2

π , a4, a2M2
π and

M4
π with independent coefficients. The results (72) and

(73) are the natural generalizations of Eqs. (68) and (70).
Note that we only keep track of the terms linear in t, since
these are proportional to the desired PQ amplitudes at
threshold. The constant terms involve off-shell ampli-
tudes.

C. NNLO results from loop diagrams

In this section we extend the calculation to the one
loop diagrams which appear at NNLO, focusing on the
coefficient of the terms linear and quadratic in t in the
ratios RD,S(t). At one loop there are 3 types of contribu-
tions, which we discuss in order of increasing complexity.
First, there are tadpole diagrams, shown in Fig. 4(c), (f)
and (h). Second there are t and u-channel loops, exem-
plified by Fig. 4(i). And, third, there are s-channel loops,
as shown in Fig. 4(j).

(a) (b) (c)

(d) (e) (f)

(h)(g) (i)

FIG. 5. Classes of diagrams contributing to the correlators
CD(t) and CS(t), arising from π3 and π5 terms in the external
operators. All vertices are from the LO Lagrangian.

1. Tadpole diagrams

Tadpole diagrams on external legs [Figs. 4(c) and (f)]
renormalize the external pion propagators, contributing
to δM2 and δz as described for the analytic terms. In
this case, however, there is a difference compared to in-
finite volume, namely that in the tadpole integral I1 one
should use the finite volume pion propagator. This gives
rise to corrections which are suppressed by powers of
exp(−MπL), as can be seen by implementing the peri-
odic boundary conditions using images. We assume such
corrections are negligible.

Tadpole diagrams attached to the vertex [Fig. 4(h)]
are also simple to incorporate. As long as 0 < t1 < t,
they multiply the tree-level vertex by a factor that is
independent of the vertex position, leading to the usual
term linear in t. The coefficient of t is proportional to the
tadpole contributions to the threshold amplitudes, and is
exactly that needed to maintain the forms of Eqs. (72)
and (73), with D and S now including one-loop tadpole
contributions. Again, there are exponentially suppressed
volume corrections which we assume negligible.

At this stage, it is appropriate to mention that there
can also be tadpoles arising on the external operators at
times 0 and t. This is because, in practice, if one uses
a local pseudoscalar operator at the quark level, then
it maps into the chiral theory at LO as q̄kγ5qj(x) →
c(Σ−Σ†)jk(x). The constant c is known but unimportant
here, since it cancels in the ratios. This chiral operator
expands to a term proportional to πjk—the operator we
have been using—but with corrections proportional to
(π3)jk/f

2 and (π5)jk/f
4. These corrections give rise,

at the order we are working, to the diagrams of Fig. 5.
As we now explain, however, all of these diagrams lead
to contributions subleading compared to those we are
keeping.

Tadpoles associated with external operators [Figs. 5(a)
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and (b)] cancel in the ratios. The loop diagram of
Fig. 5(c) does not give rise to a term linear in t because
the four propagators to the left of the vertex lead to a fall
off of at least e−4Mπt1 . The tree-level diagram of Fig. 5(d)
also does not contribute to the coefficient of t—it gives
a 1/L3 contribution to the constant term. The same is
true for the corresponding tadpole diagram, Fig. 5(e).
The only diagram in this class that does give a contribu-
tion linear in t is Fig. 5(f). This arises when both pions
in the loop have ~q = 0. This contribution is, however,
of size t/L6 in the ratios,5 and thus is subleading to the
1/L4 terms that we are aiming to control.

There are also analytic corrections to the external op-
erators, e.g. terms proportional to ∂2πjk and a2πjk.
These lead to corrections which cancel in the ratios.

2. t and u-channel loops

The t and u-channel loop diagrams have the form of
Fig. 4(i). Note that, since both external pions at time t
are summed over all space, there is no difference between
the t and u-channel loops. In order to avoid confusion
between the two uses of t we will couch our discussion in
terms of the u-channel.

Figure 4(i) gives rise to a contribution proportional to
the time separation t as follows. Although there are two
vertices (at times t1 and t2), when they are pulled apart
in Euclidean space there is an exponential suppression, so
the dominant contributions occur when |t1− t2| < 1/Mπ.
The loop collapses to an effective vertex, which, when
integrated over the intermediate time, leads to a factor
of t. If either of the vertices is outside of the region
0 < t1,2 < t, it is easy to see that one does not get a term
linear in t.

We now turn these words into a concrete evaluation.
We consider first a contribution in which both vertices
have no derivatives. In infinite volume, this leads to those
terms in Eqs. (35) and (36) which contain the integral
I2(u). For definiteness, we consider the contribution to

D(2)
loop of 4w′26 I2(u). The corresponding contribution to

the finite-volume correlator is

CD(t) ⊃ e−2Mπt

(2Mπ)4
4w′26 L

3Ĩ2(t) (74)

Ĩ2(t) =
1

L3

∫ t

0

dt1

∫ t

0

dt2

∫
~x1

∫
~x2

Gπ(x1, x2)2 . (75)

5 The 1/L6 occurs because the numerator in the ratios is inde-
pendent of L, while the denominator is proportional to L6. The
numerator is independent of L because the three external propa-
gators have one leg summed and are thus L-independent, leaving
two point-to-point propagators in the loop (each proportional to
1/L3) and two vertices integrated over space (each giving a factor
of L3).

Here Gπ(x1, x2) is the Euclidean pion propagator, which
is related to Cπ(t) by

Cπ(t1 − t2) =

∫
~x1

∫
~x2

Gπ(~x1, t1; ~x2, t2) . (76)

The contribution to the ratio is

RD(t) ⊃ 1

4M2
πL

3
4w′26 Ĩ2(t) . (77)

It is straightforward to evaluate Ĩ2(t) explicitly, and one
finds that it consists of a term linear in t up to corrections
falling as e−2Mπt. A simple way to pick out the coefficient
of t is to take a time derivative and then send t→∞. In
this way we arrive at

RD(t) ⊃ t

4M2
πL

3
4w′26 Ĩ

′
2(∞) , (78)

for sufficiently large t.

To evaluate Ĩ ′2(∞) we note that Ĩ2(t) can be rewritten
as

Ĩ2(t) = 2

∫ t

0

dt1

∫ t1

0

dt2

∫
~x2

Gπ(~0, t1; ~x2, t2)2 , (79)

where we have used translation invariance and the sym-
metry Gπ(x, 0) = Gπ(0, x). Thus its derivative is

Ĩ ′2(t) = 2

∫ t

0

dt2

∫
~x2

Gπ(~0, 0; ~x2, t2)2 . (80)

Given the exponential fall-off of Gπ, this integral asymp-
totes to its large t value once t� 1/Mπ. The factor of 2
can be traded for an extension of the integral to negative
values of t. In this way we find

Ĩ ′2(∞) =

∫ ∞
−∞

dt2

∫
~x2

Gπ(~0, 0; ~x2, t2)2 (81)

=

∫
dq4

2π

1

L3

∑
~q=2π~n/L

G̃π(q)2 , (82)

where G̃π is pion propagator in momentum space. This is
simply the finite volume version of I2(u = 0) =

∫
q

1/(q2+

M2
0 )2:

Ĩ ′2(∞) = I2(u = 0) +O
(
e−MπL

)
, (83)

where images can be used to see that the finite-volume
corrections fall exponentially.

The conclusion of this analysis is that, for sufficiently
large t and L, the diagram which leads to a contribution

to D(2)
loop of 4w′26 I2(u) contributes to the finite-volume ra-

tio as

RD(t) ⊃ t

4M2
πL

3
4w′26 I2(u=0) . (84)

Thus, once again, the coefficient of t/(4M2
πL

3) is the
infinite-volume scattering amplitude at threshold. The
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same argument goes through identically for I2(u) contri-

butions to S(2)
loop, and for contributions to both amplitudes

proportional to I2(t) (t here the Mandelstam variable).

A similar argument also holds for the contributions to

D(2)
loop and S(2)

loop proportional to the integrals I4(t), I4(u),

I6(t), I6(u), I7(t, u) and I7(u, t). These arise when one
or both of the vertices are from the kinetic term in the
Lagrangian. By similar manipulations to those above,
one finds that the contribution proportional to t involves
exactly the integrands of the infinite volume forms (39-
41), evaluated at threshold, but the spatial momentum-
integrals are again replaced by finite-volume sums. The
short-distance divergences are unaffected by the finite-
ness of the volume, so the regularization and subtrac-
tions are unchanged. Thus the manipulations relating
these integrals to I2 and I1 go through, as always up to
exponentially small volume corrections. The net effect is
that the forms of Eqs. (72) and (73) are maintained, with
D and S now including t and u-channel contributions.

There is one subtlety for terms with two or more
derivatives acting on the same internal propagator. To
illustrate this point we define the integral

Ĩ∂2(t) =
1

L3

∫ t

0

dt1

∫ t

0

dt2

∫
~x1

∫
~x2

× [∂2
x2
Gπ(x1, x2)]Gπ(x1, x2) . (85)

Although the integrand of (85) is an even function of x1−
x2, one must be careful in carrying out the manipulations
which give the analog of Eq. (79). The issue is that Gπ
has a cusp at t1 = t2 and therefore the time derivatives
give a delta-function: δ(t1 − t2). Carefully including the
region about the delta-function, we find

Ĩ∂2(t) = lim
ε→0

∫ t

0

dt1

[
2

∫ t1−ε

0

dt2 +

∫ t1+ε

t1−ε
dt2

] ∫
~x2

× [∂2
x2
Gπ(~0, t1; ~x2, t2)]Gπ(~0, t1; ~x2, t2) . (86)

We now proceed as above, taking the time derivative and
sending t→∞ to deduce

Ĩ ′∂2(∞) = lim
ε→0

[∫ ε

−∞
dt2 +

∫ ε

−ε
dt2 +

∫ ∞
ε

dt2

]
×
∫
~x2

[∂2
x2
Gπ(0;x2)]Gπ(0;x2)

(87)

=

∫
d4x2[∂2

x2
Gπ(0, x2)]Gπ(0, x2) . (88)

As above, we are left with a single integral over all of
space-time (with space finite). Note however that if the
middle integral were absent then the final equality would
not hold. Proceeding from Eq. (88), it is straightforward
to see that I ′∂2(∞) is equal to the corresponding finite-
volume amplitude at threshold.

t1 t2

t1t2

t2t1

t1 t2

0 t

0 t

(a)

(c)

0 t

0 t

(b)

(d)

FIG. 6. Time-orderings of the s-channel loop which give rise
to contributions to RD,S(t) linear in t at large times. The
time-ordering (a) also give rise to a quadratic term, as dis-
cussed in the text.

3. s-channel loop

The s-channel loop diagram is shown in Fig. 4(j). This
diagram leads to the terms proportional to I2(s), I4(s)
and I6(s) in the infinite volume amplitudes.

We begin by analyzing the case in which neither vertex
has momentum dependence, which leads to the integral
I2(s) in infinite volume. For definiteness we focus on the

w̃′28 I2(s) contribution to D(2)
loop in Eq. (35). The corre-

sponding contribution to CD(t) is

CD(t) ⊃

w̃′28

∫
x1

∫
x2

e−2Mπ|t1|

(2Mπ)2
[Gπ(x1, x2)]

2 e
−2Mπ|t−t2|

(2Mπ)2
. (89)

There are many choices of the ordering of the four times
0, t1, t2 and t, but only the four shown in Fig. 6 lead
to terms linear in t. The others give constants or terms
which fall exponentially with t.

In fact, the time ordering of Fig. 6(a) also gives a term
quadratic in t. This occurs when both pions in the loop
are at rest. The integrand is then independent of t1 and
t2, so that the contribution to the ratio is

RD(t) ⊃ w̃′28
(

1

4M2
πL

3

)2
t2

2
. (90)

In a physical theory, this is one of the contributions
which builds up the quadratic term in the expansion of
exp(−δEt) in Eq. (57), and we will use this below as a
check on our result. First, however, we determine the
quadratic terms arising from the finite volume versions
of the integrals I4(s) and I6(s).

These integrals have one or both vertices from the ki-
netic term in LLO (Eq. (15)). For our particular kinemat-
ics the derivatives are simple to evaluate, since all pions
are on-shell and at rest. The derivatives in the kinetic
vertices thus give exactly the results that we obtain in
infinite volume when working at threshold and on-shell
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(s = 4M2
π , t = u = 0). This means that, with these

substitutions, we can use Eqs. (39) and (40) to relate the
finite volume versions of I4(s) and I6(s) to that of I2(s).
The I1 terms are to be dropped, since they arise from the
~q 6= 0 part of the loop.

Putting this together, we find the total quadratic terms
to be:

RD(t) ⊃

[(
w̃′8 −

4M2
π

3f2

)2

+ 4w′26

](
1

4M2
πL

3

)2
t2

2
(91)

RS(t) ⊃ 4w′6

(
w̃′8 −

4M2
π

3f2

)(
1

4M2
πL

3

)2
t2

2
. (92)

Thus, if one could determine the coefficients of the
quadratic terms in a simulation, one would gain addi-
tional information concerning w′6 and w′8. Note that the
coefficients of the quadratic terms are not the squares of
those of the linear terms give in Eqs. (67) and (69). This
is another indication that the PQ theory is unphysical.
The sum of the ratios is, however, physical and should
be an exponential. Indeed, we find that the quadratic
term in RD(t) +RS(t) is exactly that needed to give the
quadratic term in the expansion of Eq. (71). This pro-
vides a non-trivial check on our results.

We now return to the terms linear in t. We can first
dispense with the time-orderings of Figs. 6(c) and (d).
Here a linear term arises only when the pions in the loop
have ~q = 0. This means that the contribution to CD,S(t)
is of order L0 and thus that to RD,S(t) is order 1/L6,
which is higher order than we are controlling. The same
suppression holds for the contribution of pions with ~q = 0
in time ordering of Fig. 6(b). Thus we are left to consider
the ~q 6= 0 contributions to the time-orderings of Figs. 6(a)
and (b).

Using Eq. (89), the time ordering of Fig. 6(a) gives the
following contribution to RD(t):

RD(t) ⊃ w̃′28
1

L6

∫ t

0

dt2

∫ t2

0

dt1

∫
~x1

∫
~x2

e−2Mπ(t1−t2)

(2Mπ)2
Gπ(x1, x2)2 , (93)

where the bar over the pion propagator indicates that
the ~q = 0 mode has been removed. We are interested in
the coefficient of t/(4M2

πL
3) for large t, and so we again

take a derivative with respect to t and send t→∞. The
result, after some manipulations, is w̃′28 Ia, with

Ia =

∫ 0

−∞
dt1

∫
~x1

e−2Mπt1 Gπ(x1, 0)2 . (94)

Note that the growth of the exponential as t1 becomes

more negative is overwhelmed by the decrease in G
2

π.
A similar calculation for the time-ordering of Fig. 6(b)

yields, for the coefficient of t/(4M2
πL

3), the result w̃′28 Ib
with

Ib =

∫ ∞
0

dt1

∫
~x1

e−2Mπt1 Gπ(x1, 0)2 . (95)

Here both the exponential and the G
2

π factors decrease
as t1 becomes larger. Combining the two time-orderings
we find w̃′28 times

Ia + Ib =

∫
d4x1 e

−2Mπt1Ḡπ(x1, 0)2 (96)

= I2(s = 4M2
π)FV . (97)

As noted in the second line, this integral is the finite vol-
ume version of the corresponding infinite volume integral
at threshold, expressed in position space. The factor of
exp(−2Mπt1) simply leads to the injection of the physical
threshold four-momentum through the loop.

If we could ignore the difference

δI2 ≡ I2(s = 4M2
π)FV − I2(s = 4M2

π) , (98)

the result (97) tells us that, in the coefficient of
t/(4M2

πL
3), all the NNLO corrections to D and S pro-

portional to I2(s) appear exactly as in infinite volume.
As we will see shortly, however, δI2 ∝ 1/L (plus expo-
nentially suppressed terms) so we do need to calculate
it.

First, however, we extend the calculation of the coeffi-
cient of t to s-channel loops with momentum-dependent
vertices—the loops which give rise to the integrals I4(s)
and I6(s). The steps outlined above lead to the same
combined integral (96), except that there are two or four
derivatives acting on the various factors in the integrand.
As was the case with the u-channel diagrams, one must
carefully handle the discontinuity at t1 = t2 when two
derivatives act on an internal propagator. The end re-
sult, however, is still as claimed. This allows us to rewrite
all contributions to the time dependent correlator which
are linear in t as the corresponding contributions to the
finite volume threshold amplitudes. Next we may relate
these to the I2(s = 4M2

π)FV and IFV1 using the same ex-
pressions, (39) and (40), as hold in infinite volume (with
s = 4M2

π). From this follows that the difference between
the finite and infinite volume forms is exponentially sup-
pressed. Thus, aside from the δI2 terms, we find that the
coefficient of t/(4M2

πL
3) generated by s-channel loop di-

agrams is just full infinite-volume contribution from the
same diagrams evaluated at threshold.

Our final task is to evaluate δI2. Standard manipula-
tions lead to the following expression

δI2 =

 1

L3

∑
~q 6=0

−
∫

d3q

(2π)3

 1

4E~q [~q ]2
, (99)

where E~q =
√

[~q ]2 +M2
π . Since the UV divergences can-

cel in the difference between sum and integral, we can
introduce a regulator term exp(−α[~q ]2), as long as we
send α → 0+. With this regulator in place, we can use
Lüscher’s summation formula [13] (in the particular form
quoted in Ref. [15]) 1

L3

∑
~q 6=0

−
∫

d3q

(2π)3

 f(~q2)

~q2
=
c1f(0)

4πL
− f ′(0)

L3
, (100)
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where c1 is the constant given after Eq. (59). This result
is valid up to exponentially small corrections as long as f
and all its partial derivatives are square integrable (as is
the case with our regularized sum). Applying this result,
we find

δI2 =
c1

16πMπL
+

1

8(MπL)3
. (101)

At the order we are working, we need keep only the 1/L
term.

Collecting all the 1/L terms, we find their contribution
to the ratios to be:

RD(t) ⊃

[(
w̃′8 −

4M2
π

3f2

)2

+ 4w′26

]
1

4M2
πL

3

c1t

16πMπL

(102)

RS(t) ⊃ 4w′6

(
w̃′8 −

4M2
π

3f2

)
1

4M2
πL

3

c1t

16πMπL
. (103)

The combinations of LECs here are the same as in the t2

terms, Eqs. (91) and (92), because the both arise from
the I2(s), I4(s) and I6(s) integrals in finite volume.

A check on this result is that the t/L4 term in the
π+π+ correlator RD(t)+RS(t) agrees with that obtained
with Lüscher’s general formula (59).

D. Summary of results

Collecting the results from this and the previous sec-
tion, we find

RD(t) = 1 +O
(
M2
π

f2

1

M3
πL

3

)
+

t

4M2
πL

3
D(4M2

π , 0, 0)

+

[(
w̃′8 −

4M2
π

3f2

)2

+ 4w′26

]

×

{
1

4M2
πL

3

c1t

16πMπL
+

(
1

4M2
πL

3

)2
t2

2

}

×

{
1 +O

(
M2
π

f2

1

MπL

)}

+O

([
M2
π

f2

t

M2
πL

3

]3
)

+O(e−MπL) + exp. suppr. ,

(104)

Here D is the full NNLO amplitude. The corresponding
result for RS(t) is

RS(t) = O
(
M2
π

f2

1

M3
πL

3

)
+ S(4M2

π , 0, 0)
t

4M2
πL

3

+ 4w′6

(
w̃′8 −

4M2
π

3f2

)
×

{
1

4M2
πL

3

c1t

16πMπL
+

(
1

4M2
πL

3

)2
t2

2

}

×

{
1 +O

(
M2
π

f2

1

MπL

)}

+O

([
M2
π

f2

t

M2
πL

3

]3
)

+O(e−MπL) + exp. suppr. .

(105)

Note that the last three lines of Eqs. (104) and (105) are
identical.

Thus, if one can measure the coefficients of t/L3, one
obtains the corresponding infinite volume PQ threshold
scattering amplitudes at NNLO. In fact, it is plausible
that this holds to all orders, since the analysis above
shows how picking out the t term corresponds to LSZ
reduction in infinite volume. Of course, it is non-trivial
to pick out these coefficients, but our results provide the
coefficients of the leading competing terms—those pro-
portional to t/L4 and t2/L6.

For completeness we give the PQ results for the thresh-
old scattering amplitudes. Using the results F (4M2

π) =
0, F (0) = −2 and the notation Q = log(M2

π/µ
2)/(16π2)

these are

D(4M2
π , 0, 0) = 2w′6 +D(1,2)

an (4M2
π , 0, 0)

+
1

16π2

[
− M4

π

2f4
+
M2
π

f2
(2w′6 − 7w′8)− 14w′26 − 10w′6w

′
8

− (17/2)w′28

]
+Q

[
− 5M4

π

2f4
+
M2
π

f2
(4w′6 + 2w′7 − 5w′8)

− 22w′26 − 10w′6w
′
8 − (21/2)w′28

]
(106)

and

S(4M2
π , 0, 0) = w′8 −

M2
π

f2
+ S(1,2)

an (4M2
π , 0, 0)− δM2

an

f2

+
1

16π2

[
M4
π

f4
+

2M2
π

f2
(−2w′6 + 3w′8)− 4w′6w

′
8 + 5w′28

]
+Q

[
− M4

π

f4
+
M2
π

f2
(2w′6 − 2w′7 + 8w′8)

− 12w′6w
′
8 + 5w′28

]
. (107)

We do not give explicit expressions for D(1,2)
an (4M2

π , 0, 0)

and S(1,2)
an (4M2

π , 0, 0) as they can be readily determined
from Eqs. (46) and (47).
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Appendix A: Additional contributions to D and S

In this appendix we analyze the additional contribu-
tions to the PQ amplitudes that come from the a3 terms
in the NLO Lagrangian and from the ma2, a4 and p2a2

terms in the NNLO. We begin by enumerating all of the
a3 terms allowed by chiral symmetry:

La3 ∼ â3〈Σ + Σ†〉3

+ â3〈Σ− Σ†〉2〈Σ + Σ†〉
+ â3〈Σ2 + (Σ†)2〉〈Σ + Σ†〉
+ â3〈Σ2 − (Σ†)2〉〈Σ− Σ†〉
+ â3〈Σ3 + (Σ†)3〉
+ â3〈Σ + Σ†〉 .

(A1)

We use ∼ throughout this appendix to indicate that the
two sides are equal with an independent LEC multiply-
ing each term. The key observation is that these terms,
when expanded in π, produce 〈π2〉, 〈π2〉2 and 〈π4〉 with
independent coefficients. The particular forms of these
coefficients in terms of the unknown LECs provides no
useful information.

Both the ma2 and a4 sectors generate the same three
pion terms with independent coefficients. The argument
for the ma2 terms is identical to that for the a3 sector,
since the spurions A and χ transform in the same way.
For the a4 sector we can show this result by display-
ing three chiral operators which give linearly independent
contributions to the three pionic operators. An example
is

La4 ∼ â4〈Σ + Σ†〉4

+ â4〈Σ− Σ†〉2〈Σ + Σ†〉2

+ â4〈Σ + Σ†〉2 + · · · ,
(A2)

where the dots indicate additional terms which we do not
need to enumerate.

It remains to consider the p2a2 terms. Starting on
the level of the pion fields, we first list all two-derivative
quadratic and quartic terms. This is done without re-
gard to chiral symmetry, using only that 〈π〉 = 0. The
resulting set is

〈∂µπ ∂µπ〉
〈∂µπ π〉〈∂µπ π〉
〈∂µπ ∂µπ π2〉
〈∂µπ π ∂µπ π〉
〈∂µ π∂µπ〉〈π2〉 .

(A3)

Because this is the maximal set of pionic terms to the
order we are working, it is sufficient to show that the p2a2

terms allowed by chiral symmetry produce the entire set,
with independent coefficients. This is indeed the case, as
follows from

Lp2a2 ∼ â2
[
〈∂µΣ〉2 + 〈∂µΣ†〉2

]
+ â2〈∂µΣ∂µΣ†〉
+ â2〈∂µΣ∂µΣ†〉〈Σ + Σ†〉2

+ â2〈∂µΣ∂µΣ†(Σ2 + (Σ†)2)〉
+ â2〈∂µΣ∂µΣ(Σ†)2〉+ · · · .

(A4)

These terms are enough to independently give the set
(A3).

From these results, we can determine the contribution
of all a3, a2m, a4 and p2a2 terms to the mass and wave
function renormalizations and to the PQ amplitudes. We
find

δzad ∼ â2 (A5)

δM2
ad ∼ â2M2

0 + â3 + â4 (A6)

Dad(t) ∼ â2t+ â2M2
0 + â3 + â4 − 2δzadD(0) (A7)

Sad(s) ∼ â2s+ â2M2
0 + â3 + â4 − 2δzadS(0)(s)

+ 2δM2
ad/(3f

2) .
(A8)

Appendix B: Determining W ′7

In this appendix we sketch a method for determining
the LEC W ′7 in which its contribution appears at tree-
level. The method is by no means unique, but it is the
simplest approach we have found within the context of
pion scattering.

Expanding out the W ′7 term in the LO chiral La-
grangian (15), the first non-vanishing term is

LLO ⊃
w′7

18f2
〈π3〉2 . (B1)

To get a tree-level contribution from this vertex one needs
six external pions. We propose calculating the following
finite-volume correlation function

C3π(t) = 〈π̃12(0)π̃23(0)π̃45(0)π̃31(t)π̃56(t)π̃64(t)〉 ,(B2)

and then forming the ratio

R3π(t) =
C3π(t)

Cπ(t)3
. (B3)

Here π̃jk are the ~p = 0 fields defined in Eq. (53) and the
single-pion correlator Cπ(t) is defined in Eq. (55). The
subscripts on the pion fields indicate valence flavors, of
which there must be six. We consider only t > 0 in the
following.

The choice of valence fields in (B2) allows only a sin-
gle quark-level contraction, shown in Fig. 7. By con-
struction, this contraction has two quark loops, in order
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FIG. 7. Quark contraction for the correlator C3π of Eq. (B2).

to match with the double-strace six-pion vertex of (B1).
This will be a more challenging contraction to calculate
in numerical simulations than those of Fig. 1, because
of the “source to source” propagators at times 0 and t.
Nevertheless, with recent advances in calculations of “all-
to-all” propagators, we expect that the calculation should
be feasible.

We have written the correlator in terms of the pion
fields from the chiral Lagrangian, but, as discussed in
Sec. IV C 1, in practice one would use a quark-level pseu-
doscalar field, q̄kγ5qj . The corresponding chiral operator
is

(Σ− Σ†)jk = c

[
πjk −

1

3f2
(π3)jk + . . .

]
, (B4)

where the constant c is known but not needed. It turns
out that in this calculation, unlike that in the main text,
the π3 part of the interpolating operator contributes at
leading order to the quantities of interest. This means
that it is essential for the present method to use (a dis-
cretization of) a local pseudoscalar bilinear to create the
pion fields, and not, for example, a non-local operator.

Our choice of flavor indices significantly restricts the
diagrams that can appear and the vertices that con-
tribute. There is no pion-disconnected diagram, and the
two tree-level diagrams which contribute are shown in
Figs. 8(a) and (b). Note that the four-pion vertices in
(b) must be attached to the external legs as shown, other
possibilities being forbidden by the flavor indices. There
are also contributions involving the π3 and π5 parts of in-
terpolating fields, Eq. (B4). For reasons explained below,
the only diagrams of this type contributing to quantities
of interest are those shown in Figs. 8(c-f). We stress that
all six diagrams in Fig. 8 contribute at the same order in
WChPT.

We begin by discussing the three-pion scattering di-
agram (a). Only the w′7 vertex in LLO has the 〈π3〉2
form needed to contribute. A straightforward calcula-

(a) (b)

(c) (d)

(e) (f)
FIG. 8. Tree-level diagrams in PQWChPT contributing to
linear or quadratic dependence in C3π(t). The flavor indices
of the external fields are (implicitly) ordered as in Fig. 7.
Notation for vertices as in Fig. 3.

tion along the lines of those discussed in the main text
leads to

R3π(t)
∣∣∣
w′

7

= −w
′
7

f2

1

L6(2M0)3

(
t+

1

3M0

)
. (B5)

The term linear in t arises, as usual, because the inter-
action can occur at any time in the range 0 − t. The
volume suppression is now 1/L6 [compared to 1/L3 for
the two-pion interaction, as in Eq. (1)] because all three
pions must be in contact. Note that at the order we are
working in this appendix, M0 and Mπ are interchange-
able.

Turning now to Fig. 8(b), we find that only vertices
having the pionic form 〈π4〉 contribute. Such a form
arises only from the mass, W ′6 and W ′8 terms in LLO

[eq. (15)]. The kinetic term does not contribute. After a
straightforward but tedious calculation, we find6

R3π(t)
∣∣∣
(w′

8)2
=
−9(w̃′8)2

2

1

L6(2M0)4

×
(
t2

2
+

t

M0
+

11

48M2
0

+
e−2M0t

16M2
0

)
. (B6)

In the LCE regime, w′k ∼M2
0 /f

2, so the term linear in t
is of the same order as that in the W ′7 contribution (B5).

6 Recall that w̃′8 = w′8 +
M2

0
3f2

and
M2

0
f2

= χ
f2

+ 2w′6 + w′8.
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The quadratic term in (B6) arises because of the pres-
ence of two vertices, much like the quadratic term dis-
cussed in the main text. The linear term arises both
from contributions in which the two vertices are close in
time and integrated together from 0 − t, and when one
of the vertices is close to either 0 or t. The latter origin
suggests that one should also consider contributions in
which one of the vertices is “absorbed” into the sources.
Indeed, such diagrams, exemplified by those in Fig. 8(c-
f), do contribute at the same order.

As is evident from the result (B6) there are exponen-
tially falling terms for small t. There are also contri-
butions from excited states which show up in ChPT as
contact terms. To avoid these, we consider henceforth
only terms proportional to t and t2. It turns out that
there are no other LO diagrams leading to quadratic de-
pendence, and the only other diagrams leading to linear
dependence are those of Fig. 8(c-f). Evaluating these
diagrams, we find

R3π(t)
∣∣∣
w′

8

= 6
w̃′8
f2

1

L6(2M0)3
t+ const. . (B7)

Combining these results gives

R3π(t) ⊃ − t2

(2M0)4L6

9(w̃′8)2

4

− t

(2M0)3f2L6

[
w′7 − 6w̃′8 +

9

4

f2

M2
0

(w̃′8)2

]
. (B8)

Higher order contributions will lead to corrections sup-
pressed powers of Mπ/(4πf), a and 1/L. Assuming these
corrections to be small, the coefficient of t2 allows one to
determine w̃′8, while that of t gives a combination of w′7
and w̃′8. Alternatively, w̃′8 can be determined from other
quantities such as the two pion correlators discussed in
the main text. Either way, given w̃′8 one can use R3π(t)
to determine w′7.

A noteworthy feature of the result (B8) is that the t2

term becomes comparable to the linear term at the rela-
tively short time t ∼ 1/M0. This differs from the corre-
sponding results for the two-pion correlators [Eqs. (104)
and (105)] for which the quadratic term becomes impor-
tant at

t ∼ 1

M0
(M0L)(fL)2 � 1

M0
(B9)

[see Eq. (5)]. The last inequality follows since one must
have M0L � 1 and fL & 1 to avoid large finite-
volume effects. The upshot of this discussion is that the
quadratic term is much more important for the three-pion
ratio than for the two-pion ratios. This is not true for
cubic and higher order terms, which become important
only at the longer times of Eq. (B9).
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