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We calculate in perturbative QCD the transverse momentum imbalance of dijet and dihadron
production in high energy p+A (d+A) collisions. We evaluate the effect of both initial- and final-
state multiple scattering, which determines the strength of this transverse momentum imbalance.
Combining this new result with the suppression of the cross section in d+Au collisions, which arises
from cold nuclear matter energy loss and coherent power corrections, we are able to describe the
dihadron correlations measured by both PHENIX and STAR collaborations at RHIC, including
mid-mid, mid-forward, and forward-forward rapidity hadron pairs.
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I. INTRODUCTION

In recent years, there has been renewed interest in nuclear effects that affect hadronic observables in proton-
nucleus (p+A) and deuteron-nucleus (d+A) collisions [1]. Much of this interest was sparked by forward rapidity
measurements in d+Au collisions at the Relativistic Heavy Ion Collider (RHIC) that indicate considerable suppression
of both single hadron and dihadron production cross sections relative to the binary collision scaled proton-proton
(p+p) baseline [2–6]. Back-to-back dihadron correlation measurements have attracted the most attention and are
under active investigation in the framework of different theoretical formalisms [7–11]. On one hand, quantifying the
differences between p+A (d+A) and p+p collisions (referred to as “cold nuclear matter effects”) can provide a solid
baseline for the unambiguous identification of any additional final-state hot and dense medium effects in heavy ion
collisions [12]. On the other hand, the study of p+A (d+A) collisions at forward rapidity is interesting in its own right
since it probes the inelastic and coherent multiple parton scattering in the nucleus, as well as any possible modification
of the small-x parton distribution functions [7–11, 13–16].
In perturbative QCD, at leading order, high transverse momentum (p⊥) particle production arises from hard 2 → 2

scattering processes. In this picture, two incoming collinear partons scatter on each other to produce two high
transverse momentum partons, which then fragment into jets of hadrons. These jets, as well as the hadron pair
formed by their leading particles, are approximately back-to-back in the transverse plane. In high energy proton-
nucleus reactions the incoming partons that participate in the collision can undergo multiple interactions. Even in
the presence of multiple parton scattering, particle production at high transverse momentum is dominated by a single
hard interaction Q2 ∝ p2⊥ ≫ ξ2, where ξ2 is the typical scale of the soft transverse momentum exchanges. We refer
to the interactions that precede the large Q2 scattering as initial-state and the interactions that follow the large Q2

scattering as final-state.
Both initial- and final-state multiple interactions can affect dijet (dihadron) production in p+A (d+A) reactions.

More specifically, they lead to an increase in the transverse momentum imbalance [17] that can be perturbatively
computed within a high-twist formalism [16–18]. In this paper we give a theoretical derivation of the increase in
the transverse momentum imbalance and demonstrate that it will lead to a broader away-side peak for the dihadron
azimuthal correlation distribution in d+A collisions, consistent with the experimental observations at RHIC. Fur-
thermore, multiple parton scattering also manifests itself trough medium-induced radiative corrections [19, 20] and
power suppressed contribution to the cross sections. In reactions with nuclei (p+A and A+A) initial-state radiative
energy loss effects are always present but their effect is most pronounced at forward rapidity [13, 21]. In the coherent
scattering regime, the high-twist contributions are enhanced by the nuclear-size ∝ A1/3 and may become important
at small and moderate transverse momenta. Such nuclear-size enhanced power corrections have been resummed for
both inclusive single hadron and dihadron production processes in p+A collisions [7]. In the phenomenological part of
this paper we combine the broadening in the away-side width with the nuclear cross section suppression to study the
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modification of the production rate and observed shape of dihadron azimuthal correlations in going from p+p to p+A
(d+A) collisions. With parton scattering parameters in cold nuclear matter constrained by deep inelastic scattering
experiments [22], calculations are consistent with the experimental measurements at RHIC [5, 6].
The rest of our paper is organized as follows: in Sec. II we take into account both initial- and final-state multiple

parton scattering to calculate the increase in the transverse momentum imbalance of dijet and dihadron production
in p+A (d+A) collisions. In Sec. III we first evaluate the width of the away-side peak of the dihadron correlation
distribution at RHIC and show that our formalism can describe the PHENIX experimental data well if we take
into account the nuclear-induced increase in the transverse momentum imbalance. We then overview the nuclear
effects that lead to the suppression of single and double inclusive hadron production in p+A (d+A) reactions. We
demonstrate that the calculated mid-forward and forward-forward rapidity hadron pair production attenuation is
consistent with recent PHENIX measurements. At the end of this section, by combining the nuclear suppression
and the increase in the transverse momentum imbalance, we are able to describe the dihadron azimuthal correlation
distribution observed by the STAR experiment at RHIC. Summary and conclusions are presented in Sec. IV.

II. DIJET AND DIHADRON TRANSVERSE MOMENTUM IMBALANCE IN p+ A COLLISIONS

In this section we derive the increase in the transverse momentum imbalance of back-to-back jet production in p+A
collisions. This phenomenon is often referred to as nuclear-induced broadening in the literature. We then generalize
the formalism to study back-to-back hadron production.

A. Dijet transverse momentum imbalance

We start by describing the pQCD formalism for evaluating dijet production in p+p collisions:

p(P ′) + p(P ) → J1(P1⊥) + J2(P2⊥) +X. (1)

Let us define P⊥ = |~P1⊥− ~P2⊥|/2 to be the magnitude of the average transverse momentum of the jet pair. In leading

order perturbative QCD, the jets are produced back-to-back, ~P1⊥ = − ~P2⊥, thus |~P1⊥| = |~P2⊥| = P⊥. The differential
cross section can be written as [23]:

dσ

dy1dy2dP 2
⊥

=
πα2

s

s2

∑

a,b

fa/p(x
′)fb/p(x)

x′x
HU

ab→cd(ŝ, t̂, û) , (2)

where
∑

a,b runs over all parton flavors, s = (P ′ + P )2, fa,b/p(x) are the parton distribution functions with the

momentum fractions x′ = P⊥√
s
(ey1 + ey2) , x = P⊥√

s
(e−y1 + e−y2), and y1, y2 the rapidites of the two jets. H

U
ab→cd(ŝ, t̂, û)

are the partonic cross sections as a function of the usual partonic Mandelstam variables ŝ, t̂, û. These cross sections
are well-known [23], we will reproduce them here for later convenience:

HU
qq′→qq′ =

N2
c − 1

2N2
c

[

ŝ2 + û2

t̂2

]

, (3)

HU
qq→qq =

N2
c − 1

2N2
c

[

ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2

]

− N2
c − 1

N3
c

[

ŝ2

t̂û

]

, (4)

HU
qq̄→q′ q̄′ =

N2
c − 1

2N2
c

[

t̂2 + û2

ŝ2

]

, (5)

HU
qq̄→qq̄ =

N2
c − 1

2N2
c

[

t̂2 + û2

ŝ2
+
ŝ2 + û2

t̂2

]

− N2
c − 1

N3
c

[

û2

ŝt̂

]

, (6)

HU
qg→qg = −N

2
c − 1

2N2
c

[

ŝ

û
+
û

ŝ

]

+

[

ŝ2 + û2

t̂2

]

, (7)

HU
qq̄→gg =

(N2
c − 1)2

2N3
c

[

t̂

û
+
û

t̂

]

− N2
c − 1

Nc

[

t̂2 + û2

ŝ2

]

, (8)

HU
gg→qq̄ =

1

2Nc

[

t̂

û
+
û

t̂

]

− Nc

N2
c − 1

[

t̂2 + û2

ŝ2

]

, (9)

HU
gg→gg =

4N2
c

N2
c − 1

[

3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

]

, (10)
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where Nc = 3 is the number of colors.
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FIG. 1. Left: Feynman diagram for the partonic qq′ → qq′ scattering channel. Right: initial-state double scattering Feynman
diagram that contributes to the dijet transverse momentum imbalance increase.

Let us now study dijet production in proton-nucleus collisions. In such collisions the energetic incoming parton from
the proton can undergo multiple scattering with the soft partons inside the nuclear matter before the hard collisions.
We refer to these interactions as initial-state multiple scattering. After the hard collisions, the two leading partons,
produced almost back-to-back, will eventually hadronize into jets as observed in the experiments. However, these
partons will also likely undergo multiple interactions in the large nucleus. We refer to these interactions as final-state
multiple scattering. Such separation is only possible when the scale of hard scattering is considerably larger than the
scale of typical transverse momentum exchanges between the projectile and the medium, Q2 ≫ ξ2 [21]. The initial-
and final-state multiple scattering lead to dijet acoplanarity, or imbalance. To quantify this effect, let us define the
dijet transverse momentum imbalance ~q⊥ as:

~q⊥ = ~P1⊥ + ~P2⊥, (11)

and the averaged transverse momentum imbalance square as:

〈q2⊥〉 =
∫

d2~q⊥q
2
⊥

dσ

dy1dy2dP 2
⊥d

2~q⊥

/

dσ

dy1dy2dP 2
⊥
. (12)

The nuclear enhancement (or broadening) of the transverse momentum imbalance in p+A collisions relative to p+p
collisions can be quantified by the difference:

∆〈q2⊥〉 = 〈q2⊥〉pA − 〈q2⊥〉pp. (13)

As demonstrated in Ref. [16], the transverse momentum imbalance increase ∆〈q2⊥〉 can be calculated perturbatively
and the leading contribution comes from double scattering. To illustrate the method, we will study the simple partonic
channel qq′ → qq′. At lowest order, the partonic cross section HU

qq′→qq′ is calculated from the Feynman diagram in

Fig. 1 (left). At this order, the transverse momenta of the two outgoing partons (or the dijet) are equal and opposite
and we have:

dσ

dy1dy2dP 2
⊥d

2~q⊥
∝ δ2(~q⊥). (14)

The leading contribution to the transverse momentum imbalance increase in p+A collisions comes from either initial-
state double scattering, as in Fig. 1 (right); or final-state double scattering, as in Fig. 2. Let us first focus on the
calculation of initial-state double scattering. In this case, the small k⊥-kick in the nucleus will generate a small
transverse momentum imbalance for the dijet:

~q⊥ = ~P1⊥ + ~P2⊥ = ~k⊥. (15)

Following [16], we evaluate the contribution from the double scattering diagram to 〈q2⊥〉pA:
∫

d2~q⊥q
2
⊥

dσpA
dy1dy2dP 2

⊥d
2~q⊥

=
πα2

s

s2
fq/p(x

′)

x′x

∫

d2~q⊥q
2
⊥

∫

dx1dx2d
2k⊥TAq(x, x1, x2, k⊥)

×H(x, x1, x2, k⊥, x
′p′)δ2(~q⊥ − ~k⊥) , (16)

where the matrix element TAq is represented by the bottom blob in Fig. 1 (right) and has the following expression:

TAq(x, x1, x2, k⊥) =

∫

dy−

2π

dy−1
2π

dy−2
2π

∫

d2y⊥
(2π)2

eix1p
+y−

1 ei(x−x1)p
+y−

e−i(x−x2)p
+y−

2 e−ik⊥·y⊥

×1

2
〈pA|A+(y−2 , 0⊥)ψ̄(0)γ

+ψ(y−1 )A
+(y−, y⊥)|pA〉. (17)
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As in [16, 17], the calculation first takes advantage of δ2(~q⊥ − ~k⊥) to set q2⊥ = k2⊥. These two factors of k⊥ can be

converted into transverse derivatives on the two fields A+ in matrix element TAq in Eq. (17) by performing a partial
integration for d2y⊥:

k2⊥A
+(y−2 , 0⊥)A

+(y−, y⊥) → F +
α (y−2 , 0⊥)F

+α(y−, y⊥). (18)

We then expand in k⊥ in the partonic part H around k2⊥ = 0, and keep the first non-vanishing term:

H(x, x1, x2, x
′p′) ≡ H(x, x1, x2, k⊥ = 0, x′p′). (19)

In other words, since the A+ fields have been converted to the gauge-covariant gluon field strength in the matrix
element TAq, one can set k⊥ = 0 in the hard part. One will later find that all such hard-parts H(x, x1, x2, x

′p′) for
the double scattering diagrams reduce to the lowest order Born diagrams up to color factors. Thus, the calculation of
transverse momentum imbalance enhancement ∆〈q2⊥〉 is simpler than the usual higher-twist calculations in which one
calculates the multiple scattering contribution to the differential cross section itself directly (instead of the q2⊥-weighted
one).
We obtain:

∫

d2~q⊥q
2
⊥

dσpA
dy1dy2dP 2

⊥d
2~q⊥

=
πα2

s

s2
fq/p(x

′)

x′x

∫

dx1dx2TFq(x, x1, x2)H(x, x1, x2, x
′p′), (20)

where TFq is a twist-4 four-parton correlation function:

T
(I)
Fq (x, x1, x2) =

∫

dy−

2π

dy−1
2π

dy−2
2π

eix1p
+y−

1 ei(x−x1)p
+y−

e−i(x−x2)p
+y−

2
1

2
〈pA|F +

α (y−2 )ψ̄(0)γ
+ψ(y−1 )F+α(y−)|pA〉. (21)

Here and thereafter we will use the superscript “I” (“F”) to indicate the contribution associated with initial- (final-)
state multiple scattering. The hard partonic function H(x, x1, x2, x

′p′) is given by:

H(x, x1, x2, x
′p′) = 8π2αs

CF

N2
c − 1

[

1

2π

1

x1 − x− iǫ

1

x2 − x+ iǫ

]

HU
qq′→qq′ , (22)

where CF = (N2
c − 1)/2Nc. Substituting Eq. (22) into Eq. (20) and performing the integration over x1 and x2, we

obtain:
∫

d2~q⊥q
2
⊥

dσpA
dy1dy2dP 2

⊥d
2~q⊥

=

(

8π2αs

N2
c − 1

)

πα2
s

s2
fq/p(x

′)

x′x
T

(I)
q/A(x)H

I
qq′→qq′ (ŝ, t̂, û), (23)

where T
(I)
q/A(x) is the twist-4 quark-gluon correlation function defined as [16, 17]:

T
(I)
q/A(x) =

∫

dy−

2π
eixp

+y−

∫

dy−1 dy
−
2

2π
θ(y− − y−1 ) θ(−y−2 )

1

2
〈pA|F +

α (y−2 )ψ̄q(0)γ
+ψq(y

−)F+α(y−1 )|pA〉, (24)

and HI
qq′→qq′ is the hard-part function given by:

HI
qq′→qq′ = CFH

U
qq′→qq′ . (25)

FIG. 2. Final-state double scattering Feynman diagrams that contribute to the dijet transverse momentum imbalance increase,
for the partonic channel qq′ → qq′.

Next, we calculate the contribution to the transverse momentum imbalance from the final-state double scattering
diagrams in Fig. 2. This evaluation is slightly more complicated since there are four diagrams as opposed to a single
diagram for the initial-state case. However, the calculation is very similar and straightforward. Different Feynman
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diagrams only differ in terms of color factors and their sum provides a measure of the average square transverse field
strength probed by the outgoing partons [17]. We obtain:

∫

d2~q⊥q
2
⊥

dσpA
dy1dy2dP 2

⊥d
2~q⊥

=

(

8π2αs

N2
c − 1

)

πα2
s

s2
fq/p(x

′)

x′x
T

(F )
q/A(x)H

F
qq′→qq′ (ŝ, t̂, û), (26)

where T
(F )
q/A is given by the same expressions in Eq. (24), except for the θ-functions that are replaced as follows [16, 17]:

θ(y− − y−1 ) θ(−y−2 ) → θ(y−1 − y−) θ(y−2 ), (27)

and the final-state hard-part function HF is given by

HF
qq′→qq′ =

(N2
c − 3)(N2

c − 1)

2N3
c

[

ŝ2 + û2

t̂2

]

. (28)

Likewise, we can go ahead to calculate the contribution to the transverse momentum imbalance from both initial-
and final-state double scattering diagrams for all partonic channels. The calculation is straightforward though tedious,
the result can be summarized as:

∫

d2~q⊥q
2
⊥

dσpA
dy1dy2dP 2

⊥d
2~q⊥

=

(

8π2αs

N2
c − 1

)

πα2
s

s2

∑

a,b

fa/p(x
′)

x′x

[

T
(I)
b/A(x)H

I
ab→cd(ŝ, t̂, û) + T

(F )
b/A (x)HF

ab→cd(ŝ, t̂, û)
]

,(29)

where T
(I,F )
q/A (x) are given in Eqs. (24) and (27). In the calculation for the partonic channels qg → qg and gg → gg,

see for example the Feynman diagrams shown in Fig. 3, two other similar twist-4 gluon-gluon correlation functions

T
(I,F )
g/A (x) appear. The operator definition of T

(I)
g/A(x) is given by [16, 17]:

T
(I)
g/A(x) =

∫

dy−

2π
eixp

+y−

∫

dy−1 dy
−
2

2π
θ(y− − y−1 ) θ(−y−2 )

1

xp+
〈pA|F +

α (y−2 )F
σ+(0)F+

σ(y
−)F+α(y−1 )|pA〉 , (30)

while T
(F )
g/A(x) is given by the same expression with the θ-function replacement specified in Eq. (27).

(a) (b) (c) (d)

FIG. 3. Sample diagrams that contribute to the dijet transverse momentum imbalance for the partonic channels qg → qg (left
two) and gg → gg (right two), where (a) and (c) are for initial-state double scattering, (b) and (d) are for final-state double
scattering.

Finally, from Eqs. (2) and (29), we obtain the transverse momentum imbalance increase ∆〈q2⊥〉 in pA collisions:

∆〈q2⊥〉 =
(

8π2αs

N2
c − 1

)

∑

a,b
fa/p(x

′)

x′x

[

T
(I)
b/A(x)H

I
ab→cd(ŝ, t̂, û) + T

(F )
b/A(x)H

F
ab→cd(ŝ, t̂, û)

]

∑

a,b
fa/p(x′)fb/p(x)

x′x HU
ab→cd(ŝ, t̂, û)

. (31)

The partonic hard-part functions HI
ab→cd are associated with the initial-state multiple scattering, and are given by:

HI
ab→cd =







CFH
U
ab→cd a=quark

CAH
U
ab→cd a=gluon

, (32)

with CA = Nc. On the other hand, HF
ab→cd are associated with the final-state multiple scattering, and are given by:

HF
qq′→qq′ =

(N2
c − 3)(N2

c − 1)

2N3
c

[

ŝ2 + û2

t̂2

]

, (33)

HF
qq→qq =

(N2
c − 3)(N2

c − 1)

2N3
c

[

ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2

]

+
2(N2

c − 1)

N4
c

[

ŝ2

t̂û

]

, (34)
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HF
qq̄→q′ q̄′ = CAH

U
qq̄→q′ q̄′ , (35)

HF
qq̄→qq̄ = CAH

U
qq̄→qq̄ −

(N2
c − 1)2

2N3
c

[

ŝ2 + û2

t̂2

]

, (36)

HF
qg→qg = CFH

U
qg→qg −

Nc

2

[

ŝ(ŝ2 + û2)

t̂2û

]

, (37)

HF
qq̄→gg = CAH

U
qq̄→gg −

N2
c − 1

2N2
c

[

t̂

û
+
û

t̂

]

, (38)

HF
gg→qq̄ = CAH

U
gg→qq̄ −

1

2(N2
c − 1)

[

t̂

û
+
û

t̂

]

, (39)

HF
gg→gg = CAH

U
gg→gg +

2N3
c

(N2
c − 1)2

[

t̂

û
+
û

t̂
+ 1

]2

. (40)

B. Dihadron transverse momentum imbalance

One can easily generalize the transverse momentum imbalance for dijet production to dihadron production. To start,
we write down the leading order differential cross section for dihadron production in p+p collisions, p(P ′) + p(P ) →
h1(p1⊥) + h2(p2⊥) +X ,

dσ

dy1dy2dp1⊥dp2⊥
=

2πα2
s

s2

∑

abcd

∫

dz1
z1
Dh1/c(z1)Dh2/d(z2)

fa/p(x
′)fb/p(x)

x′x
HU

ab→cd(ŝ, t̂, û), (41)

where Dh1/c(z1) and Dh2/d(z2) are fragmentation functions, z2 = z1 p2⊥/p1⊥ [13], and:

x′ =
p1⊥
z1
√
s
(ey1 + ey2) , x =

p1⊥
z1
√
s

(

e−y1 + e−y2
)

. (42)

At this order, the final hadron pair comes from the fragmentation of the back-to-back parton pair in the partonic

collision ab → cd. One has ~p1⊥ = z1 ~P⊥ and ~p2⊥ = −z2 ~P⊥ with ~P⊥ the transverse momentum of the first parent
parton. Then, the dihadron transverse momentum imbalance ~q⊥ can be written as:

~q⊥ ≡ ~p1⊥ + ~p2⊥ = (z1 − z2)~P⊥. (43)

Thus, the averaged transverse momentum imbalance 〈q2⊥〉 in p+p collisions is:

〈q2⊥〉pp =

∫

d2~q⊥q
2
⊥

dσ

dy1dy2dp1⊥dp2⊥d2~q⊥

/

dσ

dy1dy2dp1⊥dp2⊥
∼
〈

(z1 − z2)
2P 2

⊥
〉

. (44)

On the other hand, in p+A collisions there will be transverse momentum imbalance increase generated by the small
k⊥-kick from the initial- and final-state multiple scattering in the nuclear medium, as demonstrated in the previous
section. Since the two effects are independent:

〈q2⊥〉pA =
〈

((z1 − z2)~P⊥ + ~k⊥)
2
〉

=
〈

(z1 − z2)
2P 2

⊥
〉

+ 〈k2⊥〉, (45)

where in the second step we have taken 〈(z1 − z2)~P⊥ · ~k⊥〉 = 0 due to the random nature of the k⊥-kick. Thus, the
transverse momentum imbalance increase in p+A collisions when compared to p+p collisions is given by:

∆〈q2⊥〉 = 〈q2⊥〉pA − 〈q2⊥〉pp = 〈k2⊥〉, (46)

and is equal to the strength of the soft k⊥-kick from the multiple scattering. From the result of the last section, we
immediately obtain for the dihadron production:

∆〈q2⊥〉 =
(

8π2αs

N2
c − 1

)

∑

abcd

∫

dz1
z1
Dh1/c(z1)Dh2/d(z2)

fa/p(x
′)

x′x

[

T
(I)
b/A(x)H

I
ab→cd(ŝ, t̂, û) + T

(F )
b/A(x)H

F
ab→cd(ŝ, t̂, û)

]

∑

abcd

∫

dz1
z1
Dh1/c(z1)Dh2/d(z2)

fa/p(x′)fb/p(x)

x′x HU
ab→cd(ŝ, t̂, û)

. (47)

Eqs. (31) and (47) are the main new theoretical results of our paper. We will use them in the phenomenological
studies of dihadron azimuthal correlations in the next section.



7

III. DIHADRON CORRELATION IN d+ Au COLLISIONS

In this section, we study the phenomenological applications of our results. First, we use the transverse momentum
imbalance result to derive the width of the away-side peak in dihadron correlations and compare our findings to
existing experimental data. Next, we review the nuclear effects which lead to the suppression of dihadron production

in d+Au collisions and calculate the nuclear modification factor R
(2)
dA, which turns out to describe the data reasonably

well. Finally combining the calculation on both the away-side width and the nuclear suppression factor, we are able
to describe the broadening of the dihadron azimuthal correlations in d+Au collisions relative to p+p collisions.

A. Dihadron imbalance and the width of the away-side peak

In order to estimate the nuclear-induced broadening for dihadron production given by Eq. (47), one needs to know

the four-parton correlation functions T
(I,F )
b/A (x) with b = q, g. Following Refs. [7, 22], these can be modeled as:

4π2αs

Nc
T

(I)
q,g/A(x) =

4π2αs

Nc
T

(F )
q,g/A(x) = ξ2

(

A1/3 − 1
)

fq,g/A(x). (48)

Such decomposition into a leading twist parton distribution function and nuclear enhanced transverse momentum
transfers squared and/or power corrections is motivated by the θ-function structure, and the similarity of the operator

definition between T
(I,F )
q,g/A(x) and fq,g/A(x). In Eq. (48) ξ2 = 0.09 − 0.12 GeV2 represents a characteristic scale of

high twist corrections per nucleon and has been extracted from deep inelastic scattering data [22]. It has also been
employed to describe single inclusive hadron production in d+Au collisions at forward rapidities [7, 13, 21]. We can
now write the increase of transverse momentum imbalance as:

∆〈q2⊥〉 =
2Nc

N2
c − 1

ξ2
(

A1/3 − 1
)

∑

abcd

∫

dz1
z1
Dh1/c(z1)Dh2/d(z2)

fa/p(x
′)fb/A(x)

x′x

[

HI
ab→cd(ŝ, t̂, û) +HF

ab→cd(ŝ, t̂, û)
]

∑

abcd

∫

dz1
z1
Dh1/c(z1)Dh2/d(z2)

fa/p(x′)fb/p(x)

x′x HU
ab→cd(ŝ, t̂, û)

. (49)

The transverse momentum imbalance 〈q2⊥〉dA = 〈q2⊥〉pp +∆〈q2⊥〉 characterizes the shape of the azimuthal correlation
of back-to-back dihadron production in d+Au collisions, as it is closely related to the width of the away-side peak
σF . First, we have the following relation [24, 25]:

〈|pout|〉2 = 〈|j⊥y |〉2 + x2E
(

〈|j⊥y|〉2 + 2〈|k⊥y|〉2parton
)

, (50)

where 〈|pout|〉 is the average transverse momentum out of the plane defined by the momentum of the trigger particle
~p⊥,trig and the beam axis, j⊥y is the component of the particle momentum perpendicular to the jet momentum in
the fragmentation process, and 〈|k⊥y|〉2parton = 〈k2⊥〉parton/π. On the other hand, partonic 〈k2⊥〉parton is related to the

transverse momentum imbalance as 〈q2⊥〉 = 2〈k2⊥〉parton. Realizing that:

〈|pout|〉 = p⊥,assoc sin (|∆φ|) = p⊥,assoc sin

(

√

2

π
σF

)

, (51)

where p⊥,assoc is the transverse momentum of the associated particle, and

xE = −~p⊥,assoc · ~p⊥,trig

~p2⊥,trig

≈ −p⊥,assoc

p⊥,trig
cos (|∆φ|) = −p⊥,assoc

p⊥,trig
cos

(

√

2

π
σF

)

, (52)

we obtain:

cos2

(

√

2

π
σF

)

=
1− 〈|j⊥y|〉2

p2
⊥,assoc

1 +
〈|j⊥y|〉2
p2
⊥,trig

+ 1
π

〈q2
⊥
〉

p2
⊥,trig

. (53)

It has been shown that 〈|j⊥y|〉 ≈ 400 MeV is sensitive only to vacuum fragmentation and is independent of the
center-of-mass energy

√
s and the trigger particle momentum [24, 25]. Thus, for the selected trigger and associated

particles (with specific momenta), the width of the away-side peak σF depends closely on the transverse momentum
imbalance 〈q2⊥〉.
The PHENIX collaboration at RHIC has measured σF , as shown in Fig. 4. We first compute ∆〈q2⊥〉 by taking

ξ2 = 0.12 GeV2 [7] and by using the CTEQ6L1 parton distribution functions [26] and the deFlorian-Sassot-Stratmann
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FIG. 4. The width σF of the away-side correlation is plotted as a function of the associated hadron transverse momentum
p⊥,assoc. Both hadrons are at mid-rapidity |y1,2| < 0.35. The upper panel is for 3 < p⊥,trig < 5 GeV and the lower panel is
for 5 < p⊥,trig < 10 GeV. Solid curves represent the width calculated from 〈q2⊥〉dA = 〈q2⊥〉pp + ∆〈q2⊥〉 and include multiple
scattering effect. Dashed are calculated from 〈q2⊥〉pp. Data is from PHENIX [4].

(DSS) hadron fragmentation functions [27]. We choose 〈q2⊥〉pp ≈ 3.3 GeV2 extracted from PHENIX p+p data [24] to
evaluate 〈q2⊥〉dA in d+Au collisions.
In Fig. 4 the width σF of the away-side peak is plotted as a function of the associated particle transverse momentum

p⊥,assoc for two ranges of the trigger particle momentum in the minimum bias d+Au collisions. The solid curves are
calculated from 〈q2⊥〉dA, while the dashed ones are from 〈q2⊥〉pp (i.e., without multiple scattering). Even though the
increase in the transverse momentum imbalance ∆〈q2⊥〉 is on the order of 2−3 GeV2, the broadening effect in the width
σF is moderate for the mid-mid correlation, where both trigger and associated particles are in the mid-rapidity region
|y1,2| < 0.35. Nevertheless, the calculated σF with multiple scattering effects appears to agree with the PHENIX data
slightly better.

B. Nuclear modification factor in d+Au collisions

Coherent multiple parton scattering can also affect the rate of dihadron production. The difference between p+A
(d+A) and p+p reactions is usually quantified by the nuclear modification factor:

R
(2)
dA =

dσdA/dy1dy2dp1⊥dp2⊥
〈Ncoll〉dσpp/dy1dy2dp1⊥dp2⊥

. (54)

There are two major effects that control the magnitude of R
(2)
dA: dynamical shadowing [7, 13] and cold nuclear matter

energy loss [19, 21, 28]. Dynamical shadowing effects have been shown in Refs. [7, 13] to contribute to the cross
section at the power corrections level. Nuclear size enhanced (A1/3) power corrections can be resummed for a given
partonic channel, as shown by Qiu and Vitev, and lead to the following shift in the momentum fraction x for the
parton inside the nucleus (t-channel):

x→ x

(

1 + Cd
ξ2(A1/3 − 1)

−t̂

)

, (55)

where Cd = 1 (CA/CF ) if parton d is a quark (gluon) in the partonic channel ab → cd. The reason for the values
of Cd is that ξ2 has been determined for coherent quark scattering [22]. For the hard scattering partons that couple
to the nucleus through other channels (c in the u-channel and a in the s-channel), similar shifts in the momentum
fraction x have been derived in [13]. These can be obtained easily from Eq. (55) by substituting t̂ → û and t̂ → ŝ,
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respectively, and by keeping track of the flavor of partons c and a: Cd → Cc and Cd → Ca. In our paper we have
taken into account the shift in x consistently for all three channels.

It is important to emphasize the similarities and differences between the dynamical shadowing calculation performed
by Qiu and Vitev and the nuclear enhancement in the dijet (dihadron) imbalance presented in our last section. Qiu
and Vitev studied the multiple scattering contributions to the dihadron differential cross section directly. These
contributions are power suppressed by the hard scale, for example ∝ A1/3ξ2/t̂ for the t-channel. In Refs. [7, 13] the
coherent multiple scatterings have been resummed and have been shown to lead to the shift in x specified in Eq. (55).
When this shift is small, only the first term in the resummed series is important and it is directly proportional to

the twist-4 correlation function T
(I,F )
q,g/A(x). On the other hand, here we calculate the multiple scattering contribution

to the q2⊥-weighted differential cross section. In the evaluation of the double scattering contribution to this weighted
cross section we can set k⊥ = 0 in the hard parts. Because of the same partonic scattering origin, the dijet imbalance

enhancement ∆〈q2⊥〉 and the nuclear modification factor R
(2)
dA depend on the same characteristic scale ξ2.

As the parton from the proton undergoes multiple scattering in the nucleus before the hard collisions, it can
lose energy due to medium-induced gluon bremsstrahlung. The spectrum of this initial-state energy loss was first
derived in [19]. At collider energies, for mid and forward rapidities (y ≥ 0) even particles of small p⊥ come from
partons of very high energy in the rest frame of the nucleus (A is at large negative y). In this regime, initial-
state cold nuclear matter energy loss can noticeably affect the experimentally measured cross sections [13]. There is
renewed interest in constraining its magnitude through measurements with electromagnetic final states, such as the
Drell-Yan production [21, 28]. Initial-state energy loss has been implemented in the evaluation of hadronic and jet
observables [13, 29, 30]. Such studies build upon early cold nuclear matter energy loss phenomenology [31–34].

For a generic differential cross section, medium-induced radiative corrections factorize from the hard scattering
process and enter as an integral convolution. For initial-state energy loss, a simple change of variables presents the
effect as a rescaling of the momentum fraction of the incoming parton from the proton [21]:

dσ

dPS
=

∫

dx′dx

[
∫

dǫ P (ǫ)f

(

x′

1− ǫ

)]

f(x)
1

2x′xs
〈|M(x′P ′, xP )|2〉(2π)4δ4(pi − pf ) , (56)

where 〈|M(x′P ′, xP )|2〉 = HU
ab→cd(ŝ, t̂, û) defined in Sec. II. For a single (ng = 1) emitted gluon dNg(ǫ)/dǫ = P (ǫ)

is the probability distribution for fractional energy loss ǫ. In general, ng 6= 1 and the probability distributions
Pq,g(ǫ) is constricted from dNg(ǫ)/dǫ in the independent Poisson approximation, ǫ =

∑

i ωi/E. In the soft gluon
approximation medium-induced radiative corrections always factorize from the hard short-distance scattering [19, 35].
For arbitrary kinematics, this factorization is always exact for parent quarks [35]. Just like in the vacuum, beyond the
soft gluon approximation medium-induced splitting kernels for parent gluons factorize only for polarization-averaged
observables [20]. In this manuscript we work in the soft medium-induced splitting approximation which allows for an
energy loss interpretation of the cross section suppression. From Eq. (56), this effect is easily implemented through:

fq,q̄(x
′) →

∫ 1

0

dǫ Pq(ǫ)fq,q̄

(

x′

1− ǫ

)

, fg(x
′) →

∫ 1

0

dǫ Pg(ǫ)fg

(

x′

1− ǫ

)

. (57)

In Fig. 5, we plot the nuclear modification factor R
(2)
dA in d+Au collisions for dihadron production as a function of

mean binary collision number 〈Ncoll〉 for both mid-forward (top panel) and forward-forward (bottom panel) correlated
pairs. To take into account the centrality dependence, in both the transverse momentum imbalance and the dynamical
shadowing we have replaced A1/3 → A1/3〈NdA

coll(b)〉/〈NdA
coll(bmin.bias)〉 [7]. In the calculation of initial-state radiative

energy loss [19, 21] the average length of the medium is similarly scaled. For both mid-forward and forward-forward
cases, the associated particles are in the forward-rapidity region 3.0 < y2 < 3.8 with momenta 1.0 < p⊥,assoc < 1.5
GeV. For the mid-forward case the trigger particle is at mid-rapidity |y1| < 0.35, while for the forward-forward case
the trigger particle is at forward rapidity 3.0 < y1 < 3.8. The solid curves contain both dynamical shadowing and
energy loss effects, whereas the dashed curves contain only the dynamical shadowing effect. As we can see, the

calculated R
(2)
dA give a very good description for the mid-forward correlated pairs. The current experimental data still

has large uncertainties, and is not able to further constrain the individual contribution of dynamic shadowing and
the cold nuclear matter energy loss. For the forward-forward correlated pairs our formalism is still roughly consistent
with the PHENIX measurements [5], though the agreements get slightly worse. In particular, for the most-central
collisions the data seems to indicate a very strong suppression. Initial-state energy loss plays an important role in
bringing the calculation closer to the data, as it does for inclusive particle production at forward rapidities [21]. It
will be interesting to see whether such suppression factor can be explained within other formalisms, for example those
based on color glass condensate [8, 9].
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FIG. 5. Nuclear modification factor R
(2)
dA for back-to-back dihadron production in d+A collisions. Solid curves contain both

dynamical shadowing and energy loss effect, whereas dashed curves contain only dynamical shadowing. Both top and bottom
panels have an associated particle in the forward-rapidity 3.0 < y2 < 3.8 and 1.0 < p⊥,assoc < 1.5 GeV region. From left to
right there are four groups corresponding to a mean binary collision number 〈Ncoll〉=3.2, 6.6, 10.2, and 15.1, respectively, even
though they have been offset from these actual values for visual clarity. Top panel: trigger particle at mid-rapidity |y1| < 0.35.
Within each centrality selection, from left to right, the transverse momentum of the trigger particle is in the [1, 2], [2, 4], [2.5,
3], [3, 4], and [4, 7] GeV interval. Bottom panel: trigger particle at forward rapidity 3.0 < y1 < 3.8. Within each centrality
selection, from left to right, the transverse momentum of the trigger particle is in the [1.1, 1.6], [1.6, 2.0], and [2.0, 5.0] GeV
interval. Data is from PHENIX [5].

C. Dihadron azimuthal correlations

It is also useful to present directly the dihadron azimuthal correlation distribution, see for example the STAR
measurement in Fig. 6. In this case, the dihadron correlation can usually be approximated by two Gaussians for the
near-side and the away-side, and a constant background:

CP (∆φ) =
1

Nnorm

dNh1h2

d∆φ
≈ B +

AN√
2πσN

exp

{

−∆φ2

2σ2
N

}

+
AF√
2πσF

exp

{

− (∆φ− π)2

2σ2
F

}

. (58)

If we concentrate on the away-side peak, the area under the Gaussian peak AF is proportional to the production rate
for approximately back-to-back hadron pairs. In going from p+p to d+Au collisions, we thus have:

R
(2)
dA =

AdAu
F

App
F

. (59)

If one knows App
F for p+p collisions, from the theoretically calculated R

(2)
dA in the last subsection, one can predict the

area under the Gaussian peak AdAu
F in d+Au collisions.

On the other hand, the width σF of the away-side peak can be determined from the transverse momentum imbalance
through Eq. (53). The change from p+p to d+Au will mainly depend on ∆〈q2⊥〉, which can be calculated in our
formalism from Eq. (47). To obtain the dihadron azimuthal correlation in d+Au collisions, we first fit the dihadron
correlation in p+p collisions to obtain App

F and σpp
F . We get:

B = 0.0051, AN = 0.0122, σN = 0.4238, AF = 0.0159, σF = 0.7135. (60)

From Eq. (53), using 〈p1⊥〉 ∼ 2.54 GeV and 〈p2⊥〉 ∼ 1.28 GeV in p+p collision [36], we find 〈q2⊥〉pp ∼ 5.0 GeV2. We
then calculate 〈q2⊥〉dAu = 〈q2⊥〉pp +∆〈q2⊥〉 to obtain the away-side width σF in d+Au collisions. On the other hand,

with our calculation of R
(2)
dA we get AdAu

F from Eq. (59). The dihadron azimuthal correlations obtained this way are
compared to the STAR experimental data [6] for both central and peripheral collisions in Fig. 6. The solid curves are
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calculated with R
(2)
dA containing both dynamical shadowing and cold nuclear matter energy loss effects. The dashed

curves are calculated with only dynamical shadowing. The constant offset is B = 0.01405 for central collisions and
B = 0.0066 for peripheral collisions. As we can see from the plot, our calculation gives a very good description of
the experimental data in central collisions. For peripheral collisions, the agreements get worse. The main reason for
the deviation comes from the fact that the experimental data for peripheral d+Au collisions show a clear broadening
effect in the away-side width σF [6]. However, our calculated broadening ∆〈q2⊥〉dAu ∝ A1/3〈NdA

coll(b)〉/〈NdA
coll(bmin.bias)

becomes quite small.
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FIG. 6. Azimuthal correlation associated with back-to-back dihadron production in central (top) and peripheral (bottom)
d+Au collisions. Theoretical curves are calculated for 〈y1〉 = 〈y2〉 = 3.2 and 〈p1⊥〉 = 2.68 GeV and 〈p2⊥〉 = 1.31 GeV in d+Au
collision [36]. Data is from STAR [6].

IV. CONCLUSIONS

In summary, by taking into account both initial- and final-state multiple parton scattering inside the nucleus, we
calculated in perturbative QCD the increase in the transverse momentum imbalance (nuclear-induced broadening) of
dijet and dihadron production in high energy p+A (d+A) collisions relative to the more elementary p+p collisions.
The nuclear-induced broadening can be used to calculate the width of the away-side peak in dihadron correlation
measurements. For phenomenological applications, we combined our new theoretical findings with previously derived
coherent power correction (dynamical shadowing) and cold nuclear matter energy loss results. Perturbative QCD
calculations that take these effects into account were recently shown to give a good description of forward rapidity
single inclusive particle production in d+Au collision at RHIC. In this manuscript we provided the corresponding
evaluation for dihadron cross sections and correlations relevant to the new STAR and PHENIX measurements. With
cold nuclear matter parameters constrained by data on deep inelastic scattering on nuclei, we found that the calculated
nuclear modification factor is roughly consistent with the PHENIX experimental data. Finally, by combining the
calculated width of the away-side peak and the nuclear suppression factor, we were able to describe reasonably well
the dihadron azimuthal correlations measured by the STAR experiment. Even though we need the baseline from p+p
collisions, our formalism does describe the effects of cold nuclear matter in going from p+p to d+Au collisions pretty
well for mid-mid, mid-forward, and forward-forward correlated hadron pairs at RHIC.
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