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We present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a
large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states
and isolate those of hybrid character using their relatively large overlap onto operators which sample
gluonic excitations.

We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of
positive parity hybrid baryons with quantum numbers N1/2+ , N1/2+ , N3/2+ , N3/2+ , N5/2+ , and
∆1/2+ , ∆3/2+ at an energy scale above the first band of ‘conventional’ excited positive parity

baryons. This pattern of states is compatible with a color octet gluonic excitation having JP = 1+

as previously reported in the hybrid meson sector and with a comparable energy scale for the
excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

PACS numbers: 12.38.Gc, 14.20.Gk, 12.39.Mk

I. INTRODUCTION

While QCD is the accepted underlying theory of
hadronic physics, with hadrons being viewed as bound
states of strongly coupled quarks and gluons, the role
of excited gluonic fields in determining the spectrum
of mesons and baryons remains unclear. QCD in the
strongly coupled low-energy regime gives rise to a num-
ber of interesting phenomena that are exhibited in the
spectrum of mesons and baryons, such as the sponta-
neous breaking of chiral symmetry yielding effective ‘con-
stituent’ quark degrees-of-freedom. These quasi-particles
have the quantum numbers of quarks, and there are clear
signs of a spectrum of excitations corresponding to their
relative motion. It seems odd then, considering that the
gluonic field is strongly coupled to itself and to quarks,
that there are no unambiguous signals for states featuring
a gluonic excitation.

The simplest place to look for gluonic excitations
would seem to be in the isoscalar meson spectrum, where
states built purely out of glue, the ‘glueballs’, could be
present. This has proven to be very difficult in prac-
tice [1] with suggestions that qq̄ excitations mix strongly
with glueball basis states. Another target is elsewhere in
the spectrum of mesons, where states built from qq̄ aug-
mented by a gluonic excitation can have JPC quantum
numbers not available to a pure qq̄ state. These ‘exotic
hybrid mesons’ remain our best hope of a ‘smoking gun’
experimental signature, but in practice the current ex-
perimental situation is at best confused (see the review
in [2]). Theoretical understanding of hybrid meson states
in QCD recently took a significant step forward with the
application of lattice methods to the problem. In [3–6]
the spectrum of mesons extracted from lattice QCD com-
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putations was interpreted in terms of ‘conventional’ qq̄
states supplemented with a spectrum of hybrid mesons,
some with exotic JPC and some with conventional JPC .
The degeneracy pattern of these states and the form of
the composite QCD operators used to interpolate them
from the vacuum strongly suggested that the gluonic ex-
citation present in hybrid mesons is of chromomagnetic
character.

Hybrid baryons have not attracted the same attention
as hybrid mesons principally because they lack manifest
‘exotic’ character. All JP values can be populated by
states constructed from three quarks having excitation
in orbital angular momentum, so that hybrids can only
appear in terms of over-population with respect to some
model of qqq excitations. While a dynamical model may
suggest peculiar decay characteristics for hybrid baryon
states that might help to identify them, there is not the
‘smoking gun’ quantum number signal present in the me-
son sector. Furthermore the current experimental situa-
tion, in which far fewer baryon resonances are observed
than are expected in qqq bound-state models, does not
encourage adding additional gluonic degrees-of-freedom
to the bound-state system.

Despite there being, as yet, no simple way to extract
them experimentally, there is significant theoretical in-
sight to be gained from studying hybrid baryons, par-
ticularly in a framework that can simultaneously calcu-
late the properties of hybrid mesons. We might imagine,
given the different number of quarks, and the correspond-
ing differing distributions of color sources, that the spec-
trum of gluonic excitations in a baryon could be different
to that in a meson. We will explore this possibility in
this paper.

The spectrum of hybrid baryons has previously been
considered in a number of QCD-motivated models. In
the bag model [7], in which quark and gluon fields are
confined within a cavity with the fields satisfying ap-
propriate boundary conditions at the wall of the cavity,
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a TE-mode gluonic field (transforming as JPC = 1+−)
combines with three quarks in an overall color octet to
produce a lightest set of hybrid baryons :

N1/2+ , N1/2+ , N3/2+ , N3/2+ , N5/2+

∆1/2+ , ∆3/2+ .

The overall mass scale of these states is somewhat plas-
tic, depending upon how one chooses to set parameters
within the model - in [7], the first excited pion resonance,
the π(1300), was assumed to be a hybrid meson which
then sets the scale for Nucleon hybrids starting as light
as 1.6 GeV. A more plausible modern candidate for a
hybrid pion would be the second excited pion resonance,
the π(1800), which would place the hybrid Nucleons sig-
nificantly heavier, somewhere above 2 GeV.

The QCD sum-rule study in [8] considered the possibil-
ity of a hybrid baryon as the first-excited state above the
nucleon with N1/2+ quantum numbers concluding that
such a state would lie close to 1.5 GeV.

An implementation of the flux-tube model[9, 10], in
which quarks sit on the ends of strings, providing a lin-
ear confining potential, suggests a set of lightest hybrid
baryons [11]:

N1/2+ , N1/2+ , N3/2+ , N3/2+

∆1/2+ , ∆3/2+ , ∆5/2+ .

This differs from the bag model spectrum by having the
JP = 5/2+ state with isospin-3/2 rather than isospin-
1/2. The mass scale of these states is found to be around
1.9 GeV. The flux-tube model is an example of a frame-
work where we would not necessarily expect there to be
a common energy scale for the gluonic excitation in a
baryon and in a meson. A meson contains a single flux-
tube between the quark and anti-quark which in a hybrid
is excited in transverse oscillation. In a baryon however
there are three tubes which either meet at a junction or
form a triangle. There would seem to be no particular
reason the excitations of this more complicated system
need be the same as a single tube.

As mentioned earlier, a major challenge for the ex-
perimental isolation of hybrid baryons is that they have
non-exotic quantum numbers and hence appear embed-
ded in a spectrum of conventional baryon states. In fact,
worse than this there is, a priori, nothing within QCD
to prevent hybrids mixing arbitrarily strongly with con-
ventional qqq states of the same JP to produced mass
eigenstates which are neither one nor the other. This
complication will also appear in any sufficiently sophisti-
cated theoretical approach. Whether QCD in fact mani-
fests strong mixing will need to be determined in explicit
calculation.

In this paper we will extract a spectrum of QCD eigen-
states from baryon correlators computed using discreti-
sation of QCD on a finite lattice. This technique is an
ab-initio non-perturbative method starting from a gluon
and quark lagrangian that allows us to compute the spec-
trum directly from a controlled approximation to QCD.

In order to explore the spectrum of states with a given set
of quantum numbers it has proved effective [3–5, 12–14]
to construct a large basis of hadron interpolating fields,
featuring combinations of quark and gluon fields having
the desired external quantum numbers. A matrix of two-
point correlation functions can then be evaluated and by
diagonalisation, a variational best estimate of the spec-
trum of states determined. The eigenvectors obtained
in this procedure indicate the optimum linear combina-
tion of interpolating fields for each state in the spectrum.
Quark-gluon bound-state structure interpretational in-
formation follows if a particular state has a large over-
lap with certain characteristic interpolating fields, and
large overlap onto multiple interpolating fields of differ-
ent characteristic structure might suggest large mixing of
basis states within QCD.

Our approach will mirror that used to determine a
spectrum of hybrid mesons in [3, 4, 6], where we found
that the lightest supermultiplet of hybrid mesons con-
sists of an exotic JPC = 1−+ state and three non-exotic
states with JPC = 0−+, 2−+, 1−− which are embedded
in a spectrum of qq̄ excitations. The character of gluonic
excitation that appears to give rise to this spectrum is
chromomagnetic, having JPC = 1+−. Heavier positive
parity hybrid mesons were also identified that appear to
correspond to quark orbital excitation on top of the same
chromomagnetic gluonic excitation with states featuring
any other type of gluonic excitation apparently signifi-
cantly heavier.

The corresponding procedure for baryons will be fol-
lowed in this paper: using a large basis of interpolating
fields, including a number which rely upon the presence
of a non-trivial gluonic field, we will extract a spectrum of
baryon states. By considering the relative size of overlap
of the extracted states onto interpolators of characteris-
tically qqq and hybrid form we will identify those which
we believe to be hybrid baryons.

As with all lattice QCD calculations, we are somewhat
limited in scope by computational restrictions which pre-
vent us from calculating with quarks whose masses are
as light as those in the real world. In place of this we
will compute with a range of heavier quark masses and
study the trend as the quark mass is reduced. Since the
computational cost increases with the volume of space-
time considered we limit ourselves to a small region a few
fermi across discretised with grid points a fraction of a
fermi apart.

In this work we will report on the first systematic stud-
ies of hybrid baryons using lattice QCD methods. We
will work with three flavours of dynamical quarks - the
strange quark being fixed at its physical mass and the
degenerate up and down quarks being varied down from
the strange quark mass (where we would have an exact
SU(3)F symmetry) to a value where the pion mass is
400 MeV. This is an extension of the work presented in
[15] which computed the baryon spectrum on the same
lattices, but excluded baryon interpolators featuring a
gluonic excitation and which made no observations re-
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garding hybrid baryons.

II. BARYON INTERPOLATORS & THEIR
INTERPRETATION

The construction of a basis of baryon operators re-
specting the required permutational symmetry of three
quark fields and featuring up to two gauge-covariant
derivatives was described in [15]. This leads to a rather
large basis of operators that covers all spins and both

parities up to JP = 7
2

±
. For lower spins there are suffi-

ciently many operators that variational analysis can lead
to extraction of a significant number of excited states.

The baryon interpolators used can be expressed in a
compact notation which exposes the permutational sym-
metries, ΣF,S,D = S,M,A,(

BΣF
⊗
(
SPS

)n
ΣS
⊗D[d]

L,ΣD

)J
, (1)

where the three factors describe the flavor, Dirac spin and
derivative structure of the interpolator. In this report we
will consider only baryons of flavor BΣF

= NM, ∆S, the
strangeness-zero members of 8F , 10F representations,
over a range of quark masses. The only exception to this
is the special case of three degenerate flavors of quark,
i.e. having exact SU(3) flavor symmetry, where in ad-
dition to the octet and decuplet states, we’ll extract a
spectrum of BΣF

= ΛA states, the only member of the
1F representation.

The Dirac spin factor,
(
SPS

)n
ΣS

, represents the possi-

ble combinations of upper and lower components of three
Dirac spinors transforming with angular momentum S
and parity PS and having permutational symmetry, ΣS.
For some

(
SPS

)
ΣS

there are multiple possible construc-

tions and they are labelled by the superscript n.

The derivative factor, D
[d]
L,ΣD

, indicates the number of
gauge-covariant derivatives applied to the quark fields
(d = 0, 1, 2) and that they are combined to give objects
transforming under rotations with angular momentum L
and with permutational symmetry ΣD.

With a single derivative (d = 1), excluding a symmet-
ric total derivative, only mixed symmetry1 possibilities
transforming as L = 1 arise:

D
[1]
L=1,M :

{
D

[1]
MS,m = 1√

6

(
2D

(3)
m −D(1)

m −D(2)
m

)
D

[1]
MA,m = 1√

2

(
D

(1)
m −D(2)

m

)

where e.g. D
(1)
m = ~ε(m) · ~D(1) is the gauge-covariant

derivative, in a circular polarisation basis, acting on the
first quark field.

At the two derivative level (d = 2) definite permuta-
tion symmetry is implemented by the appropriate lin-

ear combination of products of D
[1]
MS,MA, while the rota-

tional transformational properties are set using an SO(3)
Clebsch-Gordan coupling for 1⊗ 1→ L = 0⊕ 1⊕ 2:

D
[2]
L,S = 〈1m; 1m′|LM〉 1√

2
(D

[1]
MS,mD

[1]
MS,m′ +D

[1]
MA,mD

[1]
MA,m′), (2)

D
[2]
L,M :

{
D

[2]
L,MS = 〈1m; 1m′|LM〉 1√

2
(−D[1]

MS,mD
[1]
MS,m′ +D

[1]
MA,mD

[1]
MA,m′),

D
[2]
L,MA = 〈1m; 1m′|LM〉 1√

2
(D

[1]
MS,mD

[1]
MA,m′ +D

[1]
MA,mD

[1]
MS,m′)

(3)

D
[2]
L,A = 〈1m; 1m′|LM〉 1√

2
(D

[1]
MS,mD

[1]
MA,m′ −D[1]

MA,mD
[1]
MS,m′). (4)

In practice, the interpolators (1) correspond to sums
of terms of generic structure

εabc

(
Dn1 1

2 (1±γ0)ψ
)
a

(
Dn2 1

2 (1±γ0)ψ
)
b

(
Dn3 1

2 (1±γ0)ψ
)
c

where each quark field is projected into either upper or
lower Dirac components and is acted upon by either zero,
one or two gauge-covariant derivatives. The spin and fla-
vor couplings are suppressed here (details of the construc-
tion can be found in [15]). The required antisymmetry

1 MS,MA indicates symmetric or antisymmetric behavior in 1 ↔ 2

in color, producing overall color-singlet operators, is im-
plemented using the Levi-Civita symbol. Given this it is
clear that the flavor, spin and spatial symmetry repre-
sentations, ΣF,ΣS,ΣD must be combined to give overall
symmetric (S) combinations in order for the interpolator
to obey Fermi antisymmetry.

A. “Conventional” qqq interpretation of operators

A notable subset of the interpolators constructed are
those featuring only upper components of Dirac spinors,
which we refer to as “non-relativistic”. As shown in Table
IV of [15], these operators can be simply classified accord-
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ing to an SU(3)F⊗SU(2)S⊗O(3) symmetry analogous to
what one might have in a (non-relativistic) three-quark
bound-state model. In this assignment, the derivatives
play the role of orbital angular momentum between the
quarks (the O(3) symmetry in most bound-state models).

As a concrete example consider the symmetric con-

struction of two derivatives defined in equation (2), D
[2]
L,S,

which can be explicitly written

D
[2]
L,S =

1

3
√

2

〈
1m; 1m′

∣∣LM〉[
2
(
D(1)
m D

(1)
m′ +D(2)

m D
(2)
m′ +D(3)

m D
(3)
m′

)
−
(
D(1)
m D

(2)
m′ +D(2)

m D
(1)
m′

)
−
(
D(1)
m D

(3)
m′ +D(3)

m D
(1)
m′

)
−
(
D(3)
m D

(2)
m′ +D(2)

m D
(3)
m′

)]
, (5)

where expressed more fully a term D
(3)
m D

(2)
m′ would have

the color-spatial structure εabc ψa(Dm′ψ)b(Dmψ)c. A

simple model interpretation of the action of D
[2]
L,S fol-

lows if we treat the gauge-covariant derivatives as or-
dinary, commuting, derivative operators (neglecting the
presence of the gauge-field) and use Jacobi co-ordinates

(~ρ = 1√
2
(~r1 − ~r2), ~λ = 1√

6
(~r1 + ~r2 − 2~r3)) for the quark

positions. In that case we find that

D
[2]
L,S ∼

〈
1m; 1m′

∣∣LM〉[(~pρ)m(~pρ)m′ + (~pλ)m(~pλ)m′

]
∼
[
p2
ρY

M
L (p̂ρ)Y

0
0 (p̂λ) + p2

λY
M
L (p̂λ)Y 0

0 (p̂ρ)
]
δL,even,

so that if L = 2, we could interpret this as the symmetric
combination of a D-wave on the ρ-“oscillator” coupled to
an S-wave on the λ-“oscillator” and a D-wave on the λ-
“oscillator” coupled to an S-wave on the ρ-“oscillator”.
This kind of operator, coupled to “non-relativistic” Dirac
spinors can interpolate from the vacuum exactly the kind
of structures used in qqq “quark models” [16–19]. For

example, the interpolator
(
NM ⊗

(
1
2

+)1
M
⊗ D

[2]
L=2,S

) 3
2

+

would be identified with the model state N 2DS
3
2

+
. Table

IV in [15] presents qqq model interpretations for “non-
relativistic” interpolators.

B. “Hybrid” qqqG interpretation of operators

The subset of operators which we identify as essentially
hybrid in nature appears at two derivatives and follows
from combinations which correspond to commutation of
two gauge-covariant derivatives acting on the same quark
field. Such operators are zero in a theory without gauge-
fields and correspond to the chromomagnetic components
of the gluonic field-strength tensor. This is the central

observation that leads us to identify these operators as
being ‘hybrid’ - unless an eigenstate contains a gluonic
field in a non-trivial configuration it should have no over-
lap onto an operator of this form.

In the derivative constructions described above
such entries appear via terms of the form

〈1m; 1m′|1M〉D(n)
m D

(n)
m′ ∝ ε(M)iεijk[Dj , Dk] ∝ BM ,

where the chromomagnetic field in a circular polarisa-

tion basis, BM ≡ ~ε(M) · ~B is related to the commutator
of two gauge-covariant derivatives, Bk = 1

2εijk[Di, Dj ].
As an example of how such an object enters into our
operator basis, consider the projection of equations (3)
into L = 1:

D
[2]
L=1,MS =

1

3
√

2

〈
1m; 1m′

∣∣1M〉[
2
(
D(1)
m D

(1)
m′ +D(2)

m D
(2)
m′ − 2D(3)

m D
(3)
m′

)
−
(
D(1)
m D

(3)
m′ +D(3)

m D
(1)
m′

)
−
(
D(2)
m D

(3)
m′ +D(3)

m D
(2)
m′

)
− 2
(
D(1)
m D

(2)
m′ +D(2)

m D
(1)
m′

)]
.

D
[2]
L=1,MA =

1√
6

〈
1m; 1m′

∣∣1M〉[(
−D(1)

m D
(1)
m′ +D(2)

m D
(2)
m′

)
+
(
D(1)
m D

(3)
m′ +D(3)

m D
(1)
m′

)
−
(
D(2)
m D

(3)
m′ +D(3)

m D
(2)
m′

)]
.

In each case there are terms which are symmetric in
m ↔ m′ while

〈
1m; 1m′

∣∣1M〉 is antisymmetric - since
derivative operators acting on different quarks commute,
these terms are zero. The remaining terms, in which both
derivatives act on the same quark field, give color-spatial
structures proportional to

MS ∼ εabc ((BMψ)aψbψc + ψa(BMψ)bψc − 2ψaψb(BMψ)c) ,

MA ∼ εabc (−(BMψ)aψbψc + ψa(BMψ)bψc) .

The form of the three-quark color coupling can be ex-
posed by expressing the chromomagnetic field in an ad-
joint basis, BM = BAM t

A, so that

(ψψψ)AMS ∼ εabc
(
(tAψ)aψbψc + ψa(tAψ)bψc − 2ψaψb(t

Aψ)c
)
,

(ψψψ)AMA ∼ εabc
(
−(tAψ)aψbψc + ψa(tAψ)bψc

)
,

which indicates that the three quarks are coupled to a
color-octet as either (3 ⊗ 3 → 3) ⊗ 3 → 8 ∼ MS or
(3⊗3→ 6)⊗3→ 8 ∼ MA . The chromomagetic field (a
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L = 0, 2 L = 1

D
[2]
S (qqq)1c 0

D
[2]
M (qqq)1c

[
(qqq)8cG8c

]
1c

D
[2]
A 0 (qqq)1c

TABLE I. Summary of simplest bound-state interpretations
of two-derivative structures. In practice the derivatives are
actually implemented as finite differences through gauge-
covariant parallel transport (links) and this gives rise to cor-
rections to the above assignments that are suppressed by pow-
ers of the lattice spacing.

color octet) is coupled in to give an overall color singlet
baryon operator, (ψψψ)ABAM . These are the operators
which we identify with hybrid baryons.

At first glance it would appear that D
[2]
L=1,S, as defined

in equation (2) and written out in full in equation (5)
should also have hybrid character owing to the presence

of terms featuring 〈1m; 1m′|1M〉D(n)
m D

(n)
m′ . In fact this

operator is zero - D
[2]
L=1,S gives rise to a three-quark color

structure

(ψψψ)AS ∼ εabc
(
(tAψ)aψbψc + ψa(tAψ)bψc + ψaψb(t

Aψ)c
)
,

which cannot be a color-octet as the antisymmetric
combination of three 3c representations gives a color-
singlet. We do not include any operators constructed

using D
[2]
L=1,S in our basis.

We mention in passing that the antisymmetric com-
bination of two derivatives defined in equation (4), has
structure

D
[2]
A = 1√

6

(
[D(1), D(2)] + [D(2), D(3)] + [D(3), D(1)]

)
,

which does not feature the commutator of two gauge-
covariant derivatives acting on the same quark field. The
antisymmetric nature is such that only with L = 1 do we
get non-zero operators but these are not of hybrid na-
ture; in the Jacobi basis presented in the previous section
they transform like

〈
1m; 1m′

∣∣1M〉(~pρ)m(~pλ)m′ , i.e. they
can be viewed as a P -wave on each “oscillator” in the
language of the constituent quark model, giving states
labeled 2,4PA.

The interpretations of the D[2] constructions are sum-
marised in Table I. These operators, excluding those
identified above as being of hybrid character, were used in
[15] to extract a spectrum of baryons. In the next section
of this paper we will present spectrum results including
the hybrid operators, identifying a number of states with
large overlap onto these gluonic operators that we inter-
pret as being hybrid baryons.

We have determined that operators featuring D
[2]
L=1,M

can be associated with hybrid structure - now we can
ask what flavor-spin constructions can be combined with

D
[2]
L=1,M to give operators which respect Fermi antisym-

metry? As is the case with qqq interpretations, the easiest
hybrid interpolators to interpret phenomenologically are
those with “non-relativistic” Dirac spin structure. The
explicit flavor-spin-color structure of these operators, fea-

turing D
[2]
L=1,M, is as follows:

21 :

(
Λ1,A ⊗

(
1
2

+
)1

M
⊗D[2]

L=1,M

)JP =
1
2

+
,
3
2

+

∼ φA
1√
2

(ψ3̄χMA + ψ6χMS) = φA (ψχ)S = [ψφχ]A

28 :

(
{N,Σ8,Λ8,Ξ8}M ⊗

(
1
2

+
)1

M
⊗D[2]

L=1,M

)JP =
1
2

+
,
3
2

+

∼ 1
2 [ψ3̄ (φMAχMA − φMSχMS)− ψ6 (φMAχMS + φMSχMA)]

= 1√
2

[ψ3̄ (φχ)MS − ψ6 (φχ)MA] = [ψφχ]A

48 :

(
{N,Σ8,Λ8,Ξ8}M ⊗

(
3
2

+
)1

S
⊗D[2]

L=1,M

)JP =
1
2

+
,
3
2

+
,
5
2

+

∼ 1√
2
χS (ψ3̄φMS − ψ6φMA) = χS (ψφ)A = [ψφχ]A

210 :

(
{∆,Σ10,Ξ10,Ω}S ⊗

(
1
2

+
)1

M
⊗D[2]

L=1,M

)JP =
1
2

+
,
3
2

+

∼ 1√
2
φS (ψ3̄χMS − ψ6χMA) = φS (ψχ)A = [ψφχ]A (6)

where ψ3̄, ψ6 are the MA, MS color combinations (cor-
responding to the MS, MA derivative combinations) and
φ, χ are the flavor, spin structures presented in Appendix
A of [15]. This set of operators corresponds to a [70, 1+]
in the SU(6)FS assignment scheme, a representation not
present for conventional three-quark baryons.

Coupling the hybrid derivative structures (D
[2]
L=1,M) to

Dirac spin lower components gives a somewhat larger set
of operators, including some with negative parity, as indi-
cated in Table II, although their model interpretation is
somewhat more involved and will not be described here.

In order to account for the reduced (cubic) rotational
symmetry of the lattice, we subduce all interpolators into
irreducible representations of the cubic group and form
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positive parity negative parity

N( 1
2

+
) 32{4}[8](2) ∆( 1

2

+
) 16{2}[4](1) N( 1

2

−
) 32{2}[8](0) ∆( 1

2

−
) 16{1}[4](0)

N( 3
2

+
) 36{5}[8](2) ∆( 3

2

+
) 19{3}[4](1) N( 3

2

−
) 36{2}[8](0) ∆( 3

2

−
) 19{1}[4](0)

N( 5
2

+
) 19{3}[3](1) ∆( 5

2

+
) 9{2}[1](0) N( 5

2

−
) 19{1}[3](0) ∆( 5

2

−
) 9{0}[1](0)

N( 7
2

+
) 4{1}[0](0) ∆( 7

2

+
) 3{1}[0](0) N( 7

2

−
) 4{0}[0](0) ∆( 7

2

−
) 3{0}[0](0)

TABLE II. Number of operators constructed in each quantum number channel: total{non-relativistic conventional}[hybrid](non-
relativistic hybrid)

correlators according to that symmetry. In [15] we show
that the spectrum of states extracted from variational
analysis of these correlators can be spin-identified with
confidence and herein we will present the spectra labelled
according to the continuum spin.

III. BARYON SPECTRUM

Mass spectra and matrix-elements follow from vari-
ational analysis of a matrix of correlators, Cij(t) =〈
0
∣∣Oi(t)O†j(0)

∣∣0〉, which can be shown to correspond to
solution of the generalised eigenvalue problem

C(t)vn = λn(t, t0)C(t0)vn.

Each state
∣∣n〉 that can be interpolated by some lin-

ear combination of O†i has associated with it a “prin-
cipal correlator”, λn(t, t0) that at large times behaves
like e−En(t−t0), yielding the energy of the state, and an
eigenvector vn which indicates the optimum interpolator

for the state,
∑
i v
i
nO
†
i . Details of our procedure for effi-

ciently and accurately implementing such a solution can
be found in [4, 20].

To the extent that one has a bound-state interpretation
of the interpolator Oi, built from quark and gluon fields,

the relative sizes of the matrix elements
〈
n
∣∣O†i (0)

∣∣0〉 can
be used to interpret the bound-state structure of state∣∣n〉. These matrix elements are trivially related to the
eigenvectors of the generalised eigenvalue problem solved
above. Such a procedure was followed in [4], leading to
identification of the low-lying meson spectrum as being
rather like the constituent quark model qq̄ spectrum, sup-
plemented with a spectrum of hybrid mesons in which
a chromomagnetic gluonic field was dominant. We will
take the same approach here in the baryon spectrum in
order to isolate the role of hybrid baryon basis states in
the spectrum.

We performed calculations on lattices of size 163×128,
corresponding to a physical spatial volume of approxi-
mately (2.0 fm)3, with three flavors of dynamical quarks.
One quark has mass corresponding to the strange quark
and the other two correspond to degenerate u and d
quarks. One calculation had all three quarks degenerate
at the strange quark mass, corresponding to 702 MeV
octet pseudoscalar bosons, and the remaining two cal-
culations had lighter u, d quarks giving pion masses of
524 and 396 MeV. Details of these dynamical anisotropic

clover configurations can be found in [21, 22]. The two-
point correlators used in the variational analysis were
computed via distillation[23] in which all quark fields are

smeared over space by an operator 2 =
∑N
n ξnξ

†
n con-

structed using the lowest N = 56 eigenvectors of the

three-dimensional gauge-covariant laplacian (− ~D2ξn =
λnξn). All gauge-links entering in the operator construc-
tions are stout-smeared [24].

To facilitate comparisons of the spectrum at different
quark masses, the ratio of hadron masses with the Ω
baryon mass obtained on the same ensemble is used to
remove the explicit scale dependence, following Ref. [22].

A. Nucleons & Deltas at mπ = 524 MeV

Figure 1 shows the spectrum of positive parity Nucleon
and Delta states extracted on the 524 MeV lattice along
with histograms showing the relative sizes of matrix ele-

ments
〈
n
∣∣O†i (0)

∣∣0〉 for a set of “non-relativistic” interpo-
lators characteristic of qqq and hybrid basis states. The
histograms are normalised such that the largest overlap
onto a given operator across the entire extracted spec-
trum has unit value (the tallest bars in the figure are of
unit value).

Focussing first on the JP = 1
2

+
nucleon states we ob-

serve a light ground state nucleon having dominant2 over-

lap onto a “non-relativistic” interpolator
(
NM⊗

(
1
2

+)1
M
⊗

D
[2]
L=0,S

) 1
2

+

with qqq structure 2SS. The band of four ex-

cited 1
2

+
states between 2.0 and 2.5 GeV can be char-

acterised as being dominantly admixtures of the qqq ba-
sis 2SS,

2SM,
4DM,

2PA, and while this basis is clearly not
manifested diagonally in the spectrum, the mixing is
modest. Notably, the extracted spectrum lacks a light
first-excited state that we might associate with the broad
enhancement observed experimentally and known as the
“Roper” resonance. We will return to this later when we
discuss the role of hadronic decays on the spectrum.

Slightly heavier than the first-excited band of four
1
2

+
states we observe two states with dominant over-

lap onto non-relativistic interpolators we have identified

2 The observed sub-dominant overlap of the ground state nucleon
onto operators featuring an excited gluonic field is also required
to describe QCD sum-rules of the N1/2+ channel [8]
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FIG. 1. Extracted spectrum of Nucleon and Deltas states by JP at a pion mass of 524 MeV. Rectangle height indicates the
statistical uncertainty in mass determination. Histograms indicate the relative size of matrix elements

〈
n
∣∣O†i (0)

∣∣0〉 for a “non-
relativistic” subset of the operators used - normalisation is as described in the text with the lighter area at the head of each bar

being the statistical uncertainty. Operator labeling is as in Table IV of [15] with the addition of 2hyb =
(
NM⊗

(
1
2

+)1
M
⊗D

[2]
L=1,M

)
and 4hyb =

(
NM ⊗

(
3
2

+)1
S
⊗D

[2]
L=1,M

)
. Asterisks indicate states having dominant overlap onto hybrid operators.

as being of hybrid nature,
(
NM ⊗

(
1
2

+)1
M
⊗ D[2]

L=1,M

) 1
2

+

and
(
NM ⊗

(
3
2

+)1
S
⊗ D

[2]
L=1,M

) 1
2

+

. They appear to be
largely admixtures of two basis states with three-quark
spin S = 1/2, 3/2 that we label 2hyb, 4hyb. We mention

in passing that in [15], the spectrum extracted without
hybrid interpolators showed one badly-determined state
in this same mass region, indicating the importance of
including interpolators with good overlap onto all types
of state present in the spectrum.
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The next nucleon state resolved with JP = 1
2

+
is some-

what heavier than the hybrids and has no obvious inter-
pretation in terms of overlaps with the “non-relativistic”
operators used (with up to two gauge-covariant deriva-
tives). Still heavier states are present with these quantum
numbers3.

In the JP = 3
2

+
nucleon channel, we see a lightest

band of states roughly degenerate with the first-excited

band in 1
2

+
. This band features five states observed to

be dominated by the qqq basis 4SM,
2DS,

4DM,
2DM,

2PA,
with the state dominated by 2PA being heaviest as it was

for JP = 1
2

+
. As in the nucleon 1

2

+
case we observe

a pair of states somewhat above this band which have
dominant overlap onto 2hyb, 4hyb. A few hundred MeV
heavier there are more states of unidentified structure.

In the JP = 5
2

+
nucleon channel there are three states

in the “first-excited” mass region, apparently constructed
from superpositions of 4DS,

2DM,
4DM. Somewhat heav-

ier is a single state having large overlap onto a hybrid

operator of character 4hyb. Unidentified 5
2

+
states are

present a little heavier than the hybrid.

In the JP = 7
2

+
nucleon channel, there is a single

state in the “first-excited” region having dominant over-
lap onto 4DM. Heavier states of unidentified structure
are present above 3 GeV, with no identified hybrid states.
We remind the reader that there are no “non-relativistic”
hybrid interpolators having JP = 7

2

+
constructed at D[2]

level.
In the Delta sector we again see a band of “first-

excited” states whose population and overlaps are in ac-
cord with expectations of a qqq model. States with dom-
inant overlap onto our hybrid interpolators appear above
that band, but below other unidentified states. The hy-

brids appear in the JP = 1
2

+
, 3

2

+
channels and are of

2hyb character.
The spectrum of negative parity nucleons and Deltas

below 2 GeV is almost identical to that presented in [15],
obtained without inclusion of any hybrid interpolators,
and agrees with qqq model state counting. Negative par-
ity states having significant overlap onto the hybrid op-
erators in the basis first appear above 3 GeV, somewhat
heavier than the positive parity hybrid states.

B. 1F , 8F , 10F at an SU(3)F symmetric point

The flavor singlet construction in equation (6), Λ1,A⊗(
1
2

+)1
M
⊗D[2]

L=1,M, is most simply explored at an SU(3)F
point where the states interpolated cannot mix with
Lambda states in an 8F representation. In Figure 2 we
show the spectrum extracted with all three quark masses

3 There are a total of 32 1
2

+
states extracted, equal to the number

of interpolators used, but the statistical precision and stability
of extraction of the masses decreases as one goes up in energy

set to the strange quark mass - here the lightest pseu-
doscalar meson has a mass of 702 MeV. We show the
mass spectrum for 8F , 10F , 1F representations.

We observe that the 8F , 10F spectra strongly resem-
ble the Nucleon, Delta spectra extracted at the 524 MeV
pion mass shown in figure 1. The 1F spectrum consists of
the states expected in a qqq model, lying roughly degen-
erate with the first excited band in the octet, decuplet
spectrum, and in addition, two states of hybrid character

having JP = 1
2

+
, 3

2

+
. As in the octet and decuplet, the

hybrid states are slightly heavier than the qqq states.

C. Quark mass dependence

In order to determine if the hybrid spectrum might
be strongly quark mass dependent we also computed the
Nucleon and Delta spectrum with u, d quark masses such
that the pion weighs 396 MeV. The results are presented
in Figure 3, where we see that the gross structure of the
spectrum is as it was at mπ = 524 MeV.

IV. CONCLUSIONS

From the extracted baryon spectra presented in the
previous section we can draw a number of conclusions
regarding the nature of hybrid baryons and more gener-
ally gluonic excitations within QCD. The states identified
have large overlap onto interpolating fields containing the

operator D
[2]
L=1,M which transforms like a chromomag-

netic field (color octet, JPC = 1+−)4. The form of the
operators suggest that within a hybrid baryon the three
quarks are arranged in a color octet with the chromomag-
netic gluonic excitation making the state an overall color
singlet. The low-lying hybrid states overlap strongly onto
the “non-relativistic” subset of our hybrid interpolators,
those constructed using only upper components of Dirac
spinors. We can interpret this as suggesting that the
quarks within the lightest hybrid baryons are dominantly
in S-waves.

The particular set of flavor-JP states observed,
N1/2+ , N1/2+ , N3/2+ , N3/2+ , N5/2+ , plus ∆1/2+ , ∆3/2+

and Λ1,1/2+ , Λ1,3/2+ , suggests that all color singlet states
are present that can be constructed from antisymmetric
(qqq)8c

with quarks in an S-wave coupled to a chromo-
magnetic (8c, 1+) gluonic excitation (see equations (6)).
Furthermore the fact that we are easily able to pick the
hybrid states out of a dense spectrum of qqq states indi-
cates that they tend to retain their character despite the
possibility of mixing strongly with qqq states of the same
JP .

4 see [6] for a simple model in which this operator interpolates a
quasi-gluon in a P -wave
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FIG. 2. Extracted spectrum of flavor octet, decuplet and singlet states by JP with three quark flavors all at the strange quark
mass, corresponding to an octet pseudoscalar mass of 702 MeV. Grey boxes are conventional qqq states and blue boxes are the
states identified as hybrid baryons.
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FIG. 3. Extracted spectrum of Nucleon and Delta states at a
pion mass of 396 MeV. Grey boxes are conventional qqq states
and blue boxes are the states identified as hybrid baryons.

The position of hybrid baryons within the spectrum of
expected qqq states is now determined: the lightest states
are of positive parity and lie slightly heavier than the
first-excited positive parity qqq states. Negative parity
hybrid baryons appear to be heavier than this.

In [6] we presented the spectrum of hybrid mesons ex-
tracted on the same lattices. The distribution of states
across JPC (the supermultiplet structure) is also com-
patible with a color octet chromomagnetic field coupled
to quarks in a color octet (in this case (q̄q)8c

). This
leads us to think that the gluonic excitation form may
be common to hybrid mesons and baryons. To deter-
mine whether the energy scale of the gluonic excitation is
common we choose to plot the spectrum of hybrid mesons
alongside the spectrum of hybrid baryons. Of course for

this to be meaningful we must take some account of the
differing number of quarks - in a constituent quark model
we would subtract twice the constituent quark mass in
mesons and three times the mass in baryons. With the
lattice data we opt to subtract the ρ mass from the meson
spectrum and the nucleon mass from the baryon spec-
trum. This is presented in Figure 4 where it would ap-
pear that there is a common energy scale, in the region
of 1.3 GeV, for the lowest gluonic excitation in mesons
and baryons.

It is worth mentioning here that in the meson sector we
used an operator basis featuring up to three derivatives.
The low-lying spectrum of negative-parity hybrid mesons
was largely insensitive to the presence or absence of the
three-derivative operators. Conversely, accurate determi-
nation of the higher-lying positive-parity hybrid mesons
required inclusion of these operators. We expect that a
similar situation would hold true in the baryon spectrum
- where we to include a set of three-derivative opera-
tors, the low-lying positive parity hybrid baryon spec-
trum would be largely unchanged, but we would likely
resolve more clearly a spectrum of higher-lying negative
parity hybrid baryons.

There are features of our extracted spectrum that we
cannot explain without more detailed modelling, in par-
ticular the nature of the dynamics giving rise to the fine
structure in the spectrum is not known to us. It is inter-
esting to note that the extracted structure is rather close
to that presented in [7] following from perturbative cor-
rections (quark-spin, gluon Compton etc ...) to the bag
spectrum. One possible exercise using the spectrum ob-
tained in this paper would be to explore the minimal set
of model components required to describe the observed
fine structure.
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FIG. 4. Spectrum of hybrid mesons and baryons for three light quark masses. Mass scale is m−mρ for mesons and m−mN

for baryons to approximately subtract the effect of differing numbers of quarks.

With optimum linear combinations of baryon interpo-
lators determined in the variational solution of the matrix
of two-point correlators, we can in the near future con-
sider computations of radiative transition form-factors.
Such calculations, which involve three-point hadron cor-
relators, have been done for charmonium [25], and for
spin-1/2 baryons, albeit with very small operator bases
[26, 27]. Radiative transition form-factors are of phe-
nomenological interest because they can be measured
in baryon electroproduction experiments[28] where the
photon Q2 dependence and the relative size of multipole
amplitudes might provide some insight into the internal
structure of the excited state [29].

The physics of excited states as resonances, able to de-
cay into meson-baryon final states is incomplete in this
study. Along with larger than physical quark masses, this
may be the cause of the lack of a light Roper candidate
state within the calculation. In order to observe such
decay physics in the extracted finite volume spectrum,
which would correspond to additional volume-dependent
energy levels, we must supplement our basis of inter-
polating fields with some resembling multi-hadron con-
structions (e.g. πN , ππN). Such work is underway and
may eventually lead to phenomenological decay filters for
hybrid character that would be useful for experimental
searches.

A more complete understanding of hybrid baryons in
QCD will of course require calculations at lighter quark
masses, approaching the true physical values, coupled
with larger lattice volumes to accommodate the increas-
ing physical size of the bound states and such work is
now warranted given the success of this first calculation.

In summary we have extracted a spectrum of baryons
from QCD computations that features ‘expected’ qqq
states built from superpositions of flavor-spin representa-
tions [56, 0+], [70, 0+], [70, 2+], [56, 2+], [20, 1+] in posi-
tive parity and [70, 1−] in negative parity, supplemented
with a set of positive parity hybrid baryons that form
a [70, 1+] and which lie above the band of first-excited
positive parity baryons. In light of this it seems unlikely
that the Roper is dominantly of hybrid character as has
been speculated in the past. The structure of the opera-
tors that interpolate the hybrid states from the vacuum,
along with the observation that the energy scale of glu-
onic excitations appears to be common for mesons and
baryons, provides evidence that the gluonic excitation
sector in QCD may turn out to be relatively simple. We
suggest that a chromomagnetic excitation (JPC = 1+−)
is lightest with an energy scale in the region of 1.3 GeV.
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