
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Top quark pair production in association with a jet: QCD
corrections and jet radiation in top quark decays

Kirill Melnikov, Andreas Scharf, and Markus Schulze
Phys. Rev. D 85, 054002 — Published  1 March 2012

DOI: 10.1103/PhysRevD.85.054002

http://dx.doi.org/10.1103/PhysRevD.85.054002


DM10856

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

ANL-HEP-PR-11-76

Top quark pair production in association with a jet:

QCD corrections and jet radiation in top quark decays

Kirill Melnikov1, Andreas Scharf2,3 and Markus Schulze1,4

1 Department of Physics and Astronomy,

Johns Hopkins University, Baltimore, MD, USA

2 Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA

3 Institute for Theoretical Physics and Astrophysics,

University of Würzburg, Würzburg, Germany and

4 High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

We consider top quark pair production in association with a hard jet through next-to-

leading order in perturbative QCD. Top quark decays are treated in the narrow width ap-

proximation and spin correlations are retained throughout the computation. We include

hard jet radiation by top quark decay products and explore their importance for basic kine-

matic distributions at the Tevatron and the LHC. Our results suggest that QCD corrections

and jet radiation in decays can lead to significant changes in shapes of basic distributions

and, therefore, need to be included for the description of tt̄j production.

I. INTRODUCTION

Experiments at the LHC are in the process of accumulating a large data set of top quark pairs

that will allow detailed studies of various processes that Tevatron experiments either observed with

relatively low statistics or did not observe at all. Such processes include associated production of

a tt̄ pair with a jet [1], a photon [2], two jets, a Z-boson or a Higgs boson. Beyond studies of

tt̄ pair production at very high invariant masses, detailed investigations of associated production

processes will mark the beginning of the post-Tevatron era in top quark physics. A significant body

of theoretical work is devoted to improving predictions for tt̄ associated production processes, see

Refs. [3–12].

It is well-known that, once produced, top quarks decay very rapidly. For this reason top quarks

are observed and studied indirectly through kinematic features of their decay products. Unfor-

tunately, this complicates top quark studies by introducing additional uncertainties in kinematic

reconstructions due to finite resolution on energies and angles of decay products, missing energy
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as well as backgrounds, including combinatorial ones. On the positive side, the rapid decay of top

quarks enables the description of their decay products in perturbative QCD without the need to

resort to fragmentation functions and other non-perturbative objects.

A precise description of hard hadron collisions requires the application of perturbative QCD

through next-to-leading order (NLO) in the expansion of the strong coupling constant. The com-

plete NLO QCD description of any process that involves tt̄ production should include QCD cor-

rections to top quark pair production and to top quark decays. For processes where top quarks are

produced in association with a photon or a jet, a standard process to study is tt̄X production with

X = γ, j, followed by the top quark decay t → bW . However, since both photons and jets can be

radiated in top quark decays, one should also consider tt̄ production followed by “radiative” decays,

such as t → bWj and t → bWγ. The importance of radiation in the decays strongly depends on

the selection criteria that are used to isolate a particular process and, hence, can not be quantified

a priori. For example, in a recent measurement of tt̄γ production by the CDF collaboration [2],

about half of all signal events come from the process pp̄ → tt̄ followed by the radiative decay of the

top quark t → Wbγ [9]. To compare their measurement with theoretical predictions, CDF uses

a NLO QCD K-factor for the process pp̄ → tt̄γ computed with stable top quarks. However, since

about half of their events come from tt̄ production followed by radiative decays of top quarks, it is

unclear if such a comparison is meaningful.

In principle, one can get around the problem of separating production and decay stage by

simply giving up on the approximation that top quarks are produced on-shell and focusing instead

on the fully realistic final state such as bb̄W+W−X with X = γ, j, jj,H,Z. A calculation of pp →
bb̄W+W−X through a given order in the perturbative expansion in QCD leads to a prediction for

a final state that includes both “resonant” and “non-resonant” contributions, providing a complete

description of the process. Without a doubt, this is the best approach possible, provided that it is

feasible. The feasibility depends on the approximation in perturbative QCD at which the process

of interest is considered. At leading order, this approach can be pursued for essentially arbitrarily

complicated process thanks to automated programs such as Madgraph [13]. However, this approach

becomes very complex already at NLO QCD. For the simplest process pp → W+W−bb̄ that, among

many other ways, can occur through the production of a nearly on-shell tt̄ pair, this was recently

accomplished in Refs. [14, 15]. Applications of this approach to more complicated processes are

difficult to imagine. On the contrary, a sequential treatment of various production and decay

stages based on the double resonant approximation for t and t̄ can be generalized to processes of

significant complexity, at least as a matter of principle. This double resonance approximation is
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parametrically controlled by the ratio of the top quark width to its mass Γt/mt ∼ 10−2 and should

be sufficiently accurate for most observables. In fact, there has been significant progress in using

this approximation to describe top quark pair production recently. For example, tt̄ pair production

at NLO QCD in the double resonance approximation, including corrections to top quark decays

and spin correlations, was computed in Refs. [16–23]. The number of similar computations for more

complicated processes is rather limited. The only process for which a full description is available

is associated production of tt̄γ [9], where NLO QCD corrections to the production and decays,

including the radiative one (t → Wbγ), are computed.

The production of tt̄j at NLO QCD was first studied in Ref. [24, 25] for stable top quarks

and later in Ref. [26] where decays were included at leading order. A different approach to this

process is described in Refs. [27, 28], where tt̄j production at NLO QCD is combined with a parton

shower, following the POWHEG procedure [29]. Top quark decays are treated in the parton shower

approximation where tt̄ spin correlations are omitted either at leading [27] or at next-to-leading

[28] order, and whose correspondence with NLO QCD computations is not clear.

Fortunately, these approximations are not necessary, since it is possible to treat the complete

process tt̄j → bb̄W+W−j in the narrow width approximation where top quark decays, including

t → Wbj, are described consistently at NLO QCD and spin correlations are retained throughout

the entire decay chain. Such a calculation gives a state-of-the-art description of the tt̄j production

that, in principle, can be directly compared to experimental results because theoretical predictions

for a complete and fully realistic final state become available. The goal of the present paper is

therefore to extend the description of pp → tt̄j production given in Ref. [26] by including radiation

in the decay through next-to-leading order in perturbative QCD.

The paper is organized as follows. In the next Section, we outline the framework of our calcu-

lation and discuss technical aspects of the computation which arise because of the need to treat

radiative corrections to processes with decay kinematics. Phenomenological results for the Tevatron

and the 7 TeV LHC are presented in Section 3. We conclude in Section 4.

II. TECHNICAL ASPECTS OF THE CALCULATION

In this Section, we summarize the technical aspects of the calculation. We begin by describing

various contributions that we require for the computation. As we pointed out already, the top

quark is treated in the narrow width approximation. This approximation is obtained from the full

cross-section with unstable top quarks by taking the limit Γt → 0 and neglecting all terms that are
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FIG. 1: NLO QCD corrections to top quark pair production and decay in association with a jet. Contribu-

tions (a) and (b) show jet emission in production and decay, respectively. The symbol “real” indicates that

one parton is allowed to be unresolved. (c) defines the “mixed” contributions.

less singular than Γ−2
t . See Ref. [22] for further details. This allows us to organize the computation

in terms of a production process which includes the hard collision, and the decay process.

To give a complete list of all necessary contributions for tt̄+jet production calculation, we begin by

writing the formula for the inclusive cross-section as a convolution of the production cross-section

σtt̄ and the decay rate Γt

dσincl = Γ−2
t,tot

(
dσtt̄+0j + dσtt̄+1j + dσtt̄+2j + ...

)
⊗

(
dΓtt̄+0j + dΓtt̄+1j + dΓtt̄+2j + ...

)
. (1)

Subscripts denote the number of exclusive jets defined according to some jet algorithm. We further

use the abbreviation dΓtt̄+nj =
∑n

l=0 dΓt+lj dΓt̄+(n−l)j to summarize the decay rates of top and

anti-top quark in association with a fixed number of jets.

We can now expand Eq.(1) assuming that the number of jets that we eventually require is

equal or larger than one and that the cross-sections and widths for each jet multiplicity scale as

σtt̄,nj ∼ O(α2+n
s ) and Γt,nj ∼ O(αn

s ). Since we are interested in NLO QCD corrections to one-jet

production, we can disregard all terms that depend on powers of αs higher than four. We obtain

dσNLO
tt̄+1j = Γ−2

t,tot

(

dσtt̄+0jdΓtt̄+1j+dσtt̄+0jdΓtt̄+2j+dσtt̄+1jdΓtt̄+0j+dσtt̄+1jdΓtt̄+1j+dσtt̄+2jdΓtt̄+0j

)

,

(2)

and we re-write this formula in a way that separates various processes that contribute to the

cross-section
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dσNLO
tt̄+1j = Γ−2

t,tot

(

dσLO
tt̄+1jdΓ

LO
tt̄ + dσLO

tt̄ dΓLO
tt̄+1j +

(a)
︷ ︸︸ ︷
(
dσvirt

tt̄+1j + dσreal
tt̄+2j

)
dΓLO

tt̄ (3)

+ dσLO
tt̄

(
dΓvirt

tt̄+1j + dΓreal
tt̄+2j

)

︸ ︷︷ ︸

(b)

+dσreal
tt̄+1jdΓ

real
tt̄+1j + dσvirt

tt̄ dΓLO
tt̄+1j + dσLO

tt̄+1jdΓ
virt
tt̄

︸ ︷︷ ︸

(c)

)

.

We now review different contributions that appear in Eq.(3). The first and second term describe

tt̄+j production at leading order followed by leading order decays of the top quark and tt̄ production

followed by a radiative decay of the top quark, respectively. The third term represents the NLO

QCD correction to the production process tt̄ + j, where the symbol “real” indicates that one

parton is allowed to become unresolved. The first term in the second line of Eq.(3) describes

leading order production of a top quark pair followed by NLO QCD corrections to the “radiative

decay” t → W + b + j 1. Finally, the last three terms describe mixed contributions where jet

emission occurs simultaneously in both production and decay stage. Since one of those jets can

be unresolved, the last two terms are the corresponding virtual corrections needed to provide an

infra-red finite result. In the remainder of the paper we will refer to contribution (a) and (b) in

Eq.(3) as jet radiation in the production and jet radiation in the decay, respectively. The last part

(c) we call the mixed contribution. The corresponding topologies are depicted in Fig. 1.

Let us now describe how NLO QCD corrections to jet radiation in the production processes

pp → tt̄ and pp → tt̄j are treated. We note that – when production processes are considered

at next-to-leading order – the decay processes are included at leading order, consistent with the

expansion in αs. However, these leading order decays are different processes: in the former case,

we consider the radiative decay t → Wbg, since an additional jet is required in the final state. In

the latter case, top quarks decay into the Wb final state since the jet is created in the production

stage. The NLO QCD results for the production processes are available; they are described in

Refs. [22, 26] including an efficient way of implementing the decays of top quarks while retaining

all spin correlations. We note that one-loop QCD corrections to 0 → qq̄tt̄, 0 → ggtt̄, 0 → qq̄tt̄g and

0 → gggtt̄ amplitudes that we require are calculated using generalized D-dimensional unitarity [30–

32]. The real emission corrections are obtained following the Catani-Seymour dipole subtraction

formalism [33] and its extension to massive particles in Ref. [34]. To improve the efficiency of the

computation, we follow Ref. [37] and use α-parameters to restrict subtraction terms to singular

phase-space regions. The relevant dipoles with α-parameters are found in Refs.[12, 35, 36].

1 We note that, in the case of a semi-leptonic top quark decay, also the W-boson is allowed to radiate an additional
hard jet at NLO QCD. We include this contribution in our computation as well.
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The second part required in the calculation involves leading order production processes pp → tt̄

and pp → tt̄j followed by top quark decays at next-to-leading order. In the former case the

NLO QCD corrections to radiative decays t → Wbj and W → qq̄g are required; in the latter

case t → Wb and W → qq̄ need to be computed through NLO QCD. Radiative corrections to

t → Wb and W → qq̄ are known; our implementation follows the description in Ref. [22]. We

do not repeat it here and focus, instead, on the NLO QCD corrections to the “radiative decay”

t → bWj. Since this is a sufficiently low-multiplicity process, we compute the virtual corrections

using Passarino-Veltman reduction of tensor integrals [38]. The scalar integrals are taken from

Ref. [39]. For the calculation of the real corrections we need to consider various decay processes,

such as t → (W → qq̄′) bgg, t → (W → qq̄′gg)b and t → (W → qq̄′g)bg etc. The real emission

subtraction terms are again constructed using the dipole formalism of Catani and Seymour [33].

However, we note that its application to decay processes requires clarification. Catani and Seymour

constructed subtraction terms – the dipoles – that satisfy two criteria: 1) they remove infra-red and

collinear singularities when subtracted from scattering amplitudes and 2) they can be integrated

analytically over the unresolved phase-space. In the original paper [33], it is shown how to satisfy

these conditions for two colliding massless partons. Since decay kinematics differ from production

kinematics, some of the Catani-Seymour dipoles need to be modified if we deal with decays of

color-charged particles.

Recall that within the Catani-Seymour dipole formalism, dipoles are constructed by taking

different partons to be “emittors” and “spectators”, in addition to soft or collinear partons that

are actually “emitted”. The dipoles depend on “flavors” (quarks, gluons) of “emitted” and “emit-

tors” and on whether “emittors” and “spectators” are in the initial or in the final state. The

corresponding dipoles are referred to as final-final, final-initial, initial-initial and initial-final.

However, only a limited number of these dipoles is needed for the decay processes in general.

First, it is obvious that there are no initial-initial dipoles since there is just one particle in the

initial state. Final-final dipoles can be borrowed from Ref. [33] and the phase-space re-mapping

therein. Initial-final dipoles can be omitted since real radiation by a massive initial state particle is

only singular in soft kinematics. This contribution can be absorbed into final-initial dipoles which

are the only dipoles for decay kinematics that need to be constructed.

The complete list of dipoles that we need for the process t → W bg1 g2 are

Dg1g2,b, Dbg1,g2 , Dbg2,g1 ,Dt
bg1

, Dt
bg2

and Dt
g1g2

. The first three dipoles are of the final-final type

whereas the last three dipoles are the missing final-initial dipoles. We will discuss their construc-

tion in the following. We need to distinguish two types of final-initial dipoles which correspond to
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the splitting q → qg and g → gg with a top quark in the initial state being the spectator.

We begin our discussion with the gluon-quark dipole. It can be extracted from Ref. [40]. To

this end, we consider the process t → Wbg1g2 and imagine that gluon g1 and the (massless) b-

quark become unresolved. The top quark in the initial state is the spectator. We combine the

momenta of the W -boson and the gluon g2 into a new momentum p̃W = pW + pg2 and introduce a

variable r2 = p̃2W /m2
t . The remaining momenta – whose scalar products lead to soft and collinear

singularities – are parametrized using two variables z and y

pbpg1 =
m2

t

2
(1− r)2y, ptpg1 =

m2
t

2
(1− r2)(1− z). (4)

With this parametrization, the final-initial gluon-quark dipole reads [40]

Dt
g1b

= 4παsµ
2ǫ

[
1

pbpg1

(
2

1− z
− 1− z − yǫ(1− z)

)

− m2
t

(ptpg1)
2

]

δλλ′ , (5)

where ǫ = (4− d)/2 is the parameter of dimensional regularization, d is the number of space-time

dimensions and λ, λ′ are quark helicity labels. We note that Eq.(5) gives the dipole in conventional

dimensional regularization (CDR) scheme; if four-dimensional helicity (FDH) scheme [41] is used,

the term proportional to ǫ in Eq.(5) should be dropped.

In Ref. [9] we have integrated the dipole in Eq.(5) over the restricted unresolved phase-space [37],

drawing extensively from the results of Ref. [40]. We reproduce this result here for completeness.

We consider the integration of the dipole in Eq.(5) over the unresolved restricted phase-space

∫

[dg] [1− θ(1− α− z)θ(y − αymax)] D
t
g1b

= N
1∫

0

dz
(
r2 + z(1− r2)

)−ǫ

×
ymax∫

0

dyy−ǫ(ymax − y)−ǫ [1− θ(1− α− z)θ(y − αymax)]D
t
g1b

.

(6)

where

ymax =
(1 + r)2z(1− z)

z + r2(1− z)
, N =

(1− r)2

16π2
m2−2ǫ

t

(4π)ǫ

Γ(1− ǫ)

(
1 + r

1− r

)2ǫ

. (7)

We find the following result in CDR
∫

[dg] Dt
g1b

[1− θ(1− α− z)θ(y − αymax)] =

αs

2π

(4πµ2)ǫ

m2ǫ
t Γ(1− ǫ)

δλλ′ ,

[
1

ǫ2
+

1

ǫ

(
5

2
− 2 ln(r1)

)

+
27

4
+

1

2

(
1

r21
− 8

r1
+ 7

)

ln r2

+
1

2r1
+ 2Li2(r1)−

5π2

6
− 5 ln(r1) + 2 ln2(r1)

−2 ln2 α−
(
7

2
− 4α+

α2

2

)

lnα+
2(1 − α)r2

r1
ln

(
1− r1
1− αr1

)]

, (8)
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with r1 = 1− r2.

It remains to construct the gluon-gluon dipole of the final-initial type for decay kinematics.

In variance with the gluon-quark dipole just considered, the gluon-gluon dipole contains non-

trivial spin correlations. We will use the parametrization of the unresolved phase-space that we

just discussed with an obvious modification of the momentum p̃W ; for the gluon-gluon dipole, it is

given by p̃W = pW +pb. To derive the gluon-gluon dipole, we consider the limit of the 0 → t̄bg1g2W

amplitude squared when two gluons become collinear. The result reads

|M|2 → M∗

µP
gg
µνMν , (9)

where

P gg
µν ∼

[

−gµν

(
ξ

1− ξ
+

1− ξ

ξ

)

− 2(1− ǫ)ξ(1 − ξ)
kµ
⊥
kν
⊥

k2
⊥

]

(10)

is the spin-dependent splitting function. In Eq.(10), ξ and kµ
⊥
are defined as

pµg1 = (1− ξ)pµ + kµ
⊥
− k2

⊥
nν

(1− ξ)(2pn)
, pµg2 = ξpµ − kµ

⊥
− k2

⊥
nν

ξ(2pn)
, (11)

where the light-like vector p defines the collinear direction and another light-like vector nµ is

auxiliary. We can now use the relations between gluon momenta

kµ
⊥
≈ aµ = ξpµg1 − (1− ξ)pµg2 , 2pg1pg2 = − k2

⊥

ξ(1− ξ)
, (12)

to write

P gg
µν ∼

[

−gµν

(
ξ

1− ξ
+

1− ξ

ξ

)

+ (1− ǫ)
aµaν

(pg1pg2)

]

. (13)

To construct the dipoles, we split this expression into two terms

P gg
µν

2pg1pg2
∼ D1,2

µν +D2,1
µν , (14)

where

D1,2
µν =

1

2pg1pg2

{

− ξgµν
(1− ξ)

+
1− ǫ

2

aµaν

(pg1pg2)

}

(15)

and D2,1
µν is given by Eq.(15) with ξ → 1 − ξ. We would like to rewrite this equation in such a

way that the integration over the unresolved phase-space becomes straightforward. To this end,

we express Eq.(15) in terms of the variables z and y and momentum of the top quark pt and p̃W .

Because

(ptpg1)

(ptpg2)
=

1− ξ

ξ
, (16)
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we can identify ξ with the variable z in Eq.(4). It remains to modify the spin-correlation part of

Eq.(15) and write it in appropriate variables. We note that such modifications can be arbitrary

provided that the original form of the spin-correlation part of the dipole is recovered in the limit

when pg1 and pg2 become collinear. We do that by writing

aµ → πµ =

(

gµν − pµt p̃
ν
12 + pνt p̃

µ
12

ptp̃12

)

aν . (17)

In Eq.(17), the momentum p̃12 is the light-like vector given by p̃12 = pt − Λp̃W , where Λ is

the Lorentz transformation constructed explicitly in Ref. [40]. The reduced matrix element that

describes the decay process t → W+b+g is then evaluated for pt,Λp̃W , and p̃12, where Λp̃W is then

split into the W momentum and the b-quark momentum. We note that the projection operator

introduced in Eq.(17) ensures that πµ is transverse to p̃12. As we show below, this feature simplifies

the integration over the unresolved phase-space considerably. It is straightforward to check that

in the collinear (y → 0) limit, πµ → aµ. Hence, to construct a suitable dipole, we can simply

substitute πµ for aµ in Eq.(15). Note also that we are allowed to multiply the spin-correlation part

in Eq.(15) by an arbitrary function f(y, z) provided that it is free of singularities and that it is

normalized in such a way that f(0, z) = 1. We choose this function to be

f(y, z) =
4

m4
t

(ptp̃W )2 − r2m4
t

(1− r2)2
, (18)

to simplify the calculation of the integrated dipole with α-dependence. As the very last step, we

add one more term to the dipole, to account for soft singularities that appear when a gluon is

emitted from the top quark in the initial state. We are finally in the position to write down the

gg final-initial dipole. In the CDR scheme, the result reads

Dµν,t
g1,g2

= 4παsµ
2ǫ 1

2pg1pg2

[

−gµν
(

z

1− z
− m2

t

4

2pg1pg2
(ptpg1)

2

)

+
(1− ǫ)πµπν

2pg1pg2
f(y, z)

]

. (19)

The various quantities that appear in Eq.(19) are

πµ =
1

ptp̃12
((ptp̃12)a

µ − pµt (p̃12a)) , aµ =
2

m2
t (1− r2)

[
(ptpg2)p

µ
g1

− (ptpg1) p
µ
g2

]
,

ptpg1 =
m2

t

2
(1− r2)(1 − z), pg1pg2 =

m2
t

2
(1− r)2y, ptp̃12 =

m2
t (1− r2)

2
,

(20)

with r2 = (pW + pb)
2/m2

t .

To integrate the dipole in Eq.(19) over the unresolved phase-space, we make use of the results

presented in Ref. [40]. It is straightforward to integrate the part proportional to the metric tensor.

Integration of the spin-correlation part is more involved but it can be simplified because vector πµ
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is orthogonal to the light-like vector p̃µ12. This allows us to write

〈
πµπν

(2p1p2)2

〉

y,z

= A1

(

−gµν +
pµt p̃

ν
12 + p̃µ12p

ν
t

ptp̃12

)

+A2p̃
µ
12p̃

ν
12, (21)

where 〈...〉y,z denotes the integration over y and z as in Eq.(6). The term proportional to A2

can be dropped since it gets Lorentz-contracted with the product of on-shell matrix elements that

vanish when contracted with p̃12. Hence, we only need to compute A1, which we easily obtain by

contracting the left hand side of the above formula with the metric tensor. By the same argument,

once A1 is obtained, we can drop terms proportional to p̃µ12 in tensorial structure that is multiplied

by A1 in Eq.(21). Therefore, we can write the result of the integration of Dµν,t
g1,g2 over unresolved

phase-space as proportional to the metric tensor.

We now present the result for the integrated final-initial gg dipole in the CDR scheme for decay

kinematics, including its full α-dependence. The integrated dipole reads

∫

[dg] Dµν,t
g1g2

[1− θ(1− α− z)θ(y − αymax)] =
αs

2π

(4πµ2)ǫ

m2ǫ
t Γ(1− ǫ)

gµν ×
[

1

2ǫ2
+

17− 12 log r1
12ǫ

− 5π2

12
− log2 α− (1− α)

(
23− α+ 2α2

)

12
logα+ log2 r1

− 17

6
log r1 −

r2 log r

6r51

[

6α3(1− r1)(−2 + r1)− 3α2(1− r1)(−6 + 5r1)

+ 12αr1(r
2 + r31) + r21(2 + r1(−1 + 11r1))

]

+
(1− α)r2 log(1− αr1)

4r51

[

(−2α2(1− r1)(−2 + r1) + α(−2 + (5− 3r1)r1)− 2 + r1 + r21 − 4r41)
]

+ Li2(r1)

− 1

240r41(1− αr1)

[

− 8α9r51 − 6α8r41 (2− 7r1)− α7r31(20− 68r1 + 115r21)

+ α6r21(−40 + 130r1 − 165r21 + 216r31)− α5r1(120− 360r1 + 410r21 − 234r31 + 305r41)

+ α4(240 − 180r1 − 510r21 + 650r31 − 195r41 + 278r51)

− α3(600 − 1140r1 + 280r21 + 460r21 − 92r41 + 97r51)

+ α2(360 − 1140r1 + 900r21 + 50r31 − 63r41 − 40r51)

+ 10α
(
12 + 6r1 − 36r21 + 10r31 + 8r41 + 91r51

)
+ 10r21(4r

2 − 91r21)
]
]

.

(22)

The integrated dipole given in Eq.(22) is the final ingredient we need to treat the real emission

contributions to radiative decays of top quarks.
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III. PHENOMENOLOGICAL RESULTS

In this Section we present phenomenological results for the Tevatron (
√
s = 1.96 TeV) and the

LHC (
√
s = 7 TeV). We choose mt = 172 GeV for the top quark mass and mW = 80.419 GeV

for the W -boson mass. We employ MSTW2008 parton distribution functions [42] and use the

corresponding values of αs at leading and next-to-leading order. The couplings of the W -boson

to fermions are obtained from the Fermi constant GF = 1.16639 · 10−5 GeV−2. Since we work in

the narrow width approximation, our results are inversely proportional to the top quark and the

W -boson widths, σ ∼ Γ−2
t Γ−2

W . These decay widths are evaluated at leading and next-to-leading

order in the strong coupling constant, for LO and NLO cross-sections, respectively. For reference,

we give the results for the widths

ΓLO
t = 1.4653 GeV, ΓNLO

t = 1.3375 GeV,

ΓLO
W = 2.0481 GeV, ΓNLO

W = 2.1195 GeV.
(23)

The shown NLO results for the widths are computed with the renormalization scale µ = mt. We

note that the use of NLO expressions for the widths increases the NLO cross-sections by about ten

percent.

We begin with the discussion of the Tevatron results. We consider tt̄ production in the lepton

+ jets channel so that our leading order cross-section contains five jets. The lepton transverse

momentum and the missing energy in the event are required to satisfy p⊥,l > 20 GeV and Emiss
⊥

>

20 GeV. Jets are defined according to the k⊥-jet algorithm [43] with ∆R = 0.5. The jet transverse

momenta are required to be larger than p⊥,j > 20 GeV. Both leptons and jets must be central

|yl| < 2, |yj| < 2. To better discriminate against the background, we require an additional cut on

the transverse energy in the event H⊥ =
∑

j p⊥,j + p⊥,e + Emiss
⊥

> 220 GeV. We present results

below for a single lepton generation. Hadronic decays of W -bosons to first two quark generations

are included and the CKM matrix is set to the identity matrix.

The cross-sections for pp̄ → bW+(e+νe) b̄W
−(jj)+ j production at the Tevatron at leading and

next-to-leading order in perturbative QCD, subject to the above cuts, read

σLO = 75.29+49.2
−27.4 fb, σNLO = 78.9−5.6

−5.6 fb. (24)

In Eq.(24), the central value refers to renormalization and factorization scales set to µ = mt and

the upper (lower) value to µ = mt/2 and µ = 2mt, respectively. We observe a dramatic reduction

in dependence on unphysical scales if NLO QCD corrections are included.
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FIG. 2: Fractions of events when the leading (non-b) jet at the Tevatron comes from tt̄j production, the

decay t → Wbj or mixed processes, as a function of jet transverse momentum. Note the sign of the mixed

contribution and the cancellation between decay and mixed mechanisms at high transverse momentum.

Renormalization and factorization scales are set to µ = mt.

It is interesting to understand how jet radiation in the production and jet radiation in the decay

contribute to cross-sections shown in Eq.(24). To answer this question, we present separate cross-

sections for production and decay processes as well as mixed contributions, as defined in Eq.(3).

For factorization and renormalization scales set to µ = mt we find

σLO = 46.33 (Pr) + 28.96 (Dec) = 75.29 fb,

σNLO = 47.7 (Pr) + 36.7 (Dec)− 5.5 (Mix) = 78.9 fb.
(25)

This result is interesting because it shows that, with our choice of selection criteria, in only sixty

percent of all events that contain a tt̄ pair and a jet, the jet can be associated with the production

process; in the remaining forty percent of events, jets come from top quark decays. These fractions

are stable against NLO QCD corrections, but the reason for that stability is peculiar. Indeed, it

follows from Eq.(25) that the NLO QCD corrections to the production process are relatively small

(K = 1.03) while QCD corrections to the decay process are quite large (K = 1.37). There is,

however, a significant negative contribution from the “mixed” corrections. As described around

Eq.(3), this contribution arises from single jet emission in the production convoluted with single

jet emission in the decay and the corresponding virtual corrections. Because of this cancellation

between decay and mixed contributions, a relatively small correction to jet radiation in top quark

decays remains. Thus, an estimate of the NLO cross-section that employs the exact leading-

order cross-section as in Eq.(24) and the K-factor for the production process K = 1.03 gives

σLO ×K = 77.54 fb, which is in good agreement with the full NLO result (µ = mt) in Eqs.(24,25).

However, this cancellation seems accidental to us. In spite of the proximity of the two numbers

for the tt̄j production at the Tevatron, we were unable to come up with a convincing and general
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FIG. 3: Distributions of the lepton transverse momentum, the lepton rapidity, the transverse momentum

and the rapidity of the hardest jet for tt̄j production at the Tevatron at leading and next-to-leading order in

perturbative QCD. The bands correspond to the variation of renormalization and factorization scales in the

interval mt/2 < µ < 2mt. Results with hard jet emission in the production stage only followed by leading

order decays t → W + b are compared to full NLO results in lower panes.

argument that ensures that K-factors for the production and decay processes are always similar. In

fact, the importance of mixed and decay contributions strongly depends on the kinematic variables.

For illustration we show production, decay and mixed contributions as the function of the transverse

momentum of the leading non-b jet in Fig. 2. At low pjet
⊥

<∼ 60GeV, jet radiation in top quark

decays is the largest (∼ 60%) contribution to the cross section. As expected, at larger pjet
⊥
, the

jet is predominantly emitted in the tt̄ production. The mixed contribution is positive at small jet

momenta but changes sign at moderate pjet
⊥

and cancels the contribution due to jet radiation in

decay at large pjet
⊥
. The situation appears to be quite complex and observable-dependent. We can

therefore anticipate – and we will see this explicitly in the context of the LHC discussion – that

calculations without accounting for jet radiation in the decays of top quarks can lead to misleading

results.

Various kinematic distributions at the Tevatron are shown in Figs. 3 and 4. For all kinematic
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FIG. 4: Distributions of the transverse momentum and the rapidity of the 5th hardest jet, the transverse

energy HT and the transverse momentum of the tt̄ pair for tt̄j production at the Tevatron at leading and

next-to-leading order in perturbative QCD. The bands correspond to the variation of renormalization and

factorization scales in the interval mt/2 < µ < 2mt. Results with hard jet emission in the production stage

only followed by leading order decays t → W + b are compared to full NLO results in lower panes.

distributions we find a significantly reduced dependence on the choice of the factorization and the

renormalization scales as well as shape changes in kinematic tails of some distributions. The impact

of QCD radiation in top quark decays is illustrated in the lower panes of each plot, where ratios

of full NLO cross-section and the NLO tt̄j production cross-section followed by the leading order

decays of top quarks are shown. In general, these plots confirm the expectation that QCD radiation

in top quark decays mostly affects spectra at low transverse momenta. But there are interesting

exceptions where the impact of radiation in the decay is more pronounced. In particular, we

find fairly uniform enhancement of transverse momenta and rapidity distributions of the charged

lepton as well as the rapidity of the hardest jet (Fig. 3). The decay contribution to the rapidity

distribution of a lepton is asymmetric; it appears to be more important at large positive rapidities.

However, the full NLO distribution does not show significant asymmetry in lepton rapidity.

In Fig. 4 we show distributions of the transverse momentum and rapidity of the 5th hardest
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distribution is normalized in such a way that its integral equals to one.

jet, the total transverse energy in the event H⊥ and the transverse momentum of the tt̄ pair. All

these distributions receive non-uniform enhancements from jet radiation in top quark decays. In

particular, H⊥ and p⊥(5th jet) distributions are strongly enhanced at low values of H⊥ and p⊥,

where relatively soft radiation in top quark decays dominates. Also, the rapidity distribution of

the 5th hardest jet receives strong enhancement at central rapidities which is a consequence of the

fact that top quark decay products are produced mostly at small rapidities. We note that similar

shape changes were recently observed in the context of studying pp̄ → tt̄j within the parton shower

approximation in Ref. [27]. Note, however, that the cross-section computed in Ref. [27] seems

closer to the contribution that we identify as “jet radiation in production”. While – as we just saw

– such a result underestimates the cross-section, it is probably consistent with the fact that decays

in Ref. [27] are treated in the parton shower approximation which by construction conserves the

overall probability and does not change normalization.

We also consider the distribution in the transverse momentum of the tt̄ pair in Fig. 5. This

kinematic distribution is particularly interesting because recent results by the D0 collaboration

[44] indicate a disagreement between predictions of MC@NLO [45] and data at low transverse

momenta. Since we deal with top quark decay products rather than with stable top quarks, we

need to define what is meant by the tt̄ transverse momentum. To this end, we imagine that the

reconstruction proceeds by finding two non-b jets whose invariant mass is closest to MW and then

combining the transverse momenta of these two jets, two b-jets, the lepton transverse momentum

and the missing transverse momentum, to obtain the transverse momentum of the tt̄ pair. We find

that the transverse momentum distribution of the tt̄ pair is affected by the radiation in the decay

non-uniformly – the decay contributions are more important for small values of p⊥(tt̄).
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FIG. 6: Fractions of events when the leading (non-b) jet at the 7 TeV LHC comes from tt̄j production, the

decay t → Wbj or mixed processes, as a function of jet transverse momentum. Note the sign of the mixed

contribution and the cancellation between decay and mixed mechanisms at high transverse momentum.

Renormalization and factorization scales are set to µ = mt.

To further match the results of our computation with the experimental setup in [44], we

combine the pp̄ → tt̄j calculation described above with a pp̄ → tt̄ computation at NLO QCD [22].

In the pp̄ → tt̄ computation we impose a jet veto prohibiting additional jets with the transverse

momentum larger than 20 GeV, for consistency with the current tt̄j computation. We present

our results2 in Fig. 5. The normalization of the µ = mt NLO computation is chosen such that the

integral of the distribution is one. The lower pane in Fig. 5 shows that NLO QCD corrections to

pp → tt̄j and pp → tt̄ cause significant shape changes.

We continue with the discussion of tt̄j production at the
√
s = 7 TeV LHC. We imagine that W -

bosons from both t and t̄ decays decay leptonically. For definiteness, we assume that the top quark

decays to a positron and the antitop quark decays to an electron. All generic input parameters that

we employ in the calculation were already described at the beginning of Section III. Specific to the

LHC case, we require at least three jets, defined by the anti-k⊥ jet algorithm [46] with ∆R = 0.4.

All jets have a minimum transverse momentum p⊥,j > 25 GeV and central rapidities |yj| < 2.5.

Similarly, leptons need to satisfy p⊥,l > 25 GeV and |yl| < 2.5, and the missing energy in the event

pmiss
⊥

> 50 GeV. We find the following results for leading and next-to-leading order cross-sections

σLO = 350.3+215.0
−123.1 fb, σNLO = 288−46

−18 fb. (26)

In Eq.(26), the central value refers to renormalization and factorization scales set to µ = mt and

2 We note that the kinematic cuts on the final state particles that we use are similar but not identical to the ones
used by D0 collaboration.
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FIG. 7: Distributions of the lepton transverse momentum, the lepton rapidity, the transverse momentum

and the rapidity of the hardest jet for tt̄j production at the LHC (7 TeV) at leading and next-to-leading

order in perturbative QCD. The bands correspond to the variation of renormalization and factorization

scales in the interval mt/2 < µ < 2mt. Results with hard jet emission in the production stage only followed

by leading order decays t → W + b are compared to full NLO results in lower panes.

the upper (lower) value to µ = mt/2 and µ = 2mt, respectively.

In case of the LHC, the interplay between radiation in the production and radiation in the decay

is very different from the Tevatron. Since top quark pairs at the LHC are mostly produced in gluon

annihilation and the collision energy is high, radiation in the production strongly dominates over

radiation in the decay. We find (µ = mt)

σLO = 316.9 (Pr) + 33.4 (Dec) = 350.3 fb,

σNLO = 323 (Pr) + 40.5 (Dec)− 75.5 (Mix) = 288 fb.
(27)

The three NLO contributions are shown in Fig. 6, as a function of the transverse momentum of

the leading non-b jet. The radiation in the decay becomes less and less important as the process

becomes harder, but the negative mixed contribution appears to be significant also at high p⊥.

Although radiation in the decay at the LHC is less important than at the Tevatron, it is peculiar

that “mixed” contributions are large and negative.
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FIG. 8: Distributions of the transverse energy HT, the transverse momentum of the top quark pair, the

di-lepton invariant mass and the relative azimuthal angle between the leptons for tt̄j production at the LHC

(7 TeV) at leading and next-to-leading order in perturbative QCD. The bands correspond to the variation

of renormalization and factorization scales in the interval mt/2 < µ < 2mt. Results with hard jet emission

in the production stage only followed by leading order decays t → W + b are compared to full NLO results

in lower panes.

We point out that this may cause misleading results, if the full (production and decay) lead-

ing order cross-section and the next-to-leading K-factor for the production process only are used

to estimate the full NLO cross-section. The K-factor (µ = mt) for the production process is

323 fb/316.9 fb ∼ 1.02, so the naive estimate of the NLO cross-section is 1.02 × σLO ≈ 357 fb,

which is about twenty percent higher than the correct NLO value given in Eq.(27). We emphasize

that the “mixed” contribution to tt̄j production is a NLO QCD effect, so unless NLO effects are

properly incorporated into computations of associated production of unstable particles, it is unclear

to what extent various predictions for cross-sections can be trusted.

In Fig. 7 and 8 we show various kinematic distributions for the LHC. The importance of QCD

radiation in decays for various observables can be seen from the lower panes. We find that for

the LHC, the impact of the QCD radiation in the decay is modest; the variable that seems to

be most affected is H⊥ at small values of the transverse energy. For kinematics distributions in
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dilepton invariant mass or in the relative azimuthal angle of the two leptons, there is a uniform

reduction, almost independent of ml+l− and φl+l− . Finally, we note that given the discrepancy

between MC@NLO prediction for the transverse momentum of the tt̄ pair and the D0 data [44], it is

important to measure this distribution at the LHC. Thanks to a much higher energy and luminosity,

the LHC should be able to probe a much broader distribution in p⊥(tt̄), including regions where

fixed order QCD computations are directly applicable. We show the p⊥(tt̄) distribution in Fig. 8

and find that this distribution receives important modifications due to radiation in the decay.

IV. CONCLUSIONS

In this paper, we discussed the computation of NLO QCD corrections to the production of a

tt̄ pair in association with a hard jet at hadron colliders. While NLO QCD corrections to this

process have been considered in the literature several times already, in this article for the first

time, QCD radiative corrections to top quarks decays are studied, including the possibility that

the jet is emitted in the decay stage. Within the narrow width approximation, the results reported

in this paper lead to a complete and fully consistent treatment of top quark pair production and

decay in association with a jet at next-to-leading order in perturbative QCD.

While at leading order there is a clear separation into production and decay stages, at next-to-

leading order there appears a new contribution where one parton is emitted in the production and

the other parton in the decay. Since this “mixed” contribution must be supplemented by virtual

corrections to ensure infra-red safety, we find that it can be negative. This leads to interesting

effects that, to the best of our knowledge, have not been discussed in the literature before. In

particular, it is far from clear that a widely used procedure of estimating NLO QCD cross-sections

by computing leading order cross-sections with decays and re-scaling them by K-factors obtained

from calculations that ignore radiation of jets in the decay is valid. In fact, we find that this

procedure accidentally gives an accurate estimate of the NLO cross-section for tt̄j production

at the Tevatron but similarly overestimates the NLO QCD cross-section at the LHC by twenty

percent. The absence of clear pattern suggests that it is best to include QCD radiative corrections

to decays of unstable particles into theoretical predictions for hard scattering processes.

Jet radiation in the decays can have significant impact on kinematic distributions. One such

case is the H⊥ distribution at the Tevatron which exhibits significant distortion due to radiation

in the final state. While the situation at the LHC is less dramatic, even there certain distributions

are systematically distorted at the ten to twenty percent level.
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Recent progress in NLO computations was driven by the idea that perturbative QCD can

describe hard scattering well, pushing theorists towards providing realistic descriptions of com-

plicated hard processes which can be directly compared to experimental data. Clearly, in the

case of heavy short-lived particles such as top quarks, this implies that NLO QCD computations

should be applied to their decay, including all spin correlations. All of this can be done in a

rather straightforward way in the narrow width approximation which provides a parametric

framework for such studies. We have demonstrated how this framework can be used to describe

the production of tt̄ pairs in association with a jet at hadron colliders. We look forward to further

applying this framework for the description of both Standard Model and New Physics processes

at the LHC.
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