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15LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

16LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
17CEA, Irfu, SPP, Saclay, France
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We present a measurement of pp̄ → Zγ → `+`−γ (` = e, µ) production with a data sample
corresponding to an integrated luminosity of 6.2 fb−1 collected by the D0 detector at the Fermilab
Tevatron pp̄ Collider. The results of the electron and muon channels are combined, and we measure
the total production cross section and the differential cross section dσ/dpγT , where pγT is the mo-
mentum of the photon in the plane transverse to the beamline. The results obtained are consistent
with the standard model predictions from next-to-leading order calculations. We use the transverse
momentum spectrum of the photon to place limits on anomalous ZZγ and Zγγ couplings.

PACS numbers: 12.60.Cn, 13.85.Rm, 13.85.Qk

I. INTRODUCTION

The standard model (SM) describes the electroweak
interactions through a non-abelian gauge group SU(2)L⊗
U(1)Y , which includes self-interactions of gauge bosons.
Because the Z boson carries no electric charge, a coupling
between a Z boson and a photon is not permitted. The
Zγ production in the SM is dominated by the lowest-
order Feynman diagrams shown in Fig. 1.

An excess in the number of high-energy photons can
be a sign of new physics, e.g., supersymmetry, as de-
scribed in Ref. [? ] or new heavy fermions with non-
standard couplings to the gauge bosons, as discussed in

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cUPIITA-IPN, Mex-
ico City, Mexico, dSLAC, Menlo Park, CA, USA, eUniversity
College London, London, UK, fCentro de Investigacion en Com-
putacion - IPN, Mexico City, Mexico, gECFM, Universidad Au-
tonoma de Sinaloa, Culiacán, Mexico, and hUniversität Bern, Bern,
Switzerland. ‡Deceased.

Ref. [? ]. Such an excess of high-energy photons can
be described by assuming only Lorentz and local U(1)em
gauge invariant ZZγ and Zγγ trilinear gauge boson ver-
tices of the form shown in Fig. 2, using an effective the-
ory with eight complex coupling parameters, hVi , where
i = 1, 2, 3, 4 and V = Z or γ [1]. Here, the couplings pa-
rameters hV1 and hV3 (hV2 and hV4 ) are associated with
dimension-six (dimension-eight) operators which allow
for an interaction between a Z boson and a photon. To
conserve tree-level unitarity at asymptotically high en-
ergies, one can introduce form factors dependent on the
square of the partonic center-of-mass energy, ŝ, given by
hVi = hV0i/(1+ ŝ/Λ2)n, where Λ is the mass scale at which
the new physics responsible for anomalous couplings is
introduced [2]. These anomalous gauge boson couplings
would give rise to an excess of photons at high transverse
momentum, pγT , which can be searched for by measur-
ing the total production cross section and the differential
cross section dσ/dpγT for Zγ → `+`−γ (``γ henceforth)
production. If no evidence of new physics is seen, we can
place limits on the real components of the CP -even cou-
pling parameters, hV03 and hV04, for Λ = 1.2 and 1.5 TeV.



4

q

q

*γZ/

+l
-l

γ

q

q

*γZ/ +l
-l

γ

q

q

*γZ/

+l

-l

γ

q

q

*γZ/

+l

-l

γ

(a)

q

q

*γZ/

+l
-l

γ

q

q

*γZ/ +l
-l

γ

q

q

*γZ/

+l

-l

γ

q

q

*γZ/

+l

-l

γ

(b)

q

q

*γZ/

+l
-l

γ

q

q

*γZ/ +l
-l

γ

q

q

*γZ/

+l

-l

γ

q

q

*γZ/

+l

-l

γ

(c)

q

q

*γZ/

+l
-l

γ

q

q

*γZ/ +l
-l

γ

q

q

*γZ/

+l

-l

γ

q

q

*γZ/

+l

-l

γ

(d)

FIG. 1: Feynman diagrams for leading-order Zγ production
in the SM: (a) and (b) initial-state radiation from one of the
initial-state partons, (c) and (d) final-state radiation from one
of the final-state leptons.
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FIG. 2: Feynman diagrams illustrating anomalous Zγ pro-
duction with a ZZγ vertex (a) and a Zγγ vertex (b) .

Following Ref. [2], we choose form-factor powers for the
unitarity scaling dimensions of n = 3 for hV3 and n = 4
for hV4 . Zγ production has been previously studied at
collider experiments [3? ? ? –8], and because the value
of Λ greatly affects the scale of anomalous Zγ produc-
tion, we choose to perform this analysis for the values
of Λ that were used by the recent D0 [5? ] and CDF
[8] analyses. This choice of Λ differs from the value used
by the ALEPH [4], CMS [? ], DELPHI [7], L3 [6], and
OPAL [3] collaborations.

We present measurements of the inclusive cross sec-
tion and differential cross section for Zγ production in
the electron and muon channels using a data sample cor-
responding to an integrated luminosity of 6.2 ± 0.4 fb−1

collected at
√
s = 1.96 TeV by the D0 detector at the

Fermilab Tevatron Collider between June 2006 and July
2010. These results provide a significant improvement
in the sensitivity to anomalous ZZγ and Zγγ produc-
tion compared to a previous D0 publication, utilizing the
same channels and an integrated luminosity of 1 fb−1 [4].
In addition to increasing the size of the data set, we also
combine with a previous result in the same channels [?
], along with another D0 result [5] that used 3.6 fb−1 of

Zγ → ννγ production to place stringent limits on Zγ
anomalous couplings.

II. THE D0 DETECTOR

The D0 detector [9–13] consists of a central track-
ing system contained within a 2 T superconducting
solenoidal magnet, surrounded by a central preshower
(CPS) detector, a liquid-argon sampling calorimeter, and
an outer muon system. The tracking system, consisting
of a silicon microstrip tracker (SMT) and a scintillat-
ing fiber tracker (CFT), provides coverage for charged
particles in the pseudorapidity range |η| . 3 [14]. The
CPS is located immediately before the inner layer of the
calorimeter and has about one radiation length of ab-
sorber followed by several layers of scintillating strips.
The calorimeter consists of a central cryostat sector (CC)
with coverage |η| . 1.1 and two end calorimeters (EC)
which extend coverage to |η| ≈ 4.2. The electromag-
netic (EM) section of the calorimeter is segmented into
four longitudinal layers (EMi, i = 1, 4) with transverse
segmentation of ∆η × ∆φ = 0.1 × 0.1, except in EM3,
where it is 0.05× 0.05. The muon system resides beyond
the calorimeter and consists of a layer of tracking detec-
tors and scintillation trigger counters before a 1.8 T iron
toroidal magnet, followed by two similar layers after the
toroid. The coverage of the muon system corresponds to
a pseudorapidity range |η| < 2.

III. EVENT SELECTION

Candidate Zγ events are selected in the e+e−γ and
µ+µ−γ (eeγ and µµγ henceforth) final states. The pp̄
interaction vertex must be reconstructed within ±60 cm
of the center of the D0 detector along the beam (z) axis.
For the electron channel, a sample of candidate Z-boson
events is collected with a suite of single-electron triggers.
The electrons are selected by requiring an EM cluster
in either the CC (|η| < 1.1) or EC (1.5 < |η| < 2.5)
regions of the EM calorimeter with transverse momen-
tum pT > 25 (15) GeV/c for the electron candidate with
the highest (next-to-highest) transverse energy contained

within a cone of radius ∆R =
√

(∆η)2 + (∆φ)2 = 0.2,
centered on the axis of the EM shower. At least 90%
of the cluster energy must be deposited within the EM
section of the calorimeter. Electron candidates, with a
shower shape consistent with that of an electron, are re-
quired to be spatially matched to a track and to be iso-
lated in both the calorimeter and tracking detectors. To
suppress jets and photons misidentified as electrons, a
likelihood discriminant is built using a set of variables
sensitive to differences in tracker activity and energy
deposits in the calorimeter: the number of tracks and
the scalar sum of the transverse momentum of all tracks
within ∆R < 0.4 of the EM cluster, the fraction of energy
deposited in the EM section of the calorimeter, the longi-
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tudinal and transverse shower profile in the calorimeter,
the ratio between the transverse energy in the calorime-
ter and the transverse momentum of the electron asso-
ciated track. To further suppress jets misidentified as
electrons, in particular for high instantaneous luminos-
ity conditions, a neural network algorithm is trained on
Drell-Yan Z/γ∗ → e+e− and jet data, using information
from the calorimeter and CPS: the numbers of cells above
a threshold in EM1 within ∆R < 0.2 and 0.2 < ∆R <
0.4 of the EM cluster, the number of CPS clusters within
∆R < 0.1 of the EM cluster, and the squared-energy
weighted width of the energy deposit in the CPS. Events
where both electrons are contained within the EC are ex-
cluded because of the small signal acceptance. Candidate
events where the Z boson decays into two muons are col-
lected using a suite of single-muon triggers. Within the
muon channel, muon candidates are required to be within
|η| < 2 and matched to a well-isolated track in both the
tracker and the calorimeter with transverse momentum
pT > 15 GeV/c. The highest pT muon must have pT >
20 GeV/c. Both muon candidates are required to origi-
nate from within 2 cm of the interaction point in the z
direction.

Photon candidates in both the electron and muon
channels are required to have transverse momentum pγT >
10 GeV/c within a cone of radius ∆R = 0.2 centered
around the EM shower in the CC. The rapidity of the
photon, ηγ , is required to be |ηγ | < 1.1. Additionally,
the photon candidate must satisfy the following require-
ments: (i) at least 90% of the cluster energy is deposited
in the EM calorimeter; (ii) the calorimeter isolation
variable I = [Etot(0.4) − EEM(0.2)]/EEM(0.2) < 0.15,
where Etot(0.4) is the total energy in a cone of radius
∆R = 0.4 and EEM(0.2) is the EM energy in a cone
of radius ∆R = 0.2; (iii) the energy-weighted cluster
width in the EM3 layer is consistent with that for an
EM shower; (iv) the scalar sum of the pT of all tracks,
psumTtrk

, originating from the interaction point in an annu-
lus of 0.05 < ∆R < 0.4 around the cluster is less than 2.0
GeV/c; (v) the EM cluster must not be spatially matched
to either a reconstructed track or to energy depositions
in the SMT or CFT detectors that are compatible with
a trajectory of an electron [15]; and (vi) an output larger
than 0.1 of an artificial neural network (ONN ) [16] that
combines information from a set of variables sensitive to
differences between photons and jets in the tracking de-
tector, the calorimeter, and the CPS detector.

The dilepton invariant mass, M``, is required to be
greater than 60 GeV/c2, and the photon must be sep-
arated from each lepton by ∆R`γ > 0.7. Additionally,
each lepton must be separated from a jet by ∆R`j > 0.5.
In the electron and muon channels, we select 1002 and
1000 data events, respectively. In order to reduce the
contribution of final-state radiation (FSR), subset data
samples are defined with the requirement that the re-
constructed three-body invariant mass, M``γ , exceed 110
GeV/c2. With this additional requirement, 304 and 308
data events are selected in the electron and muon chan-

nels, respectively.

A. Background Subtraction

The selected sample is contaminated by a small ad-
mixture of Z+jet events in which a jet is misidentified
as a photon. To estimate this background in the elec-
tron channel, the fraction of jets that pass the photon
selection criteria but fail either the psumTtrk

or the shower
width requirement, as determined by using a dijet data
sample, is parameterized as a function of pγT and ηγ (ratio
method). The background from Z+jet production is then
estimated starting from a data sample obtained by re-
versing the requirements either on psumTtrk

or on the shower
width requirement, and applying the same parametriza-
tion. A systematic uncertainty associated with the esti-
mation of the number of real photons in the data sam-
ples is due to the finite size of the dijet background sam-
ple. After subtracting the estimated background from
the data in the electron channel, we estimate 926 ± 53
(stat.) ± 19 (syst.) signal events when no M``γ require-
ment is applied, and 255 ± 15 (stat.) ± 5 (syst.) signal
events with M``γ > 110 GeV/c2.

To estimate the background in the muon channel, we
use a matrix method to estimate the Z+jet background
contribution. After applying all of the selection criteria
described above, a tighter requirement on ONN is used
to classify the data events into two categories, depending
on whether the photon candidate passes (p) or fails (f)
this requirement. The corresponding number of events
compose a 2-component vector (Np, Nf ). Thus, the sam-
ple composition is obtained by resolving a linear system
of equations (Np, Nf )T = E × (NZγ , NZj)

T , where NZγ
(NZj) is the true number of Z + γ (Z+jet) events in the
fiducial region. The 2 × 2 efficiency matrix E contains
the photon εγ and jet εjet efficiencies that are estimated
using photon and jet MC samples and validated in data.
Based on these studies, the efficiencies are parameterized
as a function of the photon candidates’ ηγ with 1.5% and
10% relative systematic uncertainties for εγ and εjet re-
spectively. Having subtracted the estimated background
from data in the muon channel, we estimate 947 ± 40
(stat.) ± 16 (syst.) signal events when no M``γ require-
ment is applied, and 285 ± 24 (stat.) ± 2 (syst.) signal
events requiring M``γ > 110 GeV/c2.

As a cross-check, the Z+jet background is also esti-
mated through a fit to the shape of the ONN distribu-
tion in data for both electron and muon channels, using
MC templates constructed from simulated photon and
jet events. The results are in good agreement with those
obtained from the ratio and matrix methods.



6

IV. RESULTS

A. Total Cross Section

The total cross section for ``γ production is obtained
from the ratio of the acceptance-corrected ``γ rate for
M`` > 60 GeV/c2, ∆R`γ > 0.7, pγT > 10 GeV/c, and
|ηγ | < 1, to the total acceptance-corrected dilepton rate
for M`` > 60 GeV/c2. Henceforth, these acceptance re-
quirements are referred to as the generator-level require-
ments. We utilize this method because uncertainties as-
sociated with the trigger efficiencies, reconstruction ef-
ficiencies, and integrated luminosity are larger than the
theoretical uncertainties and cancel in the ratio. This
ratio is multiplied by a theoretical estimate for the to-
tal cross section for inclusive Z/γ∗ → `` production for
M`` > 60 GeV/c2:

σZγ × B =
κNdata

``γ (A× εID)
−1
``γ

Ndata
`` (A× εID)

−1
``

× (σZ × B)NNLO
FEWZ. (1)

Here, Ndata
`` and Ndata

``γ are the number of measured Z
and background-subtracted Zγ events in data sample,
respectively. The factor (σZ ×B)NNLO

FEWZ is calculated with
the fewz next-to-next-to-leading-order (NNLO) genera-
tor [17]-[18], with the CTEQ6.6 parton distribution func-
tions (PDF) [19]. The fewz theoretical prediction is
262.9 ± 8.0 pb, where the dominant uncertainty is from
the choice of PDF. The term B is the branching fraction
for Z/γ∗ → ``, which in the SM is 3.4% for either elec-
trons or muons. The factor κ corrects for the resolution
effects that would cause events not to pass the selections
on the generator-level quantities, e.g. a generator-level
photon with pγT < 10 GeV/c, but to pass the recon-
struction requirements, e.g. a reconstructed photon with
pγT > 10 GeV/c. This factor is only used for Zγ → ``γ
events, and corrects for the photon energy smearing that
dominates in the first pγT bin. The muon pT resolution
affects both Z/γ∗ → `` and Zγ → ``γ and the cor-
responding correction cancel in the ratio of cross sec-
tions. For the events that pass the generator-level re-
quirements, the factors (A × εID)``γ and (A × εID)``
provide the fraction of events that pass the analysis re-
quirements, with all acceptances measured relative to the
kinematic requirements at the generator level for the ``
and ``γ final states, respectively. Events migrate be-
tween bins in pγT because of finite detector resolution,
and these effects are taken into account in calculating
(A × εID)``γ as a function of pγT , while (A × εID)`` is
calculated for the entire `` sample. To estimate κ and
A × εID, we use inclusive Z/γ∗ → `` events generated
with the pythia [20] generator with final-state radia-
tion simulated using photos [21] and the CTEQ6.1L [22]
PDF set. Because pythia is a leading-order (LO) gen-
erator and does not reproduce the observed pZT spectrum
in data, generated events are weighted to reflect the pZT
distribution observed in Ref. [23]. Events are then traced
through the D0 detector using a simulation based on

geant [24]. Data events from random beam crossings
are overlaid on the simulated interactions to reproduce
the effects of multiple pp̄ interactions and detector noise.
Simulated interactions are reweighted that take into ac-
count the observed differences between data and simu-
lation, e.g., z coordinate of the vertex, instantaneous lu-
minosity, trigger efficiency, lepton identification (ID) effi-
ciency, photon ID efficiency, and resolution effects. Here,
the factor (A × εID)`` has values of 0.15 (0.17) in the
electron channel (muon channel). When no constraints
on M``γ are applied, the factor κ has average values of
0.83± 0.01 (stat.) and 0.85± 0.01 (stat.) for the electron
and muon channels, respectively, and the average value
of (A × εID)``γ is 0.12 for both the electron and muon
channels. Values for (A × εID)``γ and κ are similar for
the subsample requiring M``γ > 110 GeV/c2.

To account for systematic uncertainty on the migra-
tion into the sample from generated events with pγT <
10 GeV/c, we conservatively vary the number of events
produced outside the generator-level requirements. in the
pythia simulation by ±20%, found as an upper estimate
in studies of photon energy resolution in this kinematic
regime, to measure the effect on the final cross section
measurement. We find that the effect introduces a 1.5%
systematic uncertainty on the total cross section. The
dominant uncertainty corresponding to the calculation
of A × εID is due to choice of the PDF set. There are
20 free parameters in the CTEQ6.1L parametrization of
the PDF that reflect fits to data from previous experi-
ments. The uncertainties on acceptance and efficiencies
due to the PDF parametrization are estimated using the
CTEQ6.1M PDF uncertainties, following Ref. [25]. We
find a total PDF uncertainty of 3.5%, dominated by the
uncertainty on the acceptance-correction to the full ge-
ometrical lepton acceptance. The photon ID efficiency
is determined from a simulated sample of photons and
is estimated to have an uncertainty of 10% for pγT < 15
GeV/c and 3% for pγT > 15 GeV/c.

To reduce the contribution of FSR in the data sam-
ples, we calculate the cross section with and without the
M``γ > 110 GeV/c2 requirement. To combine the elec-
tron and muon channels, we utilize the BLUE method
[26], which averages the results of measurements with
correlated systematic uncertainties. We assume the PDF
and photon ID efficiency uncertainties to be 100% corre-
lated between the two channels. The total cross section
results can be found in Tables I and II. The measure-
ments are consistent with the NLO mcfm [27] prediction
using CTEQ6.6 PDF set [19] and the renormalization
and factorization scales evaluated at the mass of the W
boson, MW = 80 GeV/c2. The PDF uncertainties as-
sociated with the SM prediction are evaluated following
Ref. [25]. We reevaluate the values for the pγT spectrum
calculated by NLO mcfm with the renormalization and
factorization scales set to 160 GeV/c2 and again at 40
GeV/c2 and use these as estimates of the theoretical un-
certainty of one standard deviation relative to the central
NLO mcfm value.
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TABLE I: Summary of the total cross-section measurements,
when no M``γ requirement is applied, for individual channels,
combined channels, and the NLO mcfm calculation with as-
sociated PDF and scale uncertainties.

σZγ × B [fb]
eeγ data 1026 ± 62 (stat.) ± 60 (syst.)
µµγ data 1158 ± 53 (stat.) ± 70 (syst.)
``γ combined data 1089 ± 40 (stat.) ± 65 (syst.)

NLO mcfm 1096 ± 34 (PDF) +2
−4 (scale)

TABLE II: Summary of the total cross-section measurements,
with the M``γ > 110 GeV/c2 requirement, for individual
channels, combined channels, and the NLO mcfm calculation
with associated PDF and scale uncertainties.

σZγ × B [fb]
eeγ data 281 ± 17 (stat.) ± 11 (syst.)
µµγ data 306 ± 28 (stat.) ± 11 (syst.)
``γ combined data 288 ± 15 (stat.) ± 11 (syst.)

NLO mcfm 294 ± 10 (PDF) +1
−2 (scale)

B. Differential Cross Section dσ/dpγT

We use the matrix inversion technique [28] to unfold
the experimental resolution and extract d(σZγ ×B)/dpγT
(dσ/dpγT henceforth), the differential cross section for
Zγ → ``γ, as a function of the true pγT . The elements of
the smearing matrix between true and reconstructed pγT
bins are estimated using the full simulation of the detec-
tor response on a sample of Zγ events generated using
pythia. Then, the matrix is inverted to obtain the un-
smeared spectrum. We confirm that the unfolding proce-
dure introduces a negligible bias. Following Ref. [29], the
position of the the data points are plotted in Figs. 3 and
4 at the value of pγT where the cross section equals the
average value for that bin. The theoretical uncertainties
associated with the choice of PDF and the renormaliza-
tion and factorization scales are determined analogously
to the theoretical prediction for the total production cross
section. The combined differential cross sections dσ/dpγT
are shown in Figs. 3 and 4 for no M``γ requirement and
M``γ > 110 GeV/c2, respectively. The values associated
with Figs. 3 and 4 are given in Tables III and IV.

V. LIMITS ON ANOMALOUS COUPLINGS

To set limits on anomalous trilinear gauge boson cou-
plings, we generate Zγ events for different values of the
anomalous couplings using the NLO Monte Carlo gen-
erator of Ref. [2]. SM Drell-Yan production is included
by reweighting the pγT spectrum to mcfm for vanishing
anomalous couplings. As shown in Fig. 5, anomalous
Zγ couplings would contribute to an excess of high en-
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FIG. 3: Unfolded dσ/dpγT distribution with no M``γ require-
ment for combined electron and muon data compared to the
NLO mcfm prediction.

ergy photons as compared to the SM prediction. We ap-
ply the following generator-level requirements: M`` > 60
GeV/c2, ∆R`γ > 0.7, pγT > 10 GeV/c, |ηγ | < 1, and
M``γ >110 GeV/c2, generate pγT templates as a func-
tion of the anomalous couplings, and use the known
acceptance and resolution functions to fold the pre-
dicted generator-level distribution into a reconstruction-
level distribution for pγT . Using Poisson statistics for
pγT > 30 GeV/c, we define a likelihood function to com-
pare the combined electron and muon channels with a
predicted distribution for given values of anomalous cou-
plings. In the absence of any significant deviation from
the SM prediction, we set one-dimensional (1D) and two-
dimensional (2D) limits on the anomalous coupling pa-
rameter values at the 95% C.L. A combined log-likelihood
function using all data is defined by the sum of the indi-
vidual log-likelihood functions of the electron and muon
channels. We include the effect of systematic uncertain-
ties associated with transforming a Monte Carlo pγT tem-
plate from the generator-level into a reconstructed dis-
tribution and find that these uncertainties contribute to
the value of the calculated limits on the order of 1%. We
generate a 10 × 10 grid of templates for the pγT distri-
bution as a function of hV03 and hV04 for |hV03| < 0.1 and
|hV04| < 0.01, while setting all other coupling parameters
to zero, and the limits are derived by varying about the
maxima of the log-likelihood functions for the 95% C.L
[30]. Results for the 1D limits for Λ = 1.2 TeV and
1.5 TeV are shown in Table V. The 1D and 2D lim-
its on the anomalous couplings parameters are shown in
Figs. 6 and 7, utilizing the electron and muon channels.



8

TABLE III: Summary of the unfolded differential cross section dσ/dpγT , when no M``γ requirement is applied, and NLO mcfm
predictions with PDF and scale uncertainties

``γ Combined Data NLO mcfm
pγT bin pγT center dσ/dpγT

[GeV/c] [GeV/c] [fb/(GeV/c)]

10−15 12.4 111.14 ± 4.40 (stat.) ± 11.99 (syst.) 104.02 ± 4.10 (PDF) +1.4
−1.2 (scale)

15−20 17.2 51.41 ± 3.83 (stat.) ± 2.65 (syst.) 57.13 ± 2.23 (PDF) +1.3
−1.8 (scale)

20−25 22.5 25.34 ± 2.74 (stat.) ± 1.13 (syst.) 28.77 ± 0.43 (PDF) +1.1
−0.7 (scale)

25−30 27.5 8.08 ± 1.45 (stat.) ± 0.40 (syst.) 10.16 ± 0.26 (PDF) +0.7
−0.5 (scale)

30−40 34.4 3.23 ± 0.60 (stat.) ± 0.17 (syst.) 4.15 ± 0.16 (PDF) +0.34
−0.19 (scale)

40−60 48.5 1.70 ± 0.26 (stat.) ± 0.088 (syst.) 1.60 ± 0.061 (PDF) +0.008
−0.010 (scale)

60−100 76.5 0.34 ± 0.079 (stat.) ± 0.018 (syst.) 0.42 ± 0.017 (PDF) +0.028
−0.028 (scale)

100−200 124.5 0.038 ± 0.014 (stat.) ± 0.002 (syst.) 0.052 ± 0.001 (PDF) +0.003
−0.001 (scale)

TABLE IV: Summary of the unfolded differential cross section dσ/dpγT , with the M``γ > 110 GeV/c2 requirement, and NLO
mcfm predictions with PDF and scale uncertainties .

``γ Combined Data NLO mcfm
pγT bin pγT center dσ/dpγT

[GeV/c] [GeV/c] [fb/(GeV/c)]

10−15 13.7 13.57 ± 1.87 (stat.) ± 2.43 (syst.) 13.48 ± 0.48 (PDF) +0.25
−0.51 (scale)

15−20 17.2 14.87 ± 2.17 (stat.) ± 2.30 (syst.) 12.25 ± 0.47 (PDF) +0.29
−0.36 (scale)

20−25 22.0 7.91 ± 1.76 (stat.) ± 0.81 (syst.) 8.94 ± 0.25 (PDF) +0.13
−0.35 (scale)

25−30 27.4 5.30 ± 1.15 (stat.) ± 0.44 (syst.) 6.13 ± 0.21(PDF) +0.016
−0.25 (scale)

30−40 34.5 3.08 ± 0.57 (stat.) ± 0.33 (syst.) 3.71 ± 0.15 (PDF) +0.012
−0.14 (scale)

40−60 48.6 1.73 ± 0.26 (stat.) ± 0.17 (syst.) 1.57 ± 0.061 (PDF) +0.004
−0.094 (scale)

60−100 76.5 0.34 ± 0.079 (stat.) ± 0.019 (syst.) 0.42 ± 0.017 (PDF) +0.028
−0.028 (scale)

100−200 124.5 0.038 ± 0.014 (stat.) ± 0.002 (syst.) 0.052 ± 0.001 (PDF) +0.003
−0.001 (scale)
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FIG. 4: Unfolded dσ/dpγT distribution with M``γ > 110
GeV/c2 for combined electron and muon data compared with
the NLO mcfm prediction.

TABLE V: Summary of the 1D limits on the ZZγ and Zγγ
coupling parameters at the 95% C.L.

``γ 7.2 fb−1

``γ 6.2 fb−1 ννγ 3.6 fb−1

Λ = 1.2 TeV Λ = 1.5 TeV Λ = 1.5 TeV

|hZ03| < 0.050 0.041 0.026
|hZ04| < 0.0033 0.0023 0.0013
|hγ03| < 0.052 0.044 0.027
|hγ04| < 0.0034 0.0023 0.0014

In these figures, the dotted lines represent the theoretical
limits on the anomalous coupling values, beyond which
S-matrix unitarity is violated. Because the hV04 parame-
ters come from dimension-eight operators, the limits are
more constrained than those of hV03 couplings, which are
dimension-six.

We combine these results with those of a previous D0
Zγ analysis [5] . In that analysis, the 1D and 2D limits
on the anomalous couplings parameters were calculated
using a data sample corresponding to an integrated lumi-
nosity of 1 fb−1 of data collected between Oct. 2002 and
Feb. 2006 (3.6 fb−1 of data collected between Oct. 2002
and Sept. 2008) in the eeγ and µµγ channels (ννγ chan-
nel), for Λ = 1.5 TeV. Results can be found in Fig. 8 and
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FIG. 5: The SM prediction and anomalous Zγ cou-
pling production compared with the unfolded dσ/dpγT
for combined muon and electron channels for pγT > 30
GeV/c and M``γ > 110 GeV/c2.

Table V.

VI. CONCLUSIONS

We have measured the differential and total cross sec-
tions for Zγ → ``γ production in pp̄ collisions using the
D0 detector at the Tevatron Collider with and without a
M``γ > 110 GeV/c2 requirement. Both the total produc-
tion cross sections and differential cross sections dσ/dpγT
are consistent with the SM at NLO predicted by mcfm
[27]. We observe no deviation from SM predictions and
place 1D and 2D limits on the CP -even anomalous Zγ
couplings for Λ = 1.2 and 1.5 TeV. When combining
with the previous D0 analyses, the limits are compara-
ble to those found in the most recent CDF result [8],
which uses ≈ 5 fb−1 in the ``γ and νν̄γ channels and
Λ = 1.5 TeV. Our results include the first unfolded pho-
ton differential cross section dσ/dpγT , as well as the most
precise measurement of the total production cross section
of Zγ → ``γ.
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