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Exclusive quarkonium photo- and electro-production off the nucleon is studied in the framework
of generalized parton distributions (GPDs). The short distance part of the process is treated at
leading order in perturbative Quantum Chromodynamics. The main focus is on the GPD E for
gluons. On the basis of different models for Eg we estimate the transverse target spin asymmetry
for typical kinematics of a future Electron Ion Collider. We also explore the potential of measuring
the polarization of the recoil nucleon.
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I. Introduction.—For about 15 years, GPDs [1–9] have
been playing a key role in hadronic physics for a number
of reasons. First, GPDs serve as unifying objects, con-
taining the information encoded both in ordinary parton
distributions and in form factors. Second, GPDs allow
us to explore the partonic structure of hadrons in three
dimensions [10–13]. Third, GPDs enter Ji’s spin sum rule
of the nucleon [2].
GPDs can be measured in hard exclusive processes like

deep-virtual Compton scattering off the nucleon or hard
exclusive meson production [2–5, 14, 15]. They depend
on three kinematical variables: the average momentum
fraction x of the partons, the longitudinal momentum
transfer ξ to the nucleon (skewness), and the invariant
momentum transfer t of the process, i.e., F = F (x, ξ, t)
for a generic GPD F . According to [2], GPDs give access
to the angular momenta of quarks and gluons inside the
nucleon, where the total spin of the nucleon is given by
1
2 =

∑

q J
q + Jg. Specifically, the gluon angular momen-

tum can be determined through [2]

Jg =
1

2

∫ 1

0

dx
(

Hg(x, ξ, 0) + Eg(x, ξ, 0)
)

, (1)

with Hg and Eg denoting the dominant (leading twist)
GPDs of unpolarized gluons inside the nucleon. Consid-
erable information on Hg is already available, for it is
connected to the ordinary unpolarized gluon distribution
via Hg(x, 0, 0) = xg(x) — see for instance Refs. [16–22].
In comparison, our knowledge about Eg is still marginal.
Therefore, in particular, the value for Jg in Eq. (1) is still
very uncertain.
It has been known for quite some time that exclusive

quarkonium (J/ψ or Υ) production off the nucleon is very
suitable for probing the gluonic structure of the nucleon
in a clean way [23, 24], since quark exchange plays only
a minor role. Moreover, due to the large scale provided
by the heavy quark/meson mass, perturbative Quantum
Chromodynamics (QCD) can be applied even for photo-
production. In the present work, we consider both photo-
and electro-production of J/ψ and Υ off a proton target.
Using leading order (LO) results for the hard scattering
coefficients we study the prospects for measuring Eg by
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FIG. 1: Sample LO diagram for the process in (2). The lower
part of the diagram is parameterized in terms of gluon GPDs.

means of quarkonium production. To this end we con-
sider several models for Eg, and compute the transverse
target spin asymmetry as well as a double spin observ-
able which requires polarimetry of the recoil nucleon. We
provide numerical results for typical kinematics of a po-
tential future Electron Ion Collider (EIC) [25–27].
II. Theoretical framework.—For definiteness, we con-
sider the process

γ(∗)(q, µ) + p(p, ν) → V (q′, µ′) + p(p′, ν′), (2)

where the 4-momenta and the helicities of the particles
are specified. We further use Q2 = −q2, m2 = p2 = p′2,
m2

V = q′2, t = (p− p′)2, and the squared photon-nucleon
cm energy W 2 = (p+ q)2. The skewness variable can be
expressed as

ξ =
x̃B

2− x̃B
, with x̃B =

m2
V +Q2

W 2 +Q2
, (3)

which holds for arbitrary values of Q2. The minimal
value of t is given by |t0| = 4m2ξ2/(1− ξ2).
For Q2 much larger than all other scales of the pro-

cess, an all order proof of QCD factorization has been
formulated for the process in (2) [14]. In the case of
quarkonium production, one may expect factorization to
hold for arbitrary Q2. In fact, a next-to-leading order
(NLO) calculation of the unpolarized photo-production
cross section is compatible with factorization [28].
To LO in the strong coupling there are six Feynman

graphs — see Fig. 1 for a sample diagram. They factorize



2

into the hard subprocess γ∗g → V g and gluon GPDs. We
computed the helicity amplitudes of the subprocess in the
non-relativistic approximation for which the heavy quark
and antiquark carry the same momentum. Our results
agree with previous calculations [28–30]. The structure
of the LO amplitudes implies that one is sensitive only
to the GPDs Hg and Eg [29, 30].
For transversely polarized photons and vector mesons,

the nonzero helicity amplitudes Mµ′ν′,µν of the full pro-
cess read

M±+,±+ = M±−,±− = C
√

1− ξ2 〈Hg
eff〉, (4)

M±−,±+ = −M±+,±− = −C
√
−t′
2m

〈Eg〉, (5)

with 〈F 〉 =
∫ 1

0

dx

(x+ ξ)(x − ξ + iε)
F (x, ξ, t)

for a generic GPD F . In Eqs. (4), (5) we use the def-
initions Hg

eff = Hg − ξ2/(1 − ξ2)Eg, t′ = t − t0, and
C = 16πeqeαsfVmV /(Nc(Q

2 +m2
V )), where fV denotes

the quarkonium decay constant. Moreover, one has

M0ν′,0ν = − Q

mV
M±ν′,±ν (6)

for longitudinal transitions. A corresponding relation
between the longitudinal and the transverse amplitudes
was previously obtained in the pioneering work on exclu-
sive J/ψ production in the leading double-log approxi-
mation [23].
III. Generalized Parton Distributions.—For the GPD H
we take the parameterizations obtained in previous anal-
yses [18, 20]. Note that quark GPDs are also needed
since the GPDs are evolved to different scales. In the
case of E, we use the valence quark distributions from
Ref. [31, 32], while we explore different scenarios for glu-
ons and seaquarks. They are modelled through double
distributions [1, 33] according to

Ei(x, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|

dα δ(β + ξα− x)f i(β, α, t),

f i(β, α, t) = Ei(β, 0, t)
15

16

[(1− |β|)2 − α2]2

(1− |β|)5 , (7)

with Ei(β, 0, t) = ebet|β|−α′

etEi(|β|, 0, 0).

For gluons we define xeg(x) ≡ Eg(x, 0, 0) (with an extra
factor x as for Hg) and investigate the two cases

eg(x) = Ngx−1−δe(1 − x)β
g
e , (8)

eg(x) = Ngx−1−δe(1 − x)β
g
e tanh(1− x/x0), (9)

where the ansatz in (9) has a node at x = x0. Such
a possibility is currently not ruled out [34]. We further
define eq(x) ≡ Eq(x, 0, 0), and use a flavor-symmetric

sea, i.e., eq̄ ≡ eū = ed̄ = es̄ = es. For eq̄(x) we make
an ansatz analogous to (8) and do not consider a node.
For the parameters be, α

′
e, and δe we do not distinguish

between gluons and seaquarks.

Var. α′

e Ng x0 eg
20

Jg N q̄ Js

1 0.15 0 0 0.214 −0.009 0.014

2 0.15 −0.878 −0.164 0.132 0.156 0.041

3 0.10 −1.017 −0.190 0.119 0.182 0.045

4 0.10 3.015 0.05 −0.190 0.119 0.182 0.045

5 0.10 −1.974 0.3 −0.190 0.119 0.182 0.045

TABLE I: Parameters of eg and eq̄ at the scale µ = 2GeV.
For gluons, the Variants 1,2,3 refer to the ansatz in (8), while
Variants 4,5 refer to (9). Also shown is the second moment
eg
20
, and values for the angular momenta as defined in (1).

Two constraints have to be satisfied when fixing the
parameters for eg and eq̄. First, the momentum sum rule
for unpolarized parton distributions in combination with
Ji’s spin sum rule leads to

eg20 = −
∑

q

eqval

20 − 2
∑

q

eq̄20, with (10)

ein0 ≡
∫ 1

0

dxxn−1ei(x). (11)

Second, the density interpretation of GPDs in the im-
pact parameter space [13] leads to a positivity bound for
eg and eq̄ — see Refs. [19, 30–32] for more details. In
particular, one finds be < bh, α

′
e ≤ α′

h, where bh and α′
h

appear in the double distribution ansatz of Hg. We take

bh = 2.58GeV−2 + 0.25GeV−2 ln m2

m2+µ2 (with µ repre-

senting the scale of the GPD) and α′
h = 0.15 from previ-

ous work [18, 20]. We choose be = 0.9 bh in order to re-
spect a positivity bound, and explore two different values
for α′

e (see Tab. I). Moreover, we use δe = 0.1, as well as
βg
e = 6 and βq̄

e = 7 [32]. (Note that the parameters δe and
α′
e correspond to the hard Pomeron trajectory measured

in vector meson electro-production.) After these choices
have been made, only the normalization constants Ng

and N q̄ remain to be determined.
We parameterize eg and eq̄ at the scale µ = 2GeV. For

eg we consider five different variants, where the respective
parameters are listed in Tab. I. Variant 1 means eg = 0,
and the normalization N q̄ is fixed by means of the rela-
tion in (10). (There is actually some support for a rather
small Eg: this GPD has a model-dependent relation to
the transverse momentum dependent gluon Sivers func-
tion [35], which may be small [36–38].) In the remaining
four cases we first determine N q̄ by saturating the pos-
itivity bound, then compute Ng from (10), and finally
check whether eg satisfies the positivity bound. Variants
4 and 5 for eg contain a node. The positivity bound does
not allow one to fix the sign of N q̄. However, none of our
general conclusions depends on this sign [30]. We also
checked that all variants for eg and eq̄ are compatible
with a preliminary data point for the transverse target
spin asymmetry for exclusive φ production from HER-
MES [30, 39]. When calculating observables we evolve
the GPDs to the scale µ = (m2

V + Q2)1/2 by using the
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µ = 3.1GeV, ξ = 5 × 10−3, t = 0
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FIG. 2: Variants 1–5 for Eg, together with Hg, at the scales
µ = mJ/ψ = 3.1GeV (left) and µ = mΥ = 9.46GeV (right).
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FIG. 3: Density in (12) for Variant 2 (left) and Variant 4
(right) at x = 0.005 and µ = 2GeV. The outer ring indicates
half of the maximum density.

code of Vinnikov [40]. In Fig. 2, the GPDs are displayed
at the scale of the quarkonium masses.

We stress that, in general, the model-independent con-
straints on eg and eq̄ are rather loose. Therefore, we con-
sider a number of examples in order to demonstrate how
the spin asymmetries may look. We also explore the pos-
sibility of a node in eg which allows for a rather different
value for the convolution with the hard subprocess ampli-
tude without changing the second moment. The chosen
positions of the node are again to be viewed as possible
scenarios.

Following [2], the gluon and strange quark contribu-
tions to the nucleon spin are Jg = (hg20 + eg20)/2 as well

as Js = (hs20 + es20), where the densities hg/q are related
to Hg/q in the same way as eg/q are related to Eg/q. Tak-
ing hg20 = 0.4276 and hs20 = 0.0153 from [32, 41] leads to
the values for Jg and Js in Tab. I. Because of (10), a
change of Js implies a change of Jg. For our parame-
terizations, the contribution from Eg to the nucleon spin
can be significant (up to about 20%).

One can also calculate the density of unpolarized glu-
ons in transverse position (impact parameter b⊥) space.
If the nucleon is transversely polarized (along the X-
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FIG. 4: SSA AN in (13) for photo-production of J/ψ (left)
and Υ (right) as function of W for different variants of Eg.

direction), this density is given by [13]

Hg,X(x,~b⊥) = Hg(x,~b 2⊥)−
bY⊥
m

∂

∂~b 2⊥
Eg(x,~b 2⊥), (12)

with Hg and Eg denoting the b⊥-space representation
of Hg and Eg, respectively. The sample plots in Fig. 3
show, in particular, how much the maximum of the den-
sity in (12) is shifted away from the origin due to the
presence of the Eg-term.
IV. Polarization observables.—As discussed in Sect. II,
one has two independent amplitudes: the non-flip am-
plitude M++,++, dominated by Hg, and the spin-flip
amplitude M+−,++, which is determined by Eg. The
following observables allow one to measure those ampli-
tudes (up to an overall phase): the unpolarized cross sec-
tion, the transverse target single spin asymmetry (SSA)
AN (with the polarization being normal to the reaction
plane — often AN is also denoted as AUT ), and two dou-
ble spin asymmetries (DSAs) requiring a polarized target
and polarimetry of the recoil nucleon [30]. Here we focus
on

AN =
−2 Im(M++,++ M∗

+−,++)

|M++,++|2 + |M+−,++|2
, (13)

ALS =
2Re(M++,++ M∗

+−,++)

|M++,++|2 + |M+−,++|2
, (14)

where for the DSA ALS the target is longitudinally polar-
ized, and the outgoing nucleon is transversely polarized
(in the reaction plane, “sideways”) [30]. We consider pro-
duction of both J/ψ and Υ for typical EIC kinematics.
While the J/ψ final state has a larger cross section, one
can expect a better convergence of the αs-expansion in
the case of the Υ [28]. A detailed comparison with exist-
ing data for the unpolarized cross section will be given
elsewhere [30] — see also Ref. [28].
In Fig. 4, AN is shown for photo-production of J/ψ and

Υ as a function ofW . This asymmetry is rather small for
most variants of Eg, mainly because the respective non-
flip amplitude and the spin-flip amplitude have a similar
phase. It can also be seen, however, that larger values
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FIG. 5: DSA ALT in (14) for photo-production of J/ψ (left)
and Υ (right) as function of W for different variants of Eg.
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FIG. 6: AN (left) and ALS (right) for production of J/ψ as
function of Q2 for different variants of Eg.

of AN are currently not ruled out. On the basis of a LO
calculation one can not draw a definite conclusion about

the optimal W for a measurement of AN . But higher
order terms to the unpolarized cross section are better
under control for lower values of W [28]. In general, the
spin asymmetries are less influenced by NLO corrections
than the cross section [30]. The DSA ALS is displayed
in Fig. 5. This observable is small only if Eg is small. It
is worthwhile to explore the feasibility of a correspond-
ing measurement, since ALS may give the most direct
access to Eg. (We note that, from a theoretical point of
view, the DSA ASL is equally well suited [30].) Finally,
the Q2-dependence of AN and ALS for J/ψ production
is shown in Fig. 6. Electro-production at low Q2 is at-
tractive because of the large count rates. For Q2 ≥ m2

V ,
higher order corrections may be less important [28], but
an explicit calculation does not yet exist.
V. Summary—We have explored the potential of mea-
suring the GPD Eg through exclusive production of
quarkonium at a future Electron Ion Collider. The study
is based on a LO calculation of the short distance part
of the process, and several models for Eg which respect
the currently known constraints. Most variants of Eg

lead to a rather small transverse target SSA AN , but a
healthy AN is presently not ruled out either. We have
also found promising results for a double polarization ob-
servable (polarized target and polarized recoil nucleon),
which provides a quite direct access to Eg.
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