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Abstract

We discuss gauge mediation in the case where the hidden sector is strongly coupled but, via the

gauge-gravity correspondence, admits a weakly-coupled description in terms of a warped higher-

dimensional spacetime. In this framework, known as holographic gauge mediation, the visible-

sector gauge group is realized in the gravitational description by probe D-branes and the non-

supersymmetric state by normalizable perturbations to the geometry. Using the formalism of

general gauge mediation, supersymmetry-breaking soft terms in the visible sector can be related

to the two-point functions of the hidden-sector current superfield that couples to the visible-sector

gauge group. Such correlation functions cannot be directly calculated in the strongly coupled field

theory but can be determined using the gauge-gravity correspondence and holographic renormal-

ization. We explore this procedure by considering a toy geometry where such two-point functions

can be explicitly calculated. Unlike previous implementations of holographic mediation where

sfermion masses were not calculable directly in a purely holographic framework, such terms are

readily obtained via these correlators, while (due to the simplicity of the geometry considered) the

visible-sector gauginos remain massless to leading order in the visible-sector coupling.
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I. INTRODUCTION

The search for physics beyond the standard model is motivated in large part by the search

for naturalness. In particular, the electroweak scale in the standard model is tied directly

to the mass of a fundamental scalar and since the former exhibits an exponential hierarchy

compared to the Planck scale (mZ ∼ 10−16mP) while the latter is quadratically sensitive to

short-wavelength physics, one is left either with the acceptance of an unnatural amount of

fine tuning of classical effects against quantum effects or the acceptance of the existence of

new physics.

One possibility for new physics is supersymmetry (SUSY) which addresses the electroweak

hierarchy problem by tempering the quantum corrections to certain operators such as scalar

masses. If the universe were in a supersymmetric state, then for every fermionic field there

would be a bosonic field with the same charge and (in a Minkowski spacetime) same mass

and vice-versa. The lack of discovery of such superpartners indicates that our universe is not

in such a state. Nevertheless, if supersymmetry exists as a spontaneously broken symmetry,

then the protection from quantum effects is to a large extent preserved.

In order for such a scenario to be phenomenologically viable, the spontaneous breaking

of supersymmetry must not occur in the visible sector, e.g. the minimally supersymmetric

standard model (MSSM), but within another set of fields. In a theory with finite mP,

this breaking will be communicated to the visible sector via quantum effects related to the

superconformal anomaly [1] and classically by irrelevant operators which are generically

expected to be present [2].

Whether or not gravity is present, the breaking of supersymmetry can also be mediated to

the standard model via so-called messenger fields which transform under the visible-sector

gauge group and couple to the sector in which supersymmetry is broken [3] (see also [4]

for a review). This mechanism, known as gauge mediation, has the advantage that the

effects of supersymmetry breaking respect the flavor structure of the visible sector, unlike

mediation from irrelevant operators which will generically result in unacceptable flavor-

changing neutral currents1.

In any of these scenarios, the effects of the breaking of supersymmetry on the visible sector

1 Although anomaly mediation also respects this flavor structure, it leads to spontaneous breaking of U (1)
em

unless supplemented by comparable contributions from gauge mediation [5], mediation from irrelevant

operators [6], or both [7].
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can be captured by so-called soft terms: operators in the effective Lagrangian of the visible-

sector that do not reintroduce quadratic sensitivity on ultraviolet physics even though they

do not respect supersymmetry. Since supersymmetry, if it exists as an underlying symmetry,

is broken, all of the phenomenological implications of supersymmetry result from these soft

terms (see [8] for reviews) and it is thus of clear importance to study them in various scenarios

especially in light of the increasing experimental constraints on simple models.

In this work, we will focus on gauge mediation of supersymmetry breaking. Even within

this class of scenarios, there are a number of possibilities based on the nature of the mes-

senger sector. The minimal scenario involves messengers that are neutral under any gauge

group of the SUSY-breaking sector, but couple to the SUSY-breaking-sector fields through

superpotential operators. In direct gauge mediation scenarios, such as those in [9] the mes-

senger fields are charged under SUSY-breaking-sector gauge groups, and indeed there is

little distinction between the SUSY-breaking sector and the messenger sector. Semi-direct

models are a compromise between these two scenarios in which the messenger sectors couple

to the SUSY-breaking sector (in the original semi-direct proposal [10], the messengers had

only gauge couplings to the SUSY-breaking sector) but do not participate in the breaking

of supersymmetry.

In [11] (see also [12–14]), a general framework for gauge mediation scenarios was pre-

sented. In the limit where the visible-sector gauge couplings are taken to zero, the visible-

sector gauge group is realized as a global symmetry of the messenger and SUSY-breaking

sectors, which together compromise the hidden sector. In models of gauge mediation, the

hidden sector and visible sector decouple in this limit. The conserved hidden-sector current

jµ corresponding to this global symmetry is a component field of a linear superfield J which

contains also a scalar component and a spinor component. It was shown in [11] that once

the visible-sector gauge group becomes weakly gauged, visible-sector soft terms arise and

can be given in terms of two-point functions of these currents2.

Although the couplings between the visible and hidden sectors are small, the hidden sector

itself may be coupled and such current-current correlators cannot be directly calculated.

However, certain strongly coupled gauge theories admit a weakly coupled dual description

in terms of a classical gravitational theory on a curved spacetime of higher dimension [15]

2 An important exception to this in the MSSM is the Lagrangian-level operator BµHuHd (where Hu and

Hd are the two Higgs doublets of the MSSM and µ appears in the analogous superpotential coupling),

which must be treated differently as in [13].
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(see [16] for reviews). This duality, known as (non-)AdS/(non-)CFT or the gauge-gravity

correspondence, is the best understood example of the holographic principle [17]. If the

gauge theory is supersymmetric, then a non-supersymmetric state can be constructed by

considering particular perturbations to the geometry. For example, it was argued in [18] that

the addition of a small number of anti-branes to the geometry of Klebanov and Strassler [19]

is dual to the preparation of a metastable non-supersymmetric state in a particular3 N4 = 1

gauge theory4.

In the limit of vanishing visible-sector gauge coupling, the visible-sector gauge group

becomes a global symmetry. If the hidden sector admits a dual gravity description, this

global symmetry can be realized by D-branes, known as flavor branes, that extend along the

holographic direction [21]. According to the AdS/CFT dictionary, some of the open-string

excitations of these D-branes are dual to the components of the current superfield J . The

calculation of the classical two-point functions of these components thus corresponds to the

calculation of the current-current correlators in the strongly-coupled dual field theory.

This paper will explore this procedure of calculating hidden-sector current-current cor-

relators using holographic techniques. Such holographic models of supersymmetry breaking

were first considered in [22] and further studied in [23, 24] (see also [25]) where certain soft

terms (namely the mass of the visible-sector gaugino) were deduced via dimensional reduc-

tion to 4d with additional soft terms following from gaugino mediation [26]. The approach

here differs from this previous work in that we make use of the formalism of general gauge

mediation [11] to calculate soft terms in terms of current-current correlators. A drawback

of this procedure is that it is difficult to precisely calculate such correlators in the types of

geometries considered in [22, 23] and so in order to be able to calculate explicitly, we con-

sider a toy geometry described below. We emphasize that the barrier to explicitly calculate

two-point functions in the gravity picture is of an entirely different nature than the barrier

in the direct gauge picture; in the former the complication is the inability to analytically

solve in curved spacetime classical equations of motion, while in the latter the barrier is the

inapplicability of perturbative techniques in a quantum theory. As a consequence of the sim-

ple geometry however, the visible-sector gauginos will remain massless in the construction

we consider here, and we leave the analysis of more phenomenologically viable geometries

3 ND denotes the amount of supersymmetry in D spacetime dimensions. Hence, N4 = 1 has four super-

charges while both N4 = 2 and N5 = 1 have eight supercharges.
4 See, however, [20] for possible concerns with this procedure.
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for future work.

Our paper is organized as follows. The formalism of general gauge mediation is reviewed

in section II. In section III, we summarize the framework of holographic gauge mediation

and introduce the geometry that we consider in this work. In section IV we deduce the

classical 5d effective field theory (EFT) describing the open string fluctuations that is dual

to the generating functional for current correlators in the dual field theory. We deduce

this EFT in two different ways: in section IVA we find the on-shell action by dimensional

reduction from the well-known action of a D-brane, and in section IVB we find the off-shell

action by making use of the known off-shell action in the 5d Minkowski spacetime R4,1.

In section V, we calculate the current-current correlators in the supersymmetric case for

the both the case of massless and massive messengers. This is done using the techniques

of holographic renormalization which we also briefly review. In section VI, we extend this

calculation to a non-supersymmetric example and in doing so we effectively determine the

visible-sector soft terms which are the main subject of interest of this work. Section VII

contains some concluding remarks and our conventions are presented in appendix A.

We note also that general gauge mediation has been considered together with warped

geometries elsewhere in the literature [27]. The essential difference between [27] and the

work below is that in the former, the SUSY-breaking sector is realized in an entirely field

theoretic way in the warped geometry, while here the SUSY-breaking sector is realized by

the geometry itself.

II. GENERAL GAUGE MEDIATION

As discussed in the introduction, general gauge mediation [11] relates visible-sector soft

terms to hidden-sector current-current correlators. The underlying assumption in the for-

malism is that in the limit that the visible-sector gauge coupling gvis vanishes, the visible

sector and hidden sector decouple (this implicitly requires mP → ∞). For simplicity of pre-

sentation, we consider the case in which the visible-sector gauge group is U (1). The hidden

sector then possess a conserved current jµ, e.g. a real vector satisfying the condition (here

we are working on the Minkowski spacetime R3,1)

∂µjµ = 0. (2.1)
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In an N4 = 1 theory, this is a component of a linear superfield J which in N4 = 1 superspace

takes the form

J = J + iθj − iθ̄j̄ − θσµθ̄jµ +
1

2
θ2θ̄σ̄µ∂µj −

1

2
θ̄2θσµ∂µj̄ −

1

4
θ2θ̄2∂2J, (2.2)

in which j is a two-component spinor and J is a real scalar. With these conditions, J
satisfies D2J = D̄2J = 0 where D is the usual supercovariant derivative

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ.

Upon weakly gauging the visible sector, this superfield couples to the visible-sector vector

superfield which, in the Wess-Zumino gauge, takes the form

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D. (2.3)

The coupling between the current and vector superfields is

2gvis

∫

R3,1

d4x

∫

d4θ VJ = gvis

∫

R3,1

d4x
{

DJ − λj − λ̄j̄ − Aµjµ
}

, (2.4)

in which gvis is the visible-sector gauge coupling.

It is convenient to cast the two-point correlators as [11]

〈

J
(

x
)

J
(

0
)〉

=
1

x4
C0

(

x2M2
)

,

〈

jα
(

x
)

j̄α̇
(

0
)〉

=− iσµαα̇∂µ

(

1

x4
C1/2

(

x2M2
)

)

, (2.5)

〈

jµ
(

x
)

jν
(

0
)〉

=
(

ηµν∂
2 − ∂µ∂ν

)

(

1

x4
C1

(

x2M2
)

)

,

〈

jα
(

x
)

jβ
(

0
)〉

=ǫαβ
1

x5
B1/2

(

x2M2
)

,

where M is some characteristic mass scale. In the supersymmetric limit [11],

C0 = C1/2 = C1, B1/2 = 0. (2.6)

The Fourier transforms take the form

〈

J
(

k
)

J
(

q
)〉

=C0

(

k2/M2
)

,
〈

jα
(

k
)

j̄α̇
(

q
)〉

=− σµαα̇kµC1/2

(

k2/M2
)

, (2.7)
〈

jµ
(

k
)

jν
(

q
)〉

=−
(

k2ηµν − kµkν
)

C1

(

k2/M2
)

,
〈

jα
(

k
)

jβ
(

q
)〉

=ǫαβMB1/2

(

k2/M2
)

,
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where we have, and will in what follows, suppressed the momentum-conserving delta function

(

2π
)4
δ4
(

k + q
)

. (2.8)

We use the same notation to denote the functions Ca and B and their Fourier transforms

Ca
(

k2/M2
)

=

∫

R3,1

d4x eik·x
1

x4
Ca

(

x2M2
)

,

B1/2

(

k2/M2
)

=

∫

R3,1

d4x eik·x
1

Mx5
B1/2

(

x2M2
)

. (2.9)

In general, these integrals require the introduction of a UV cutoff Λ, the dependence on

which is suppressed in the above formulae.

A central result of [11] is that the visible-sector soft masses (except again for Bµ-like

terms) can be expressed to leading order in gvis in terms of these two-point functions. For

the visible-sector gaugino corresponding to the partner of the U (1) gauge-boson,

m1/2 = g2visMB1/2

(

0
)

. (2.10)

For the sfermion masses, we now suppose that the visible-sector gauge group takes the form

Gvis =
⊗

iGi and that the sfermion transforms under the representations ri for each of the

Gi. Then,

m2
f̃
=

∑

i

g4i c2
(

ri
)

Γi, (2.11)

in which gi is the coupling for Gi, c2
(

ri
)

is the quadratic Casimir for the representation ri

of the group Gi and Γi is built from the current-current correlators for the corresponding

group

Γi = − M2

16π2

∫ ∞

0

dy
{

3C1

(

y
)

− 4C1/2

(

y
)

+ C0

(

y
)}

. (2.12)

In the event of a vacuum expectation value for the scalar component of one the vector

superfields (which does not violate any symmetries when the group is Abelian), there is an

additional contribution which we will not consider here.

III. GEOMETRIC SETUP

We will now consider a special class of hidden sectors, namely those for which the SUSY-

breaking sector is in the Maldacena limit [15]. In the simplest case of N4 = 4 SU (N) super

Yang-Mills, this limit is obtained by first holding the ’t Hooft coupling λt = g2YMN fixed
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and then taking the number of colors N to infinity (which of course requires taking the

Yang-Mills coupling of the hidden sector gYM to zero) and then taking λt to be large. The

gauge theory in this limit is dual to classical type-IIB supergravity on the space AdS5 × S5

where the 10d metric takes the form

ds210 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5, (3.1)

in which dΩ2
5 = ĝφψdy

φdyψ is the metric for a unit S5 and L is set by the ’t Hooft coupling,

L4 = 4πℓ4sgsN, (3.2)

where gs = g2YM is the string coupling and ℓs is the string length. The geometry is supported

by a 5-form flux

F (5) =
(

1 + ∗10
)

F (5), (3.3)

in which ∗10 is the 10d Hodge-∗ and F (5) = dC(4) with

C(4) =
r4

gsL4
dvolR3,1 , (3.4)

where dvolR3,1 is the volume element of R3,1. The duality can be motivated by considering

a stack of N D3-branes in Minkowski spacetime R9,1 which in this limit has an open-string

description in terms of the gauge theory and a closed-string description in terms of this

geometry.

A less symmetric example is the Klebanov-Strassler (KS) theory [19]. Although we will

consider the simpler AdS5 × S5 geometry in what follows, the breaking of supersymmetry

has been recently studied in this geometry and so we will discuss it as an illustration of

geometries suitable for holographic gauge mediation. The geometry is found by considering

a collection of M fractional D3-branes (i.e. D5-branes wrapping a collapsing 2-cycle) at a

conifold point. The geometry is similar to the above case in that it is a warped geometry

ds210 = e2Aηµνdx
µdxν + e−2Ads26, (3.5)

in which ds26 is the Ricci-flat metric for a particular Calabi-Yau manifold over which the

warp factor e4A varies non-trivially. The conifold point additionally becomes deformed so

that instead of there being a singularity, there is now a finite-sized S3. In addition to the 5-

form flux, the geometry is supported by an imaginary-self-dual 3-form flux. The dual gauge

theory is no longer conformal but instead is an N4 = 1 theory that can be described by a
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series of Seiberg dualities [28]. If a number of D3-branes are present on the finite S3 where

the conifold has been deformed, the geometry will no longer be supersymmetric. However,

so long as the number p of D3 branes is small compared to the amount of background flux,

the geometry will be metastable [18]; without any D3-branes to directly annihilate against,

the D3s will decay only non-perturbatively, first puffing up via the Myers effect [29] to NS5-

branes which will then dissolve into flux and D3-branes. The influence of the D3-branes on

the geometry is involved [20, 30, 31], but by considering the geometry at distances far away

from the tip where the geometry simplifies [32] it was argued in [30] that the perturbation

to the geometry is such that the dual theory is in a non-supersymmetric state of the original

theory, rather than a perturbation to the theory itself. More precisely, the duality states

that for every operator O in the gauge theory, there is a corresponding operator Φ on the

gravity side such that, if we imagine the gauge theory living on the boundary of, for example,

AdS5, the coupling of the bulk field to the field theory is
∫

δAdS5

d4x
√
hOΦ, (3.6)

in which h is the metric induced on the boundary. Φ will satisfy a second-order differential

equation and as r → ∞ will behave as

Φ ∼ φ1r
−∆ + φ2r

∆−4, (3.7)

in which ∆ is the mass dimension of O. Solutions involving φ2 are not normalizable and

correspond to deformations of the Lagrangian in the gauge theory, δL ∼ φ2O, while those

involving just φ1 are normalizable and correspond to a vacuum expectation value,
〈

O
〉

∼
φ1. The large-radius solution of [30] has only normalizable perturbations implying that

the addition of D3-branes produces a particular metastable state and does not change the

underlying theory5.

A global flavor group can be added to the gauge theory by adding a number of D-branes

into the geometry [21]. For the warped geometries of type-IIB that we are considering here,

the appropriate type of brane to add is a D7-brane that fills R3,1 and wraps a non-compact

4-cycle in the transverse space. A stack of K such branes will produce an SU (K) flavor

group. In addition, the matter content of the dual gauge theory will be modified by the

addition of quarks: matter that transforms under a bifundamental of the flavor group and

5 We again note the possible objections raised in [20].
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the dual gauge group6. In the brane picture, these correspond to open strings that stretch

from the (fractional or elementary) D3-branes that produce the geometry and the D7-branes

so that the mass of the quarks is set by the position of the D7-branes. In the case when

the number of flavor branes is much smaller than the number of color branes, the D7-branes

may be considered in the probe approximation where the backreaction of the D7-branes can

be neglected, an approximation which we make here. In addition to the gauge couplings,

the quarks may possess superpotential couplings to other matter in the hidden sector [33].

One of the excitations of the D7-branes is the 1-form Aµ that acts as the 4d gauge field once

the flavor group is weakly gauged and thus couples to a current on a boundary theory via

L ∼ jµAµ. That is, if we identify this flavor group as the visible-sector gauge group, the

open-string field Aµ is dual to the current jµ discussed in section II.

We now have the ingredients to put together a dual gravity description of gauge mediation

as in [22]:

1. Begin with a theory of matter and gauge group Ghid that admits a geometric descrip-

tion via the gauge-gravity correspondence. This theory will function as the SUSY-

breaking sector.

2. Add D7-branes7 to the geometry, giving rise to a visible-sector group Gvis and quarks

that transform under Gvis and Ghid. These quarks (or rather their bound states)

which will serve as messengers. The messengers and SUSY-breaking sector together

constitute the hidden sector. At this point, Gvis is a global symmetry in the dual

theory and there is a corresponding conserved current jµ constructed from hidden-

sector fields.

3. Prepare a SUSY-breaking state in the hidden sector. In the geometry, this corresponds

to a SUSY-breaking normalizable perturbations to the geometry from the addition of

non-SUSY sources. This state should be metastable, though we will not address this

issue here.

4. Calculate the classical two-point functions of Aµ and other fields related to it via

supersymmetry. This is equivalent to calculating the two-point functions for jµ and

its related fields in the dual theory.

6 For clarity, we emphasize that the terms “flavor” and “quark” are used only in analogy with the standard

model and not related to the corresponding concepts in the visible sector.
7 Of course, in other classes of solutions, different sorts of branes would need to be used here.
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5. Weakly gauge Gvis and introduce the visible-sector matter. On the gravity side, this re-

quires gluing the warped geometry into a compact space and introducing (for example)

a network of intersecting 7-branes. Fortunately, all that is necessary for calculating

the soft considered here is knowledge of the representations and visible-sector gauge

couplings. Such soft terms can be determined from the current-current correlators as

in section II.

In the cases studied in [22, 23], the D7s were taken in the probe approximation and the

breaking of supersymmetry occurs whether are not they are added. Such modes are thus

closely related to models of semi-direct gauge mediation [10]: the messengers couple to the

hidden sector via gauge and superpotential couplings but are not involved in the participation

of the breaking of supersymmetry. As in section II, we will take the case of a single D7-brane,

the extension to larger rank being a straightforward generalization.

A significant barrier to this procedure is the non-trivial geometries involved. In particular,

even if the background corresponding to the SUSY-breaking sector is known before the

breaking, the addition of the non-SUSY sources will backreact on the geometry and fluxes in

a non-supersymmetric way and is difficult to compute. Once this is known, the equations of

motion for the open-string modes have to be solved. Although the behavior along the radial

direction will be under relatively good control, many of the relevant fields will transform

non-trivially under the isometries of the angular space and so will not be constant along

the internal directions (even for the lowest-lying state) and so the corresponding Laplace-

Beltrami equation is difficult to solve8. For the sake of calculability, we will model the

warped geometry as9

ds210 = e2Aηµνdx
µdxν + e−2B̄

(

dr2 + r2dΩ2
5

)

, (3.8)

supported by the RR-potential

C(4) = g−1
s e4CdvolR3,1 . (3.9)

The dilaton will be taken to be a constant, Φ = log gs, and the remaining closed string

fields to vanish. The functions A, B̄, and C, are taken to be functions of r alone. We will

8 Note that this remains true even in the large-radius region of the KS solution where the internal Calabi-

Yau is a cone over the homogeneous space T 1,1 [32, 34, 35]. Although a procedure exists for a harmonic

analysis for such manifolds, the angular space wrapped by the D7 will not be as symmetric.
9 Note that more generally we could have different factors multiplying the dr2 piece and the dΩ2

5 piece, but

by a redefinition of r they can be set equal.
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in addition consider the case in which the warp factor takes the AdS-form A = log r/L

before supersymmetry breaking. In this case the gauge theory is conformal before the

addition of the flavor branes and, as argued in [30], such a theory cannot spontaneously

break supersymmetry while preserving Lorentz symmetry. However, we will find below

that the correlators of interest do not obey the relationships expected from supersymmetry,

suggesting that SUSY is broken after the D7 is added.

Finally, we note that the dual theory will have extended supersymmetry. Our interest

is only in the coupling to the visible sector which we will take to be only N4 = 1. We

will therefore only couple part of the hidden sector to the visible sector, namely though the

operator ∼
∫

d4θJV where V is an N4 = 1 vector multiplet.

Explicitly, we take the coordinates on the S5 to be

x4 =r sin (ϕ5) sin (ϕ4) sin (ϕ3) sin (ϕ2) sin (ϕ1) ,

x5 =r cos (ϕ5) sin (ϕ4) sin (ϕ3) sin (ϕ2) sin (ϕ1) ,

x6 =r cos (ϕ4) sin (ϕ3) sin (ϕ2) sin (ϕ1) , (3.10)

x7 =r cos (ϕ3) sin (ϕ2) sin (ϕ1) ,

x8 =r cos (ϕ2) sin (ϕ1) ,

x9 =r cos (ϕ1) , (3.11)

so that ϕ5 ∈ [0, 2π) while ϕi 6=5 ∈ [0, π). We place the D7 at a radial distance r = µ which

we arrange by taking x8 = 0, x9 = µ. The metric induced onto the D7-brane is

ds28 =e2Aηµν + e−2BL
2

ρ2
dρ2 + e−2BL2dΩ2

3

=g̃mndx
mdxn + e−2BL2ğφψdy

φdyψ, (3.12)

in which dΩ2
3 is the line element for a unit S3, ρ is defined by the relationship r2 = ρ2 + µ2,

and B = B̄ + logL/ρ. We denote the non-compact 5d part of the worldvolume by M.

IV. 5D EFFECTIVE FIELD THEORY

Our goal is to calculate the two-point correlation functions of the component fields of the

current superfield (2.2). The duality relates the generating functional on the gauge theory

side to the classical action on the gravity side. We will determine the latter in two ways.
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In section IVA we perform a dimensional reduction of the 8d action that describes the low-

energy excitations of the D7-brane. The resulting 5d theory will be useful in that it be valid

whether or not supersymmetry is broken. In section IVB, the off-shell action is determined

and written in N4 = 1 superspace language, using the flat spacetime result as a bootstrap.

This method will only be effective when the closed string background is supersymmetric,

since only the open-string modes are taken off-shell. However, this action is needed since

the scalar component of the chiral superfield couples to the scalar component of the N4 = 1

vector superfield and the latter is an auxiliary field. Note that if we did not need to make

use of the off-shell 5d theory, we could the 8d equations of motion and need not perform the

intermediate dimensional reduction to get a 5d action.

A. On-shell theory from dimensional reduction

The starting place for the on-shell action is the Dirac-Born-Infeld (DBI) and Chern-

Simons (CS) action describing the long-wavelength dynamics of a Dp-brane

SDBI
Dp = SDBI

Dp + SCS
Dp . (4.1)

In the 10d Einstein frame, the DBI action takes the form

SDBI
Dp = −τDp

∫

W

dp+1ξ
(

g−1
s eΦ

)
p−3
4

√

|det (Mαβ)|, (4.2)

in which

Mαβ = P
[

gαβ − g1/2s e−Φ/2Bαβ

]

+ λg1/2s e−Φ/2Fαβ. (4.3)

P denotes the pullback from the 10d spacetime on to the worldvolume W of the Dp brane,

P
[

vα
]

= vM
∂xM

∂ξα
, (4.4)

where ξα are coordinates on W and are in general dynamic. In what follows, we take the

static gauge ξα = xα. gMN is the 10d metric and B(2) the NS-NS 2-form which vanishes for

the backgrounds that we consider here. Fαβ are the components of the field strength for the

U (1) (p+ 1)-dimensional vector potential living on the brane, F (2) = dA(1). The tension

of a Dp-brane is given by τ−1
Dp = (2π)p ℓ

(p+1)
s gs and we have λ = 2πℓ2s . The Chern-Simons

action is

SCS
Dp = τDpgs

∫

W

P

[

C ∧ e−B
(2)

]

∧ eλF
(2)

, (4.5)
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in which C is the formal sum of all of the RR-potentials. The non-Abelian generalization

of this action is more intricate [29]; however, to leading order in ℓs and to quadratic order

in the open string fields, it can be obtained by promoting A(1) and the fluctuations of the

position to adjoint-valued fields and taking a trace over gauge indices.

To leading order in ℓs, the action for the gauge field on D7 in the above background can

be found via a Taylor expansion

S = − 1

4g28

∫

W

d8x
√
g

{

gαβgγδFαγFβδ −
gs

2 · 4!√g ǫ
αβγδǫηζθCαβγδFǫηFζθ

}

, (4.6)

in which g28 = 8π3ℓ4s and ǫ0···7 = +1. After integrating by parts, this can be written as

S =
L3

g28

∫

W

d8x
√

g̃e−3B
√

ğ

{

− 1

4
g̃mng̃stFmsFnt −

e2B

2L2
g̃mnğφψ∂mAφ∂nAψ

+
e2B

2L2
g̃mnğφψ∇̆φ∇̆ψAmAn −

2ρC ′

L4
e4C+4B−4Aε̆φψζAφ∇̆ψAζ

+
e4B

2L4
ğφψğζξ

(

∇̆φ∇̆ψAζ − ∇̆ζ∇̆φAψ − R̆φζAψ
)

Aξ

+
e2B

L2
g̃mnğφψ∇̃mAn∇̆φAψ − ρ2B′e4B

L4
ğφψAρ∇̆φAψ

}

, (4.7)

in which ∇̃m is the covariant derivative built from the metric g̃mn for the 5d space M.

Similarly, ∇̆φ is the covariant derivative on S3, and the associated Ricci tensor is R̆φψ, and

ε̆φψζ is the antisymmetric tensor on a unit S3. ′ denotes a derivative with respect to ρ.

The components of the connection with the legs onM transform as scalars under rotations

of the S3 and thus can be expanded in terms of scalar spherical harmonics

Am =
∞
∑

l=0

A(l)
m

(

xm
)

Yl
(

yθ
)

, (4.8)

where

∇̆2Yl = −l
(

l + 2
)

Yl. (4.9)

The harmonics satisfy the orthogonality relationship

∫

S3

dvolS3YlYl′ = VS3δll′ , (4.10)

in which VS3 = 2π2 is the volume of a unit S3. We impose the gauge-fixing condition

g̃mn∇̃mAn = 0 ⇒ g̃mn∇̃mA
(l)
n = 0. (4.11)
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Similarly, the angular components are expanded into the 1-form harmonics10

Aφ =
∞
∑

l=0

B(l)
(

xm
)

∇̆φYl
(

yθ
)

+ L
∞
∑

l=1

{

a(l,+)
(

xm
)

Y+
φ,l

(

yθ
)

+ a(l,−)
(

xm
)

Y−
φ,l

(

yθ
)

}

, (4.12)

where the Y±
φ,l satisfy

∇̆2Y±
φ,l − 2Y±

φ,l = − (l + 1)2 Y±
φ,l, ∇̆φY±

φ,l = 0, εφψζ∇̆ψY±
ζ,l = ±

(

l + 1
)

ğφξY±
ξ,l, (4.13)

and the orthogonality relationship

∫

S3

dvolS3 ğφψYǫ
φ,lYǫ′

ψ,l′ ∝ δll′δ
ǫǫ′. (4.14)

Owing to the various orthogonality relationships, the harmonics of different types decou-

ple from each other. For the scalar harmonics, we get, after integrating over the S3,

S =
1

g25

∫

M

d5x
√

g̃e−3B

∞
∑

l=0

{

− 1

4
g̃mng̃stF (l)

msF
(l)
nt − l (l + 2) e2B

2L2
g̃mn∂mB

(l)∂nB
(l)

− l (l + 2) e2B

2L2
g̃mnA(l)

mA
(l)
n +

l (l + 2) ρ2e4B

L4
A(l)
ρ B

(l)

}

. (4.15)

in which g25 = 4πℓ4sL
−3 is the 5d gauge coupling. For the 1-form sector,

S =
1

g25

∫

M

d5x
√

g̃

∞
∑

l=1

{

− e−B

2
g̃mn∂ma

(l,±)∂na
(l,±)

− eB

2L2

[

(l + 1)2 ± 4 (l + 1) ρC ′e4C−4A
]

a(l,±)a(l,±)

}

. (4.16)

The remaining bosonic degrees of freedom are the transverse fluctuations of the D7-brane.

To leading order in ℓs they enter only through the pullback of the metric in this background

P
[

gαβ
]

= gαβ + λ2
L2

ρ2
e−2Bδij∂αΦ

i∂βΦ
j , (4.17)

where Φi=1,2 are related to the position of the D7 brane by

x8 = λΦ1, x9 = µ+ λΦ2. (4.18)

The action is

S = − 1

2g28

∫

W

d8x
√
ggαβ

ρ2

L2
e−2Bδij∂αΦ

i∂βΦ
j. (4.19)

10 These are related to the more familiar vector spherical harmonics by contraction with the metric. See,

e.g. [36, 37] for discussions of tensor spherical harmonics.
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Expanding in scalar spherical harmonics and integrating over the S3,

S =
1

g25

∫

M

d5x
√

g̃

∞
∑

l=0

{

−L
2e−5B

2ρ2
g̃mn∂mΦ

i(l)∂mΦ
i(l) − l (l + 2) e−3B

2ρ2
Φi(l)Φi(l)

}

. (4.20)

For the fermionic degrees of freedom, we begin with the Dirac-like action of [38], which

in the Einstein frame reads [39]

SF
Dp = − i

g28

∫

W

d8x
(

g−1
s eΦ

)
p−3
4

√

|det (Mαβ)|Θ̄PDp
−

{

(

M−1
)αβ

P

[

Γβ
(

Dα +
1

4
Γα∆

)

]

−∆

}

Θ,

(4.21)

in which Θ is the bispinor

Θ =





θ1

θ2



 , (4.22)

where θ1,2 are 10d Majorana-Weyl spinors11, PDp
− is the projection operator

PDp
± =

1

2

(

1± ΓDp

)

=
1

2





1 ±Γ̆−1
Dp

±Γ̆Dp 1



 , (4.23)

where

Γ̆Dp = i(p−2)(p−3)Γ
(0)
DpL

(

F
)

, (4.24)

with

Γ
(0)
Dp =

1

(p+ 1)!
εα1···αp+1Γ

α1···αp+1,

L
(

F
)

=

√

|det (P [g])|
√

|det (M)|
∑

q

(

gse
−Φ

)q/2

q!2q
Fα1α2 · · · Fα2q−1α2qΓ

α1···α2q , (4.25)

with F (2) = −P
[

B(2)
]

+ λF (2) and εα1···αp+1 is the antisymmetric tensor. The operators DM

and ∆ are involved in the SUSY-variations of the Einstein-frame gravitini and dilatini as in

appendix A2.

The action above is subject to a gauge redundancy known as κ-symmetry where we make

the identification

Θ ∼ Θ+ ΓDp
− κ, (4.26)

in which κ is an arbitrary 10d Majorana-Weyl bispinor. We choose the gauge

Θ =





θ

0



 , (4.27)

11 Our fermionic conventions are presented in appendix A.
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and then in the above background, the action becomes

SF
D7 = − i

2g28

∫

W

d8x
√
g θ̄

{

gαβΓα∇β +
gs
16
gαβΓ̆−1

D7Γα /F
(5)
Γβ

}

θ, (4.28)

with

Γ̆D7 = −iσ3 ⊗ I4 ⊗ σ3 ⊗ I2. (4.29)

θ is a 10d Majorana-Weyl spinor and thus can be written as

θ =





1

0



⊗ λ⊗ χ⊗ ψ − i





1

0



⊗ B̃5λ
∗ ⊗ σ1χ∗ ⊗ iσ2ψ∗, (4.30)

where λ, χ, and ψ are SO (4, 1), SO (2), and SO (3) Dirac spinors respectively. That is, λ is

a spinor on M and ψ is a spinor on the S3 wrapped by the D7-brane. We additionally take

the ansatz that λ depends only on the coordinates on M, ψ depends only on the 3-cycle

coordinates, and χ is a constant spinor. We have

gαβΓα /F
(5)
Γβ = 4 /F (5)

, (4.31)

where we have used the self-duality of F (5) and that this operator is acting on a 10d Weyl

spinor. In this setup, we can take the aichtbein for the metric 3.12 to be

e
β
α =











eAδ ν
µ

e−B L
ρ

e−BLĕ
φ

θ











, (4.32)

where underlined indices denote the non-coordinate frame and ĕ
φ

θ is the dreibein for a unit

S3. Then

4 /F =
16iC ′

gsL
e4C−4A+Bσ1 ⊗ I4 ⊗ I2 ⊗ I2, (4.33)

where we have again made use of the fact that it acts on 10d Weyl spinor.

The covariant derivative can be written in terms of the spin connection

∇α = ∂α +
1

4
ω

βγ
α Γβγ , (4.34)

where

ω
βγ

α =
1

2
e δ
α

(

T
βγ

δ − T
βγ

δ − T
γ β

δ

)

, T αβγ =
(

eββe
γ
γ − eγβe

β
γ

)

∂γe
α
β . (4.35)
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For the above choice of aichtbein, the non-vanishing components of the spin connection are

ω
ψζ

φ = ω̆
ψζ

φ , ω
ψ4

φ = −ρB′δ
ψ

φ , ω 4π
µ = −ρA

′

L
eA+Bδπµ . (4.36)

To leading order in ℓs, the bosonic and fermionic fluctuations decouple and the action takes

the form

S = − iL3

2g28

∫

W

d8x
√

g̃e−3B
√

ğ

{

(

λ̄ /̃∇λ
)(

χ†χ
)(

ψ†ψ
)

+
ρC ′

L
e4C−4A+B

(

λ̄λ
)(

χ†σ3χ
)(

ψ†ψ
)

− 3ρB′

2L
eB

(

λ̄γ(4)λ
)(

χ†χ
)(

ψ†ψ
)

+
i

L
eB

(

λ̄λ
)(

χ†σ3χ
)(

ψ† /̆∇ψ
)

}

+ c.c. (4.37)

Under SO (5) → SO (2)× SO (3), a Dirac spinor decomposes as (see, e.g. [40])

η → χ+ ⊗ ψ+ + χ− ⊗ ψ−, (4.38)

where χ± are SO (2) Weyl spinors while ψ± are SO (3) Dirac spinors. As an SO (3) spinor,

ψ can be expanded in spinor spherical harmonics12 which satisfy

/̆∇Yl,± = ±i

(

l +
3

2

)

Yl,±, (4.39)

where l = 0, 1, 2, . . .. They again satisfy the orthogonality condition

∫

S3

dvolS3Y†
l,ǫYl′,ǫ ∝ δll′δǫǫ′. (4.40)

Then we take the expansion

θ =
∑

l,σ,ǫ





1

0



⊗ λ(l,σ,ǫ) ⊗ χσ ⊗Yl,ǫ + · · · , (4.41)

where · · · indicates the terms necessary to ensure that θ is Majorana. With this expansion,

S =
1

g25

∫

M

d5x
√

g̃e−3B

∞
∑

l=0

∑

ǫ,σ

{

− iλ̄l,σ,ǫ /̃∇λl,σ,ǫ − 3iρB′eB

2L
λ̄l,σ,ǫγ(4)λ

l,σ,ǫ

+
iσeB

L

(

ǫ
(

l +
3

2

)

− ρC ′e4C−4A

)

λ̄l,σ,ǫλl,σ,ǫ
}

(4.42)

The degrees of freedom should be able to be organized into N5 = 1 super multiplets and

our interest is in the lightest vector multiplet. We can identify this multiplying by comparing

against the known results in the AdS5 case which is recovered by taking A = B̄ = C =

12 See e.g. [37].
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log r/L and µ = 0. In this case, the lightest (i.e. most negative m2) comes from the (1,−)

sector of the scalar descending from Aφ, which saturates the BF bound [41],

m2 = − 4

L2
. (4.43)

This is the expected mass for the scalar in theN5 = 1 massless vector hypermultiplet [42, 43].

The corresponding Dirac fermion has mass 1
2L

and comes from the (l, ǫ, σ) = (0,−,+) mode

of the fermions. The vector component of this multiplet comes from the l = 0 mode of Am

and so the action for these modes is

S = − 1

g25

∫

M

d5x
√

g̃e−3B

{

1

4
g̃mng̃stFmsFnt + iλ̄γ̃m∇̃mλ+

e2B

2
g̃mn∂ma∂na

+ imλλ̄λ+ iαλ̄γ(4)λ+
1

2
m2
aa

2

}

, (4.44)

in which

L2m2
a = 4e4B

(

1− 2ρC ′e4C−4A
)

, Lmλ = eB
(3

2
− ρC ′e4C−4A

)

, Lα = −3ρB′

2
eB. (4.45)

The higher modes give rise to N5 = 1 hyper multiplets and massive vector multiplets. Note

that although not real by itself, when iαλ̄γ(4)λ added to the kinetic term for the fermion,

the entire action is real.

Since these are all components of a single supermultiplet, it will be convenient to perform

a field redefinition so that they all have the same kinetic terms. Changing the kinetic term

of Am would spoil manifest gauge invariance, and so we redefine the scalar to match the

gauge kinetic term. Defining Σ = eAa, we get

S = − 1

g25

∫

M

d5x
√

g̃e−3B

{

1

4
g̃mng̃stFmsFnt + iλ̄γ̃m∇̃mλ+

1

2
g̃mn∂mΣ∂nΣ (4.46)

+ imλλ̄λ+ iαλ̄γ(4)λ+
1

2
m2

ΣΣ
2

}

,

in which

L2m2
Σ = e2B

(

ρ2B′′ − ρ2B′2 + 4ρ2A′B′ + ρB′ − 8ρC ′e4C−4A + 4
)

. (4.47)

B. Off-shell theory from flat space

N5 = 1 supersymmetry is generated by eight real supercharges that can be arranged into

a pair of symplectic-Majorana spinors Ri=1,2. In addition to the connection A(1) and the
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gaugino (the degrees of freedom of which can again be expressed as a pair of symplectic-

Majorana spinors λ1,2) the off-shell theory contains three real auxiliary scalar fields XI=1,2,3

(see e.g. [44]). Under the SU (2) R-symmetry that rotates the Ri into each other, the gauge

field is inert, while the fermionic degrees transform as a 2 and the auxiliary fields as a 3.

Under a SUSY transformation parametrized by ηi, the fields transform in flat space as

δηAm =iη̄iγ̃mλ
i,

δηΣ =η̄iλ
i, (4.48)

δηX
I =η̄i

(

σI
)i

j
γ̃m∂mλ

j,

δηλ
i =− 1

2
Fmnγ̃

mnηi + iγ̃m∂mΣη
i + iXI

(

σI
)i

j
ηj,

where
(

σI
)i

j
are the components of the usual Pauli matrices. The algebra closes in the sense

that
[

δη, δξ
]

= 2iξ̄iγ̃
m∂mη

i∂m, (4.49)

except when acting on the gauge field which closes only up to a gauge transformation. The

off-shell action is

S = − 1

g25

∫

R4,1

d5x

{

1

4
FmnF

mn +
1

2
∂mΣ∂

mΣ+
i

2
λ̄iγ̃

m∂mλ
i − 1

2
XIXI

}

. (4.50)

The vector multiplet can be written in N4 = 1 language as a vector superfield and a neutral

chiral superfield [45]. In particular, we can embed an N4 = 1 into the higher supersymmetry

by considering the transformations (4.48) and taking ηR = 0. Under this restricted set, the

fields transform as

δηLAµ =iη̄Lσ̄µλL + iηLσµλ̄L,

δηLA4 =η̄Lλ̄R + ηLλR,

δηLΣ =− iη̄Lλ̄R + iηLλR, (4.51)

δηLX
1 =ηLσ

µ∂µλ̄R + iηL∂4λL − η̄Lσ̄
µ∂µλR − iη̄L∂4λ̄R,

δηLX
2 =iηLσ

µ∂µλ̄R − ηL∂4ηL + iη̄Lσ̄
µ∂µλR − η̄L∂4λ̄L,

δηLX
3 =η̄Lσ̄

µ∂µλL − iη̄L∂4λ̄R − ηLσ
µ∂µλ̄R + iηL∂4λR,

δηLλL =Fµνσ
µνηL + i

(

X3 − ∂4Σ
)

ηL,

δηLλR =iFµ4σ
µη̄L + ∂µΣσ

µη̄L − i
(

X1 + iX2
)

ηL.

20



It was recognized in [45] that these are the transformation rules for the components of a chiral

superfield Φ and a vector superfield V in the Wess-Zumino gauge under the combination

of a supersymmetry transformation and a complexified gauge transformation required to

maintain the Wess-Zumino condition. The superfields take the form

Φ =φ+
√
2θψ + θ2F + iθσµθ̄∂µφ+

i√
2
θ2θ̄σ̄µ∂µψ +

1

4
θ2θ̄2∂2φ, (4.52a)

V =− θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D, (4.52b)

in which ∂2 = ηµν∂µ∂ν . The curl superfield Wα = −1
4
D2D̄αV takes the standard form

Wα =− iλα + θαD − i

2
(σµσ̄ν) βα θβFµν + θ2σµαα̇∂µλ̄

α̇ + θσµθ̄∂µλα

+ iθαθσ
µθ̄∂µD +

1

2
(σµσ̄ν) βα θβθσ

κθ̄∂κFµν −
i

4
θ2θ̄2∂2λα. (4.52c)

The component fields are related to the usual 5d fields through

φ = Σ + iA4, ψ = i
√
2λR, F = X1 + iX2, λ = λL, D = X3 − ∂4Σ, (4.53)

where λL and λR are the left- and right-handed components of λ1 defined as in (A12). Under

the complexified gauge transformation

V → V +
1

2

(

Λ + Λ∗
)

, (4.54)

where Λ is a chiral superfield, Φ transforms as

Φ → Φ + ∂4Λ. (4.55)

Then, the action (4.50) can be written in the language of N4 = 1 superspace

S =
1

g25

∫

R4,1

d5x

{

1

4

∫

d2θWαWα +
1

4

∫

d2θ̄W α̇W α̇
+

∫

d4θ

(

1

2

(

Φ+ Φ
)∗ − ∂4V

)2}

, (4.56)

where the coefficients are chosen to recover the normalization of the action in (4.50). We

can couple this N5 = 1 theory to an N4 = 1 theory localized at some point x4 = x40 by

introducing an action

2

∫

x4=x40

d4x

∫

d4θ VJ =

∫

x4=x40

d4x
{

JD − λj − λ̄j̄ −Aµjµ
}

, (4.57)

where J is a current superfield (2.2).
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Given this flat space off-shell theory, we can produce the off-shell theory for the vector

supermultiplet on AdS5 [27, 46]. We can apply the same techniques to deduce the off-shell

action for the N5 = 1 theory resulting from dimensional reduction onto a supersymmetric

probe D7-brane in AdS5 × X5 where X5 is an Einstein-Sasaki manifold13. The procedure

is to begin by identifying the Killing spinor for the 5d theory. We can begin by considering

the Killing spinors of the 10d theory. For this geometry, the Killing spinor equations are

DMε = ∇Mε+
gs
16
/F
(5)
ΓM

(

iσ2
)

ε, (4.58)

where ε is a Majorana-Weyl bispinor

ε =





ε1

ε2



 . (4.59)

Taking ε2 = −iε1, this becomes

0 = ∇Mε1 +
igs
16
/F
(5)
ΓMε1. (4.60)

Writing

ε =





1

0



⊗ ǫ⊗ β − i





1

0



⊗ B̃5η
∗ ⊗ B̂5β

∗, (4.61)

where ǫ is an SO (4, 1) spinor and β is an SO (5) spinor, this equation becomes

∇̂φβ = − i

2
γ̂φβ, ∇̃mǫ = +

1

2L
γ̃mǫ, (4.62)

where ∇̂φ is the covariant derivative built from the metric on X5. The covariant derivative

can be easily deduced from the spin-connection on the D7 worldvolume (4.36). Since X5

is an Einstein-Sasaki space, the first of (4.62) has a solution. The second does as well, the

explicit form of which [41, 43, 48] will be useful for us. Since {I4, γ̃m, γ̃mn} form a basis for

4× 4 matrices, we can take the ansatz

ǫ =
(

a + bµγ̃µ + cµν γ̃µν

)

η+ +
(

d+ eµγ̃µ + cµν γ̃µν

)

η−, (4.63)

where η± are constant Dirac spinors satisfying γ(4)η
± = ±η±. The r-component of the

Killing spinor equation is

∂rǫ = −1

2
γ(4)ǫ, (4.64)

13 A similar process should in fact work for any of the N4 ≥ 1 compactifications of [47]. However, once

supersymmetry is broken by the background, one would have to consider the supergravity multiplet as

well.
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which implies that cµν = 0 while

a =

√

L

r
ā, bµ =

√

r

L
b̄µ, d =

√

r

L
d̄, eµ =

√

L

r
ēµ, (4.65)

where ā, b̄µ, d̄, and ēµ are all functions of the R3,1 coordinates xµ. The µ components are

∂µǫ = − r

2L2
δ
µ
µ

(

1 + γ(4)
)

ǫ, (4.66)

which are solved by

ā = 1, b̄µ = − 1

L
δ
µ
µx

µ, d̄ = 1, ēµ = 0. (4.67)

Hence, the Killing spinor takes the form [41, 43, 48]

ǫ =
( r

L

)−γ(4)/2
(

1− xµ

L
γ̃µ

(

1 + γ(4)
)

)

η =





√

r
L

(

ηLα − ir
L2x

µδ
µ
µσ̄

µ

αα̇η̄
α̇
R

)

i
√

L
r
η̄α̇R



 . (4.68)

where η = η+ + η−. Upon dimensional reduction, ǫ generates SUSY transformations for the

5d effective field theory on M where r is to be treated as a function of ρ.

The off-shell theory for the N5 = 1 vector multiplet can be determined by again consider-

ing the restricted supersymmetry transformations characterized by η̄R = 0. The remaining

components parametrize a rigid N4 = 1 transformation. An N5 = 1 transformation is

induced by

ǭiRi = iǫLRR − iǭLR̄R + iǭRR̄L − iǫRRL = i

√

r

L
ηLRR − i

√

r

L
η̄LR̄R, (4.69)

where after the second equality we have set ηR = 0. If we identify ηL as characterizing a

rigid N4 = 1 transformation, then the corresponding generator is

Q =

√

r

L
Q = i

√

r

L
RR. (4.70)

Q induces translations in superspace

Qα =
∂

∂θα
− iσ

µ

αα̇θ̄
α̇δ µ

µ ∂µ, (4.71)

and the restricted N5 = 1 transformations induce translations through a warped N4 = 1

superspace

Qα =
∂

∂ϑα
− iσ

µ

αα̇ϑ̄
α̇ǫ̃ µµ ∂µ, (4.72)

where

ϑα =

√

r

L
θα = eA/2θα. (4.73)
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The N5 = 1 super-Maxwell theory on AdS5 can be recovered from (4.56) by writing [27,

46]

Φ =φ+
√
2ϑψ + ϑ2F + iϑσµϑ̄ẽ µ

µ ∂µφ+
i√
2
ϑ2ϑ̄σ̄µẽ µ

µ ∂µψ +
1

4
ϑ2ϑ̄2g̃µν∂µ∂νφ

=φ+
√
2eA/2θψ + eAθ2F + iθσµθ̄δ µ

µ ∂µφ+
i√
2
eA/2θ2θ̄σ̄µδ µ

µ ∂µψ +
1

4
θ2θ̄2∂2φ, (4.74a)

V =− ϑσµϑ̄ẽ µ
µ Aµ + iϑ2ϑ̄λ̄− iϑ̄2ϑλ +

1

2
ϑ2ϑ̄2D

=− θσµθ̄δ µ
µ Aµ + ie3A/2θ2θ̄λ̄− ie3A/2θ̄2θλ+

1

2
e2Aθ2θ̄2D. (4.74b)

The curl chiral superfield is likewise

Wα =− 1

4
D2D̄αV

=− iλα + ϑαD − i

2
(σµσ̄ν) βα ϑβ ẽ

µ
µ ẽ

ν
ν Fµν + ϑ2σ

µ

αα̇ẽ
µ
µ ∂µλ̄

α̇ + ϑσµϑ̄ẽ µ
µ ∂µλα

+ iϑαϑσ
µϑ̄ẽ µ

µ ∂µD +
1

2
(σµσ̄ν) β

α ϑβϑσ
κϑ̄ẽ µ

µ ẽ
ν
ν ẽ

κ
κ ∂κFµν −

i

4
ϑ2ϑ̄2g̃µν∂µ∂νλα

=− iλα + eA/2θαD − i

2
e−3A/2 (σµσ̄ν) βα δ µ

µ δ ν
ν θβFµν + θ2σ

µ

αα̇δ
µ
µ ∂µλ̄

α̇ + θσµθ̄δ µ
µ ∂µλα

+ ieA/2θαθσ
µθ̄δ µ

µ ∂µD +
1

2
e−3A/2 (σµσ̄ν) β

α θβθσ
κθ̄δ µ

µ δ ν
ν δ

κ
κ ∂κFµν −

i

4
θ2θ̄2∂2λα,

(4.74c)

where Dα = e−A/2Dα. The same result holds for M with A → A (ρ). The components of

the chiral superfield are as in (4.53) except with

φ = Σ + iA4 = Σ+ ieAAρ. (4.75a)

Similarly for the vector superfield,

D = X3 − ∂4Σ = X3 − eA∂ρΣ, (4.75b)

where here we have used that the D7 is on AdS5 ×X5 so that A = B̄. The off-shell action

follows from (4.56)

S =
1

g25

∫

M

d5x
√

g̃e−3B

{

1

4

∫

d2ϑWαWα+
1

4

∫

d2ϑ̄W α̇W α̇
+

∫

d4ϑ

(

1

2

(

Φ+Φ
)∗−eA∂ρV

)2}

,

(4.76)

where the additional factor of e3B in the measure is introduced to match with the gauge

24



kinetic term of (4.46). In terms of components,

S = − 1

g25

∫

M

d5x
√

g̃
ρ3

L3
e−3A

{

1

4
FmnF

mn +
i

2
λ̄iγ̃

m∇mλ
i +

1

2
∂mΣ∂

mΣ

+
i

2
mλλ̄i

(

σ3
)i

j
λj +

1

2
m̄2

ΣΣ
2 − 1

2
XIXI − βΣX3

}

, (4.77)

in which

m̄2
Σ =

1

ρ2
e2A

(

ρ2A′′ + 2ρ2A′2 − 3ρA′ − 6
)

,

mλ =
1

2ρ
eA

(

3− 2ρA′
)

,

β =
1

ρ
eA

(

3− ρA′
)

,

where we have used that in the supersymmetric case B = A + logL/ρ. In the AdS5 case,

which can be recovered by taking µ→ 0,

m̄2
Σ = − 8

L2
, mλ =

1

2L
, β =

2

L
. (4.78)

The auxiliary fields can be easily integrated out,

X1,2 = 0, X3 = −βΣ. (4.79)

Then the action can be written as (4.46) with

m2
Σ =

1

ρ2
e2A

(

ρ2A′′ + 3ρ2A′2 − 9ρA′ + 3
)

mλ =
1

2ρ
eA

(

3− 2ρA′
)

,

α =
3eA

ρ

(

1− ρA′
)

,

in which we have written λ = λ1. Note that this agrees with the result in the previous

subsection in supersymmetric limit B = A+logL/p. In the AdS case, we recover Lmλ = 1/2,

L2m2
Σ = −4, and α = 0.

V. SUPERSYMMETRIC CURRENT-CURRENT CORRELATORS

We now turn to the calculation of the current-current correlators which, as discussed in

section II, can be used to calculate visible-sector soft terms. These two-point functions can
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be calculated by considering the dual classical gravity solution. We will make use of the

method of holographic renormalization [49–51]. The first step in the procedure is to solve

the equations of motion near the boundary of the 5d spacetime M. The resulting on-shell

action will be divergent but can be regularized by cutting off the spacetime at finite ρ = R.

The divergences can be subtracted by the addition of an appropriate boundary term action

and then the renormalized action is defined in the R → ∞ limit. The solution to the field

equation for a particular field Φ that is dual to a operator O will be given in terms of two

coefficients that are set by boundary conditions. One of these coefficients can be fixed by

determining a boundary condition at ρ = ∞ while the other requires a boundary condition

at small ρ. The former coefficient gives the leading behavior at large ρ and corresponds

to a source for O while the second corresponds to the resulting point-point function for

O. Higher-point functions can then be determined by differentiation of the one-point with

respect to the source.

To employ these methods, it is convenient to define a coordinate u by

du

dρ
= −2u

ρ
e−B. (5.1)

Then the metric for M is written as

ds25 = e2Aηµνdx
µdxν +

L2

4u2
du2. (5.2)

A. Massless messengers

The gravity fields dual to the field theory operators can be inferred from (4.57). In order

to fix the normalizations, we will first consider the case of AdS5 with µ = 0. Since the

spacetimes that we are considering are asymptotically anti-de Sitter, the normalizations will

apply also in these other cases. Many of the results of this subsection have been presented

previously in the literature.

1. Scalar current

The interaction Lagrangian contains the term JD where D is the auxiliary component

of the N4 = 1 vector multiplet and J is the scalar component of the current superfield.

The action for D was determined only in the supersymmetric case in section IVB. The
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action after integrating it out in either the SUSY or non-SUSY case was determined in

section IVA and since we are interested in only the on-shell action, this action is sufficient

for calculating two-point functions. However, the off-shell action is required to determine

the leading behavior of D and thus the duality between the boundary operator and the

bulk field. Since the spacetimes we are considering are asymptotically AdS, we can apply

the result of the AdS5 case to the other spacetimes. The analysis of scalar correlators were

performed early in the stages of AdS/CFT [15, 52, 53] though the analysis here follows the

methods of holographic renormalization (see, e.g. [51]) with the slight difference that we

consider an auxiliary field.

In the pure-AdS case, B = 0 and so (5.1) is solved by

u =
L2

ρ2
, (5.3)

and the action for the scalar Σ is

S = −1

2

∫

AdS5

d5x
√

g̃

{

g̃mn∂mΣ∂nΣ +m2Σ2

}

, (5.4)

in which m2 = −4/L2 and we have redefined the field to absorb a factor of g5. The resulting

equation of motion, using the coordinate u is

0 = 4u2Σ′′ − 4uΣ′ + 4Σ− uκ2Σ, (5.5)

where we have performed a Fourier transformation on the Minkwoski spacetime and have

defined κ2 = L2k2 where k2 is the momentum. This is solved by the series expansion

Σ = u

∞
∑

n=0

{

σ(2n) + σ̃(2n) log u

}

un, (5.6)

in which σ(0) and σ̃(0) are undetermined while for n > 0,

0 =4n2σ(2n) + 8nσ̃(2n) − κ2σ(2n−2),

0 =4n2σ̃(2n) − κ2σ̃(2n−2). (5.7)

The scalar current J is dual to the auxiliary field D

D = X3 +
2u

L
∂uΣ =

2u

L2
σ̃(0) + · · · , (5.8)

where we have used the fact that on-shell X3 = − 2
L
Σ and have made a small u expansion.

Since σ̃(0) is leading order term, we identify it as the source for the field theory operator J .

The other undetermined coefficient σ(0) should then be identified with the response.
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The regulated action is defined by cutting off the integral at some small u = ǫ. On-shell,

this gives

Sreg = −1

2

∫

u≥ǫ

d5x
√

g̃

{

g̃mn∂mΣ∂nΣ+m2Σ2

}

=
1

2

∫

u=ǫ

d4x
√
h
2u

L
Σ∂uΣ, (5.9)

where after the second equality we have integrated by parts, applied the equation of motion

and have written the boundary metric as

ds24 = hµνdx
µdxν . (5.10)

Inserting in the above solution, we find

Sreg =
1

L

∫

d4k

(2π)4

{

σ̃2
(0) (log ǫ)

2 + 2σ(0)σ̃(0) log ǫ+ σ̃2
(0) log ǫ+ · · ·

}

, (5.11)

where · · · indicates those terms that are finite or vanishing as ǫ → 0. The action diverges

in the limit ǫ→ 0, but the divergence can be removed by adding a counterterm action

Sct = −1 + (log ǫ)−1

L

∫

u=ǫ

d4x
√
hΣ2. (5.12)

The subtracted action

Ssub = Sreg + Sct, (5.13)

is then finite as ǫ→ 0. Defining the renormalized action

Sren = lim
ǫ→0

Ssub, (5.14)

the response of the current J to the source σ̃(0) is

〈J〉s =
1

√

det (ηµν)

δSren

δσ̃(0)
. (5.15)

Using (5.14)

〈J〉s = lim
ǫ→0

1

ǫ2
√
h
ǫ log ǫ

δSsub

δΣ
, (5.16)

where we have used the fact that for small u

Σ = σ̃(0)u log u+ · · · . (5.17)

Under Σ → Σ+ δΣ at the boundary

δSsub =
2

L

∫

u=ǫ

d4x
√
h

{

u∂uΣ−
(

1 + (log ǫ)−1)Σ

}

δΣ. (5.18)
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Inserting in the above solution the divergent parts cancel and we get

〈

J
〉

s
= − 2

L
σ(0). (5.19)

The two-point function is then

〈

J
(

k
)

J
(

−k
)〉

= − δ 〈J (k)〉s
δσ̃(0) (−k)

∣

∣

∣

∣

σ̃(0)=0

→ 2D0

L

δσ(0)
δσ̃(0)

∣

∣

∣

∣

σ̃(0)=0

, (5.20)

where the arrow indicates that have introduced a constant D0 to account a possible nor-

malization. In the AdS5 case, it is possible to solve the equation of motion exactly and we

get

Σ = N0uI0
(

κ
√
u
)

+M0uK0

(

κ
√
u
)

, (5.21)

where Iν and Kν are modified Bessel functions of the first and second kinds and κ =
√
κ2

and in this expression, κ is taken to be the Euclidean momentum. Demanding that Σ → 0

as u→ ∞ gives the condition N0 = 0. Then a small u expansion gives

Σ = u

[

−M0 (γ + log κ+ log 2)− M0

2
log u+ · · ·

]

, (5.22)

where γ is the Euler-Mascheroni constant. From this expression we read off

σ(0) (k) = σ̃(0)

[

log κ2 + 2γ − log 4

]

, (5.23)

giving
〈

J (k) J (−k)
〉

=
2D0

L

(

log κ2 + 2γ − log 4

)

. (5.24)

The non-analytic behavior in k is completely determined by conformal invariance and has

the expected form. Additionally, we have suppressed a factor of (2π)4 δ4 (0) resulting from

momentum conservation.

The correlator for the operator dual to a BF scalar in AdSd+1 was first calculated in [53]

and in position space

〈

O
(

x
)

O
(

0
)〉

=
2

π2

1

x4
+ (contact terms) . (5.25)

Note that the dual operator J that we consider here is not precisely dual to the BF scalar

Σ but is instead dual to the auxiliary field D. However, since D latter is closely related to

the BF scalar we will use the result of [53] to fix the normalization. Fourier transforming

and comparing to (5.24), we get D0 = −L.
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2. Vector current

A similar analysis applies for the vector correlators [53] though again we apply the method

of holographic renormalization as in, e.g., [50]. The bulk field due to the vector current jµ

are the components Aµ of the 5d vector field. The action for the vector field is

S = −1

4

∫

AdS5

d5x
√

g̃g̃mng̃stFmsFnt, (5.26)

resulting in the equations of motion

0 =4u2Aµ + uL2∂2Aµ − uL2∂µ
(

∂ · A
)

− 4u2∂µ
(

∂uAu
)

,

0 =u∂2Au − u∂u
(

∂ · A
)

, (5.27)

where ∂ · A := ηµν∂µAν and as before ∂2 = ηµν∂µ∂ν . In section IVA, we imposed the 5d

Lorenz condition

∇̃mAm = 0. (5.28)

For the metric (5.2), the non-vanishing Christoffel symbols are

Γ̃uuu = −1

u
, Γ̃uµν =

2

L2
ηµν , Γ̃µuν = − 1

2u
δµν , (5.29)

and so the Lorenz condition becomes

0 = uL2∂ ·A + 4u2∂uAu − 4uAu. (5.30)

Then the equations of motion become

4iukµAu =4u2∂2uAµ − uκ2Aµ, (5.31a)

0 =4u2∂2uAu − uκ2Au. (5.31b)

The solution to (5.31b) is

Au =

∞
∑

n=0

{

a(2n) + ã(2n) log u
}

un, (5.32)

in which ã(0) = 0 while a(0) and a(2) are undetermined. For n > 0,

0 =4n (n− 1) a(2n) + 4 (2n− 1) ã(2n) − κ2a(2n−2),

0 =4n (n− 1) ã(2n) − κ2ã(2n−2). (5.33)
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The homogeneous part of (5.31a) has a similar solution

A(H)
µ =

∞
∑

n=0

{

aµ(2n) + ãµ(2n) log u
}

un, (5.34)

with ãµ(0) = 0, aµ(0) and aµ(2) undetermined, and for n > 0,

0 =4n (n− 1) aµ(2n) + 4 (2n− 1) ãµ(2n) − κ2aµ(2n−2),

0 =4n (n− 1) ãµ(2n) − κ2ãµ(2n−2). (5.35)

For the inhomogeneous part, we write

A(I)
µ = −ikµ

∞
∑

n=0

{

α(2n) + α̃(2n) log u
}

un. (5.36)

This leads to α̃(0) = 0. For n > 0,

0 =4n (n− 1)α(2n) + 4 (2n− 1) α̃(2n) + 4a(2n−2) − κ2α(2n),

0 =4n (n− 1) α̃(2n) + 4ã(2n−2) − κ2α̃(2n−2). (5.37)

We can add some of the homogeneous solution to set α̃(2) = 0.

The gauge-fixing condition in Fourier space is

0 = 4u2∂u − 4uAu + iLuκµAµ, (5.38)

where κµ := ηµνκν . This imposes the relations

0 =iLκµaµ(2n) + 4 (n− 1) a(2n) + 4ã(2n) − κ2α(2n),

0 =iLκµãµ(2n) + 4 (n− 1) ã(2n) − κ2α̃(2n). (5.39)

Note that the latter implies κµãµ(2) = κµaµ(0) = 0.

With this solution, the regulated action is

Sreg =
1

L

∫

d4k

(2π)4
ηµν

κ2

4
aµ(0)aν(0) log ǫ+ · · · . (5.40)

The divergence can be cancelled by adding the counterterm action

Sct = −L log ǫ

8

∫

u=ǫ

d4x
√
hhµνhστFµσFντ . (5.41)

Writing

Aµ =
∑

n=0

{

Aµ(n) + Ãµ(n) log ǫ
}

un, (5.42)
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the leading behavior of Aµ is

Aµ = A(0)
µ +O

(

u
)

, (5.43)

and so the response function in the dual field theory is

〈jµ〉s =
1

√

det (ηµν)

δSren

δAµ(0)
= lim

ǫ→0

1

ǫ2
√
h

δSsub

δAµ
,

where as before, Ssub = Sreg+Ssub and Sren is the limit of this sum as ǫ→ 0 and the µ index

has been raised with ηµν . Under Aµ → Aµ + δAµ at the boundary,

δSsub =
2

L

∫

u=ǫ

d4x
√
hǫ2

{

Fuµ +
L2 log ǫ

8
ησκ∂σFκµ

}

Aµ. (5.44)

Inserting in the above solution gives

〈

jµ
〉

s
=

2

L

(

aµ(2) −
kµk

ν

k2
aν(2) +

κ2

4
aµ(0)

)

. (5.45)

Using that kµaµ(0) = 0, this gives

〈

jµ
〉

s
=
2

L

(

δνµ −
kµk

ν

k2
)

(

aν(2) +
κ2

4
aν(0)

)

. (5.46)

Note that the longitudinal part is projected out, as expected for a conserved current. Since

the solution to the inhomogeneous equation is transverse, we have

〈

jµ
(

k
)

jν
(

−k
)〉

= −
δ
〈

jµ
(

k
)〉

s

δAν(0)
(

−k
)

∣

∣

∣

∣

∣

aν(0)κ=0

→ −2D1

L

(

δλµ −
kµk

λ

k2
)

(

δaλ(2)
δaν(0)

+
κ2

4
ηλν

)

. (5.47)

In the AdS5 case, we can again solve the equations of motion exactly, and the solution to

the homogeneous part of (5.31a) is

A(H)
µ = Nµ

√
uI1

(

κ
√
u
)

+Mµ

√
uK1

(

κ
√
u
)

. (5.48)

Demanding that Aµ → 0 as u→ ∞ sets Nµ = 0. Then expanding for small u,

A(H)
µ =

Mµ

κ
+
κMµ

4
u
(

log κ2 + 2γ − log 4− 1
)

+
κMµ

4
u log u+ · · · , (5.49)

so that

aµ(2) =
κ2aµ(0)

4

(

log κ2 + 2γ − log 4− 1

)

, (5.50)

giving
〈

jµ
(

k
)

jν
(

−k
)〉

= −D1L

2

(

k2δµν − kµkν
)

(

log κ2 + 2γ − log 4

)

, (5.51)

where we have again moved into Euclidean space. Note that this satisfies

〈

jµ
(

k
)

jν
(

−k
)〉

∝ −
(

k2δµν − kµkν
)〈

J
(

k
)

J
(

−k
)〉

, (5.52)

as expected from supersymmetry.
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3. Spinor current

We now turn to the analysis of the spinor current [53, 54], making use of holographic

renormalization techniques as in [55]. It was argued in [56] that the action must be supple-

mented by a particular boundary term,

S = −i

∫

AdS5

d5x
√

g̃

{

λ̄γ̃m∇̃mλ+mλ̄λ

}

+
i

2

∫

δAdS5

d4x
√
hλ̄λ, (5.53)

in which m = 1/2L. The non-vanishing components of spin connection are

ω̃ 4π
µ =

2

L
√
u
δπµ , (5.54)

and so the equation of motion resulting from this action is

0 = iκµ
√
uγ̃µδ µ

µ λ− 2uγ(4)∂uλ+ 2γ(4)λ+
1

2
λ. (5.55)

Following [53], we apply γ̃m∂m, giving

0 = 4u2∂2uλ− 6u∂uλ+
1

2
γ(4)λ+

23

4
λ− uκ2λ. (5.56)

Writing λ as

λ =





λL

iλ̄R



 , (5.57)

we get the solutions

λL =u3/4
∞
∑

n=0

{

λL(2n) + λ̃L(2n) log u
}

un,

λR =u5/4
∞
∑

n=0

{

λR(2n) + λ̃R(2n) log u
}

un, (5.58)

in which λL(0) and λL(2) are undetermined, λ̃L(0) = 0 and for n > 0,

0 =4n (n− 1)λL(2n) + 4 (2n− 1) λ̃L(2n) − κ2λL(2n−2),

0 =4n (n− 1) λ̃L(2n) − κ2λ̃L(2n−2). (5.59)

Similarly λR(0) and λ̃R(0) are (for the moment) unfixed and

0 =4n2λR(2n) + 8nλ̃R(2n) − κ2λR(2n−2),

0 =4n2λ̃R(2n) − κ2λ̃R(2n−2). (5.60)
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Writing λL = u3/4χL and λR = u5/4χR, the Dirac equation (5.55) gives the (not independent)

relations

0 =2χ′
L − κµσ

µδ µ
µ χ̄R,

0 =2uχ̄′
R + κµσ̄

µδ µ
µ χL. (5.61)

Matching coefficients

0 =2nλL(2n) + 2λ̃L(2n) − κµδ
µ
µ σ

µλ̄R(2n−2),

0 =2nλL(2n) − κµδ
µ
µ σ

µ ¯̃λR(2n−2),

0 =2nλ̄R(2n) + 2
¯̃
λR(2n) + κµδ

µ
µ σ̄

µλL(2n), (5.62)

0 =2n
¯̃
λR(2n) + κµδ

µ
µ σ̄

µλ̃L(2n).

The spinor current j on the boundary couples to λL. We have

λL = λL(0) +O
(

u
)

, (5.63)

and so λL(0) is the source for the dual current j and λL(2) is the response.

On-shell, the bulk part of the action (5.53) vanishes, and so the regulated action comes

only from the boundary term

Sreg =
1

2

∫

d4k

(2π)4
{

λ̃R(0)λL(0) +
¯̃
λR(0)λ̄L(0)

}

log ǫ+ · · · , (5.64)

where we have used the fact that λ̃L(0) = 0. Making use of (5.62), this is

Sreg = −1

2

∫

d4k

(2π)4
λ̄L(0)σ̄

µδ µ
µ κµλL(0) log ǫ+ · · · . (5.65)

The divergences can be canceled by the counterterm

Sct = − iL log ǫ

2

∫

u=ǫ

d4x
√
hλ̄γ̃µ∇̃µ

1

2

(

1− γ(4)
)

λ. (5.66)

The response function is

〈

jα
〉

=
1

√

det (ηµν)

δSren

δλαL(0)
= lim

ǫ→0

ǫ3/4

ǫ2
√
h

δSsub

δλαL
. (5.67)

This gives

〈

jα
〉

s
=

1

2
lim
ǫ→0

ǫ−5/4

{

λRα + λ̄Lα̇
δλ̄α̇R
δλαL

+ ǫ1/2 log ǫλ̄Lβ̇κµδ
µ
µ σ̄

µβ̇γǫγα

}

, (5.68)
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where we have used the fact that on shell, λ̄R and λL are not independent and indeed at

small u

λ̄R = −1

2
u1/2 log uκµδ

µ
µ σ̄

µλL + · · · . (5.69)

Thus,
〈

jα
〉

s
=

1

2
lim
ǫ→0

ǫ−5/4
{

λRα +
1

2
ǫ1/2 log ǫλ̄Lβ̇κµδ

µ
µ σ̄

µβ̇γǫγα
}

=
1

2
λRα(0). (5.70)

Making use of (5.62) and (5.58), this gives

〈

jα
〉

s
= −κµδ µ

µ σ
µ

αα̇

{

1

κ2
λ̄α̇L(2) +

1

4
λ̄α̇L(0)

}

. (5.71)

The two point functions are

〈

jα
(

k
)

jβ
(

−k
)〉

=
δ 〈jα (k)〉
δλβL(0) (−k)

∣

∣

∣

∣

∣

λL(0)=0

,

〈

jα
(

k
)

j̄β̇
(

−k
)〉

=
δ 〈jα (k)〉
δλ̄β̇L(0) (−k)

∣

∣

∣

∣

∣

∣

λ̄L(0)=0

. (5.72)

So in this case,

〈

jα
(

k
)

jβ
(

−k
)〉

= 0,
〈

jα
(

k
)

j̄β̇
(

−k
)

〉 → −D1/2κµδ
µ
µ σ

µ

αα̇

{

1

κ2

δλ̄α̇L(2)

δλ̄β̇L(0)

+
1

4
δα̇
β̇

}

. (5.73)

In the AdS5 case, we have the exact solution

λLα = Nαu
5/4I1

(

κ
√
u
)

+Mαu
5/4K1

(

κ
√
u
)

(5.74)

Again imposing that λL→0 as u→ 0 sets Nα = 0, and so for small u

λLα =Mαu
3/4

[

1

κ
+
κ

4

(

log κ2 + 2γ − log 4− 1
)

u+
κ

4
u log u+ · · ·

]

, (5.75)

from which we read off

λL(2) =
κ2λL(0)

4

(

log κ2 + 2γ − log 4− 1

)

, (5.76)

and so
〈

jα
(

k
)

j̄β̇
(

−k
)〉

= −D1/2

4L
kµδ

µ
µ σ

µ

αβ̇

(

log κ2 + 2γ − log 4

)

. (5.77)

The correlators satisfy the relations

〈

jα
(

k
)

jβ
(

−k
)〉

=0 (5.78)
〈

jα
(

k
)

j̄β̇
(

−k
)〉

∝− kµδ
µ
µ σ

µ

αβ̇

〈

J
(

k
)

J
(

−k
)〉

, (5.79)

as again expected from SUSY.
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B. Massive messengers

The messengers can be made massive by taking µ > 0. In this case, it turns out to be

easier to work with the ρ coordinate. This system was considered also in [57] and we follow

that work closely, but here we go beyond just determination of the spectrum to find the full

two-point functions. We have

A =
1

2
log

(

ρ2 + µ2

L2

)

, B =
1

2
log

(

ρ2 + µ2

ρ2

)

. (5.80)

From (4.46), the equation of motion for the scalar is

0 =
e3B√
g̃

[
√

g̃e−3B g̃mn∂mΣ
]

−m2
ΣΣ

=e−2A+4Bρ∂ρ
[

e4A−2Bρ∂ρΣ
]

− e2AL2m2
ΣΣ− κ2Σ. (5.81)

Writing ρ = µp,

0 =
1 + p2

p3
d

dp

[

p3
(

1 + p2
)dΣ

dp

]

− ν2Σ− 3− 2p2 − 4p4

p2
Σ, (5.82)

in which ν2 = L4k2/µ2. Taking

Σ = pm
(

1 + p2
)n
P
(

p
)

, (5.83)

This equation becomes

0 =
(

1 + p2
)d2P

dp2
+

1

p

[(

5 + 2m+ 4n
)

p2 +
(

3 + 2m
)]dP

dp

+
1

p2 (1 + p2)

[(

2 +m+ 2n
)2
p4 +

(

2 + 8n+2m
(

3 +m+ 2n
)

− ν2
)

p2 +
(

m+ 3
)(

m− 1
)]

P.

(5.84)

Defining y = −p2,

0 = y
(

1− y
)d2P

dy2
+
[

−
(

3 +m+ 2n
)

y +
(

2 +m
)]dP

dy

− 1

4 (y − 1)

[(

2 +m+ 2n
)2
y −

(

2 + 8n+ 2m
(

3 +m+ 2n
)

− ν2
)

+
1

y

(

3 +m
)(

m− 1
)]

P.

(5.85)

This can be cast as a hypergeometric differential equation

0 = y
(

y − 1
)d2P

dy2
+
[

−
(

a+ b+ 1
)

y + c
]dP

dy
− ab P, (5.86)
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by taking

m = 1, n = −1

2

√
1− ν2 =: η. (5.87)

Then the full solution is

Σ = p
(

1 + p2
)η
{

M0 F

(

3

2
+ η,

3

2
+ η; 3;−p2

)

+N0 p
−4F

(

−1

2
+ η,−1

2
+ η;−1;−p2

)}

,

(5.88)

in which F
(

a, b; c; y
)

is the hypergeometric function. Demanding that Σ be regular at y = 0

sets N0 = 0. The solution to (5.1) is14

ρ =
L√
u

(

1− µ2u

4L2

)

, u ∈
[

0, 4L2/µ2
]

, (5.89)

and a small u expansion gives

Σ =
−8M0µ

2

L2πν2
cos

(

πη
)

u

[

ψ

(

3

2
+ η

)

+ ψ

(

3

2
− η

)

+ log

(

µ2

L2

)

+ 2γ + log u

]

+ · · · , (5.90)

in which ψ is the digamma function. This gives the correlator function (c.f. (2.5)).

C0 =
2D0

L

[

ψ

(

3

2
+ η

)

+ ψ

(

3

2
− η

)

+ log

(

µ2

L2

)

+ 2γ

]

, (5.91)

in which again

ν2 =
L4k2

µ2
, η = −1

2

√
1− ν2. (5.92)

In the limit where µ→ 0, this agrees with the result in the conformal case.

The digamma functions have poles corresponding to resonances located at

k2 = −4µ2

L4

(

ℓ+ 1
)(

ℓ+ 2
)

, ℓ ∈ N, (5.93)

agreeing with the analysis of [57].

For the vectors, the equation of motion is

0 =
e3B√
g̃
∂m

[
√

g̃e−3B g̃mng̃stFnt
]

. (5.94)

14 There is an overall multiplicative factor arising as an integration constant. A choice different from the

one here would change the leading term of e2A by a multiplicative constant, and the result of section VA

would have to be re-performed. The end of result of course would be the same. With this choice of

the integration constant, naive application of the expressions for the dual stress-energy tensor presented

in [58] would imply that 〈Tµν〉 6= 0. However, since the analysis leading to those results makes use of

the Einstein equations for the 5d metric and the metric above doesn’t satisfy such equations (that is, the

pullback of the 10d metric onto the worldvolume of course satisfies the pullback of the Einstein equations,

but does not satisfy Einstein equations built from the pullback metric alone since generally the pullback

of curvature tensors are different from the curvature of the pullback of the metric), the analysis does not

apply. 37



So,

0 =e4Bρ ∂ρ
[

e2A−2Bρ
(

∂ρAµ − ∂µAρ
)]

+ L2∂2Aµ − L2∂µ
(

∂ · A
)

, (5.95)

0 =∂2Aρ − ∂ρ
(

∂ · A
)

.

The Christoffel symbols are

Γ̃ρρρ = −1

ρ

(

1 + ρB′
)

, Γ̃ρµν = −ρ
2A′

L2
e2A+2Bηµν , Γ̃µρν = A′δµν , (5.96)

and so the gauge-fixing condition becomes

0 = g̃mn∇̃mAn = e−2A∂ · A+
ρ

L2
e2B

(

4ρA′ + ρB′ + 1
)

Aρ +
ρ2

L2
e2B∂ρAρ. (5.97)

With this condition, the equation of motion for Aµ is

−ρ e2A+2B
(

2ρA′ + 3ρB′
)

ikµAρ = ρ e4B∂ρ
[

ρ e2A−2B∂ρAµ
]

− κ2Aµ, (5.98)

and that for Aρ is

0 = ρ2e2A+2B∂2ρAρ +
(

6ρA′ + 3ρB′ + 3
)

e2A+2Bρ∂ρAρ

+
(

4ρ2A′′ + ρ2B′′ + 8ρ2A′2 + 2ρ2B′2 + 10ρ2A′B′ + 10ρA′ + 4ρB′ + 1
)

e2A+2BAρ. (5.99)

The homogeneous part of (5.98) is

0 =

(

1 + p2
)2

p3
d

dp

[

p3
dAµ
dp

]

− ν2Aµ, (5.100)

the general solution to which is

Aµ =
(

1+p2
)

1
2
+η
{(

MµF

(

3

2
+η,

1

2
+η; 2;−p2

)

+Nµ p
−2F

(

1

2
−η,−1

2
−η; 0;−p2

)}

. (5.101)

Regularity imposes Nµ = 0 and at small u,

Aµ =
Mµ cos

(

πη
)

πν2

{

4 +
µ2ν2

L2

[

ψ

(

3

2
+ η

)

+ ψ

(

3

2
− η

)

+ log

(

µ2

L2

)

+ 2γ − 1

]

u

}

+ · · · .

(5.102)

From this and (5.47), we find C1 = C0 where C0 is as in (5.91).

The Dirac equation is

0 =
(

/̃∇+mλ + αγ(4)
)

λ (5.103)

0 =

{

e−Aγ̃µδµµ∂µ +
ρ

L
eBγ(4)∂ρ +

(

α +
2A′ρ

L
eB

)

γ(4) +mλ

}

λ. (5.104)
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Again applying γ̃m∂m,

0 = ρ2e2B+2A∂2ρλ+
(

5ρA′ + ρB′ + 1 + 2αLe−B
)

ρ e2B+2A∂ρλ

+
[

2ρ2
(

A′′ + 3A′2 + A′B′
)

+ ρ
(

2A′ + α′Le−B + 5A′αLe−B
)

+
(

α2 −m2
λ

)

L2e−2B
]

e2B+2Aλ

+
(

ρA′mλL+ ρm′
λL

)

eB+2Aγ(4)λ− κ2λ. (5.105)

For the left-handed spinor,

0 =
(

1 + p2
)2d2λL

dp2
+

3 (1 + p2) (1 + 2p2
)

p

dλL
dp

+
3 (8 + 7p2)

4
λL − ν2λL. (5.106)

This is solved by

λL =
(

1+p2
)η− 1

4

{

ML F

(

3

2
+η,

1

2
+η; 2;−p2

)

+NL p
−2F

(

1

2
−η,−1

2
−η; 0;−p2

)}

. (5.107)

Regularity again imposes that NL = 0, and then at small u,

λL =
MLµ

3/2 cos
(

πη
)

u3/4

πν2L3/2

{

4 +
µ2ν2

L2

[

ψ

(

3

2
+ η

)

+ ψ

(

3

2
− η

)

+ log

(

µ2

L2

)

+ 2γ − 1

]

u

}

+ · · · ,

(5.108)

and so, using (5.73), we get C1/2 = C1 = C0 and B1/2 = 0.

VI. NON-SUPERSYMMETRIC CORRELATORS

We now turn to the analysis of non-supersymmetric cases which is our main interest in

this work. In particular, we consider a normalizable non-supersymmetric perturbation to the

above geometry and recalculate the correlators of section V in this perturbed background.

As discussed in section III, these classical two-point functions correspond to the current-

current correlators of the hidden sector after the latter has obtained a non-supersymmetric

state and so calculation of these functions is tantamount to calculation of visible-sector soft

terms resulting from the gauge mediation of supersymmetry breaking.

Inspired by the well-studied case in Klebanov-Strassler [20, 30, 31], the toy case that we

consider is the addition of p D3-D3 pairs to AdS5×X5. The geometry was considered in [30]

and (as argued in [30]) can be found by taking a near-horizon limit of geometries considered

in [59]. In our notation, the solution is

A = log

(

r

L

)

− L8S
5r8

, B̄ = log

(

r

L

)

− L8S
10r8

, C = log

(

r

L

)

+
3L8S
10r8

, (6.1)
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in which we have taken S = p
N

to be a small parameter. It was pointed out in [30] that

the perturbations are such that 〈Tµν〉 = 0 and so the dual supersymmetry, which is rigid,

is unbroken. This should be reflected in the correlators resulting from this background.

Nevertheless, we find below that the messenger spectrum is split and therefore the correlators

do not respect the relationships expected from supersymmetry. Presumably, this is related

to the fact that a finite messenger mass spoils the conformal behavior of the dual theory

and taking into account the backreaction of the D7s should result in a finite vacuum energy.

To leading order in S, the equation of motion for the scalar field takes the form

0 =

{

1 + p2

p3
d

dp

[

p3
(

1 + p2
)

(

1− δ

(1 + p2)4

)

d

dp

]

− 3− 2p2 − 4p4

p2

(

1− δ

(1 + p2)4

)

− ν2
}

Σ,

(6.2)

in which

δ =
3L8

5µ8
S. (6.3)

This is a Sturm-Liouville problem and so for a set of boundary conditions the solutions will

be orthogonal with respect to the inner product

(

Σℓ,Σℓ′
)

0
=

∫ ∞

0

dp
p3

1 + p2
ΣℓΣℓ′ ∝ δℓℓ′. (6.4)

Instead of attempting to solve (6.2) directly, we can apply perturbation theory. When

δ = 0, (6.2) is again a Sturm-Liouville problem and so the solutions are orthogonal with

respect to the same inner product. The solutions that are regular were found in the last

section, and the resulting correlation function (5.91) can be written as

C0 =
2D0

L

∞
∑

ℓ=0

−4 (3 + 2ℓ)

ν2 + 4 (ℓ+ 1) (ℓ+ 2)
+ · · · , (6.5)

where we have omitted the contact terms that were specified by holographic renormalization.

The simple structure of this correlator is a consequence of the fact that the messengers form

mesonic bound states which are free in the large N limit [60].

The correlator in the perturbed geometry should be expressible in a similar way

C0 =
2D0

L

∞
∑

ℓ=0

Zℓ
ν2 + L4m2

ℓ/µ
2
+ · · · . (6.6)

The precise form of this requires the precise solution which we will not attempt to find.

However, we can find the spectrum perturbatively by writing the equation of motion (6.2)
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for the modes corresponding to these poles as

H0Σℓ = λℓΣℓ, (6.7)

with λℓ = −L4m2
ℓ/µ

2. When δ = 0,

H0 = H(0)
0 =

1 + p2

p3
d

dp

[

p3
(

1 + p2
) d

dp

]

− 3− 2p2 − 4p4

p3
. (6.8)

For δ 6= 0, write H0 = H(0)
0 + δH(1)

0 with

H(1)
0 =

8p

(1 + p2)3
d

dp
− 1

(1 + p2)4
H(0)

0 . (6.9)

The unperturbed spectrum is λ
(0)
ℓ = −4 (ℓ+ 1) (ℓ+ 2) and the corresponding eigenfunctions,

Σ
(0)
ℓ =Mℓ p

(

1 + p2
)− 3

2
−ℓ
F
(

−ℓ,−ℓ; 3;−p2
)

, (6.10)

form a complete set of functions that vanish as p→ ∞ and, by appropriate choice ofMℓ, are

orthonormal with respect to (6.4). We similarly expand λ
(0)
ℓ + δλ

(1)
ℓ and Σℓ = Σ

(0)
ℓ + δΣ

(1)
ℓ

with

Σ
(1)
ℓ =

∑

ℓ′

cℓℓ′Σ
(0)
ℓ′ . (6.11)

Demanding that Σℓ is normalized sets cℓℓ = 0. It follows then

λ
(1)
ℓ =

(

Σ
(0)
ℓ ,H(1)

0 Σ
(0)
ℓ

)

0
. (6.12)

Since ℓ is an integer, the solutions are a polynomial of order ℓ order and so these integrals

can be easily performed. The resulting spectrum appears in table I. Meanwhile, for ℓ′ 6= ℓ,

cℓℓ′ =

(

Σ
(0)
ℓ′ ,H

(1)
0 Σ

(0)
ℓ

)

0

λ
(0)
ℓ − λ

(0)
ℓ′

. (6.13)

The homogeneous equation for Aµ = aµA takes the form

0 =

{

(1 + p2)
2

p3

(

1− 2

3

δ

(1 + p2)4

)

d

dp

[

p3
(

1− 1

3

δ

(1 + p2)4

)

d

dp

]

− ν2
}

A. (6.14)

Here the appropriate inner product is

(

Aℓ,Aℓ′
)

1
=

∫ ∞

0

dp
p3

(1 + p2)2

(

1 +
2

3

δ

(1 + p2)4

)

AℓAℓ′. (6.15)
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The equation of motion takes the form H1Aℓ = λℓAℓ with

H1 =H(0)
1 + δH(1)

1 ,

H(0)
1 =

(1 + p2)
2

p3
d

dp

[

p3
d

dp

]

, (6.16)

H(1)
1 =

8p

3 (1 + p2)3
d

dp
− 1

(1 + p2)4
H(0)

1 .

The solutions to the δ = 0 equation are

A(0)
ℓ =Mℓ

(

1 + p2
)−1−n

F
(

−n,−1− n; 2;−p2
)

. (6.17)

These are orthonormal with respect to

〈

A(0)
ℓ ,A(0)

ℓ′

〉

1
=

∫ ∞

0

dp
p3

(1 + p2)2
AℓAℓ′. (6.18)

Write Aℓ = A(0)
ℓ + δA(1)

ℓ with

A(1)
ℓ =

∑

ℓ′

cℓℓ′Aℓ′, (6.19)

then imposing
(

Aℓ,Aℓ

)

1
= 1 sets

cℓℓ = −1

3

∫ ∞

0

dp
p3

(1 + p2)2
1

(1 + p2)4
A(0)
ℓ A(0)

ℓ . (6.20)

While as with the scalar,

λ
(1)
ℓ =

〈

A(0)
ℓ ,H(1)

1 A(0)
ℓ

〉

1
, (6.21)

and for ℓ′ 6= ℓ,

cℓℓ′ =

〈

A(0)
ℓ′ ,H

(0)
1 A(0)

ℓ

〉

1

λ
(0)
ℓ − λ

(0)
ℓ′

. (6.22)

Writing λαL = aαLψ, the equation of motion for the spinor takes the form

0 =

{

f
(

p
) d2

dp2
+ g

(

p
) d

dp
+ h

(

p
)

− ν2
}

ψ, (6.23)

with

f
(

p
)

=
(

1 + p2
)2
(

1− δ

(1 + p2)4

)

,

g
(

p
)

=
3 (1 + p2) (1 + 2p2)

p

(

1 +
δ (−9 + 14p2)

9 (1 + p2)4 (1 + 2p2)

)

, (6.24)

h
(

g
)

=
3 (8 + 7p2)

4

(

1 +
7δ (8− 9p2)

9 (1 + p2)4 (8 + 7p2)

)

. (6.25)
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We can cast (6.23) as a Sturm-Liouville problem

0 =

{

fe−ζ
d

dp

[

eζ
d

dp

]

+ h− ν2
}

ψ, (6.26)

in which

ζ
(

p
)

=

∫ p

dp′
g (p′)

f (p′)
. (6.27)

Then,

0 =

{

√

1 + p2

p3

(

1 +
δ

3 (1 + p2)4

)

d

dp

[

p3
(

1 + p2
)3/2

(

1− 4

3

δ

(1 + p2)4

)

d

dp

]

+
3 (8 + 7p2)

4

(

1 +
7

9

δ (8− 9p2)

(1 + p2)4 (8 + 7p2)

)

− ν2
}

ψ. (6.28)

The inner product is

(

ψℓ, ψℓ′
)

1/2
=

∫ ∞

0

dp
p3

√

1 + p2

(

1− δ

3 (1 + p2)4

)

ψℓψℓ′ . (6.29)

The equation of motion is H1/2ψℓ = λℓψℓ with

H1/2 =H(0)
1/2 + δH(1)

1 ,

H(0)
1/2 =

√

1 + p2

p3
d

dp

[

p3
(

1 + p2
)3/2 d

dp

]

+
3 (8 + 7p2)

4
, (6.30)

H(1)
1/2 =

32p

3 (1 + p2)3
d

dp
+

7 (8− 9p2)

12 (1 + p2)4
− 1

(1 + p2)4
H(0)

1/2.

For δ = 0, the solutions take the form

ψ
(0)
ℓ =Mℓ

(

1 + p2
)−7/4−ℓ

F
(

−ℓ,−1 − ℓ; 2;−p2
)

, (6.31)

and are orthonormal with respect to the inner product

〈

ψ
(0)
ℓ , ψ

(0)
ℓ′

〉

1/2
=

∫ ∞

0

dp
p3

√

1 + p2
ψℓψℓ′ (6.32)

Writing again

ψ
(1)
ℓ =

∑

ℓ′

cℓℓ′ψ
(0)
ℓ′ , (6.33)

and imposing (ψℓ, ψℓ)1/2 = 0 sets

cℓℓ =
1

6

∫ ∞

0

dp
p3

√

1 + p2
1

(1 + p2)4
ψ

(0)
ℓ ψ

(0)
ℓ . (6.34)
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Once again the perturbations to the masses are

λ
(1)
ℓ =

〈

ψ
(0)
ℓ ,H(1)

1/2ψ
(0)
ℓ

〉

1/2
, (6.35)

while for ℓ 6= ℓ′,

cℓℓ′ =

〈

ψ
(0)
ℓ′ ,H

(0)
1/2ψ

(0)
ℓ

〉

1/2

λ
(0)
ℓ − λ

(0)
ℓ′

. (6.36)

The residues Zℓ can be obtained as follows (see [61]). At large p, the solution for the

scalar mode takes the form15

Σ = σ1p
−2 + σ2p

−2 log p+ · · · . (6.37)

When the 4-momentum is on a resonance, σ2 = 0 which can be seen by expanding (5.91)

for ν2 = −4 (ℓ+ 1) (ℓ+ 2). Then, when S = 0 and the solution is normalized according

to (6.4), we have

Zℓ ∼ σ2
ℓ,1. (6.38)

As a check, the normalized ℓ = 0 solution is

Σ
(0)
0 =

√
6p

(1 + p2)3/2
=

√
6

p2
+ · · · , (6.39)

comparing to (6.5) Zℓ, we get

Zℓ = −2σ2
ℓ,1. (6.40)

It is straightforward to check that this holds for higher ℓ as well16. When δ > 0, we have

σℓ,1 = σ
(0)
ℓ,1 + δσ

(1)
ℓ,1 with

σ
(1)
ℓ,1 =

∑

ℓ′

cℓℓ′σ
(0)
ℓ . (6.41)

The residue is then Zℓ = Z
(0)
ℓ + δZ

(1)
ℓ with

Z
(0)
ℓ = −2

(

σ
(0)
ℓ,1

)2
, Z

(1)
ℓ = −4σ

(0)
ℓ,1σ

(1)
ℓ,1 . (6.42)

The residues are also presented in table I. Since cℓ,ℓ′ vanishes if |ℓ− ℓ′| ≤ 4, the correction

to the residue can be calculated explicitly.

15 Note that this takes a different from from (3.7) since here we have ∆ = 2.
16 Alternatively, since the resonant solutions are polynomials of finite order, this should be possible to check

for general ℓ. Note that the relationship presented in [61] between the residues Zℓ and the coefficient of

the sub-dominant solutions must be modified for scalars satisfying the BF bound.
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For the vectors, at large p,

A = a1p
−2 + a2

(

1 + a
(

k
)

p−2 log p
)

+ · · · . (6.43)

For the mass eigenstates, a2 = 0 and

Zℓ =
8

ν2
a2ℓ,1. (6.44)

Finally for the spinors, at large p

ψ = s1p
−2 + s2

(

1 + a
(

k
)

p−2 log p
)

+ · · · , (6.45)

and for mass eigenstates

Zℓ =
8

ν2
s2ℓ,1. (6.46)

We then find an expression for the perturbed residue that is similar to (6.42).

Now, the analytic terms in the correlators Ca correspond to contact terms and must

cancel in (2.12). The non-analytic parts can be easily integrated. We have,

∫ Λ2

0

dν2
∑

ℓ=0

Zℓ
ν2 − λℓ

≈
ℓm
∑

ℓ

Zℓ
{

log
(

−λℓ
)

− log
(

−λℓ − λℓmax

)}

, (6.47)

where ℓm is the largest ℓ satisfying λℓ < Λ2. (2.12) then gives (suppressing the group index)

Γ =
−δµ2

16π2L4

(

3Γ
(1)
0 − 4Γ

(1)
1/2 + Γ

(1)
1

)

, (6.48)

in which for any particular spin,

Γ(0)
a =

ℓm
∑

ℓ

{

Z
(1)
ℓ log

[

λ
(0)
ℓ − λ

(0)
ℓm

λ
(0)
ℓ

]

− Z
(1)
ℓ λ

(1)
ℓ

(

1

λ
(0)
ℓ + λ

(0)
ℓm

− 1

λ
(0)
ℓ

)}

. (6.49)

As we observe from table I and as expected from supersymmetry, the residues and masses

become degenerate as ℓ. The result is

Γ =
3L4S
80π2µ6

c, (6.50)

in which c ≈ 90. We would like to be able to express this in terms of quantities on the

gauge theory side, for example the messenger mass and the scale of supersymmetry break-

ing. The messenger mass is related to the D7-position by mµ = µℓ−2
s . However, the dual

scale of supersymmetry breaking is not immediately obvious in this set up. The analysis

45



Scalar Vector Spinor

ℓ −λ
(0)
ℓ Z

(0)
ℓ −λ

(1)
ℓ /λ

(0)
ℓ Zℓ −λ

(1)
ℓ /λ

(0)
ℓ Zℓ −λ

(1)
ℓ /λ

(0)
ℓ Zℓ

0 8 −12 0.0143 0.474 0.104 2.33 −0.0780 0.538

1 24 −20 0.0767 3.36 0.201 5.37 0.0941 0.491

2 48 −28 0.145 6.72 0.236 7.62 0.178 7.50

3 80 −36 0.188 9.34 0.251 9.83 0.215 9.78

4 120 −44 0.214 11.8 0.258 12.0 0.234 12.0

5 168 −52 0.223 14.1 0.263 14.2 0.245 14.2

6 224 −60 0.234 16.3 0.265 16.4 0.252 16.4

7 288 −68 0.247 18.5 0.267 18.6 0.257 18.6

8 360 −76 0.252 20.7 0.268 20.8 0.260 20.8

9 440 −84 0.256 22.9 0.269 23.0 0.262 23.0

10 528 −92 0.259 25.1 0.270 25.2 0.264 25.2

20 1848 −172 0.269 47.0 0.272 47.0 0.271 47.0

50 10608 −412 0.273 113. 0.273 113. 0.273 113.

100 41208 −812 0.273 222. 0.273 222. 0.273 222.

TABLE I. Perturbed spectrum of mesonic messengers in the theory and state dual to the geome-

try (6.1). Note that although higher modes contribute increasingly large amounts to the correlators,

the spectra also become degenerate as ℓ increases and so cancel out of (2.12). All of the entries in

this table are approximations to rational numbers that can be determined for any ℓ, though the

general expression is not simple.

of [30] indicates that (at least without the D7-brane) the dual state has no vacuum energy

and supersymmetry is not broken. However, since the current-current correlators for the

component fields of J do not satisfy supersymmetric relations, supersymmetry must be

broken at least after the introduction of the flavor branes17. Relating the parameters of the

gravitational theory to the gauge theory may then require calculation of the backreaction of

the D7-brane, an analysis that we leave to future work.

17 This indicates that the mediation of supersymmetry breaking is no longer precisely semi-direct.
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VII. CONCLUSIONS

In this work, we considered models of supersymmetry breaking and mediation, using the

language and techniques of the gauge/gravity correspondence. In this sense, this work is very

much along the lines of [22, 23]. However, the approach used here differed from those works

in that in the latter soft terms (in particular, gaugino masses) were inferred directly from

dimensional reduction. In contrast, here we used the correspondence to calculate correlation

functions in the gauge theory, much in the spirit of the some of the foundational works on

AdS/CFT. Such correlators can be related to visible-sector soft terms via the formalism

of general gauge mediation. The downside to this technique however is that it requires

more explicit knowledge of solutions of the classical solutions of the equations of motion. In

particular, the fact that some of the fields of interest had non-trivial angular dependence

required us to consider particularly simple geometries.

One surprising result of the analysis performed concerns the geometry resulting from

adding a small number of D3-D3-branes to AdS5×S5. Although naively such a construction

is supersymmetric, it was argued in [30] that supersymmetry was preserved in the state

realized by the dual theory. However, we found that when a U (1) flavor group and a massive

quark is added to the theory, the resulting spectrum of mesons is not supersymmetric. A

possibility is that supersymmetry is broken only after the addition of the quarks. This could

be confirmed by calculating the backreaction of the D7 on the geometry.

The advantage of the technique used here is that soft terms for chiral matter fields,

which were not directly calculable from holography in the setups of [22, 23], are readily

obtainable here. However, because of the large amount of symmetry, the gaugino in the dual

gauge theory remains massless. That is, the response function for the spinor component of

the dual current superfield took the form (5.70) and so the correlator function B1/2 given

in (2.5) vanish, leading to a vanishing m1/2. This is directly related to the fact that the

geometry does contain any 3-form flux which is necessary to give rise to gaugino masses

in this class of constructions [22, 23, 62]. It would be of interest to extend the techniques

considered here to geometries that are supported by fluxes such as [19, 32] and their non-

supersymmetric perturbations [30, 31], especially since such constructions are perturbatively

stable. However, in addition to the complications presented by an angular space18, such

18 See [63] for discussions on this point.
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theories do not, strictly speaking, flow from a conformal fixed point but are instead cascading

theories. Although the methods of holographic renormalization have been discussed for

such theories [64], the geometry is such that the correlators cannot be explicitly calculated.

Although this was also the case for the non-supersymmetric cases considered above, for

asymptotically AdS spaces it is known how to infer the two-point functions from the 1-point

functions and the spectrum. For cascading theories, this is less clear [61].
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Appendix A: Conventions

The index µ indicates an R3,1 coordinate x0,1,2,3 while m runs over all five non-compact

coordinates (i.e. R3,1 and the holographic direction). α runs over the coordinates of the probe

D7-brane discussed in the text, with a, b, c, d running over coordinates transverse to R3,1 and

i, j running transverse to the brane. φ, ψ denote angular directions, either those in the full

10d space or along the worldvolume. M,N run over all 10 directions. Underlined indices are

used to denote locally orthogonal non-coordinate bases for the (co-)vector spaces. The index

α is also used to denote spinor indices, but context should allow these to be distinguished

from worldvolume indices.
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1. Fermion conventions

a. SO(3,1) spinors

We make use of the dotted and undotted notation of [65]. Such indices are raised and

lowered with ǫ12 = ǫ21 = 1 and we define θ2 = θθ. An SO (3, 1) Dirac spinor takes the form

ψ =





ψLα

iψ̄α̇R



 , (A1)

where we have chosen a Weyl basis for the SO (3, 1) γ-matrices

γµ =





0 σµ

−σ̄µ 0



 , (A2)

in which

σµ =
(

−I2,σ
)

, σ̄µ =
(

−I2,−σ

)

, (A3)

where σ̄ are the usual Pauli matrices

σ1 =





0 1

1 0



 , σ2 =





0 −i

i 0



 , σ3 =





1 0

0 −1



 , (A4)

and so the γ-matrices satisfy the Clifford algebra

{

γµ, γν
}

= 2ηµν . (A5)

The 4d chirality operator is

γ(4) = −iγ0γ1γ2γ3 =





−1 0

0 1



 . (A6)

b. SO(4,1) spinors

For SO (4, 1), we take

γ̃µ = γµ, γ̃4 = γ(4). (A7)

These then satisfy {γ̃m, γ̃n} = 2η̃mn. The Majorana matrix is

B̃5 = γ̃2, (A8)
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which is imaginary, satisfies B̃5B̃
∗
5 = −1 and B̃−1

5 γ̃mB̃5 = −γ̃m∗. The charge-conjugation

operator is

C̃5 = B̃5γ̃
0 =





σ2 0

0 −σ2



 , (A9)

which satisfies C̃5γ̃
mC̃−1

5 = γ̃mT. N5 = 1 is usefully parametrized in terms of symplectic-

Majorana spinors. A pair of symplectic-Majorana spinors are Dirac spinors ψi=1,2 satisfying

the property

ψi = ǫijC̃5ψ̄
T
j , (A10)

where ψ∗
j :=

(

ψj
)∗

and again ǫ12 = ǫ21 = 1. Such spinors satisfy the identities

χ̄iγ̃
m1 · · · γ̃mnψj =ǫilǫ

jkψ̄kγ̃
mn · · · γ̃m1χl, (A11a)

(

χ̄iγ̃
m1 · · · γ̃mnψj

)∗
=
(

−1
)n+1

ǫikǫjlχ̄kγ̃
m1 · · · γ̃mnψl. (A11b)

For a pair of symplectic-Majorana spinors, we may write

ψ1 =





ψLα

iψ̄α̇R



 , ψ2 =





−ψRα

iψ̄α̇L



 , ψ̄1 =





−iψαR

−ψ̄Lα̇





T

, ψ̄2 =





−iψαL

ψ̄Rα̇





T

. (A12)

c. SO(5) spinors

For SO (5) we choose a basis that is useful for the decomposition SO (5) → SO (2)×SO (3),

γ̂1 = σ1 ⊗ I2, γ̂2 = σ2 ⊗ I2, γ̂3 = σ3 ⊗ σ1, γ̂4 = σ3 ⊗ σ2, γ̂5 = σ3 ⊗ σ3. (A13)

These satisfy
{

γ̂φ, γ̂ψ
}

= 2δφψ. (A14)

The Majorana matrix is

B̂5 = γ̂2γ̂4 = σ1 ⊗ iσ2. (A15)

It satisfies B̂5 = B̂∗
5 , B̂

2
5 = −1, and

B̂−1
5 γ̂φB̂5 = γ̂φ∗. (A16)
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d. SO(9,1) spinors

On R9,1 we take

Γm = σ1 ⊗ γ̃m ⊗ I4, Γφ = σ2 ⊗ I4 ⊗ γ̂φ, (A17)

where the second equality should be understood to mean Γ5 = σ2 ⊗ I4 ⊗ γ̂1, etc. The

Γ-matrices satisfy
{

ΓM ,ΓN
}

= 2ηMN . The 10d chirality operator is

Γ(10) = iΓ0Γ1 · · ·Γ9 = σ3 ⊗ I4 ⊗ I4, (A18)

which satisfies Γ2
(10) = 1 and anti-commutes with all of the ΓM . The 10d Majorana matrix

is

B10 = Γ2Γ5Γ7Γ9 = −iσ3 ⊗ B̃5 ⊗ B̂5, (A19)

which satisfies B10 = B∗
10, B10B

∗
10 = 1 and

B−1
10 Γ

MB10 = ΓM∗. (A20)

In 10d, we generally work with Majorana-Weyl spinors satisfying Γ(10)Ψ = Ψ, and B10Ψ =

Ψ∗. Additionally, we work with bispinors which are combination of two 10d spinors

Ψ =





Ψ1

Ψ2



 . (A21)

Γ-matrices act on bispinors as

ΓMΨ =





ΓMΨ1

ΓMΨ2



 . (A22)

2. Type-IIB supergravity

Our conventions for the bosonic modes of type-IIB supergravity are summarized by the

pseudo-action which we write as

SIIB = SNS
IIB + SR

IIB + SCS
IIB, (A23)

in which

SNS
IIB =

1

2κ210

∫

d10x
√

− det (g)

{

R − 1

2
∂MΦ∂MΦ− gs

2
e−Φ

(

H(3)
)2
}

,

SR
IIB =− 1

4κ210

∫

d10x
√

− det (g)

{

e2Φ
(

F (1)
)2

+ gse
Φ
(

F (3)
)2

+
1

2
g2s
(

F (5)
)2
}

, (A24)

SCS
IIB =

g2s
4κ210

∫

C(4) ∧H(3) ∧ dC(2), (A25)
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in which gMN is the 10d Einstein-frame metric, Φ is the dilaton and the gauge-invariant field

strengths of the NS-NS 2-form potential B(2) and R-R potentials C(0), C(2), and C(4) are

H(3) =dB(2), F (1) =dC(0),

F (3) =dC(2) − C(0)H(3), F (5) =dC(4) +B(2) ∧ dC(2). (A26)

The dilaton is normalized such that
〈

Φ
〉

= log gs and for a p-form

(

Ω(p)
)2

=
1

p!
ΩM1···Mp

ΩM1···Mp. (A27)

Type-IIB supergravity exhibits N10 = 2 and so there are two Majorana-Weyl gravitini

and two Majorana-Weyl dilatini which can be organized into bispinors

ΨM =





Ψ1
M

Ψ2
M



 , Λ =





Λ1

Λ2



 . (A28)

SUSY transformations are parametrized by a Majorana-Weyl bispinor ǫ. For the fermionic

fields

δǫΨM = DMǫ, δǫΛ = ∆ǫ, (A29)

where, in the 10d Einstein frame,

∆ =
1

2
/∂Φ− 1

2
eΦ /F

(1)(
iσ2

)

− 1

4

(

gse
Φ
)1/2G+

3 , (A30a)

DM =∇M +
1

2
eΦFM

(

iσ2
)

+
1

16
gs /F

(5)
ΓM

(

iσ2
)

+
1

8

(

gse
Φ
)1/2(G−

3 ΓM +
1

2
ΓMG−

3

)

, (A30b)

where Φ is the dilaton normalized such that 〈Φ〉 = log gs, ∇M is the covariant derivative

built from the 10d metric, the Pauli matrices rotate that spinors constituting the bispinor

into each other, and

G±
3 = /F

(3)
σ1 ± e−Φ /H

(3)
σ3. (A31)

For a p-form Ω(p), we have defined

/Ω
(p)

=
1

p!
ΩM1···Mp

ΓM1···Mp. (A32)
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