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Abstract

Simple models for unitary black hole evolution are given in an effective Hilbert-space

description, parameterizing a possible minimal relaxation of locality, with respect to semi-

classical black hole geometry.
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1. Introduction

The unitarity crisis or black hole (BH) information problem challenges the pillars

of modern physics: quantum mechanics (QM), Lorentz/diffeomorphism invariance, and

locality. In short, Hawking’s argument for BH evaporation[1] yields information loss[2],

and it has been argued that there is no consistent scenario with these pillars intact.1

Locality, in particular, seems a weak link in quantum gravity, and there have been

suggestions to modify it[8-13] in some way. However, such modification should be subtle

as locality is a basic principle of local quantum field theory (LQFT), which describes

observed phenomena extremely well. Generally, we observe that quantum information is

well localized in spacetime, and moreover generic nonlocality leads to causality paradoxes.

One thus seeks a consistent dynamics describing deeper relations between quantum

information and spacetime and its symmetries, where locality may be approximate but not

exact, yet consistent unitary evolution is intact.

Assuming QM, a useful tool is an effective quantum information-theoretic parameter-

ization, with a simple Hilbert-space description of the dynamics. Such an approach has

been used e.g. in [14-17,7,18]. Approximate locality suggests we decompose the overall

Hilbert space into a product of Hilbert spaces Ĥ and H corresponding to states inside and

outside a BH, with evolution providing specific “small” couplings between these.

Such a framework is general enough to describe local evolution, but also nonlocal mod-

ifications. Our approach will seek a conservative alternative[13] to complementarity/hol-

ography[9,10], staying as close as possible to LQFT, with minimal, controlled allowance

for nonlocality, as needed for unitary evolution. In particular, in the evolution of [1], Ĥ
is effectively infinite dimensional, but unitarity and other indicators suggest an effective

number of BH degrees of freedom N(M) = log(dimĤ) at BH mass M that is finite, e.g.

given by the Bekenstein-Hawking[19,1] entropy,

N(M) = SBH (M) . (1.1)

A problem is how to describe physical unitary evolution incorporating such finite informa-

tion content for a BH.

We will begin by reviewing the familiar scenario of Hawking evaporation[1], to make

contact with such an effective Hilbert-space description. Then, we will describe models

for unitary but nonlocal evolution. Such models at the least may guide understanding of

the constraints on unitary scenarios, but might also guide deeper understanding of the

principles of quantum gravity.

1 For reviews see [3-7].
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2. Hawking evaporation

We take rotation to be an inessential complication and consider a Schwarzschild metric,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2 . (2.1)

This form is valid in general spacetime dimension D, although one may particularly focus

on D = 4 where f(r) = 1 − 2M/r. Hawking radiation is conveniently analyzed by intro-

ducing tortoise coordinates, via dr∗/dr = 1/f(r). Near infinity, r∗ ≈ r, but as the horizon

r = R is approached, r∗ → −∞. Consider a free field Φ, with general spin. Solutions of

the corresponding wave equation may be written as a sum of terms

ΦJ =
uJ (r, t)

rD/2−1
YJ(Ω) , (2.2)

where J labels angular momentum and YJ is an appropriate spherical harmonic. In terms

of (r∗, t), uJ satisfies a two-dimensional wave equation with effective potential that vanishes

at r∗ = ±∞, and has a maximum ∼ J2/R2. Further details appear in, e.g., [4].

The quantum field outside the BH may be expanded in modes ΦJ,ω, of energy ω,

and creation/annihilation operators, as Φ =
∑

J

∫

dω(ΦJ,ωaJ,ω + h.c). As reviewed in

[4], the Hawking state is found by determining the transformation between the coordinate

x− = t− r∗, in which the “out” vacuum is naturally defined, and appropriate coordinates

for defining an “in” vacuum. One may also choose corresponding modes[20,4] Φ̂J,ω inside

the horizon, with mode operators âJ,ω. Then, the “in” vacuum evolves to the Hawking

state, which takes the form

|ψ〉 = c
∑

{nJ,ω}
e−H/2T |{n̂J,ω}〉|{nJ,ω}〉 . (2.3)

Here nJ,ω are occupation numbers, T = (D − 3)/4πR is the temperature,

H =
∑

J

∫

dω ω nJ,ω (2.4)

is the hamiltonian in the Fock basis we have chosen, and c is a constant. Tracing out the

internal states gives a thermal density matrix.

In order to match to an effective Hilbert space description, it is useful to choose a

wavepacket basis. For example, a simple set of complete, orthonormal states investigated

in [1,20] is, with integer k and n,

uJ,k,n = ǫ−1/2

∫ (k+1)ǫ

kǫ

dωe2πiωn/ǫuJ,ω . (2.5)
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These have frequency ω ≃ kǫ and are localized about x− = 2πn/ǫ with width 1/ǫ. The

variable ǫ is an arbitrary choice; it is convenient to take ǫ >∼ 1/R. Other, smoother,

wavepacket bases may be chosen, but (2.5) is simple and intuitive. The hamiltonian H

may be easily reexpressed in such a basis.

We can now describe an effective Hilbert-space model for evolution governed by H,

following discussion of [14-17,7,18]. It is convenient to do so by describing the modes and

their state in terms of a time slicing. One such choice is a nice slicing, as described in

[21,15,7,13]; in the particular realization of [13] the slice St asymptotes to the constant t

slice at r = ∞; inside the horizon and in the far past it asymptotes to r = rc. In the

static BH geometry slices at different t are just t-translates of this slice; with decreasing

BH mass minor adjustments to such slices are needed.

On such slices, evolution of the state (2.3) in a basis such as (2.5) may be pictured as

follows. First, excited quanta at r ≫ R simply evolve outwards. Quanta at r < R evolve

inwards; in the nice slice description they then freeze at r = rc, though evolution would

continue in a “natural” slicing[13] approaching r = 0. Finally, the evolution produces

paired quanta from r = R. When their wavelength on the slice is ≪ ω−1, the pair is

nearly indistinguishable from vacuum, e.g by gravitational scattering[12], but when their

wavelength reaches its asymptotic value ∼ ω−1, the quanta separate from each other and

the horizon and travel into/out of the BH.

Excited quanta typically have ω ∼ T ∼ 1/R and are emitted every time δt ∼ R. Thus,

in a simple model (see e.g. [7]) we consider one species of particle and ignore spin, set

ǫ = 1/R, and only keep the states with k = 1, so ω = 1/R, and with occupation number

zero or one. Then, evolution can be described in time steps of size δt, as follows. First, it

suffices to describe evolution of a basis of states for the combined black hole and external

Hilbert spaces, Ĥ ⊗ H. Such a basis can be written in terms of states |â〉|a〉, where for

example the states |â〉 and |a〉 are bases for Ĥ and H. The general combined state (and

thus general initial state) takes the form
∑

âa câa|â〉|a〉. We describe |â〉 and |a〉 in terms

of strings of qubits, and model evolution for δt as

|â〉|a〉 → Û |â〉 ⊗ 1√
2

(

|0̂〉|0〉+ |1̂〉|1〉
)

⊗ U |a〉 . (2.6)

Here, U and Û are unitary operators that we may think of as describing evolution given by

(2.4) of the external wavepackets away from the black hole, and of the internal wavepack-

ets, respectively. Different slicings/mode descriptions yield different U, Û , but equivalent
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evolution. In addition to this evolution, an entangled pair of quanta is produced from the

horizon.

When backreaction is included, M decreases an amount ∼ 1/R in each time step,

and so shrinks to near zero at a time Tevap ∼ RSBH . The late-time external state, with

O(SBH) quanta, is found by tracing over internal states in (2.6)(or in (2.3))

ρ = TrĤ (|ψ〉〈ψ|) , (2.7)

and is mixed, with entropy S = −Tr(ρ log ρ) ∼ SBH . Barring a remnant scenario (which is

argued on other grounds[22,23] to be unphysical) the black hole and internal Hilbert space

disappear, leaving this mixed state. This is Hawking’s basic argument[2] for information

loss – which ultimately conflicts with energy conservation[24].

3. Models of unitary evolution

The basic conflict between QM/energy conservation, locality, and Lorentz/diffe-

omorphism invariance that arises in the previous scenario has been called the “information

paradox.” It was argued in [15,13] (see also [25,11,12]) that this is not a true paradox,

in that we don’t have a sharp derivation of the state (2.3) and density matrix (2.7) in

a perturbative framework that takes into account backreaction. However, as discussed

in [25,11,12,15,13], it seems evident that some amount of nonlocality with respect to the

semiclassical picture is needed to avoid the essential argument for lost information. This

section will model a kind of nonlocal evolution apparently needed for unitarity, in the

effective Hilbert-space approach.

As one guide, we begin with the expectation that the internal Hilbert space of the

BH shrinks, and contains no information when M → 0. A candidate parameterization

for N(M) = log(dimĤ) is (1.1), but one could also consider other functions decreasing to

zero. This contrasts with the evolution (2.6), in which N(M) increases by one in each step

(being trivially incautious in distinguishing bits and nats).

We can model unitary evolution, in which N(M) decreases by one at each step, in

different modifications of (2.6). One is, separating off the leftmost qubit and choosing a

basis element |â〉 for the remaining internal Hilbert space,

|0̂〉|â〉|a〉 → Û |â〉 ⊗ |0̂〉|0〉 ⊗ U |a〉 , |1̂〉|â〉|a〉 → Û ′|â〉 ⊗ |0̂〉|1〉 ⊗ U |a〉 , (3.1)
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which is effectively unitary. Moreover, if the rightmost internal qubit is always in a definite

state, here |0̂〉, it can be forgotten or “erased” with impunity. Thus, internal information

is transmitted to the external state, and N(M) decreases by one.2

In (3.1) information is relayed from the leftmost of N(M) qubits. In case of a general

unitary transformation Û in the preceding time step, this has no invariant meaning. One

may take different models for Û (also with infalling matter – see below). One is simply

Û = 1, in which case the leftmost qubit from evolution (2.6) would not be occupied until a

time t ∼ RSBH , and so information return only begins at this time. Another is a random

unitary[14,17,27]. This can be thought of as a model of fast-scrambling[16,28]. Different

models may be distinguished[13] by this retention time Tr, describing how long it takes

the infalling quanta to mix with the escaping qubits. Note that, even with rapid mixing,

the effect of a given infalling quantum initially has tiny effect on the outgoing state, but

later in evolution discussion of [16] can apply. Note also that in the semiclassical/Hawking

picture (2.6), Tr = ∞, and in this sense the longest possible[14] Tr, ∼ RSBH(M), is most

conservative.

Eq. (3.1) represents a big departure from (2.6), particularly if present in early evolution

of the BH. One may consider alternatives with smaller departures. One is

|0̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ 1√
2

(

|0̂〉|0〉+ |1̂〉|1〉
)

⊗ U |a〉 , |0̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ |0̂〉|1〉 ⊗ U |a〉

|1̂〉|0̂〉|â〉|a〉 → Û |â〉 ⊗ |1̂〉|0〉 ⊗ U |a〉 , |1̂〉|1̂〉|â〉|a〉 → Û |â〉 ⊗ 1√
2

(

|0̂〉|0〉 − |1̂〉|1〉
)

⊗ U |a〉 ,
(3.2)

which, with Û = 1, does not alter the Hawking state until ∼ Tevap ∼ RSBH . Other simple

generalizations clearly exist, including using other pairs.3 Yet another alternative (also

generalizable) uses other states, e.g. |1′〉, |1′′〉, that have small amplitude for occupancy

in the Hawking state (2.3):

|q̂1q̂2〉|â〉|a〉 → Û |â〉 ⊗ 1√
2

(

|0̂〉|0〉+ |1̂〉|1〉
)

⊗ |0̂′0̂′′〉|q′1q′′2 〉 ⊗ U |a〉 , (3.3)

where q1, q2 = 0 or 1, independently.

2 Note also a relation with the final-state picture of [26]; if a given internal qubit first transitions

to a given canonical state, this qubit may then be unitarily forgotten. See also [18].
3 Note that a version where one internal qubit is imprinted in a pair does not relay a net bit

of information [7,29].

5



The unitary evolution laws (3.1)-(3.3) are clearly nonlocal with respect to the semi-

classical geometry of the BH. One may worry that there is a more serious objection, namely

that anything but the evolution (2.6) (or (2.3)) produces a state that an infalling observer

sees as very singular, giving a large departure from expected BH behavior. (The pairing

in (2.3) yields cancellations[12] between the contributions of the quanta, interacting with

an infalling observer.)

Here, allowing such modest nonlocality can be an asset. In the given basis, we can

think of the state of paired quanta near the horizon as being of the form 1√
2

(

|0̂〉|0〉+ |1̂〉|1〉
)

until the time these quanta have wavelength ∼ R, on which time scale the transitions like

in (3.1)-(3.3) occur. So, departures from the Hawking state only arise for quanta with

wavelengths of order the horizon size. One may imagine these departures as arising from

some new nonperturbative, perhaps collective, effect of the quantum BH. This evolution

results in modifications to O(1) quanta per time R, that an infalling observer sees as

having energy 1/R – apparently for a large black hole, a very small effect. Such effects

seem particularly small if they modify, for example, graviton states – these would be

essentially indetectable for an infalling observer.

Modifications to LQFT evolution like those described in [13] and modeled here are

apparently the minimal required to extract information from a BH. Note that U in (3.1)-

(3.3) is taken to describe evolution as in LQFT. In general evolution inside is only expected

to be governed by LQFT for a typical time ∼ R it takes a quanta to fall into the strong

curvature domain; after that we have few constraints on Û . One can artificially freeze this

evolution in a nice slicing. However, this becomes an extreme construction when extended

over long times, and in particular a perturbative LQFT quantization on nice slices has

been argued to be problematic[15,25,12]. This motivates the departure from LQFT of the

types (3.1)-(3.3) (and generalizations), which depart from LQFT in the Û -evolution for

qubits deep inside the BH and being relayed outside the BH, and for the qubits in a region

of size ∼ R receiving the information. Note also that spacelike communication in flat space

can be related to acausal communication, by a boost. But, the BH geometry breaks the

boost symmetry, fixing a frame with respect to which the evolution can be causal[13].

Evolution of types (3.1)-(3.3) represent different pictures with the common feature

that a net one qubit is relayed from inside to outside at each step in time. Eq. (3.1) is

a big change to (2.3), in which quanta are not produced paired with internal Hawking

excitations. It is a simple model for evolution if true Hawking radiation is not present,

such as could occur in a general massive remnant scenario[8] or special cases of it such as
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fuzzballs[30]. Eq. (3.2), with Û = 1, postpones significant modification until t ∼ RSBH

when the BH has shrunk appreciably. After this time, it departs from the Hawking state,

but has some of its features, in particular the same average outward flux. And, (3.3) yields

extra outward flux, in addition to Hawking evaporation; again with Û = 1 this may be

postponed to t ∼ RSBH . Straightforward generalizations of (3.1)-(3.3) clearly exist.

4. Refinements and enhancements

Various refinements are possible, to bring our models closer to a complete description.

First, one can clearly generalize evolution of types (3.1)-(3.3) to incorporate the many

different modes in (2.3). There is corresponding flexibility in which modes (3.1)-(3.3)

imprint the information, though we may assume they act on modes in a region of size

O(R) near the BH and only on modes close to their asymptotic wavelengths (i.e. not

highly blueshifted). One may also choose different evolutions corresponding to different

rates of reduction of the size N(M) of the BH Hilbert space, though (1.1) seems natural.

One may also incorporate infalling matter, e.g. in modes with wavelength ≪ R. The

LQFT description of this is a straightforward extension of the discussion in sec. 2, and we

might expect its evolution by Û until it reaches strong curvature to be approximately that

of LQFT.4 After this, again there are few constraints on the subsequent Û evolution on

such modes. One attractive possibility is that a particle of wavelength ≪ R is “broken

up” into a collection of the internal modes described above, before the information is

relayed (and unoccupied bits erased) in transformations like (3.1)-(3.3). Note that since

the entropy in infalling matter does not exceed SBH(M), we are not in danger of having

more information encoded in the BH than can be relayed by these evolution rules.

When faced with a failure of classical mechanics in the atom, Bohr introduced a

simple phenomenological model with new rules to capture the correct physical behavior;

this led to the development of the profound formalism of quantum mechanics. If the world

is quantum mechanical and yet locality holds to a good approximation, we can likewise

consider simple models of unitary black hole evolution. Due to the apparent failure of

LQFT to describe this evolution, such a model no longer resides within that framework –

new principles are needed. These models may clarify constraints on unitary evolution, and

may be, as with Bohr’s atom and quantum mechanics, guides to a deeper understanding

of the more basic and complete non-local mechanics describing quantum gravity.

4 One might also choose slicings staying outside the BH to give holographic[9,10] Û .
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