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A method is given to compute an approximation to the noise kernel, defined as

the symmetrized connected 2-point function of the stress tensor, for the conformally

invariant scalar field in any spacetime conformal to an ultra-static spacetime for

the case in which the field is in a thermal state at an arbitrary temperature. The

most useful applications of the method are flat space where the approximation is

exact and Schwarzschild spacetime where the approximation is better than it is in

most other spacetimes. The two points are assumed to be separated in a timelike

or spacelike direction. The method involves the use of a Gaussian approximation

which is of the same type as that used by Page [1] to compute an approximate form

of the stress tensor for this field in Schwarzschild spacetime. All components of the

noise kernel have been computed exactly for hot flat space and one component is

explicitly displayed. Several components have also been computed for Schwarzschild

spacetime and again one component is explicitly displayed.

PACS numbers: 04.62+v
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I. INTRODUCTION

Studies of the fluctuations in the stress tensors of quantum fields are playing an increas-

ingly important role in investigations of quantum effects in curved spacetimes [2–9] and

semiclassical gravity [10]. In various forms they have provided criteria for and tests of the

validity of semiclassical gravity [11–15]. They are relevant for the generation of cosmological

perturbations during inflation [16–20] as well as the fluctuation and backreaction problem

in black hole dynamics [21, 22]. They also provide a possible pathway for one to connect

semiclassical to quantum gravity (see, e.g., Ref. [23]). One important theory in which

this is done systematically from first principles is stochastic semiclassical gravity [24–29], or

stochastic gravity in short, which takes into account fluctuations of the gravitational field

that are induced by the quantum matter fields.

In stochastic gravity the induced fluctuations of the gravitational field can be computed

using the Einstein-Langevin equation [25, 30]

G
(1)
ab [g + h] = 8π(〈T̂ (1)

ab [g + h]〉+ ξab[g]) . (1.1)

Here the superscript (1) means that only terms linear in the metric perturbation hab around

the background geometry gab should be kept, and gab is a solution to the semiclassical

Einstein equation [10, 13]

Gab[g] = 8π〈T̂ab[g]〉 . (1.2)

Here 〈. . .〉 denotes the quantum expectation value with respect to a normalized state of

the matter field [more generally, 〈. . .〉 = Tr(ρ̂ . . .) for a mixed state] and T̂ab is the stress

tensor operator of the field1. The tensor ξab is a Gaussian stochastic source with vanishing

mean which accounts for the stress tensor fluctuations and is completely characterized by

∗Electronic address: eftekhar@umd.edu
†Electronic address: batej6@wfu.edu
‡Electronic address: albert.roura@aei.mpg.de
§Electronic address: anderson@wfu.edu
¶Electronic address: blhu@umd.edu
1 The stress tensor expectation value in Eqs. (1.1)-(1.2) is the renormalized one, which is the result of

regularizing and subtracting the divergent terms by introducing appropriate local counterterms (up to

quadratic order in the curvature) in the bare gravitational action [31]. Any finite contributions from those

counterterms other than the Einstein tensor have been absorbed in the renormalized expectation value of

the stress tensor.
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its correlation function [28, 29]:

〈ξab(x)〉s = 0

〈ξab(x)ξc′d′(x′)〉s = Nabc′d′(x, x
′) , (1.3)

where 〈...〉s refers to the stochastic average over the realizations of the Gaussian source and

the noise kernel Nabc′d′(x, x
′) is given by the the symmetrized connected 2-point function

of the stress tensor operator for the quantum matter fields evaluated in the background

geometry gab:

Nabc′d′ =
1

2
〈{t̂ab(x), t̂c′d′(x′)}〉 (1.4)

t̂ab(x) ≡ T̂ab(x)− 〈T̂ab(x)〉 . (1.5)

Thus, the noise kernel plays a central role in stochastic gravity, similarly to the expectation

value of the stress tensor in semiclassical gravity.

One can solve Eq. (1.1) using the retarded Green function for the operator acting on hab

to obtain [12]

hab(x) = h
(h)
ab (x) + 8π

∫

d4y′
√

−g(y′)G
(ret)
abc′d′(x, y

′) ξc
′d′(y′) , (1.6)

where h
(h)
ab is a homogeneous solution to Eq. (1.1) which contains all the information on the

initial conditions. The resulting two-point function depends directly on the noise kernel:

〈

〈hab(x)hc′d′(x
′)〉s

〉

i.c.
= 〈h(h)

ab (x)h
(h)
c′d′(x

′)〉i.c.

+ (8π)2
∫

d4y′d4y
√

g(y′)g(y)G
(ret)
abe′f ′(x, y

′)N e′f ′gh(y′, y)G
(ret)
c′d′gh(x

′, y) , (1.7)

where 〈...〉i.c. denotes the average over the initial conditions weighed by an appropriate dis-

tribution characterizing the initial quantum state of the metric perturbations. It should

be emphasized that although obtained by solving an equation involving classical stochastic

processes, the result for the stochastic correlation function obtained in Eq. (1.7) coincides

with the result that would be obtained from a purely quantum field theoretical calculation

where the metric is perturbatively quantized around the background gab. More precisely, if

one considers a large number N of identical fields, the stochastic correlation function co-

incides with the quantum correlation function 〈{ĥab(x), ĥc′d′(x
′)}〉 to leading order in 1/N

[12, 32]. The noise kernel is the crucial ingredient in the contribution to the metric fluctu-

ations induced by the quantum fluctuations of the matter fields, which corresponds to the

second term on the right-hand side of Eq. (1.7).
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As pointed out by Hu and Roura [21] using the black-hole quantum backreaction and

fluctuation problems as examples, a consistent study of the horizon fluctuations requires

a detailed knowledge of the stress tensor 2-point function and, therefore, the noise kernel.

That is because, in contrast with the averaged energy flux, the existence of a direct cor-

relation assumed in earlier studies between the fluctuations of the energy flux crossing the

horizon and those far from it is simply invalid. The need for the noise kernel of a quantum

field near a black hole horizon has been pronounced earlier in order to study the effect of

Hawking radiation emitted by a black hole on its evolution as well as the metric fluctuations

driven by the quantum field (the “backreaction and fluctuation” problem [33]). For example,

Sinha, Raval and Hu [34] have outlined a program for such a study, which is the stochastic

gravity upgrade (via the Einstein-Langevin equation) of those carried out for the mean field

in semiclassical gravity (through the semiclassical Einstein equation) by York [35, 36] and

by York and his collaborators [37]. Note that strictly speaking the retarded propagator and

the noise kernel in Eq. (1.7) should not be computed in the Schwarzschild background but

a slightly corrected one (still static and spherically symmetric) which takes into account

the backreaction of the quantum matter fields on the mean geometry via the semiclassical

Einstein equation [35]. However, one can consider an expansion in powers of 1/M2; for

the Hartle-Hawking state the difference between calculations employing the Schwarzschild

background or the semiclassically corrected one would be of order 1/M2 or higher. Since

our approach, which fits naturally within the framework of perturbative quantum gravity re-

garded as a low-energy effective theory [38], is only valid for black holes with a Schwarzschild

radius much larger than the Planck length (M ≫ 1), those corrections of order 1/M2 will

be very small.

An expression for the noise kernel for free fields in a general curved spacetime in terms

of the corresponding Wightman function was obtained a decade ago [26, 39, 40]. Since

then this general result has been employed to obtain the noise kernel in Minkowski [27], de

Sitter [18, 39, 41, 42] and anti-de Sitter [41, 43] spacetimes, as well as hot flat space and

Schwarzschild spacetime in the coincidence limit [44]. In this paper we compute expressions

for the noise kernel in hot flat space and Schwarzschild spacetime using the same Gaussian

approximation for the Wightman function of the quantum matter field that was used in

Ref. [44]. The difference is that there the coincident limit was considered and certain terms

had to be subtracted. Here we do not take the coincidence limit and no subtraction of
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divergent terms is necessary. In contrast to the stress tensor expectation value, which is

computed in the limit that the points come together, if one wishes to solve the equations

of stochastic semiclassical gravity, it is necessary to have an expression for the noise kernel

when the points are separated. This can be seen explicitly in Eqs. (1.3) and (1.7).

Specifically, we calculate an exact expression for the noise kernel of a conformally invariant

scalar field in Minkowski space in a thermal state at an arbitrary temperature T . We also

compute approximate expressions for the noise kernel in both the optical Schwarzschild and

Schwarzschild spacetimes when the field is in a thermal state at an arbitrary temperature

T . For the latter case when the temperature is that associated with the black hole, the field

is in the Hartle-Hawking state, which is the relevant one if one wants to study the metric

fluctuations of a black hole in (possibly unstable) equilibrium. In all cases the calculations

are done with the points separated (and non-null related). Because we do not attempt to

take the limit in which the points come together (or are null related) the results are finite

without the need for any subtraction.

To compute the noise kernel we need an expression for the Wightman function,

G+(x, x′) = 〈φ(x)φ(x′)〉. We begin by working in the Euclidean sector of the optical

Schwarzschild spacetime, which is ultra-static and conformal to Schwarzschild. We use

the same Gaussian approximation for the Euclidean Green function when the field is in a

thermal state that Page [1] used for his computation of the stress tensor in Schwarzschild

spacetime. As he points out, this approximation corresponds to taking the first term in the

DeWitt-Schwinger expansion for the Euclidean Green function. In most spacetimes that

would not be sufficient to generate an approximation to the stress tensor which could be

renormalized correctly. However, in the optical Schwarzschild spacetime (and for any other

ultra-static metric conformal to an Einstein metric in general) the second and third terms

in the DeWitt-Schwinger expansion vanish identically, so that the approximation is much

better than it would usually be. In the flat space limit this expression is exact.

Having obtained an expression for the Euclidean Green function, we analytically continue

it to the Lorentzian sector and take the real part of the result to obtain an expression for the

Wightman function when the points are non-null separated. In the optical Schwarzschild

spacetime, by substitution into the equation satisfied by the Wightman function, we show
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that it is valid through O[(x− x′)2] as expected2. This expression is again exact in the flat

space limit.

For hot flat space, we next compute the necessary derivatives of the Wightman function

and substitute into Eq. (2.3) to obtain an exact expression for the noise kernel. For the

optical Schwarzschild spacetime we take a different approach. We expand the approximate

part of the Wightman function in powers of (x−x′), compute the derivatives and substitute

the results into Eq. (2.3). The result is valid through O[(x− x′)−4], while the leading terms

are O[(x− x′)−8]. Finally, we conformally transform the results to Schwarzschild spacetime

to obtain an expression for the noise kernel that is valid to the same order there. This is done

explicitly for two cases of interest. One is the case when the point separation is only in the

time direction and the product of the temperature and the point separation is not assumed

to be small. The second is for a general spacelike or timelike separation of the points when

the product of the point separation and the temperature is assumed to be small.

All nonzero components of the noise kernel have been computed in hot flat space for a

non-null separation of the points and the conservation laws given in Eq. (2.6) and the partial

traces given in Eq. (2.7) have been checked. Several components of the noise kernel have also

been computed in Schwarzschild spacetime, but for the sake of brevity only one component

is explicitly displayed. We have obtained results for separations along the time direction but

without assuming the product of the temperature and the time difference to be small, as

well as for arbitrary separations but assuming that the product of the temperature and the

separation is small. In all cases, the relevant conservation laws and partial traces have been

checked. Furthermore, the result which is not restricted to small values of the temperature

times the time difference is shown to agree with previously computed results in two different

flat space limits.

In Sec. II we review the form of the noise kernel for a conformally invariant scalar field in a

general spacetime and discuss its properties including its change under conformal transforma-

tions, which enables us to obtain the noise kernel in Schwarzschild spacetime from the result

2 The dimensionless quantity which should be much smaller than one so that this expansion provides a

valid approximation corresponds to the square of the geodesic distance, 2σ = O[(x− x′)2], divided by the

square of the typical curvature radius scale. In Schwarzschild spacetime the latter is characterized near

the horizon by the Schwarzschild radius RS = 2M , but more accurately by the inverse fourth root of the

curvature invariant RµνρσR
µνρσ ∼ M2/r6 far from it.
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for the optical spacetime. In Sec. III we present the relationship between the Wightman and

Euclidean Green functions, the relevant parts of the formalism for the DeWitt-Schwinger

expansion [45], and its use in the Gaussian approximation derived by Page [1] for the Eu-

clidean Green function in the optical Schwarzschild spacetime. We show that the resulting

expression for the Wightman function is valid through O[(x−x′)2] and for any temperature.

In Sec. IV a method for obtaining the Wightman function in the Gaussian approximation

is given. The computation of the noise kernel using this Wightman function is described

and one component of the noise kernel in Schwarzschild spacetime is explicitly displayed.

The flat space limit for this component is discussed. Sec. V contains a summary and dis-

cussion of our main results. In the Appendix we provide two proofs of the simple rescaling

under conformal transformations of the noise kernel for a conformally invariant scalar field.

Throughout we use units such that ~ = c = G = kB = 1 and the sign conventions of Misner,

Thorne, and Wheeler [46].

II. NOISE KERNEL FOR THE CONFORMALLY INVARIANT SCALAR

FIELDS

In this section we review the general properties of the noise kernel for the conformally

invariant scalar field in an arbitrary spacetime. The definition of the noise kernel for any

quantized matter field is given in Eq. (1.4).

The classical stress tensor for the conformally invariant scalar field is

Tab = ∇aφ∇bφ− 1

2
gab∇cφ∇cφ+ ξ (gab2−∇a∇b +Gab)φ

2, (2.1)

with ξ = (D − 2)/4(D − 1), which becomes ξ = 1/6 in D = 4 spacetime dimensions. Note

that since the stress tensor is symmetric, the noise kernel as defined in Eq. (1.4) is also

symmetric under exchange of the indices a and b, or c ′ and d ′. To compute the noise kernel

one promotes the field φ(x) in Eq. (2.1) to an operator in the Heisenberg picture while

treating gab as a classical background metric. The result is then substituted into Eq. (1.4).

Given a Gaussian state for the quantum matter field, one can express the noise kernel in

terms of products of two Wightman functions by applying Wick’s theorem.3 The Wightman

3 Gaussian states include for instance the usual vacua, thermal and coherent states. In general most states
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function is defined as

G+(x, x′) = 〈φ(x)φ(x′)〉 . (2.2)

The result for a scalar field with arbitrary mass and curvature coupling in a general spacetime

has been obtained in Refs. [26, 40]. For the conformally invariant scalar field in a general

spacetime the noise kernel is [40]

Nabc′d′ = Re
{

K̄abc′d′ + gabK̄c′d′ + gc′d′K̄
′
ab + gabgc′d′K̄

}

(2.3)

with4

9K̄abc′d′ = 4 (G;c′b G;d′a +G;c′aG;d′b) +G;c′d′ G;ab +GG;abc′d′

−2 (G;b G;c′ad′ +G;aG;c′bd′ +G;d′ G;abc′ +G;c′ G;abd′)

+2 (G;aG;b Rc′d′ +G;c′ G;d′ Rab)

− (G;ab Rc′d′ +G;c′d′ Rab)G+
1

2
Rc′d′ RabG

2 (2.4a)

36K̄ ′
ab = 8

(

−G;p′bG;
p′
a +G;b G;p′a

p′ +G;aG;p′b
p′
)

4
(

G;
p′ G;abp′ −G;p′

p′ G;ab −GG;abp′
p′
)

−2R′ (2G;aG;b −GG;ab)

−2
(

G;p′ G;
p′ − 2GG;p′

p′
)

Rab −R′ RabG
2 (2.4b)

36K̄ = 2G;p′q G;
p′q + 4

(

G;p′
p′ G;q

q +GG;p
p
q′
q′
)

−4
(

G;p G;q′
pq′ +G;

p′ G;q
q
p′

)

+RG;p′ G;
p′ +R′ G;pG

;p

−2
(

RG;p′
p′ +R′ G;p

p
)

G+
1

2
RR′G2 . (2.4c)

Note that the superscript + on G+ has been omitted in the above equations for notational

simplicity. Primes on indices denote tensor indices at the point x′ and unprimed ones denote

indices at the point x. Rab is the Ricci tensor evaluated at the point x, Rc′ d′ is the Ricci

will not be Gaussian and Wick’s theorem will not apply: it will not be possible to write the 4-point

function of the field in terms of 2-point functions and expectation values of the field. That is for example

the case for all eigenstates of the particle number operators other than the corresponding vacuum.
4 Notice that these equations have two slight but crucial differences with the equations of Ref. [40]. The

sign of the last term of the equation for Nabc′d′ and also the sign of the term GG p′

;abp′ have been corrected.
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tensor evaluated at the point x′, R is the scalar curvature evaluated at the point x, and R′

is the scalar curvature evaluated at the point x′.

The definition (1.4) of the noise kernel immediately implies that it is symmetric under

interchange of the two spacetime points and the corresponding pairs of indices so that

Nabc′d′(x, x
′) = Nc′d′ab(x

′, x) . (2.5)

The noise kernel obeys other important properties as well. These have been proven in

Refs. [25, 26], so we just state them here. The first property, which is clear from (1.4), is

that the following conservation laws must hold:

∇aNabc′d′ = ∇bNabc′d′ = ∇c′Nabc′d′ = ∇d′Nabc′d′ = 0 . (2.6)

The second property which must be satisfied because the field is conformally invariant is

that the partial traces must vanish, that is

Na
ac′d′ = N c′

ab c′ = 0 . (2.7)

A third important property is that the noise kernel is positive semidefinite, namely
∫

d4x
√

−g(x)

∫

d4x′
√

−g(x′) fab(x)Nabc′d′(x, x
′)f c′d′(x′) ≥ 0, (2.8)

for any real tensor field fab(x).

Finally the noise kernel for the conformally invariant field has a simple scaling behavior

under conformal transformations. In the Appendix two proofs are given which show that

under a conformal transformation between two conformally related D-dimensional space-

times with metrics of the form g̃ab = Ω2(x) gab and conformally related states, the noise

kernel transforms as

Ñabc′d′(x, x
′) = Ω2−D(x) Ω2−D(x′)Nabc′d′(x, x

′) . (2.9)

III. GAUSSIAN APPROXIMATION IN THE OPTICAL SCHWARZSCHILD

SPACETIME

As discussed in the introduction, we want to compute the noise kernel in a background

Schwarzschild spacetime for the conformally invariant scalar field when the points are sep-

arated. For an arbitrary separation it would be necessary to do this numerically. However,
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if the separation is small then it is possible to use approximation methods to compute the

Wightman function analytically and from that the noise kernel. For a conformally invariant

field a significant simplification is possible because the Green function and the resulting

noise kernel can be computed in the optical Schwarzschild spacetime (which is conformal to

Schwarzschild spacetime) and then conformally transformed to Schwarzschild spacetime. A

similar calculation was done by Page [1] for the stress tensor expectation value of a confor-

mally invariant scalar field. He first calculated the Euclidean Green function for the field in

a thermal state using a Gaussian approximation. Then the stress tensor was computed and

conformally transformed to Schwarzschild spacetime. We shall use Page’s approximation for

the Euclidean Green function to obtain an approximation for the Wightman Green function

and then compute the noise kernel using that approximation.

A. Gaussian approximation for the Wightman Green function

In order to use Page’s approximation we must relate the Euclidean Green function in a

static spacetime to the Wightman function. To do so we begin by noting that the Wightman

function can be written in terms of two other Green functions [47], the Hadamard function

G(1)(x, x′) and the Pauli-Jordan function G(x, x′):

G+(x, x′) =
1

2

[

G(1)(x, x′) + iG(x, x′)
]

(3.1a)

G(1)(x, x′) ≡ 〈{φ(x), φ(x′)}〉 (3.1b)

i G(x, x′) ≡ 〈[φ(x), φ(x′)]〉 . (3.1c)

As discussed in the Introduction, we restrict our attention in this paper to spacelike and

timelike separations of the points. In general G(x, x′) = 0 for spacelike separations. Further-

more, in the optical Schwarzschild spacetime, G(x, x′) = O[(x−x′)4] for timelike separations

of the points. To see this consider the general form of the Hadamard expansion for G(x, x′)

which is [48]

G(x, x′) = −u(x, x′)

4π
δ(−σ) +

v(x, x′)

8π
θ(−σ) , (3.2)

with σ(x, x′) defined to be one-half the square of the proper distance along the shortest

geodesic connecting the two points. In [49] it was shown that in Schwarzschild spacetime

v(x, x′) = O[(x− x′)4]. Since the Green function in the optical spacetime can be obtained

from that in Schwarzschild spacetime by a simple conformal transformation, the same must
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be true of the quantity v(x, x′). Thus, so long as we work only to O[(x− x′)2] and restrict

our attention to points which are either spacelike or timelike separated, then in the optical

Schwarzschild spacetime

G+(x, x′) =
1

2
G(1)(x, x′) +O[(x− x′)4] . (3.3)

The Hadamard Green function can be computed using the Euclidean Green function in

the following way. First, define the Euclidean time as

τ ≡ it . (3.4)

Then the metric in a static spacetime takes the form

ds2 = gττ (~x)dτ
2 + gij(~x)dx

idxj . (3.5)

The Euclidean Green function obeys the equation

(2− 1

6
R)GE(x, x

′) = −δ(x− x′)
√

g(x)
. (3.6)

Because the spacetime is static GE will be a function of (∆τ)2 = (τ − τ ′)2. It is possible to

obtain the Feynman Green function GF (x, x
′) by making the following transformation [50]:

(∆τ)2 → −(∆t)2 + iǫ , (3.7)

under which

GE(x, x
′) → iGF (x, x

′) . (3.8)

Writing the Feynman Green function in terms of the Hadamard and Jordan functions [47],

GF (x, x
′) = −1

2
i G(1)(x, x′) +

1

2
[θ(t− t′)− θ(t′ − t)]G(x, x′) . (3.9)

one finds that Eq. (3.3) becomes

G+(x, x′) = −ImGF (x, x
′) +O[(x− x′)4] . (3.10)

As mentioned above, Page made use of the DeWitt-Schwinger expansion to obtain his

approximation for the Euclidean Green function. Before displaying his approximation it

is useful to discuss two quantities which appear in that expansion. For a more complete

discussion see Ref. [45]. The fundamental quantity out of which everything is built is Synge’s
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world function σ(x, x′), which is defined to be one-half the square of the proper distance

between the two points x and x′ along the shortest geodesic connecting them. It satisfies

the relationship

σ(x, x′) =
1

2
gab(x) σ

;a(x, x′) σ;b(x, x′) , (3.11)

and it is traditional to use the notation

σa ≡ σ;a . (3.12)

As shown in Ref. [45], it is possible to expand biscalars, bivectors, and bitensors in powers of

σa in an arbitrary spacetime about a given point x. Then the coefficients in that expansion

are evaluated at the point x. For example

σ;ab(x, x
′) = gab(x)−

1

3
Racbd(x) σ

c(x, x′)σd(x, x′) + · · · . (3.13)

Examination of this expansion shows that to zeroth order in σa

σ;abc = 0 . (3.14)

The second quantity we shall need is

U(x, x′) ≡ ∆1/2(x, x′) , (3.15a)

∆(x, x′) ≡ − 1
√

−g(x)
√

−g(x′)
det (−σ; a b ′) . (3.15b)

Note that covariant derivatives at the point x′ commute with covariant derivatives at the

point x. Two important properties of U(x, x′) are

U(x, x) = 1 (3.16a)

(lnU);a σ
a = 2− 1

2
2σ . (3.16b)

One can also expand U in powers of σa with the result that [45]

U(x, x′) = 1 +
1

12
Rab σ

aσb − 1

24
Rab;c σ

aσbσc,

+
1

1440
(18Rab;cd + 5Rab Rcd + 4Rpaqb Rc

q
d
p) σaσbσcσd +O[(σa)5]. (3.17)

The above definitions, properties and expansions apply to arbitrary spacetimes. Given

any static metric, one can always transform it to an ultra-static one, called the optical metric,

by a conformal transformation. This kind of metric is of the form

ds2 = −dt2 + gij(~x) dx
idxj , (3.18)
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with the metric functions gij independent of the time t. In this case Synge’s world function

is given by

σ(x, x′) =
1

2

(

−(t− t′)2 + r2
)

, (3.19)

with

r ≡
√
2 (3)σ . (3.20)

The quantity (3)σ is the part of σ that depends on the spatial coordinates. Note that we

use r (with bold roman font) to denote the quantity in Eq.(3.20) while r (with normal italic

font) denotes the radial coordinate. Some useful properties of r are

∇ir =
3σi

r
, (3.21a)

∇2r =
3σi

i − 1

r
, (3.21b)

∇ir ∇ir =
3σi

3σi

2 3σ
= 1 , (3.21c)

2
(

(3)∆1/2
)

,i
∇ir =

(

3

r
−∇2r

)

(3)∆1/2 , (3.21d)

where ∇2 = ∇i∇i. Note that from Eqs. (3.15b) and (3.19) one can easily see that for an

ultra-static spacetime the Van-Vleck determinant (3)∆ for the spatial metric gij coincides

with the Van-Vleck determinant ∆ for the full spacetime. (The advantage of using (3)∆

rather than ∆ is that, although noncovariant, it is valid for arbitrary time separations, and

one only needs to expand in powers of r.)

The optical Schwarzschild metric

ds2 = −dt2 +
1

(

1− 2M
r

)2dr
2 +

r2

1− 2M
r

(

dθ2 + sin2 θdφ2
)

, (3.22)

is of the form (3.18) and is conformally related to the Schwarzschild metric in standard

coordinates with a conformal factor

Ω2 =

(

1− 2M

r

)

. (3.23)

For this metric Page [1] used a Gaussian approximation to obtain an expression for the

Euclidean Green function in a thermal state at the temperature

T =
κ

2π
. (3.24)
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This expression is valid for any temperature; however, if

κ =
1

4M
, (3.25)

then the temperature is that of the black hole in the Schwarzschild spacetime which is

conformal to the optical metric (3.22). In this case the state of the field corresponds to the

Hartle-Hawking state, which is regular on the horizon. Page found that [1]

GE(∆τ, ~x, ~x ′) =
κ sinh(κr)

8π2r [cosh(κr)− cos(κ∆τ)]
U(∆τ, ~x, ~x ′) . (3.26)

Analytically continuing to the Lorentzian sector using the prescriptions (3.7) and (3.8), and

substituting the result into Eq. (3.10) gives

G+(∆t, ~x, ~x ′) =
κ sinh κr

8π2r[cosh(κr)− cosh(κ∆t)])
U(∆t, ~x, ~x ′) . (3.27)

To determine the accuracy of this approximation we can substitute the above expression

into the equation satisfied by G+ which is

2G+(x, x′)− R

6
G+(x, x′) = 0 . (3.28)

The accuracy of the Gaussian approximation in the optical Schwarzschild metric will be

determined by the lowest order in (x − x′) at which Eq. (3.28) is not satisfied. Applying

the differential operator for the metric (3.22) and using Eqs. (3.21c)-(3.21d), one finds after

some calculation that

(

2− 1

6
R

)

G+(x, x′) =
κ sinh(κ r)

r [cosh(κ r)− cosh(κ∆t)]

(

2− 1

6
R

)

U(x, x′) (3.29)

If Eq. (3.17) is substituted into Eq. (3.29) and Eqs. (3.13)-(3.14) are used, then one finds

(

2− R

6

)

U(x, x′) = Q0 +Qpσ
p +Qpqσ

pσq + · · · (3.30)

with

Q0 = 0 , (3.31a)

Qaσ
a = σaGa

b
;b = 0 , (3.31b)

Qab σ
a σb =

1

360

(

9R;ab + 9Rab;c
c − 24Rac;

c
b − 12RacRb

c

+6RcdRcadb + 4RacdeRb
edc + 4RacdeRb

cde
)

σaσb . (3.31c)
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Here Gab is the Einstein tensor. For the optical Schwarzschild metric (3.22), Qab σ
aσb = 0.

Thus, Eq. (3.30) is zero to O[(x − x′)2]. Since 2 is a second order derivative operator,

this means that the Gaussian approximation for G+(x, x′), whose leading order behavior is

G+(x, x′) ∼ (x − x′)−2, is accurate through O[(x − x′)2]. Note that this approximation is

valid for arbitrary temperature since Eq. (3.29) holds for arbitrary values of κ.

It is important to emphasize that the order of accuracy obtained here is for the

Schwarzschild optical metric (3.22). Because the Gaussian approximation is equivalent to the

lowest order term in the DeWitt-Schwinger expansion, it is only guaranteed to be accurate

to leading order in x− x′ in a general spacetime.

B. Order of validity of the noise kernel

In Sec. II an expression for the noise kernel is given in terms of covariant derivatives

of the Wightman function. In each term there is a product of Wightman functions and

varying numbers of covariant derivatives. The accuracy of the Gaussian approximation for

the Wightman function can be used to estimate the order of accuracy of the noise kernel.

First, recall that the leading order of the Wightman function goes like (x − x′)−2. Since

there is a maximum of four derivatives acting on a product of Wightman functions, one

expects that at leading order the noise kernel will go like (x − x′)−8. Since the Gaussian

approximation to the Wightman function in the optical Schwarzschild spacetime is accurate

through terms of order (x− x′)2, it is clear from Eq. (2.4) that our expression for the noise

kernel should be accurate up to and including terms of order (x− x′)−4.

IV. COMPUTATION OF THE NOISE KERNEL

In this section we discuss the computation of the noise kernel in two different but related

cases. In both the field is in a thermal state at an arbitrary temperature T and the points

are separated in a non-null direction. The first case considered is flat space where the

calculation of the noise kernel is exact. In the second case an approximation to the noise

kernel is computed for the optical Schwarzschild metric (3.22). The result is then conformally

transformed to Schwarzschild spacetime using Eq. (2.9).



16

A. Hot Flat Space

In flat space the function U(x, x′) is exactly equal to one. Examination of Eq. (3.29)

then shows that the expression for G+(x, x′) in Eq. (3.27) is exact so long as the points

are separated in a non-null direction. This expression can be substituted into Eqs. (2.3)

and (2.4) to obtain an exact expression for the noise kernel. Here the quantity r takes on

the following simple form in Cartesian coordinates and components:

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 . (4.1)

The only subtlety which one must be aware of is that the point separation must be arbitrary

before the derivatives are computed. Once they are computed, then any point separation

that one desires can be used.

All components of the noise kernel have been calculated when the points are separated

in a non-null direction. Both conservation and the vanishing of the partial traces have been

checked. Due to the length of many of the components, we just display one of them here:

Nttt′t′ =
κ2 sinh2(κr)

192π4r6(cosh(κ∆t)− cosh(κr))2

+
κ3 sinh(κr)

96π4r5(cosh(κ∆t)− cosh(κr))3
[1− cosh(κ∆t) cosh(κr)]

+
κ4

192π4r4(cosh(κ∆t)− cosh(κr))4
[2− 2 cosh(κ∆t) cosh(κr)

− cosh2(κr) + cosh2(κ∆t) cosh(2κr)
]

+
κ5 sinh(κr)

288π4r3(cosh(κ∆t)− cosh(κr))4
[2 cosh(κ∆t)− cosh(2κ∆t) cosh(κr)

− cosh(κ∆t) cosh2(κr)
]

− κ6

576π4r2(cosh(κ∆t)− cosh(κr))6
[

12− 6 cosh2(κ∆t)

+ cosh4(κ∆t)− 12 cosh(κ∆t) cosh(κr) + cosh3(κ∆t) cosh(κr)

−18 cosh2(κr) + 12 cosh2(κ∆t) cosh2−2 cosh4(κ∆t) cosh2(κr)(κr)

+17 cosh(κ∆t) cosh3(κr) + 3 cosh3(κ∆t) cosh3(κr)− cosh4(κr)

−6 cosh(2κ∆t) cosh4(κr)− cosh(κ∆t) cosh5(κr)
]

. (4.2)
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B. Schwarzschild Spacetime

The calculation of the noise kernel in the optical Schwarzschild metric (3.22) proceeds in

the same way as the flat space calculation in Sec. IVA. That is, one simply substitutes the

expression (3.27) for G+(x, x′), which is now approximate rather than exact, into Eqs. (2.3)-

(2.4) and computes the various derivatives and curvature tensors, again with an arbitrary

separation of the points. After the derivatives are computed, the specific separation of the

points which is of interest may be taken. Because the expression forG+(x, x′) is approximate,

one must expand the result in powers of (x−x′) and, as discussed at the end of Sec. III, the

result should be truncated at order (x− x′)−4.

The expansion in powers of (x− x′) can be consistently done for all contributions to the

noise kernel and the results of such an expansion are shown below in Sec. IVB2. However,

if the separation of the points is only in the time direction, then it is possible to obtain a

result valid for arbitrary values of κ (and, hence, of κ∆t). This can be achieved by treating

exactly the prefactor in Eq. (3.27), which contains all the dependence on κ, while expanding

the quantity U(x, x′) and its derivatives in powers of (x − x′). There are two reasons why

this works. The first is that, as can be seen from Eq. (3.29), what is keeping G+(x, x′) in

Eq. (3.27) from being exact is the fact that for the optical Schwarzschild metric 2xU(x, x′)

is not exactly zero but only vanishes to order (x − x′)2. So in some sense the function

that multiplies U in Eq. (3.27) can be treated as exact. Secondly, although exact analytic

expressions for the function r and its derivatives in terms of simple functions are not known

for an arbitrary splitting of the points, in the limit that the points are separated only in the

time direction such expressions are known. Therefore, it should be possible to treat these

terms exactly when the final point separation is in the time direction. It is worth noting

that it is consistent to have a quasi-local expansion in which ∆t is in an appropriate sense

small (as specified in footnote 2) and yet to have κ|∆t| & 1. The reason is that the scale

over which the geometry varies significantly in the optical metric is O(M). For the Hartle-

Hawking state κ = 1/(4M) and the validity of the quasi-local expansion would start to break

down for a ∆t such that κ|∆t| ∼ 1, but the Hartle-Hawking state is a very low temperature

state for a macroscopic black hole. Therefore, one can have temperatures which are well

below the Planck temperature and still have κ∆t ≫ 1. Furthermore, even when κ|∆t| ≪ 1

it is sometimes useful to have the exact dependence on κ∆t. An example illustrating this
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point is the Rindler limit of Schwarzschild spacetime with the field in the Hartle-Hawking

state, which is discussed in Sec. IVB1.

To compute the noise kernel using the above method it is necessary to find expansions

for both r and U(x, x′) in powers of (x − x′). For the former it is easier to work with the

quantity σ(x, x′) which is one-half the square of the proper distance between x and x′ along

the shortest geodesic that connects them. The relationship between σ and r is given by

Eq. (3.19). Furthermore, since the metric (3.22) is also spherically symmetric, σ can only

depend on the angular quantity

cos(γ) ≡ cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) , (4.3)

where γ is the angle between ~x and ~x ′. It turns out to be convenient to write σ in terms of

the quantity

η ≡ cos γ − 1 . (4.4)

Then for points that are sufficiently close together one can use the expansion

σ(x, x′) = −1

2
(t− t′)2 +

∑

j,k

wjk(r) η
j (r − r′)k , (4.5)

with the sums over j and k starting at j = 0 and k = 0 respectively. For the metric (3.22),

Eq. (3.11) has the explicit form

σ =
1

2

[

−
(

∂σ

∂t

)2

+

(

1− 2M

r

)2(
∂σ

∂r

)2

− 1

r2

(

1− 2M

r

)(

∂σ

∂η

)2

(2η + η2)

]

. (4.6)

Substituting the expansion (4.5) into Eq. (4.6) and equating powers of (xa − xa′), one finds

that

σ(x, x′) = −(∆t)2

2
+

(∆r)2

2f 2
− r2η

f
+ (∆r)3

(

1

2rf 3
− 1

2rf 2

)

+η∆r

(

3r

2f
− r

2f 2

)

+O[(x− x′)4] , (4.7)

with ∆r ≡ r − r′ and

f ≡ 1− 2M

r
. (4.8)

Because of the form of Eq. (3.16b) an expansion for U(x, x′) can be found by writing

lnU(x, x′) =
∑

j,k

ujk(r) η
j (r − r′)k . (4.9)
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It can be seen from Eqs. (3.19) and (3.15) that for a spacetime with metric (3.22) U is time

independent. If Eq. (4.9) is substituted into Eq. (3.16b), Eqs. (3.16a) and (4.7) are used,

and the result is expanded in powers of (x− x′), then one finds that

U(x, x′) = 1 +
(∆r)2

8r2

(

1− 2

3f
− 1

3f 2

)

+ η

(

f

4
− 1

3
+

1

12f

)

+ O[(x− x′)3] . (4.10)

Since the leading order of the prefactor multiplying U in Eq. (3.27) is (x − x′)−2, we need

to calculate U(x, x′) through O[(x− x′)4]. That way we can obtain the Wightman function

through O[(x−x′)2], which is consistent with the order to which the Gaussian approximation

was shown to be valid in Sec. III. One can compute U(x, x′) to the required order by

substituting the expansions (4.7) for σ and (4.10) for U into Eq. (3.16b). To obtain a

final expression for U valid through O[(x − x′)4] it is necessary to have the expansion for

σ containing terms through O[(x − x′)6]. [As an illustration, we have shown the results

through quadratic order in Eqs. (4.7) and (4.10).]

Using Eq. (3.19) an expansion for the quantity r can be obtained from the expansion for

σ(x, x′). This along with the expansions for U(x, x′) can be substituted into Eq. (3.27) to

obtain an expansion for the Wightman function G+(x, x′). That in turn can then be substi-

tuted into the expressions (2.4) for the noise kernel and the derivatives can be computed. As

discussed in Sec. III B, one should keep terms through O[(x−x′)−4] since this is the highest

order for which the Gaussian approximation for the noise kernel is valid. To obtain the noise

kernel for Schwarzschild spacetime one then uses the conformal transformation (2.9) with

Ω2(x) = 1 − 2M/r. Finally, the coordinate r′ is written as r′ = r − (r − r′) in order to

expand the resulting expression in powers of (r − r′) through quartic order.

1. Arbitrary Temperature

Following the method described above and using the exact expression for the κ-dependent

prefactor in Eq. (3.27), we have computed several components of the noise kernel for points

split in the time direction when κ∆t is not assumed to be small. The result for the N t t′

t t′
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component is

N t t′

t t′ =
1

1728π4f 4

[

κ8

(

2 cosh2(κ∆t)− cosh(κ∆t) + 26
)

(cosh(κ∆t)− 1)4

+
κ6

4r2
(1− f)2(1− 4 cosh(κ∆t))

(cosh(κ∆t)− 1)3

+
κ4

8r4
(1− f)2(1− 2f + 3f 2)

(cosh(κ∆t)− 1)2

]

. (4.11)

There are two ways to take the flat space limit of this result. One possibility is to take

f → 1 in Eq. (4.11). This limit reduces to the corresponding expression for the exact noise

kernel in flat space at arbitrary temperature, whose spatial coincidence limit can be obtained

from Eq. (4.2) by taking the limit r → 0.

A second possibility for obtaining the flat space limit is to realize that the geometry of

the near-horizon region is that of Rindler spacetime and in the limit of large Schwarzschild

radius this holds for an arbitrarily large region. Indeed, if one introduces the new coordinates

ξ = 4M
√

r/2M − 1 ,

T =
t

4M
,

(4.12)

in the near-horizon region, characterized by |r/2M − 1| ≪ 1, the standard Schwarzschild

metric reduces to

ds2 ≈ −ξ2dT 2 + dξ2 + dx2
⊥ , (4.13)

where dx2
⊥ = 4M2(dθ2+sin2 θ dφ2) becomes the metric of a Euclidean plane (say, tangent to

θ = φ = 0) when M → ∞. In the new coordinates, the near-horizon condition corresponds

to ξ ≪ 4M . Therefore, in the limit M → ∞ one recovers the full Minkowski spacetime in

Rindler coordinates. Rewriting Eq. (4.11) in terms of ξ and T , and taking the limit M → ∞,

we get

N T T ′

T T ′ =
1

4π4

1
(

2 ξ sinh(∆T/2)
)8 . (4.14)

This result agrees with the flat space calculation of the noise kernel in Ref. [27] if one takes

into account that our definition of the noise kernel is four times their definition. In order to

do the comparison one needs to consider Eqs. (3.10), (4.9) and (4.12) in Ref. [27] and rewrite

their results in terms of Rindler coordinates by using their relation to inertial coordinates
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(x0 = ξ sinh T, x1 = ξ coshT ); in particular, this implies that for pairs of points with equal ξ

the Minkowski interval is given by (x−x′)2 = 4 ξ2 sinh2(∆T/2). It also requires transforming

the tensor components accordingly using the Jacobian of the coordinate transformation.

It should be noted that in order to get the Minkowski vacuum in this limit, one needs

to consider the Hartle-Hawking state, which is regular on the horizon, for the black hole.

In that case κ is tied to M as given by Eq. (3.25), so that κ∆t = ∆T . It is, therefore,

important to have an expression valid for arbitrarily large κ∆t, because this guarantees that

the exact Rindler result is obtained, rather than an approximate expansion valid only up

to some order for small ∆T . (The condition for the validity of the quasi-local expansion

is σ/R 2
S ≈ 8 (ξ/4M)2 sinh2(∆T/2) ≪ 1, which is fulfilled for any values of ξ and ∆T as

M → ∞.)

The two different ways of obtaining the flat space limit described above provide (partially

independent) nontrivial checks of our result. We have also checked one of the partial traces

which involve the N t t′

t t′ component and have shown that it vanishes to the appropriate order.

Finally, we have partially checked one of the conservation conditions by initially considering

an arbitrary separation of the points, computing the relevant derivatives, and then taking

the limit that the separation is only in the time direction. It was only shown that the

conservation condition is satisfied to the second highest order used in the computation. In

terms of the expansion of U(x, x′) discussed above this corresponds to order (x − x′)2. We

are confident that the conservation condition is also satisfied to the highest order used in

the computation, O[(x− x′)4], but due to the large number of terms involved, we have not

shown this explicitly.

2. Moderate and low temperature

If one is interested in point separations such that κ∆t ≪ 1 and κr ≪ 1, then it is

useful to expand the Wightman function in powers of (x−x′) before substituting it into the

expressions (2.4). The general expression (3.26) for G+(x, x′) in the Gaussian approximation

can be expanded as [44]

G+(x, x′) =
1

8 π2

[

1

σ
+

κ2

6
− κ4

180

(

2 (∆t)2 + σ
)

+O
[

(x− x′)4
]

]

U(x, x′) . (4.15)
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Since U(x, x′) = 1 + O[(x − x′)2], the terms within the square brackets in Eq. (4.15) have

been kept through O[(x − x′)2], which is consistent with the order to which the Gaussian

approximation was shown to be valid in Sec. III. We use the same expansion through

O[(x − x′)4] of both U(x, x′) and the conformal factor Ω2(x′), described in the general

discussion on Schwarzschild of this subsection.

Using this approach we have computed several components of the noise kernel when

κ∆t ≪ 1 and κr ≪ 1 through O[(x − x′)−4]. The resulting expressions for an arbitrary

separation of the points are too long to display in full here. If the points are separated along

the time direction we get the following result for the N t t′

t t′ component:

N t t′

t t′ =
1

4π4f 4

[

1

∆t8
− (1− f)2

72r2∆t6
+

(1− f)2(1− 2f + 3f 2)

864r4∆t4

−5κ2

(

1

18∆t6
+

(1− f)2

864r2∆t4

)

+ κ4 17

270∆t4

]

, (4.16)

which agrees with the expansion of Eq. (4.11) throughO[(κ∆t)−4]. If the points are separated

along the radial direction, then we find

N t t′

t t′ =
1

2π4

[

f 4

2∆r8
− (1− f)f 3

r∆r7
+

(1− f)(89− 169f)f 2

144r2∆r6

+
(1− f)(1577− 292f − 441f 2)f

432r3∆r5

−(1 − f)(240199− 383185f + 98655f 2 + 18315f 3)

25920r4∆r4

+κ2

(

f 2

36∆r6
− (1− f)f

36r∆r5
+

(1− f)(7− 39f)

1728r2∆r4

)

− κ4

270∆r4

]

. (4.17)

Note that the limit κ → 0 of Eqs. (4.16)-(4.17) corresponds to the Boulware vacuum and

the limit f → 1 corresponds to the flat space limit. The latter coincides through O[(κ∆t)−4]

and O[(κ∆r)−4], respectively, with the exact result in Eq. (4.2) for the appropriate splitting

of the points. Moreover, this coincidence is exact for zero temperature.

As discussed in Sec. II, the noise kernel has two properties which can be used to check our

calculations. One of these, given in Eq. (2.6), is that the noise kernel should be separately
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conserved at the points x and x′. The other, given in Eq. (2.7), is the vanishing of the

partial traces. Enough components have been computed when κ|∆t| ≪ 1 and κr ≪ 1 that

we have been able to check all of the partial traces and all of the conservation conditions

which involve the component N t t′

t t′ . In each case they are satisfied to the order to which

our computations are valid: O[(x − x′)−4] for the partial traces and O[(x − x′)−5] for the

conservation conditions.

V. DISCUSSION

Using Page’s approximation for the Euclidean Green function of a conformally invariant

scalar field in the optical Schwarzschild spacetime, which is conformal to the static region

of Schwarzschild spacetime, we have computed an expression for the Wightman function

when the field is in a thermal state at an arbitrary temperature. For the case that the tem-

perature is equal to (8πM)−1 and one conformally transforms to Schwarzschild spacetime

this corresponds to the Hartle-Hawking state. This expression is exact for flat space and

is valid through order (x − x′)2 in the optical Schwarzschild spacetime. From this expres-

sion for the Wightman function we have calculated the exact noise kernel in flat space and

several components of an approximate one in Schwarzschild spacetime. The latter is ob-

tained by conformally transforming the noise kernel in the optical Schwarzschild spacetime

to Schwarzschild spacetime. We have shown that, unlike for the case of the stress tensor

expectation value, this transformation is trivial. In both the flat space and Schwarzschild

cases we have restricted our attention to point separations which are either spacelike or

timelike and we do not consider the limit in which the points come together.

For Schwarzschild spacetime we have considered two separate but related approximations

for the noise kernel. The first one is valid for small separations (compared to the typical

curvature radius scale) and arbitrary temperature. In this case we have explicitly computed

one component of the noise kernel. Note that although the Hartle-Hawking state corresponds

to a specific temperature, given by Eqs. (3.24)-(3.25), our results also apply to any other

temperature since we kept κ arbitrary in all our expressions. The states for those other

values of the temperature are singular on the horizon (e.g. the expectation value of the

stress tensor diverges there), but can sometimes be of interest (e.g. the Boulware vacuum

corresponds to the particular case of T = 0). The second approximation corresponds to
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further restricting to low enough temperatures or points that are close enough together so

that the separation is much smaller than the inverse temperature. We have computed several

components of the noise kernel within this approximation.

The component N t t′

t t′ is displayed for both flat space (4.2) and Schwarzschild spacetime.

In Schwarzschild spacetime it has been computed when the point separation is only in the

time direction and the product of the temperature and the point separation is not assumed to

be small (4.11). It has also been computed for an arbitrary spacelike or timelike separation

of the points when the product of the temperature and point separation is small. In this

case, because of its length the expression is shown only for a point separation purely in the

time direction (4.16) and for a point separation purely in the radial direction (4.17).

We have performed several nontrivial checks to verify our results. In both the hot flat

space case and in Schwarzschild spacetime we have checked both the conservation and par-

tial trace properties given in Eqs. (2.6) and (2.7). For hot flat space these properties are

satisfied exactly. For Schwarzschild spacetime, where our expression for the noise kernel is

approximate, we have shown that the relevant quantities vanish up to the order to which

the approximation is valid. Furthermore, as an additional check of the result (4.11) for

Schwarzschild spacetime when the separation is in the time direction and the product of the

temperature and the time separation is not assumed to be small, we have considered two

different ways of obtaining the flat space limit of our result. Firstly, one can compare with

the hot flat space result (4.2) by taking the limit M → 0. Secondly, one can compare with

Eq. (4.14) for the Minkowski vacuum in Rindler coordinates by taking the limit M → ∞
near the horizon.

There are several more or less immediate generalizations of our work. First, although

the noise kernel corresponds to the expectation value of the anticommutator of the stress

tensor, our results are also valid for other orderings of the stress tensor operator (in fact

for any 2-point function of the stress tensor). That is always true for spacelike separated

points because the commutator of any local operator (such as the stress tensor) vanishes

as a consequence of the microcausality condition. Moreover, since for conformal fields in

Schwarzschild the commutator of the field, iG(x, x′), also vanishes for timelike separated

points up to the order to which we are working, the previous statement also holds for
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timelike separations in our case.5 Second, since the Gaussian approximation is valid for any

ultra-static spacetime which is conformal to an Einstein metric (a solution of the Einstein

equation in vacuum, with or without cosmological constant) [1], one can straightforwardly

extend our calculation to all those cases by taking the general expression for the Wightman

function under the Gaussian approximation, given by Eq. (3.27), and substituting it into

the general expression for the noise kernel given in Eqs. (2.3) and (2.4).

One of the most interesting uses of the noise kernel is to investigate the effects of quan-

tum fluctuations near the horizon of the black hole. For instance, there have been claims

in the literature that the size of the horizon could exhibit fluctuations induced by the vac-

uum fluctuations of the matter fields which are much larger than the Planck scale (even for

relatively short timescales of the order of the Schwarzschild radius, i.e. much shorter than

the evaporation time) [51–54]. So far all these studies have been based on semi-qualitative

arguments. However, one should in principle be able to address this issue by computing the

quantum correlation function of the metric perturbations, including the effects of loops of

matter fields, with the method outlined in the introduction. As a matter of fact, part of the

information on the corresponding induced curvature fluctuations is already directly available

from our results. Indeed, at one loop the correlator of the Ricci tensor (or, equivalently, the

Einstein tensor) is gauge invariant6 and it is immediately given by the stress tensor correla-

tor [18]. Unlike the Riemann tensor, the Ricci tensor does not entirely characterize the local

geometry. In order to get the full information about the quantum fluctuations of the geom-

etry at this order, one needs to use Eq. (1.7) or a related one. In that case, the noise kernel

for arbitrary pairs of points is a crucial ingredient. Strictly speaking it is important that

the noise kernel, although divergent in the coincidence limit, is a well-defined distribution.

Our result for separate points does not completely characterize such a distribution since it

does not specify the appropriate integration prescription in the coincidence limit. This can,

nevertheless, be obtained using the method in Appendix C of Ref. [21] (see also Ref. [20] for

cosmological examples).

5 In general one would need to use the appropriate prescription when analytically continuing the Euclidean

Green function to obtain the Wightman function for timelike separated points in the Lorentzian case, and

use expressions analogous to Eqs. (3.24)-(3.25) but without symmetrizing with respect to the two points.

One can explicitly see how this is done in Ref. [18].
6 This quantity is gauge invariant because the Ricci tensor of the Schwarzschild background vanishes, as

does its Lie derivative with respect to an arbitrary vector.
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It is worthwhile to discuss briefly how the present paper is related to an earlier study of the

noise kernel in Schwarzschild spacetime [44], which also considered a conformal scalar field

and made use of Page’s Gaussian approximation. The main interest there was evaluating the

noise kernel in the coincidence limit. In order to get a finite result, the Hadamard elementary

solution was subtracted from the Wightman function before evaluating the noise kernel.

Since the Hadamard elementary solution coincides with the κ = 0 expression for the Gaussian

approximation through order (x−x′)2, which is the order through which the approximation

is valid for the optical Schwarzschild spacetime, their subtracted Wightman function will

also be valid through that order. The fact that they found a non-vanishing trace for their

noise kernel is also compatible with our results because, as we have reasoned, the noise

kernel should only be valid through order (x− x′)−4 when the Gaussian approximation for

the Wightman function is employed (and through order (x−x′)−2 when using the subtracted

Wightman function, whose leading term is O(1) rather than O[(x − x′)−2] ). Instead, one

would need an expression for the noise kernel accurate through order (x − x′)0 or higher

to get a vanishing trace in the coincidence limit. In contrast, for the reasons given in

the introduction, here we consider the unsubtracted noise kernel, which is indispensable

to obtain the quantum correlation function for the metric perturbations as the subtracted

one would lead for instance to a vanishing result –and no fluctuations– for the Minkowski

vacuum. Furthermore, in this way one can still get useful and accurate information for the

terms of order (x− x′)−8 through (x− x′)−4, which dominate at small separations.
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Appendix: Noise kernel and conformal transformations

In this appendix we derive the result for the rescaling of the noise kernel under conformal

transformations. We provide two alternative proofs based respectively on the use of quantum

operators and on functional methods.

First, we start by showing how the classical stress tensor of a conformally invariant scalar

field rescales under a conformal transformation gab → g̃ab = Ω2(x) gab. The key point is that

the classical action of the field, S[φ, g], remains invariant (up to surface terms) if one rescales

appropriately the field: φ → φ̃ = Ω(2−D)/2φ. Taking that into account, one easily gets the

result from the definition of the stress tensor as a functional derivative of the classical action:

T̃ab =
2g̃acg̃bd√−g̃

δS[φ̃, g̃]

δg̃cd
=

2g̃acg̃bd√−g̃

δS[φ, g]

δg̃cd
= Ω2−D 2gacgbd√−g

δS[φ, g]

δgcd
= Ω2−D Tab. (A.1)

1. Proof based on quantum operators

A possible way of proving Eq. (2.9) is by promoting the classical field φ in Eq. (A.1) to

an operator in the Heisenberg picture. The operator T̂ab(x) would be divergent because it

involves products of the field operator at the same point. However, in order to calculate

the noise kernel what one actually needs to consider is t̂ab(x) = T̂ab(x) − 〈T̂ab(x)〉 and

this object is UV finite, i.e., its matrix elements 〈Φ|t̂ab(x)|Ψ〉 for two arbitrary states |Ψ〉
and |Φ〉 (not necessarily orthogonal) are UV finite because Wald’s axioms [47] guarantee

that 〈Φ|T̂ab(x)|Ψ〉 and 〈Φ|Ψ〉〈T̂ab(x)〉 have the same UV divergences and they cancel out.

Therefore, one can proceed as follows. One starts by introducing a UV regulator (it is useful

to consider dimensional regularization since it is compatible with the conformal symmetry for

scalar and fermionic fields, but this is not indispensable since we will remove the regulator at

the end without having performed any subtraction of non-invariant counterterms). One can

next apply the operator version of Eq. (A.1) to the operators t̂ab(x) appearing in Eq. (1.4)

defining the noise kernel. Since all UV divergences cancel out, as argued above, we can then

safely remove the regulator and are finally left with Eq. (2.9).
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2. Proof based on functional methods

An alternative way of proving Eq. (2.9) is by analyzing how the closed-time-path (CTP)

effective action Γ[g, g′] changes under conformal transformations. This effective action results

from treating gab and g′ab as external background metrics and integrating out the quantum

scalar field within the CTP formalism [57]:

eıΓ[g,g
′] =

∫

Dϕf DϕiDϕ′
i ρ[ϕi, ϕ

′
i]

∫ ϕf

ϕi

Dφ eıSg[g]+ıS[φ,g]

∫ ϕf

ϕ′

i

Dφ′ e−ıSg[g′]−ıS[φ′,g′], (A.2)

where ρ[ϕi, ϕ
′
i] is the density matrix functional for the initial state of the field 7 (in particular

one has ρ[ϕi, ϕ
′
i] = Ψ[ϕi]Ψ

∗[ϕ′
i] for a pure initial state with wave functional Ψ[ϕi] = 〈ϕi|Ψ〉

in the Schrödinger picture), Sg[g] is the gravitational action including local counterterms,

S[φ, g] is the action for the scalar field, and the two background metrics are also taken to

coincide at the same final time at which the final configuration of the scalar field for the

two branches are identified and integrated over. The fields ϕf on the one hand and {ϕi, ϕ
′
i}

on the other, correspond to the values of the field restricted respectively to the final and

initial Cauchy surfaces, and their functional integrals are over all possible configurations of

the field on those surfaces. Integrating out the scalar field gives rise to UV divergences, but

they can be dealt with by renormalizing the cosmological constant and the gravitational

coupling constant as well as introducing local counterterms quadratic in the curvature in

the bare gravitational action Sg[g], so that the total CTP effective action is finite. After

functionally differentiating and identifying the two background metrics, one gets the renor-

malized expectation value of the stress tensor operator together with the contributions from

the gravitational action [26, 58]:

gac gbd
2√−g

δΓ[g, g′]

δgcd

∣

∣

∣

∣

g′=g

= − 1

8πG

(

Gab + Λgab
)

+
〈

T̂ab

〉

ren
, (A.3)

where the contribution from the counterterms quadratic in the curvature has been absorbed

in 〈T̂ab〉ren. The renormalized gravitational coupling and consmological constants, G and Λ,

depend on the renormalization scale, but the expectation value also depends on it in such a

7 Under appropriate conditions it is also possible to consider asymptotic initial states. For instance, given

a static spacetime, a generalization to the CTP case of the usual ıǫ prescription involving a small Wick

rotation in time selects the ground state of the Hamiltonian associated with the time-translation invariance

as the initial state.



29

way that the total expression is renormalization-group invariant since that is the case for the

effective action. The equation that one obtains by equating the right-hand side of Eq. (A.3)

to zero governs the dynamics of the mean field geometry in semiclassical gravity, including

the back-reaction effects of the quantum matter fields.

On the other hand, the noise kernel can be obtained by functionally differentiating twice

the imaginary part of the CTP effective action:

Nabc′d′(x, x
′) = gae(x)gbf (x)gc′g′(x

′)gd′h′(x′)
4

√

g(x)g(x′)

δ2 ImΓ[g, g′]

δge′f ′(x)δgg′h′(x′)

∣

∣

∣

∣

g′=g

. (A.4)

It is well-known that the imaginary part of the effective action does not contribute to the

equations of motion for expectation values derived within the CTP formalism, like Eq. (A.3),

which are real. Furthermore, one can easily see from Eq. (A.2) that, since it is real, the gravi-

tational action (whose contribution can be factored out of the path integral) only contributes

to the real part of the effective action. In particular this means that the counterterms and

the renormalization process have no effect on the noise kernel, which will be a key obser-

vation in order to prove Eq. (2.9). Indeed, let us start with Eq. (A.2) for the conformally

related metric and scalar field, g̃ab and φ̃, and assume that we use dimensional regularization:

eıΓ[g̃,g̃
′] = eıSg[g̃]−ıSg[g̃′]

∫

Dϕ̃f Dϕ̃iDϕ̃′
i ρ̃[ϕ̃i, ϕ̃

′
i]

∫ ϕ̃f

ϕ̃i

Dφ̃ eıS[φ̃,g̃]
∫ ϕ̃f

ϕ̃′

i

Dφ̃′ e−ıS[φ̃′,g̃′]

= eı(Sg[g̃]−Sg[g])−ı(Sg[g̃′]−Sg[g′])

∫

Dϕf DϕiDϕ′
i ρ[ϕi, ϕ

′
i]

∫ ϕf

ϕi

Dφ

∣

∣

∣

∣

∣

Dφ̃

Dφ

∣

∣

∣

∣

∣

eıSg[g]+ıS[φ,g]

×
∫ ϕf

ϕ′

i

Dφ′

∣

∣

∣

∣

∣

Dφ̃′

Dφ′

∣

∣

∣

∣

∣

e−ıSg[g′]−ıS[φ′,g′], (A.5)

where we have taken into account in the second equality the fact that dimensional regu-

larization is compatible with the invariance of the classical action S[φ̃, g̃] under conformal

transformations (since it is invariant in arbitrary dimensions). We also considered that the

initial states of the scalar field are related by

ρ̃
[

ϕ̃i(x), ϕ̃
′
i(x

′)
]

= Ω
(D−2)/4
i (x) Ω

(D−2)/4
i (x′) ρ[ϕi(x), ϕ

′
i(x

′)]

= Ω
(D−2)/4
i (x) Ω

(D−2)/4
i (x′) ρ

[

Ω−1
i (x)ϕ̃i(x),Ω

−1
i (x)ϕ̃′

i(x
′)
]

, (A.6)

where the conformal factor Ω2
i is restricted to the initial Cauchy surface and so are the points

{x, x′} in this equation. (This relation between the initial states is the choice compatible

with conformal invariance after one takes into account the relation between φ̃ and φ, and
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the prefactor is determined by requiring that the state remains normalized.) The logarithm

of the functional Jacobian |Dφ̃/Dφ| is divergent but formally zero in dimensional regular-

ization8, so that we can take |Dφ̃/Dφ| = 1 in both path integrals on the right-hand side of

Eq. (A.5). Taking all this into account, we are left with

Γ[g̃, g̃′] = Γ[g, g′] + (Sg[g̃]− Sg[g])− (Sg[g̃
′]− Sg[g

′]), (A.7)

where the last two pairs of terms on the right-hand side correspond to the difference between

the bare gravitational actions of the two conformally related metrics in dimensional regular-

ization; note that whereas each bare action is separately divergent, the difference Sg[g̃]−Sg[g]

is finite. When working in dimensional regularization, conformally invariant fields only ex-

hibit divergences associated with counterterms quadratic in the curvature. These terms

lead to the standard result for the trace anomaly of the stress tensor when one takes the

functional derivative of Eq. (A.7) with respect to the conformal factor, which can be shown

to be equivalent to the trace of Eq. (A.3).

The key aspect for our purposes is that the extra terms on the right-hand side of Eq. (A.7)

only change the real part of the CTP effective action, as already mentioned above, so that the

imaginary part remains invariant under conformal transformations. Starting with Eq. (A.4)

for the metric g̃ab and taking into account the invariance of the imaginary part of the CTP

effective action under conformal transformations, one immediately obtains

Ñabc′d′(x, x
′) = Ω2−D(x) Ω2−D(x′)Nabc′d′(x, x

′), (A.8)

in agreement with Eq. (2.9). Note that we have employed dimensional regularization in our

argument for simplicity, but one would reach the same conclusion if other regularization

schemes had been used. In those cases one would get in general a contribution to the analog

of Eq. (A.7) from the change of the functional measure, but it would only affect the real part

of the effective action (see Ref. [59], where the calculations are performed in Euclidean time,

8 This can be seen by taking Eq. (18) in Ref. [59] and using dimensional regularization [47] to evaluate

the trace of the heat kernel appearing there. Any possible dependence left on the conformal factor

evaluated at the initial or final Cauchy surfaces would correspond to a prefactor on the right-hand side of

Eq. (A.5), and would not contribute to the noise kernel (or the expectation value of the stress tensor) at

any intermediate time since it involves functionally differentiating the logarithm of that expression with

respect to the metric at such intermediate times.
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and analytically continue the result to Lorentzian time) and one could still apply exactly

the same argument as before.
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