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A characteristic feature of loop quantization of the isotropic and Bianchi-I space-

times is the existence of universal bounds on the energy density and the expansion

and shear scalars, independent of the matter content. We investigate the proper-

ties of these physical quantities in Bianchi-II and Bianchi-IX spacetimes, which have

been recently loop quantized using the connection operator approach. Using the ef-

fective Hamiltonian approach, we show that for Bianchi-II spacetime, energy density

and the expansion and shear scalars turn out to be bounded, albeit not by universal

values. In Bianchi-IX spacetime, when the approach to the classical singularity is

isotropic, above physical quantities are bounded. In addition, for all other cases,

where the approach to singularities is not isotropic and effective dynamics can be

trusted, these quantities turn out to be finite. These results stand in sharp distinc-

tion to general relativity, where above physical quantities are generically unbounded,

leading to the break down of geodesic equations. In contrast to the isotropic and

Bianchi-I models, we find the role of energy conditions for Bianchi-II model and the

inverse triad modifications for Bianchi-IX to be significant to obtain above bounds.

These results bring out subtle physical distinctions between the quantization us-

ing holonomies over closed loops performed for isotropic and Bianchi-I models, and

the connection operator approach. We find that qualitative differences in physics

exist for these quantization methods even for the isotropic models in the presence

of spatial curvature. We highlight these important differences in the behavior of

the expansion scalar in the holonomy based quantization and connection operator

approach for isotropic spatially closed and open models.
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I. INTRODUCTION

Singularities in general relativity are primarily characterized by the divergences in the

curvature invariants and the break down of geodesic evolution. A central piece in the

singularity theorems of Hawking, Penrose and Geroch is the Raychaudhuri equation, which

determines the evolution of the congruence of geodesics via the properties of the expansion

(θ) and shear (σ2) scalars, and the components of the stress energy tensor. As the singularity

is approached, these quantities blow up, resulting in the inextendability of geodesics. The

scalars θ and σ2, also capture the extrinsic and the Weyl curvature of the spacetime, and

hence turn out to be useful measures to gain insights on the behavior of curvature invariants

and the nature of singularities. It is generally believed that a quantum theory of gravity

will shed important insights on the resolution of singularities. If such a theory allows an

effective spacetime description to understand the behavior of geodesics, it is pertinent to

ask whether θ and σ2, along with the components of the stress-energy tensor are bounded

by the quantum gravitational effects, and if yes, under what conditions. Understanding of

these properties is vital to gain insights on the generic resolution of singularities in quantum

gravity and the underlying requirements for geodesic completeness.

In recent years, a lot of progress has been made in the quantization of homogeneous

spacetimes in loop quantum cosmology (LQC) to pose such questions. LQC is a non-

perturbative canonical quantization of homogeneous cosmologies, based on loop quantum

gravity (LQG), which predicts resolution of singularities in various situations [1]. These

include spatially flat (k = 0) isotropic model sourced with a massless scalar field [2–4], in

presence of cosmological constant [5–7] and inflationary potential [8], spatially closed (k = 1)

model [9, 10], spatially open (k = −1) model [11, 12], Bianchi-I model [13] and Bianchi-II

[14] and Bianchi-IX spacetimes with a massless scalar field [15]. In all of these models, the

quantum Hamiltonian constraint turns out to be non-singular, which is a direct consequence

of the underlying quantum discreteness predicted by LQG. Further, one recovers classical

GR in the limit when the spacetime curvature becomes small. Quantum evolution in LQC is

governed by a quantum difference equation, however, for a class of semi-classical states, there

exists an effective continuum spacetime description. This allows one to obtain an effective

†Electronic address: psingh@phys.lsu.edu
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Hamiltonian constraint for LQC [16–18].1 The resulting Hamilton’s equation lead to the

modified Einstein’s equations which turn out to describe the underlying quantum evolution

extremely accurately [2–7, 9].2 The modified Einstein’s equations have been widely used

in conjunction with the analytical and numerical techniques to capture the details of the

underlying physics in LQC and to reveal rich phenomenological features [1].

In LQC, one starts with a classical phase space in Ashtekar variables: the SU(2) connec-

tion Ai
a and conjugate triads Ea

i , which are then symmetry reduced to ci and pi respectively,

by incorporating the underlying symmetries of a homogeneous spacetime. The elementary

variables used for quantization are the holonomies of the connection components and fluxes

corresponding to the triads.3 The Hamiltonian constraint, the only non-trivial constraint

left after symmetry reduction, is then expressed in terms of these elementary variables and

quantized. This procedure leads to two novel features. The first of these arises by express-

ing field strength of the connection in terms of holonomies over a closed loop shrunk to

a minimum area on the quantum geometry. This leads to a non-local nature of the field

strength, which results in a quantum difference equation. The second feature arises due to

the presence of inverse triad (or inverse volume) operators. Since the eigenvalue spectrum

of triad operator is discrete and includes zero as an eigenvalue, its inverse it not densely

defined. Using a classical identity in the phase space, inverse triads are expressed in terms

of the Poisson brackets between holonomies and the positive powers of triads [20], and then

quantized. The resulting eigenvalues of such an inverse triad operator show a significant

departure from the classical behavior near pi = 0. When the triad component vanish, the

eigenvalue of such an operator is zero. At larger values compared to the Planck value, it

approximates the classical behavior. However, such modifications can only be consistently

defined when the spatial manifold is compact. In case it is non-compact, the modifications

to the classical behavior depend on the fiducial volume of the fiducial cell introduced to de-

fine the symplectic structure. Since this cell is an infra-red regulator introduced to regulate

infinities occurring due to the underlying non-compactness, physics must be independent

1 The modified Einstein’s equations, can also be obtained from an effective action in LQC using Palatini

approach [19].
2 It should be noted, that for these numerical simulations, bounce occurs at volumes greater than the Planck

volume.
3 These turn out to be proportional to triads in the homogeneous setting.
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of it. Indeed, in the limit when the fiducial volume of the fiducial cell becomes infinite for

the non-compact models, the inverse triad modifications vanish. Thus, for spatial manifolds

which are non-compact, quantum geometry leads to new physics only via non-local nature of

the field strength. If the spatial manifold is compact, apart from the non-local field strength,

inverse triad effects can also be important.

Let us now discuss some of the main features of the isotropic and Bianchi-I models in

LQC. These are the following: (i) For all of the isotropic and the Bianchi-I models, the

field strength can be expressed using holonomies, which are almost periodic functions of the

connection Ai
a, over a closed loop. Quantum geometry fixes the minimum area of the loop

using the eigenvalues of the area operator in LQG. It results in a universal bound on the

energy density4 (ρmax ≈ 0.41ρPlanck) and the expansion scalar in these models, independent

of the choice of matter (and hence the energy conditions). These bounds have been shown

to result in a generic resolution of all strong curvature singularities in isotorpic and spatially

flat LQC [22]. An analysis of various singularities, including the various exotic ones, strongly

indicates this result to extendable to spatially curved models [23]. The non-local nature of

above field strength is also responsible for a universal bound on directional Hubble rates

and σ2 in the Bianchi-I model, which has been demonstrated to yield resolution of all strong

singularities for different types of matter [24]; (ii) Inverse triad corrections are potentially

significant for only those universes which attain a size comparable to Planck value. If bounce

of the universe occurs when its volume is much bigger than Planck volume, then inverse

triad corrections play little role. In such cases, they are found to be neither responsible

for bounds on the energy density and θ, nor do they lead to any significant effects on the

modified dynamics [4, 10].

This uniformity of results for isotropic models with different spatial curvatures and

Bianchi-I model is noteworthy. We recall that for the k = 1 model, construction of the

closed loop is technically challenging where one can not simply extend the strategy used in

the k = 0 model.5 The resulting quantization leads to non-trivial terms in the quantum

4 This value coincides with the supremum of the expectation values of the energy density operator in the

physical Hilbert space in an exactly soluble model in the spatially flat case [21].
5 In the spatially flat model, construction of such a loop is straightforward due to the availability of com-

muting left invariant vector fields on the spatial manifold. In the spatially closed model, left invariant

vector fields do not commute, and the loop is constructed using both left and right invariant vector fields

[10].
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Hamiltonian constraint which capture the spatial curvature. In contrast, the quantization

of k = −1 model follows neither the approach in k = 0 model nor k = 1 model to express

the field strength in terms of holonomies. This is due to a technical difficulty resulting

from the presence of the off-diagonal terms in the spin connection Γi
a. Currently available

quantizations overcome this problem by considering holonomies of the extrinsic curvature

[11, 12], and a priori an agreement on the detailed physics at the Planck scale is unexpected.

Further, in the Bianchi-I model, freezing of the anisotropic degrees of freedom does not

lead to the quantization of the isotropic flat model. Instead one must integrate out the

anisotropic degrees of freedom [13]. Despite various differences in the quantization strategy

of these spacetimes and the resulting subtleties, it is rather remarkable that loop quantiza-

tion of isotropic models and Bianchi-I spacetime, reveals the same bounds on the physical

quantities independent of the energy conditions and are also not affected by inverse triad

modifications for spacetimes with non-vanishing spatial curvature.

The goal of this manuscript is to analyze the physics of Bianchi-II and Bianchi-IX space-

times in LQC, in the above context using the effective Hamiltonian approach. In these

models, due to the interplay of spatial curvature and anisotropies, it is not possible to

express field strength in terms of holonomies which are almost periodic functions of the con-

nection components. A new strategy is needed to loop quantize these spacetimes, which was

proposed in Ref. [13]. One expresses the field strength in terms of a non-local connection

defined via holonomies over open segments.6 The underlying quantum geometry does not

directly constrain the length of such open segments. However, by demanding that the re-

sulting expression for the field strength operator agrees with the one in the Bianchi-I model,

one can fix the minimum length of the edge over which the holonomy is computed using the

minimum quantum of area in LQG. The pertinent question is whether this strategy leads

to physics at Planck scale which confirms with that established by the quantization of all

other models in LQC or does it lead to novel surprises? In particular, are energy density, θ

and σ2 bounded in Bianchi-II and Bianchi-IX models? Are these bounds universal? What

are the contributions of the modifications originating from the inverse triad operators for

the Bianchi-IX model? Are these modifications important or are they insignificant, as in

6 In terms of the symmetry reduced connection, in this approach, the connection operator ĉ is defined as:

ĉ = ŝin(µ̄c)
µ̄

.
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the case for the isotropic models?

We will show in this manuscript that the connection operator approach leads to some

unexpected results. We find that energy density and the expansion and shear scalars are

bounded in Bianchi-II model, however these bounds are not universal as they depend on the

energy conditions.7 In the Bianchi-II model, one must assume that the energy density is

bounded below, else the shear scalar diverges in the Planck regime. In the Bianchi-IX model,

inverse triad modifications turn out to be critical to obtain these bounds when the approach

to classical singularity is isotropic, i.e. all triads approach the singularity at the same time.

For the other types of singularities, we show that energy density and the expansion and

shear scalars are finite except for two cases. These two cases correspond to the vanishing

of one or two of the three triads. At this stage, it is neither evident whether the effective

dynamics can be trusted in such a regime nor if such solutions exist in the Bianchi-IX

model for some matter content. These results bring out contrasts between the connection

operator approach [14, 15] and the holonomy approach [2–4, 8, 10, 12, 13, 25]. We find that

demanding the consistency of connection operator approach with Bianchi-I model, which

has vanishing spatial curvature, does not guarantee its consistency for the spatially curved

models. In particular, the isotropic limit of the effective Hamiltonian constraint in the loop

quantization of Bianchi-IX model does not lead to the effective Hamiltonian constraint of

the k = 1 model [10], but to that of a different quantization – the inequivalent connection

operator quantization of k = 1 model [25], and that too only in the regime where inverse

triad modifications can be ignored. Unlike the holonomy based quantization of k = 1 model,

where expansion scalar is bounded by a global maxima in the effective spacetime description,

θ does not have a maximum in the connection operator approach. The same turns out to

be true for an alternate quantization of k = −1 model based on the connection operator

approach.

The organization of this paper is as follows. We start with a summary of the effective

Hamiltonian in LQC for Bianchi-I model and revisit the analysis in Ref. [26] to show

that the energy density, and the expansion and the shear scalars are bounded by universal

values for arbitrary matter content. Here we obtain the correct bound on the shear scalar,

7 In Bianchi-II model, the energy density has been shown to be bounded for the case of a massless scalar

field [14]. Since the matter content was fixed, the role of energy conditions was not known.
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which was previously estimated incorrectly. In Sec. 3, we repeat the analysis for non-

compact Bianchi-II model. Here we show that the energy density, the expansion and the

shear scalar are bounded only if one imposes energy conditions. We show that if one allows

energy density to be unbounded below, the shear scalar diverges. In Sec. 4, we analyze

the effective Hamiltonian constraint for the Bianchi-IX model and show that inverse triad

corrections play an important role for ρ, θ and σ2 to be bounded for the isotropic approach

to singularities. Due to the inverse triad modifications, there is an additional subtlety in

the behavior of energy density, which is also addressed. Here we also discuss the isotropic

limit of the effective Hamiltonian in Bianchi-IX model, and find that it does not lead to

the one for k = 1 loop quantization [10]. In the absence of inverse triad modifications the

limit is given by an alternative connection operator based quantization, which has expansion

scalar unbounded. Whereas in the presence of inverse triad modifications, the isotropic limit

agrees with none of the available isotropic quantizations. We summarize the results with a

discussion in Sec. 5. In Appendix A, we discuss the behavior of expansion scalar in k = 1

model in the holonomy based and the connection operator quantizations in LQC. A similar

discussion for k = −1 model is provided in Appendix B. These show that for isotropic

k = ±1 models, the expansion scalar is unbounded for the effective Hamiltonian constraint

corresponding to the connection operator approach.

II. BIANCHI-I MODEL

Bianchi-I model is one of the simplest examples of an anisotropic spacetime. It has van-

ishing spatial curvature and in the isotropic limit it yields the k = 0 Robertson-Walker (RW)

metric. The homogeneous Bianchi-I anisotropic spacetime can be described by a manifold

Σ×R where Σ is the 3-spatial hypersurface characterized by a set of three commuting Killing

vectors. As earlier works in LQC, we will consider the topology of Σ as R3. The spacetime

metric of Bianchi-I spacetime is given by,

ds2 = −N2dτ 2 + a21dx
2 + a22dy

2 + a23dz
2 (2.1)

where a1,a2 and a3 are the directional scale factors. These can be used to define a mean scale

factor a := (a1a2a3)
1/3. Since the spatial manifold is non-compact, in order to define the

symplectic structure, one needs to introduce a fiducial cell V. This cell’s edges can be chosen
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to lie along the integral curves of fiducial triads e̊ai and have coordinate length l1, l2, l3. The

cell V has fiducial volume Vo = l1l2l3 with respect to the fiducial metric q̊ab compatible with

fiducial co-triads ω̊i
a.

In LQG the canonical variables are the Ashtekar connection Ai
a and the triad Ea

i which,

which due to the symmetry of Bianchi-I spacetime, can be expressed in terms of components

ci and pi as:

Ai
a = ci (li)

−1 ω̊i
a, and Ea

i = pi li V
−1
o

√

q̊ (2.2)

The connection and triad components, ci and pi, satisfy the following Poisson bracket rela-

tion,

{ci, pj} = 8πGγδij (2.3)

where γ ≈ 0.2375 is Barbero-Immirzi parameter. The triads pi are related to the directional

scale factors as

p1 = ε1 l2 l3 |a2 a3|, p2 = ε2 l1 l3 |a1 a3|, p3 = ε3 l2l1|a1a2| (2.4)

where εi = ±1 depending on the orientation of the triads. Without any loss of generality,

we will choose the orientation to be positive in the following analysis.

Let us first consider the Hamiltonian constraint in the classical theory. For lapse N = V ,

the classical Hamiltonian constraint in terms of Ashtekar variables can be written as,

Hcl =
1

8πGγ2
(c1p1c2p2 + cyclic terms) +HmattV , (2.5)

where Hmatt is the matter Hamiltonian and V denotes the physical volume of the cell V:
V =

√
p1p2p3. Dynamical equations can be obtained using Hamilton’s equations:

ṗi = {pi,Hcl} = −8πGγ
∂Hcl

∂ci
(2.6)

and

ċi = {ci,Hcl} = 8πGγ
∂Hcl

∂pi
(2.7)

where the ‘dot’ represents the derivative with respect to the proper time t. Using the first

equation one can compute the directional Hubble rates, Hi = ȧi/ai, such as

H1 =
1

2

(

ṗ2
p2

+
ṗ3
p3

− ṗ1
p1

)
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and show that the connection component ci are related to Hi in the classical theory as

ci = γliHiai. These directional Hubble rates also define the expansion scalar θ and the

shear scalar σ2 for the comoving observers:

θ =
1

V

dV

dt
= (H1 +H2 +H3) (2.8)

and

σ2 =
3
∑

i=1

(Hi − θ)2 =
1

3

(

(H1 −H2)
2 + (H2 −H3)

2 + (H3 −H1)
2
)

. (2.9)

In an isotropic spacetime Hubble rates in all directions are equal and the shear scalar van-

ishes.

Physical solutions of the Einstein’s equations satisfy the constraint Hcl ≈ 0, which results

in the following equation for the classical GR:

H1H2 +H2H3 +H3H1 = 8πGρ (2.10)

where the energy density ρ is computed as ρ = Hmatt/V . Using the equations for Hi’s, it is

possible to obtain the equation for the mean Hubble rate H = ȧ/a, which turns out to be of

a similar form as the Friedmann equation in the flat isotropic model albeit with a presence

of a terms proportional to the anisotropic shear:

H2 =
8πG

3
ρ +

Σ2

a6
(2.11)

where Σ2 := 1
6
σ2a6. In the classical theory, Σ2 turns out to be a constant of motion. Note

that due to the presence of positive definite shear scalar, the energy density can take negative

values without Hubble rate becoming imaginary. This is in contrast to the isotropic limit of

the above equation, corresponding to the k = 0 FRW model, where negative energy densities

are not allowed when Hubble rate is real. Using above dynamical equations, one finds that

at vanishing scale factors, ρ, θ and σ2 diverge. These lead to the divergence in curvature

invariants and the break down of geodesic evolution at the singularities.8

8 To give an example, we recall that the square of the Weyl curvature Cαβµν can be expressed in terms of its

electric (Eαβ) and magnetic (Hαβ) parts relative to a unit time-like vector field (u): Eαβ = Cαγβδu
βuδ,

Hαβ = ∗Cαγβδu
γuδ, as CαβµνC

αβµν = 8(EαβE
αβ −HαβH

αβ) (see for eg. [27]). For the Bianchi-I model,

Hαβ = 0 and Eαβ = (3)Rαβ + θ
3σαβ − (σγ

ασγβ − 2
3σ

2δαβ) when anisotropic stress vanishes. Thus, a

divergence in expansion and shear scalars, leads to a divergence in the square of the Weyl curvature.
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Let us now discuss the dynamics in LQC based on the effective Hamiltonian approach

based on the embedding method [16–18].9 This approach is based on geometrical formulation

of quantum mechanics [29], where the space of quantum states is regarded as an infinite

dimensional quantum phase space, ΓQ, equipped with a symplectic structure provided by

the Hermitian inner product on the Hilbert space. Using a judicious choice of states, one then

finds an embedding of the finite dimensional classical phase space Γ. If this embedding is

approximately preserved under the flow generated by the quantum Hamiltonian vector field,

then up to the order of approximation the embedding is considered faithful, and one obtains

effective equations which incorporate quantum corrections. In LQC, this procedure has been

successfully carried out for a variety of models, including a dust dominated universe [16],

isotropic model with a massless scalar field [17] and isotropic model with arbitrary matter

[18]. The resulting effective Hamiltonian leads to modified Einstein’s equations which have

been extensively compared with the true quantum evolution using numerical simulations

with states which are semi-classical at late times [3–6, 10, 11]. These analyses show that

the modified Einstein’s equations obtained from the effective Hamiltonian in LQC are in

excellent agreement with the quantum evolution for all the models considered so far. Thus,

suggesting that the effective Hamiltonian approach in LQC may have validity for a large

class of spacetimes.

The effective Hamiltonian constraint for Bianchi-I spacetime in LQC for lapse N = V is

given as [13, 26, 30]

Heff = − 1

8πGγ2

(

sin (µ̄1c1)

µ̄1

sin (µ̄2c2)

µ̄2
p1p2 + cyclic terms

)

+ HmattV , (2.12)

where µ̄i are given by

µ̄1 = λ

√

p1
p2p3

; µ̄2 = λ

√

p2
p1p3

; and µ̄3 = λ

√

p3
p1p2

(2.13)

and λ2 = 4
√
3πγl2Pl. Note thatHmatt here corresponds to the matter Hamiltonian as obtained

from the Fock quantization. The relationship of µ̄i with the triads is a consequence of the

9 Another approach is the truncation method [28], also based on geometric formulation of quantum me-

chanics. In contrast to the embedding approach which can be regarded as analogous to the variational

methods, the truncation approach is on the lines of order by order perturbation theory. Though the

method is more systematic, one needs to exercise a lot of care in dealing with truncation errors. Un-

like the embedding approach, the modified equations from this method have not been widely tested for

compatibility with the underlying quantum evolution.
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way area of the loops along which holonomies of connection are computed relates with the

eigenvalue of the area operator in LQG.10 The minimum allowed area of such a loop is

labeled by λ2. It is to be noted that above functional dependence of µ̄i on the triads is

unique, in the sense that any other choice leads to resulting physics being affected by the

rescaling of the lengths of the edges of the fiducial cell and also by change in its shape

[31]. Further, the only contribution from quantum geometry in the effective Hamiltonian

constraint results from the modifications originating from the non-local field strength. The

inverse volume modifications are absent in the above constraint, since we are considering a

non-compact spatial manifold.

Using Hamilton’s equations, we can compute the time variation of triads. In terms of

proper time, we get

ṗ1 =
p1
γλ

(sin (µ̄2c2) + sin (µ̄3c3)) cos (µ̄1c1) (2.14)

and similarly for p2 and p3, and the connection components. From these, we can obtain the

equations for the directional Hubble rates, such as

H1 =
1

2γλ
(sin (µ̄1c1 − µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 − µ̄3c3)) (2.15)

Using these equations, one finds that that unlike the classical theory, ci 6= γliHiai. Further,

it is straightforward to show, that Σ2 is not a constant of motion in LQC [26, 30].

In contrast to the classical theory, the directional Hubble rates are bounded in LQC,

with a maximum value given by Hi,max = 3/2γλ. The resulting expression for the expansion

scalar yields

θ =
1

2γλ
(sin (µ̄1c1 + µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 + µ̄3c3)) (2.16)

which has the following maxima

θmax =
3

2γλ
≈ 2.78

lPl
. (2.17)

The boundedness of the Hubble rates points to the non-singular bounces in LQC. These

bounces, unlike the isotropic case, do not occur at a fixed value of energy density. Due

10 It is important to note that at the current stage of research, the imposition of the minimum area of the

loop as it appears in LQG is an external input in LQC. Since a derivation of LQC from LQG is yet to

be performed, LQC is a quantization of cosmological models based on LQG, rather than the cosmological

sector of LQG.
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to the presence of anisotropies, bounce occurs at different values of ρ and σ2, which are

determined by the initial conditions (see for example, Ref. [26]). In order to find the

maximum values, we first note that the vanishing of the Hamiltonian constraint, Heff ≈ 0,

gives

ρ =
1

8πGγ2λ2
(sin (µ̄1c1) sin (µ̄2c2) + cyclic terms) , (2.18)

which implies that ρ has a universal maxima, independent of any energy conditions, as:

ρmax =
3

8πGγ2λ2
≈ 0.41ρPl . (2.19)

Thus, the maxima of energy density in Bianchi-I model turns out to be the same as in the

isotropic models in LQC. Note that for an arbitrary choice of initial conditions in Bianchi-I

spacetime, is never achieved at a bounce of the directional scale factor. This bound is only

saturated when anisotropies vanish.

Similarly, using eq. (2.15) (and equations for H2 and H3) in (2.9), it is straightforward to

obtain the expression for shear scalar, which as the one for θ and ρ turns out to be composed

of bounded functions:

σ2
I =

1

3γ2λ2

[

(cos (µ̄2c2)(sin (µ̄1c1) + sin (µ̄3c3))− cos (µ̄1c1)(sin (µ̄2c2) + sin (µ̄3c3)))
2

+ cyclic terms

]

(2.20)

(where the subscript I is used to differentiate this expression from shear scalars in subsequent

models considered here). The shear scalar has a global maxima

σ2
I max =

10.125

3γ2λ2
≈ 11.57

l2Pl
(2.21)

at µ̄1c1 = π/6, µ̄2c2 = π/2 and µ̄3c3 = 5π/6. Interestingly, the maxima of shear scalar is

reached when energy density is itself close to the Planckian value. At above values of µ̄ici,

the energy density turns out to be ρ ≈ 0.4167ρcrit. In the case of Bianchi-I vacuum spacetime

(ρ = 0), depending on the initial conditions, the shear scalar can attain one of the two (local)

maximas: σ2
max = 2/γ2λ2 at µ̄1c1 = π/2, µ̄2c2 = π and µ̄3c3 = 0, or σ2

max = 6.3/3γ2λ2 at

µ̄1c1 = −0.339837, µ̄2c2 = π/2 and µ̄3c3 = 5π/6.

The existence of upper bounds on energy density, expansion scalar and shear scalar

for arbitrary matter indicate a resolution of various singularities in the loop quantization of
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Bianchi-I spacetime.11 This is a direct feature of the underlying quantum geometry captured

via λ2. In the limit, this parameter goes to zero, one recovers the classical divergence of ρ, θ

and σ2. this feature is missing in the classical theory. The upper bounds of these quantities

are completely generic, obeyed by all types of matter. As we will discuss in the next sections,

this generality is absent in Bianchi-II and Bianchi-IX models.

III. BIANCHI-II MODEL

Bianchi-II spacetimes are more general than the Bianchi-I spacetimes in the sense that

they have a non-vanishing intrinsic curvature. Unlike the Bianchi-I model, only two of the

three Killing fields commute with each other on the spatial manifold. Further, the spacetime

lacks an isotropic limit. In the following we consider the case of a non-compact Bianchi-II

spacetime. Since the procedure of symmetry reduction, introduction of a cell V and details of

the symplectic structure follow closely as in the Bianchi-I model, we will skip the discussion

of this part. For a detailed discussion on these for Bianchi-II model, we refer the reader to

Refs. [14].

In terms of Ashtekar variables, the classical Hamiltonian constraint for lapse N = V , can

be written as

Hcl = − 1

8πGγ2
[p1p2c1c2 + cyclic terms]− 1

8πGγ2

[

α p2p3c1 − (1 + γ2)

(

αp2p3
2p1

)2
]

+HmattV

(3.1)

where α is related to the structure constants of the Lie algebra corresponding to the Killing

fields.12 Using Hamilton’s equations, it is straightforward to obtain the classical dynamical

equations for the time variation of pi and ci. As an example:

dp1
dτ

=
1

γ
(p1(c2p2 + c3p3) + α p2p3) . (3.2)

11 Strictly speaking, a stronger statement can be made for the isotropic models in LQC. This is due to

the reason that in the isotropic case, availability of an exactly soluble model [21], allows one to prove

existence of bound on energy density for a dense set of states in the physical Hilbert space. Where as

here, bounds are derived assuming an effective Hamiltonian which a priori assumes coherent states. Thus,

it is possible that above bounds, and similarly those derived later for Bianchi-II and Bianchi-IX models,

are not necessarily strict bounds for all the states in the physical Hilbert space.
12 The Killing fields ξ̊ai satisfy [ξ̊i, ξ̊j ] = C̊k

ij ξ̊k, with the only non-zero structure constant being C̊1
23 = α̃.

This defines α as α := (l2l3/l1)α̃, where li refer to the edge lengths of the fiducial cell V .
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However, unlike the Bianchi-I model, it is not possible to use these equations to obtain an

analog of the generalized Friedmann equation (2.11) for the mean Hubble rate. A detailed

analysis of these dynamical equations reveal a singularity when the triads vanish.

We now consider the effective Hamiltonian for the Bianchi-II model [14]. For the same

choice of the lapse function as above, it is given as

Heff = − p1p2p3
8πGγ2λ2

[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]

− 1

8πGγ2

[

α

λ

(p2p3)
3/2

√
p1

sin (µ̄1c1)−
α2(1 + γ2)

4

(

p2p3
p1

)2
]

+HmattV (3.3)

which is a sum of the effective Hamiltonian in Bianchi-I model and the terms originating

from the presence of the spatial curvature. Imposing the the constraint Heff ≈ 0 we obtain

ρ =
1

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms] +

1

8πGγ2

[

x

λ
sin (µ̄1c1)−

(1 + γ2)x2

4

]

(3.4)

where as in the Bianchi-I model, ρ = Hmatt/V and x is defined as

x = α

√

p2p3
p31

. (3.5)

The right hand side of the eq. (3.4) has a global maxima at x = 2
(1+γ2)λ

and sin(µ̄ici) = 1.

This results in a maximum allowed value of the energy density as [13]:

ρ ≤ ρmax =
3 + (1 + γ2)

−1

8πGγ2λ2
≈ 0.54ρPl . (3.6)

The above upper bound on ρ is the global maxima. It is straightforward to see that eq.

(3.4) can give rise to large negative energy densities depending on the values of triads.13

This behavior is depicted in Fig. 1. A possible way to obtain a lower bound on the energy

density is by imposing energy conditions on the matter content. As an example, if we assume

weak energy condition (WEC), then ρ ≥ 0. This procedure is similar to imposing energy

conditions in GR to eliminate solutions with negative energy density. However, unlike GR,

where even after imposing energy conditions, energy density is not bounded above, in LQC

imposition of an energy condition on ρ does not affect the global maxima of ρ which as we

have shown above arises because of the underlying quantum geometric effects.

13 As noted below eq.(2.11), in the anisotropic spacetimes, negative values of energy density do not necessarily

cause problems with the reality of the expansion scalar.
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FIG. 1: The plot (in Planck units) shows the variation of energy density as a function of x in the

loop quantization of non-compact Bianchi-II model when sin(µ̄ici) = 1 is substituted in eq. (3.4).

Using (3.3), one can derive the modified dynamical equations using Hamilton’s equations.

For the triad components we obtain

dp1
dτ

=
1

γ

(

p21
µ̄1

(sin (µ̄2c2) + sin (µ̄3c3)) + αp2p3

)

cos (µ̄1c1)

which yields the classical equation (3.2) in the limit λ2 → 0. In terms of the proper time,

this equation can be written as

ṗ1
p1

=
1

γλ
(sin (µ̄2c2) + sin (µ̄3c3) + λx) cos (µ̄1c1) . (3.7)

Equations for the time variation of other triads can be derived in a similar way, and they

turn out to be:

ṗ2
p2

=
1

γλ
(sin (µ̄1c1) + sin (µ̄3c3)) cos (µ̄2c2) (3.8)

ṗ3
p3

=
1

γλ
(sin (µ̄1c1) + sin (µ̄2c2)) cos (µ̄3c3) . (3.9)

Using these equation we can obtain the directional Hubble rates, Hi, and the expansion

scalar θ using eq.(2.8) which becomes

θ =
1

2γλ
(sin(µ̄1c1 + µ̄2c2) + sin(µ̄2c2 + µ̄3c3) + sin(µ̄3c3 + µ̄1c1) + λx cos (µ̄1c1)) . (3.10)

Unlike the expansion scalar in the Bianchi-I model, θ in Bianchi-II model is generically

unbounded because of the divergence in x as p1 → 0 or (p2, p3 → ∞). However, if one

imposes energy conditions demanding that the energy density be bounded below, then x can

15



not grow beyond a maximum value, and θ turns out to be bounded. For matter satisfying

WEC, the maximum allowed value of θ is given by,

θmax ≈
6.05

2γλ
≈ 5.60

lPl
. (3.11)

This upper bound can be obtained by finding the maxima of eq.(3.10) numerically by op-

timizing various variables and occurs at µ̄1c1 = 0.642, µ̄2c2 = 0.982, µ̄3c3 = 0.982 and

x = 1.717.

Finally, the expression for the shear scalar in Bianchi-II model, σ2
II can be obtained using

(2.9), which after a straightforward calculation yields,

σ2
II = σ2

I +
1

3γ2λ2

[

2λ2x2 cos2(µ̄1c1) + 2λx cos (µ̄1c1)(2(sin (µ̄2c2) + sin (µ̄3c3)) cos (µ̄1c1)

−(sin (µ̄1c1) + sin (µ̄3c3)) cos (µ̄2c2)− (sin (µ̄2c2) + sin (µ̄1c1)) cos (µ̄3c3))

]

(3.12)

where σ2
I is given by eq.(2.20). This term is bounded, as shown in Sec. II. However, the term

with square parenthesis is an increasing quadratic function in x. Thus, σ2
II does not have

an upper bound. The shear scalar for non-compact Bianchi-II model is devoid of a generic

maxima in contrast to the Bianchi-I spacetime. In order to obtain a bound on σ2
II, one needs

to assume a lower bound for the energy density, as for the expansion scalar. Imposing WEC,

the maximum value of σ2
II turns out to be

σ2
II max ≈

57.58

3γ2λ2
≈ 65.82

l2Pl
. (3.13)

Note that the maximum of the shear scalar, as that of the energy density and the expansion

scalar in the non-compact Bianchi-II model turns out to be different from the Bianchi-I

model.

It is to be emphasized that the bound on the shear scalar is sensitive to the energy con-

ditions, i.e. if one imposes a different energy condition, the allowed range for the parameter

x would be different and so would be the upper bound on the shear scalar. WEC is followed

by almost all types of the matter and it provides an adequate estimation of the bounds on

shear and energy density. Thus, WEC has two roles: first to give a lower bound on ρ and

the second to provide the corresponding upper bounds on θ and σ2
II. Further, the upper
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bounds on θ and σ2 are saturated in the dynamical evolution, and the bounce of directional

scale factors occur before these values are reached. As in the case of Bianchi-I model, this

is tied to the interplay of the Ricci and the Weyl parts of the spacetime curvature in the

Bianchi-II model.

IV. BIANCHI-IX MODEL

The spatial manifold for the Bianchi-IX model has a compact topology S3 whose radius

with respect to the fiducial metric is chosen as ar = 2. The volume of fiducial cell is given

by Vo =: ℓ3o = 2π2a3r = 16π2. In contrast to the Bianchi-I and Bianchi-II spacetimes, none

of the Killing vectors commute with each other in the Bianchi-IX model. In this spacetime,

the interplay of intrinsic curvature and anisotropies is also much richer in comparison to the

Bianchi-II model. Classical dynamics can exhibit a Mixmaster behavior as singularities are

approached. In the isotropic limit, one recovers the classical dynamics of the k = 1 FRW

model.

Let us first consider the classical Hamiltonian constraint for the Bianchi-IX model. With

lapse N = V , in terms of the connections and triads, it is given by

Hcl = − 1

8πGγ2

(

p1p2c1c2 + p2p3c2c3 + p3p1c3c1 +
2ℓo
2

(p1p2c3 + p2p3c1 + p3p1c2)

+
ℓ2o
4

(

1 + γ2
)

[

2p21 + 2p22 + 2p23 −
(

p1p2
p3

)2

−
(

p2p3
p1

)2

−
(

p3p1
p2

)2
])

+HmattV

(4.1)

which using Hamilton’s equation for motion, leads to

dp1
dτ

=
p1
γ

[

p2c2 + p3c3 + ℓ0
p2p3
p1

]

(4.2)

and similarly for p2 and p3, and the connection components. In this case, one can use these

equations to derive a generalized Friedmann equation, as in the Bianchi-I model, and it

turns out to be:

H2 =
8πG

3
ρ+

1

6
σ2− ℓ2o

12p1p2p3

[

2
(

p21 + p22 + p23
)

−
(

p1p2
p3

)2

−
(

p2p3
p1

)2

−
(

p3p1
p2

)2
]

. (4.3)

The Hubble rate diverges as the singularities are approached in the Bianchi-IX spacetime.

Further, due to the presence of intrinsic curvature, singularities can occur both in past and
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the future evolution, as in the k = 1 universe. As shown in Appendix A, in the isotropic

limit, one recovers the dynamical equations for the k = 1 model.

As in the case of the loop quantization of the Bianchi-II model, it is not possible to express

the field strength operator in terms of holonomies along closed loops. To overcome this dif-

ficulty, a quantization has been proposed, along the lines of Bianchi-II model, following the

connection operator approach [15]. In the following we analyze the physics resulting from

the effective Hamiltonian constraint of this quantization. Since the underlying manifold

is spatially compact, the resulting effective Hamiltonian constraint contains modifications

originating from both the non-local nature of the field strength operator and the eigenvalues

of the inverse triads. Let us first analyze some features of the resulting physics for the effec-

tive Hamiltonian constraint of Bianchi-IX model, if inverse triad modifications are ignored

(as in the analysis of Ref. [15]). We denote this effective Hamiltonian constraint by H̃eff in

order to distinguish it from the Hamiltonian constraint in eq. (4.11) where the inverse triad

corrections are included. For the lapse N = V , the effective Hamiltonian constraint is given

by [15]:

H̃eff =
p1p2p3

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]− ℓo

8πGγ2λ

[

(p1p2)
3/2

√
p3

sin (µ̄3c3) + cyclic terms

]

− ℓo
2

32πGγ2
(1 + γ2)

[

2(p21 + p22 + p23)−
(

(

p2p3
p3

)2

+ cyclic terms

)]

+HmattV . (4.4)

The vanishing of this constraint leads to the following expression of energy density

ρ =
1

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms] +

ℓo
8πGγ2λ

[
√

p1p2
p33

sin (µ̄3c3) + cyclic terms

]

+
ℓo

2(1 + γ2)

32πGγ2

[(

2
p1
p2p3

− p2p3
p31

)

+ cyclic terms

]

. (4.5)

Utilizing the boundedness properties of the trigonometric functions, this expression implies

that

ρ ≤ 3

8πGγ2λ2
+

ℓo
8πGγ2λ

[x1 + x2 + x3]+
ℓ2o(1 + γ2)

32πGγ2

[

2(x1x2 + x2x3 + x3x1)− (x2
1 + x2

2 + x2
3)
]

(4.6)

where x1 =
√

p2p3
p3
1

, x2 =
√

p1p3
p3
2

, and x3 =
√

p1p2
p3
3

.

The first term in eq. (4.6) is the maximum energy density obtained in Bianchi-I spacetime.

It is the behavior of the second and the third term, which determines the boundedness of

energy density from the above effective Hamiltonian constraint. In order that the energy
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density to have a maxima, ρ(x1, x2, x3) should have a viable simultaneous solution to the

following system of equations:

∂ρ(x1, x2, x3)

∂x1

= 0;
∂ρ(x1, x2, x3)

∂x2

= 0;
∂ρ(x1, x2, x3)

∂x3

= 0 . (4.7)

Solving these equations, one obtains the following condition:

6

ℓoλ(1 + γ2)
+ x1 + x2 + x3 = 0 . (4.8)

Thus a physical solution is allowed only when at least one of xi is negative. However,

by definition, all of xi are positive.14 The energy density resulting from H̃eff does not

have a maxima, unlike the Bianchi-I and Bianchi-II models in the absence of inverse triad

modifications. On analyzing the modified dynamical equations resulting from H̃eff , we find

that the expansion and the shear scalars are also unbounded.

However, as discussed above the effective Hamiltonian constraint H̃eff is incomplete as

it lacks the contribution from inverse triad corrections in the Bianchi-IX model which is

spatially compact. To conclude whether the energy density in Bianchi-IX model has an

upper bound, it is necessary to include these modifications. To introduce these modifications

in the corresponding effective Hamiltonian constraint in LQC for such terms, we consider

eigenvalues f(pi) of the operator p̂i−1/2 and substitute them in place of inverse triad terms.15

As an example, the eigenvalues for the inverse triad operator p̂1−1/4 turn out to be [13]

̂
p
−1/4
1 |p1, p2, p3〉 = f(p1)|p1, p2, p3〉 (4.9)

where |p1, p2, p3〉 denote eigenstates of the volume operator, and v = 2
4πγλl2

Pl

√
p1p2p3 and

f(p1) =
2

4πγλl2Pl
(p2p3)

1/2

[

√

|v + 1| −
√

|v − 1|
]2

. (4.10)

14 The unboundedness argument given here is valid irrespective of the choice of orientation of triads, which

has been here fixed to be positive.
15 The strategy is same as in the isotropic models and is based on the identities first proved by Thiemann in

LQG [20]. For an up to date discussion of these modifications in isotropic models and related subtleties

for non-compact models, see Ref. [1].
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Similarly, one can derive expressions for other inverse triad operators. With these modifica-

tions, the effective Hamiltonian constraint becomes:

Heff = − p1p2p3
8πGγ2λ2

[

sin (µ̄1c1) sin (µ̄2c2) + cyclic terms

]

− εℓo
8πGγ2λ

[

(p1p2)
3/2f(p3) sin (µ̄3c3) + (p2p3)

3/2f(p1) sin (µ̄1c1) + (p3p1)
3/2f(p2) sin (µ̄2c2)

]

−ℓ2o(1 + γ2)

32πGγ2

[

2(p21 + p22 + p23)− (p1p2)
2f(p3)

4 − (p2p3)
2f(p1)

4 − (p3p1)
2f(p2)

4

]

+HmattV

(4.11)

where the inverse triad modifications also contribute to Hmatt if one considers matter Hamil-

tonian containing inverse powers of the scale factor.

We now analyze the behavior of energy density. Due to the inverse triad modifications, an

ambiguity in its definition arises. Using the effective Hamiltonian constraint, one can define

the energy density ρ as ρ = Hmatt/V , where the Hmatt includes modifications due to inverse

triad operators. However, one can also define energy density such that it agrees with the

eigenvalues of ̂V −1Hmatt (suitably symmetrized). We label this energy density as ρq. In the

absence of inverse volume modifications, ρ and ρq are equal to each other. However, when

these are present, ρq and ρ can behave in a qualitatively different way, at small volumes.16

As it turns out, ρ and ρq, indeed have qualitative differences in the loop quantization of

Bianchi-IX model.

Using the effective Hamiltonian, a division by volume, leads to the following inequality

for the energy density ρ for the physical solutions:

ρ ≤ 3

8πGγ2λ2
+

ℓo
8πGγ2λ

[√
p1p2

p3
f(p3) +

√
p2p3

p1
f(p1) +

√
p3p1

p2
f(p2)

]

(4.12)

+
ℓ2o(1 + γ2)

32πGγ2

[

2

(

p1
p2p3

+
p2
p1p3

+
p3
p2p1

)

− p1p2
p3

f(p3)
4 − p2p3

p1
f(p1)

4 − p3p1
p2

f(p2)
4

]

.

The behavior of energy density with respect to v is shown in Fig. 2. We find that the

energy density ρ does not have a global maxima if the effective Hamiltonian description

is assumed to be valid for the entire range of v. However, in the case when all the triads

16 In LQC, physics has been analyzed using both of these definitions. For a comparison of some of the

features, see Ref. [32].
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FIG. 2: Behavior of energy density ρ as a function of v is shown (in Planck units).

approach the classical singularity at the same time i.e. the singularity is isotropic, then for

the range v > 1 there exists a local maxima at pi ≈ 3.634l2Pl , given by

ρmax ≈ 6.34ρPl . (4.13)

Thus, for the energy density defined as the ratio of the matter Hamiltonian to the physical

volume, inverse triad modifications do not suffice to control the divergence as v → 0.

Let us now analyze the behavior of ρq. In this case, the effective Hamiltonian constraint

yields

ρq ≤ g(v)

[

3
√
p1p2p3

8πGγ2λ2
+

ℓo
8πGγ2λ

[

p1p2√
p3

f(p3) +
p2p3√
p1

f(p1) +
p3p1√
p2

f(p2)

]

(4.14)

+
ℓ2o(1 + γ2)

32πGγ2

[

2

(

p
3/2
1√
p2p3

+
p
3/2
2√
p1p3

+
p
3/2
3√
p2p1

)

− (p1p2)
3/2

√
p3

f(p3)
4

−(p2p3)
3/2

√
p1

f(p1)
4 − (p3p1)

3/2

√
p2

f(p2)
4

]]

,

where g(v) denotes the eigenvalue of the volume operator(̂1/V )

g(v) =
1

(2πγλl2Pl)
3
(p1p2p3)

[√
v + 1−

√
v − 1

]6

. (4.15)

We find that there exists a global maxima at pi ≈ 2.109l2Pl, when the approach to classical

singularity is isotropic, given by

ρqmax ≈ 11.74ρPl . (4.16)
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The variation of ρq with respect to v is shown in Fig. 3. Note that this maximum value is

higher than the one in Bianchi-I or Bianchi-II models. When the approach to the classical

singularities is not isotropic, such as for pancake or cigar singularities, above bounds can be

violated. This is evident from Fig. 4, where we see that if in the effective dynamics two of

the triads vanish and the third diverges, then the energy density ρq diverges. In all other

cases, it is finite.

v
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FIG. 3: Variation of energy density ρq is shown versus v in Planck units when the approach to

classical singularities is isotropic. The minimum occurs at −753.09ρPl.

Let us now obtain the dynamical equations for the triads and the expression for the expan-

sion scalar. Using the effective Hamiltonian constraint (4.11), one obtains using Hamilton’s

equations:

ṗ1
p1

=
1

γλ

[

sin (µ̄2c2) + sin (µ̄3c3) + ε λℓo

√
p2p3

p1
f(p1)

]

cos (µ̄1c1) (4.17)

and similarly for ṗ2 and ṗ3. Using these, the expansion scalar can be computed as

θ =
1

2γλ

[

(

sin (µ̄2c2 + µ̄3c3) + ε λℓo cos (µ̄1c1)

√
p2p3

p1
f(p1)

)

+ cyclic terms

]

. (4.18)

The expansion scalar turns out to have a global maxima at pi ≈ 2.258l2Pl, for the isotropic

approach to classical singularity, given by

θmax ≈
47.72

2γλ
≈ 44.18

lPl
. (4.19)

whereas for more general approaches to singularity such as cigar or pancake like ones, there

exists no such global maxima for θ.
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Note that unlike the Bianchi-II model, this is a global bound which does not depend

on the imposition of any energy condition. Nevertheless, if one imposes WEC as in the

Bianchi-II case, one get a lower value. The maximum allowed value of θ for matter satisfying

WEC (in terms of ρq) is θmax = 30.84/2γλ.

FIG. 4: Variation of energy density ρq, in Planck units, is shown versus p2 and p3 (with p1 = p2).

The energy density diverges as two of the triads tend to zero while the other approaches infinity.

For other trajectories ρq is finite.

We now consider the behavior of shear scalar in the Bianchi-IX model. Using Hamilton’s

equations, we obtain

σ2
IX =

1

3γ2λ2

[(

(

sin (µ̄2c2) + sin (µ̄3c3) + ε λℓo

√
p2p3

p1
f(p1)

)

cos (µ̄1c1)−

(

sin (µ̄1c1) + sin (µ̄3c3) + λℓ0

√
p1p3

p2
f(p2)

)

cos (µ̄2c2)

)2

+ cyclic terms

]

. (4.20)

For the isotropic approach to classical singularity, the shear scalar has a global maxima at

pi ≈ 2.258l2Pl, given by

σ2
IXmax ≈

2165.91

3γ2λ2
≈ 2476.04

l2Pl
. (4.21)

For matter satisfying the WEC (for ρq), the maximum allowed value is given by σ2
max ≈

690.98/(3γ2λ2). If the approach to the classical singularity is not isotropic, then the shear

scalar can take values greater than the above value. This behavior can be seen from Fig.

5. There exist two cases where shear scalar can diverge in this model. If effective dynamics
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allows solutions where one triad vanishes and two diverge or where two of the triads vanish

and the third one diverges, then the shear scalar can diverge. It is important to note that the

existence of above divergent cases is based on the assumption that the effective Hamiltonian

(4.11) remains valid as above anisotropic singularities are approached. Since the validity of

(4.11) has not been tested with the underlying quantum evolution, it is possible that these

cases originate in the regime where the effective dynamics resulting from (4.11) may break

down.

FIG. 5: Variation of shear scalar σ2 for Bianchi-IX is shown versus p2 and p3 (with p1 = p2). For

isotropic approach to singularity there exists a local maxima.

Thus, we find that in the Bianchi-IX model, energy density (ρq), expansion scalar and

the shear scalar are all bounded for isotropic approach to singularity, if we include inverse

triad modifications to the effective Hamiltonian constraint. However, energy density (ρ)

defined by taking a ratio of the matter Hamiltonian to the physical volume does not have

a global maxima. It is to be emphasized that in the dynamical evolution these bounds are

not saturated and in certain situations, bounce of scale factors can occur close to the values

in Bianchi-I and Bianchi-II models.

We conclude this section, with a discussion of the isotropic limit of the Bianchi-IX model.

As mentioned earlier, in the classical theory, the limit is given by the classical Hamiltonian

constraint corresponding to the k = 1 model. Considering the isotropic limit of classical

Hamiltonian constraint (4.1), one obtains

H(iso)
cl = − 3p2

8πGγ2

[

(

c+
ℓo
2

)2

+
ℓ2o
4
γ2

]

+HmattV . (4.22)
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This corresponds to the classical Hamiltonian constraint of k = 1 model (eq. (A1)) with

ε = −1. The pertinent question is whether the effective Hamiltonian constraint in Bianchi-

IX model leads to the effective Hamiltonian constraint of the k = 1 model in LQC. The

quantization of k = 1 model, based on expressing field strength in terms of holonomies over

closed loops was performed in Ref. [10]. A detailed analysis of the physics of this model

reveals features similar to the k = 0 model in LQC, with a bounce occurring at ρ = ρmax ≈
0.41ρPlanck, and resolution of various strong curvature singularities [23]. In Appendix A, we

discuss the effective Hamiltonian constraint corresponding to this quantization (eq. (A6)),

and show that the expansion scalar in this quantization is bounded above by a universal

value.

Let us first consider the effective Hamiltonian constraint without the inverse triad mod-

ifications. The isotropic limit of H̃eff (eq.(4.4)), obtained by imposing pi = p and ci = c,

leads to

H̃(iso)
eff = − 3p2

8πGγ2

[

sin2(µ̄c)

µ̄2
+ ℓo

sin(µ̄c)

µ̄
+

ℓ2o(1 + γ2)

4

]

+HmattV . (4.23)

This equation can be written as

H̃(iso)
eff = − 3p2

8πGγ2

[

(

sin(µ̄c)

µ̄
+

ℓo
2

)2

+
ℓ2oγ

2

4

]

+HmattV (4.24)

which does not agree with (A6).17 Hence, the effective Hamiltonian constraint H̃eff in the

isotropic limit does not yield the effective Hamiltonian constraint of the k = 1 model in the

quantization based on holonomies over closed loops [10].

It turns out that the isotropic limit of (4.4) corresponds to the effective Hamiltonian

constraint of an alternate quantization of k = 1 model based on the connection operator

approach (eq.(A10)) discussed in Appendix A. This is straightforward to see using (4.22)

which under: c → sin(µ̄c)/µ̄, yields (4.24). However, as discussed in Appendix A, this

quantization has the following drawback in comparison to the one in Ref. [10]. If one

assumes, the validity of the effective Hamiltonian constraint for all v, the expansion scalar

turns out to be unbounded even after the inclusion of inverse triad modifications.

Finally, we consider the isotropic limit of the constraint (4.11). Imposing pi = p and

17 It is straightforward to check that this is true irrespective of the choice of orientation of the triads.
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ci = c, where p and c refer to the isotropic triad and connection variables, we obtain

H(iso)
eff = − 3p3

8πGγ2λ2

[

sin2(µ̄c)
]

− 3ℓ0
8πGγ2λ

[

p3f(p) sin(µ̄c)
]

(4.25)

−3ℓ20(1 + γ2)

32πGγ2

[

2p2 − p2f(p)4
]

+HmattV

which agrees neither with the effective Hamiltonian constraint of Ref. [10] nor the alter-

nate quantization in the presence of inverse triad modifications. In summary, the effective

Hamiltonian constraint of Bianchi-IX model in the isotropic limit does not yield the effective

Hamiltonian constraint of the loop quantization of k = 1 model performed using holonomies

over closed loops [10]. Its isotropic limit, ignoring inverse triad corrections, agrees with the

alternate quantization of k = 1 model [25], in which the expansion scalar does not have a

maxima.

V. DISCUSSION

In this work, we investigate the behavior of energy density, the expansion and the shear

scalars in Bianchi-II and Bianchi-IX models using the effective Hamiltonian approach in

LQC. These spacetimes have a non-vanishing spatial curvature which leads to technical

difficulties to carry out the loop quantization as in the Bianchi-I model. In particular, it

is not possible to express field strength in terms of holonomies around closed loops such

that the holonomies are almost periodic functions of connection components. The resulting

holonomy operators are not well defined on the kinematical Hilbert space. To overcome

this problem, a strategy was proposed in Ref. [14], which expressed field strength directly

in terms of a non-local connection operator, defined via holonomies computed along open

segments. In the connection operator approach, coefficients of the expression of field strength

are fixed by demanding consistency with the Bianchi-I model [14]. The resulting quantum

Hamiltonian constraint turns out to be non-singular as in the Bianchi-I model. However,

physics of these spacetimes was largely unexplored. First, it was not known whether the

energy density and the expansion and shear scalars are bounded in these models. It was

also not known whether they share same universal bounds as the Bianchi-I model and if one

required extra conditions to obtain the boundedness of these physical quantities. Further,

the important role played by inverse triad modifications in Bianchi-IX spacetime was so

far unrecognized. It is important to emphasize that the bounds on ρ, θ and σ2 are one of
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the main distinguishing features between LQC and GR. In GR, the unboundedness of these

quantities results in break down of geodesic evolution, a characetristic feature of singularities.

In this work, we have established for the first time, that such divergences do not occur in

the loop quantization of Bianchi-II and Bianchi-IX spacetimes in LQC. It has been shown

for isotropic models, that these bounds play an important role for generic resolution of

singularities in isotropic spacetimes in LQC [22]. Novel results obtained in this work, take

us a step closer to prove generic resolution of singularities in Bianchi-II and Bianchi-IX

spacetimes.

Given the remarkable coherence of results for the isotropic and Bianchi-I models, and a

promising strategy to quantize Bianchi-II and Bianchi-IX models which is consistent with the

loop quantization of the Bianchi-I model, one may have expected that answers to the above

questions would be on the lines of the results obtained in the previous models. However, we

show that this expectation turns out to be not true and the answers leads to some surprises.

We demonstrate that in the Bianchi-II model, the energy density has a global maxima.

The expansion and shear scalars are bounded only if one imposes energy conditions on the

matter content. In particular, it is important that the energy density has a lower bound

(a simple requirement) which yields an upper bound on the shear scalar. The bounds are

not universal and their values depend on the imposed energy conditions. Recall that for the

isotropic and Bianchi-I models, the bounds on ρ, θ and σ2 turned out to be universal and

did not depend on energy conditions. It is to be noted that the in the effective Hamiltonian,

matter Hamiltonian is treated as if Fock quantized. If matter is polymer quantized, in

the way geometry is, results on dependence on energy conditions can a priori change. For

the Bianchi-IX model, the inverse triad corrections are critical to obtain a bound on the

energy density and the expansion and shear scalars when the approach to singularity in the

classical theory is isotropic. In the Bianchi-IX model, energy conditions are shown to play

little role. Inverse triad corrections are also important in other types of singularities, such

as the cigar and pancake singularities, to achieve a finite value of the above quantities. In

the effective description, singularity is resolved in the sense that the energy density, and the

expansion and shear scalars are finite. However, there also exist following two mathematical

possibilities. If the effective dynamics allows solutions where two of the triads tend to zero

and the third diverges, then ρq, θ and σ2 diverge in Bianchi-IX spacetime. Also, if the

physical solutions exist such that one of the triads vanish and the other two diverge, then θ
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and σ2 diverge. We emphasize, that due to the underlying assumptions in the derivation of

effective Hamiltonian constraint, it is not clear whether the effective dynamics description

is valid when above two cases arise.

Though the bounds on energy density, and the expansion and shear scalars for Bianchi-II

and Bianchi-IX models turn out to be different from the Bianchi-I case, it is important

to emphasize that these bounds are not optimal, as shown by a separate analysis [33].

Nevertheless, results on Bianchi-II and Bianchi-IX models stand in sharp contrast to those

obtained for the isotropic and Bianchi-I models, where for the first time the role of energy

conditions and the inverse volume modifications become important.18 Since the only change

in the quantization strategy of these models, in comparison to the earlier ones, is in the way

field strength is expressed in terms of connection, the cause of above differences lies in the

usage of the connection operator approach. This quantization strategy is consistent with

the holonomy based quantization of the Bianchi-I model [13], but important differences can

arise in presence of spatial curvature, as is evident from the analysis of Bianchi-IX model.

The effective Hamiltonian of the loop quantization of Bianchi-IX spacetime does not lead to

the one for the holonomy based loop quantization of k = 1 model in the isotropic limit [10].

Rather, its isotropic limit corresponds to the connection operator quantization of isotropic

spatially closed model [25], where the expansion scalar does not have a maxima. We also

find that connection operator approach for k = −1 model suffers from the same problem

as shown in Appendix B. The unboundedness of θ in the connection operator approach for

the isotropic k = ±1 models, does not directly affect its viability in the anisotropic models.

However, these results show that this approach leads to a qualitatively different behavior,

in comparison to the holonomy based quantization, in the presence of spatial curvature.

We conclude with a discussion of some open questions resulting from our analysis. In

this work, we have used the effective Hamiltonian framework for the entire range of vol-

ume. In previous studies, extensive numerical simulations have confirmed the validity of

effective spacetime description in isotropic models for universes where bounce occurs at vol-

umes greater than Planck volume [2–6, 10] and also Bianchi-I models (albeit for a different

quantization) [35, 36]. It will be reasonable to expect the validity of bounds for the scales

18 The inverse triad modifications lead to some interesting effects due to the choice of lapse in the Bianchi-IX

model. These issues will be reported separately [34].
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of interest, since the maximum values of physical quantities occur at volumes greater than

the Planck volume. Nevertheless, this is an important issue which deserves a careful exami-

nation in future. In particular to understand the behavior of energy density, expansion and

shear scalars when approach to classical singularity is non-isotropic in the Bianchi-IX model.

For this one has to derive effective Hamiltonian dynamics using embedding approach in the

presence of anisotropies and examine its validity at small volumes. The pertinent question is

whether such an analysis yields further corrections to the effective Hamiltonian constraint,

and if so, how are the bounds affected in Bianchi-II and Bianchi-IX models. It will be inter-

esting to see if such modifications bring the maximum values of physical quantities closer to

the isotropic and Bianchi-I models. The second issue concerns with the energy conditions. In

GR, these conditions play an important role in the proof of singularity theorems. Their role

in LQC has so far been irrelevant. Analysis of modified Einstein’s equations in Bianchi-II

model reveal, that in LQC, expansion and shear scalars are unbounded if the energy density

is unbounded below. This suggests that for cases where the latter is satisfied, singularities

may not be resolved by quantum geometry effects in LQC. This feature confirms with the

general expectations that quantum gravity may not resolve all the singularities and weed out

the unphysical situations with arbitrary negative energy, as considered above [37]. In future

work, it will be important to investigate this issue in detail and classify the singularities

corresponding to such solutions. Our analysis also shows the non-trivial role played by the

inverse volume modifications in resolution of isotropic singularity in the case when spatially

topology is compact. Perhaps, due to simplicity of the model, this was never revealed in the

isotropic case.19 However, for Bianchi-IX model it is the interplay of both the non-local field

strength tensor and the inverse volume modifications which results in bounds on physical

quantities. These results seem to point out that in general for spatially compact manifolds,

physics of singularity resolution might be incomplete without inverse volume modifications.

Finally, it is pertinent to revisit the connection operator approach, by demanding that the

quantization of Bianchi-IX model be consistent with holonomy based quantization of k = 1

model. This is important as it will establish a consistency between the connection operator

approach and holonomy based quantization in the presence of spatial curvature. It will be

interesting to probe the way results obtained in this work are affected in such a quantization.

19 Novel phenomenological implications have though been discussed, see for eg. [38].
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Appendix A: Expansion scalar in k = 1 model

In this appendix, we summarize the derivation of the expansion scalar using the effective

Hamiltonian constraint of k = 1 model in LQC. Based on the techniques used for several

models, to express field strength in terms of holonomies over a closed loop, the quantization

of this model was performed in Ref. [10], which showed absence of singularity and a non-

singular bounce when ρ = ρmax ≈ 0.41ρPl. More recently, an alternative quantization of this

spacetime has been proposed [25], which is based on the connection operator approach used

for Bianchi-II and Bianchi-IX models [13, 15]. Using the terminology from Ref. [25], we will

refer to these as “holonomy based” and “connection operator” quantizations respectively.

The spatial manifold in k = 1 model is S3 with radius ℓo = V
1/3
o , where the fiducial volume

Vo = 16π2. In terms of the connection c and triad p variables, satisfying {c, p} = 8πGγ/3,

the classical Hamiltonian constraint is given by

Hcl = − 3p2

8πGγ2

[

(

c− ε
ℓo
2

)2

+
ℓ2o
4
γ2

]

+HmattV (A1)

where ε denotes the orientation of the triad.20 The triad p is related to the scale factor a(t)

in the spacetime metric

ds2 = −dt2 + a2(t)

[

dr2

1− r2
+ r2

(

dθ2 + sin2 φdφ2
)

]

(A2)

as p = εa2ℓ2o. The equation of motion for the triad can be derived using the Hamilton’s

equations:

ṗ =
2
√

|p|
γ

(

c− εℓo
2

)

(A3)

20 Unlike the main body of this work, we will allow both the orientations of the triads in the appendices.

This is to facilitate a comparison between the isotropic limits of the Bianchi model with the k = 1 model.

We thank E. Wilson-Ewing for a discussion on this issue in k = 1 model.
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where the ‘dot’ refers to the derivative with respect to the proper time. From which one

obtains the relation

c = εℓo

(

γȧ+
1

2

)

. (A4)

Using these equations, it is straightforward to obtain the expansion scalar for the comov-

ing observers: θ = 3H = 3ȧ/a, which turns out to be

θ = 3

(

c− ε ℓo
2

)

γ
√

|p|
. (A5)

In the classical theory, the approach to singularity is characterized by a divergence in the

connection c, along with a divergence in 1/
√

|p|, causing the expansion scalar to become

infinite. Let us now discuss the way this behavior changes in LQC for the holonomy based

quantization performed in Ref. [10] and the connection based quantization [25].

Holonomy based quantization: For the loop quantization of k = 1 model, proposed in Ref.

[10], the effective Hamiltonian constraint for lapse N = V is given by

Heff = − 3

8πGγ2

p2

µ̄2

[

sin2

(

µ̄

(

c− ε
ℓo
2

))

− χ

]

+HmattV (A6)

where χ = sin2
(

µ̄ε l0
2

)

− (1 + γ2)(µ̄ε l0
2
)2, µ̄2 = λ2/p and λ2 = 4

√
3πγlp

2. This includes the

inverse triad modifications, which appear only in the matter Hamiltonian.The Hamilton’s

equation for triad yields

ṗ =
2p

γλ
sin

(

µ̄

(

c− ε
ℓo
2

))

cos

(

µ̄

(

c− ε
ℓo
2

))

, (A7)

and the expansion parameter turns out to be

θ =
3

γλ
sin

(

µ̄

(

c− ε
ℓo
2

))

cos

(

µ̄(c− ε
ℓo
2
)

)

. (A8)

This is a bounded function with a maximum value given by

θmax =
3

2γλ
, (A9)

which agrees with the maximum value in isotropic [22] and Bianchi-I model [31]. It is

important to note that the above value is not affected by the inverse triad modifications, or

the choice of energy conditions i.e. the specific form of matter Hamiltonian. In this sense,

the maximum value of the expansion scalar is universal.
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Connection operator quantization: Based on the loop quantization of Bianchi-II and

Bianchi-IX spacetimes, one can quantize the k = 1 model using an alternative method

which avoids expressing field strength in terms of holonomies over a closed loop. Instead,

the field strength is expressed in terms of the connection operator obtained from holonomies

over open edges. This quantization results in the following effective Hamiltonian: 21

Heff = − 3p2

8πGγ2

[

(

sin(µ̄c)

µ̄
− ε

ℓo
2

)2

+
ℓ2oγ

2

4

]

+HmattV . (A10)

The Hamilton’s equation for the triad yields

ṗ =

√

|p|
γ

[

sin (2µ̄c)

µ̄
− 2ε

ℓo
2
cos (µ̄c)

]

, (A11)

and the expansion parameter turns out to be

θ =
3

2γ

[

1

λ
sin (2µ̄c)− ε

ℓo
2

2
√

|p|
cos (µ̄c)

]

. (A12)

If one assumes the validity of Heff for all values of triad, the expansion scalar turns out to be

unbounded: as p → 0, θ → −∞.22 This behavior is in agreement with that of the expansion

scalar of the loop quantization of Bianchi-IX model without the inverse triad corrections.

In conclusion, we find that there is an important qualitative difference in the behavior of

expansion scalar in the holonomy based quantization (eq.(A8)) and the connection operator

quantization (eq.(A12)) for the k = 1 model. The expansion scalar in the holonomy based

quantization turns out to be bounded by a universal value irrespective of the choice of

matter, where as for the connection operator quantization it is divergent. Since the latter

is tied to the existence of singularities, this result shows that with in the applicability of

effective Hamiltonian constraint, connection operator quantization for k = 1 model has a

drawback.

Appendix B: Expansion scalar for k = −1 model in LQC

Loop quantization of k = −1 model has been proposed in Refs. [11, 12]. In this model,

the Ashtekar-Barbero connection contains off-diagonal terms which poses technical problems

21 Effective dynamics for this model in the absence of the inverse triad corrections has been studied in Ref.

[25], however problems with expansion scalar as found here were not discussed.
22 It is possible that the effective Hamiltonian description may attain additional corrections as p → 0 which

may regularize the above unbounded behavior. At the present stage, this is an open issue.
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in construction of the quantum theory using holonomies as elementary variables. In order to

overcome these issues, loop quantization has been performed by considering holonomies of

the extrinsic curvature. The quantum Hamiltonian constraint turns out to be non-singular

with features similar to the quantization of other isotropic models [11, 12]. The resulting

physics has been analyzed using the effective Hamiltonian constraint which reveals resolu-

tion of strong singularities [18]. A drawback of this quantization is that field strength is

not expressed in terms of the holonomies of the connection23, which motivates to consider

alternate quantizations of k = −1 model in LQC. A possible avenue would be to quantize it

on the lines of Bianchi-II and Bianchi-IX models using connection operator approach which

would bypass the above problem [39]. Here we compute the expansion scalars in both of

these approaches using the effective Hamiltonian constraint. As in the k = 1 model, we will

refer to them as “holonomy based” and “connection operator” quantizations respectively.

The classical Hamiltonian constraint for the k = −1 model (in lapse N = V ) is given by

Hcl = − 3p2

8πGγ2

[

(

c+ ε
lo
2

)2

− l2o
4
γ2

]

+HmattV (B1)

where lo (not to be confused with ℓo introduced earlier) refers to the cube root of the fiducial

volume Vo of the fiducial cell V needed to introduce the symplectic structure on the non-

compact manifold. The triad p is related to scale factor as

p = εa2l2o, (B2)

and its time variation is given by

ṗ =
2
√

|p|
γ

(

c+
εlo
2

)

. (B3)

Substituting the expression for p in terms of scale factors into the eq. B3 we obtain,

c+
εlo
2

= γεȧlo , (B4)

using which one finds the expansion scalar as:

θ = 3

(

c+ ε lo
2

)

γ
√

|p|
. (B5)

23 Nevertheless, it has been argued that in the symmetry reduced setting, due to gauge fixing it is possible

to consider extrinsic curvature at the same footing as the connection [11].
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From the above expression, we find that the expansion scalar in the classical k = −1 model

diverges as the singularity is approached.

Holonomy based quantization: The effective Hamiltonian constraint for the loop quanti-

zation of k = −1 model as performed in Refs. [11, 12] is given by

Heff = − 3

8πGγ2

p2

µ̄2

[

sin2

(

µ̄

(

c+ ε
lo
2

))

+ χ

]

+HmattV (B6)

where χ = −γ2(µ̄ε l0
2
)2 and µ̄ is the same as in k = 1 model. Since the spatial manifold is

noncompact, there are no inverse triad corrections in Heff . A straightforward calculation, as

performed for the k = 1 model shows that the expansion scalar turns out to be

θ =
3

γλ
sin

(

µ̄

(

c+ ε
lo
2

))

cos

(

µ̄

(

c+ ε
lo
2

))

(B7)

where we have used the Hamilton’s equation for the triad:

ṗ =
2p

γλ
sin

(

µ̄

(

c+ ε
lo
2

))

cos

(

µ̄

(

c + ε
lo
2

))

. (B8)

The expansion scalar for the holonomy based quantization of k = −1 model thus turns out

to be a bounded function with the same maximum value as the expansion scalar for k = 1

model (eq.(A9)).

Connection operator quantization: The effective Hamiltonian constraint in this case can

be obtained by replacing c with sin(µ̄c)/µ̄ in the classical Hamiltonian constraint (B1):

Heff = − 3

8πGγ2
p2

[

(

sin(µ̄c)

µ̄
+ ε

lo
2

)2

− l2oγ
2

4

]

+HmattV . (B9)

The resulting Hamilton’s equation for the triad becomes

ṗ =

√

|p|
γ

[

sin (2µ̄c)

µ̄
+ 2ε

lo
2
cos (µ̄c)

]

(B10)

which leads to the following expression for the expansion parameter,

θ =
3

2γ

[

1

λ
sin (2µ̄c) + ε

lo
2

2
√

|p|
cos (µ̄c)

]

. (B11)

Unlike the behavior of the expansion scalar in the holonomy based quantization, θ does

not have a maxima. The connection operator approach encounters the same limitation as
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the k = 1 model regarding the behavior of the expansion scalar. Thus, there are important

qualitative differences in the resulting physics from holonomy based and connection operator

quantizations in LQC.
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