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Abstract

When the phase structure of the black brane in grand canonical ensemble is discussed, the bubble
phase with the same boundary data should be included in this structure. As such, the phase transitions
among bubbles, black branes and “hot flat space” are possible, therefore giving a much enriched phase
structure. We also argue that under some conditions, either the grand canonical ensemble itself is
unstable or there are some unknown new phases.

1 Introduction

Understanding the thermodynamic phase structure of black holes is helpful in learning the properties
of space-time and quantum gravity. The phase structure of the AdS black holes can also be used
to study the corresponding field theory within the context of AdS/CFT correspondence. The well-
known Hawking-Page phase transition [1] between the AdS black hole and the “hot empty AdS space”
corresponds to the confinement-deconfinement phase transition of the large-Nc N = 4 super Yang-
Mills at finite temperature [2]. The charged AdS black hole in the canonical ensemble also displays
a van der Waals-Maxwell like phase transition which can also be understood from the dual field
theory[3, 4].

The Hawking-Page or van der Waals-Maxwell like phase structure not only presents in AdS black
holes but also exists in some other black holes. The Hawking-page like transition can also be found
in the canonical ensemble between chargeless asymptotic flat black holes and “hot flat space” as
discussed by York [5]. In the grand canonical ensemble, there can also be transitions between charged
black holes and the “hot flat space” [6] . The van der Waals like phase transition was also seen in
asymptotic flat and dS black hole [7, 8]. Unlike the black holes in AdS space, asymptotic flat and dS
black holes are not thermodynamically stable objects due to Hawking radiation. So in discussing the
phase structure of these objects, the black hole must be put in thermal contact with a heat reservoir
with fixed thermodynamic data on the boundary so that they can form a equilibrium, and then the
phase structure could be discussed.
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Black branes are the black hole like solutions of low energy effective theory of String or M-theory,
which are also asymptotic flat. They also need to be put inside a heat reservoir in order to study
their thermodynamic properties. In fact, they have similar phase transitions as those asymptotic flat
black holes. In [9], the phase structure of black p-branes in D-dimension (D = d+ d̃ + 2, p = d− 1)
spacetime in canonical ensemble is discussed, where the charge q inside the cavity is fixed. In this
ensemble, for d̃ > 2 charged cases, there is a critical charge qc. When q < qc, there is a first order van
der Waals phase transition between the larger black brane solution and the smaller one at a certain
transition temperature. However, the chargeless case and d̃ ≤ 2 charged cases are different from d̃ > 2
charged cases. There is no such van der Waals phase transition and below a minimal temperature
Tmin, there could not exist a black brane phase. For the chargeless case the “hot flat space” is the
stable phase below Tmin, whereas in the charged cases we do not know what could exist at present
stage, because of the absence of the charged “hot flat space”. One would wonder what could fill this
part of the phase space.

It is well-known that there exists a regular “bubble of nothing” or bubble [10, 11] which carries the
same flux as the black brane. One therefore wonders whether this bubble may play some role in the
phase structure of the black brane. Precisely based on this consideration, bubble was considered in the
canonical ensemble in [13] and the phase structure is enriched. There can be topological transitions
among black branes, bubbles and “hot flat space” under certain conditions. The bubble really fills
some part of the phase space though there is still some phase space left unoccupied.

The grand canonical ensemble of black brane system is a little different. There are no van der
Waals like phase transitions as in the canonical ensemble. Since the charge is not fixed in this case,
charged black brane can undergo Hawking-Page like phase transition into “hot flat space”. In [12],
only black branes and “hot flat space” are taken into account in the grand canonical ensemble. In the
present paper, we will discuss the role played by the bubble in the phase structure. The bubble can
be generated from the black brane solution by a double wick rotation in Minkowski space-time, and
in Euclidean space-time the effect is to interchange one world volume spatial coordinate and the time
coordinate x ↔ t in the metric, while leaving the form field and dilaton unchanged. So the bubble
geometry is regular and has no horizon, hence no entropy. One expects that the period of the space
direction L plays a similar role in the bubble case as β, the inverse temperature T , plays in the black
brane system. As a result, the phase structure depends not only on the temperature and potential
Φ, but also on L as in the canonical ensemble in [13]. We first follow closely the papers [12] and [13].
However, we will find out that in some conditions there could be phase transition processes where the
Gibbs energy itself is not continuous and the system tends to the boundary of the cavity. Since our
“zero-loop” approximation breaks down when the horizon tends to the boundary in these conditions,
this may not be a right behavior of the system. Nevertheless, if we take these cases seriously, we will
argue that there may be a new phase near the boundary developed either by quantum effects or other
nonperturbative effets, or the grand canonical ensemble is not stable under certain circumstances.

In [13], extremal branes are also considered in the canonical ensemble and fill some part of the phase
space of d̃ = 2, 1 cases. Extremal branes are very different from the nonextremal ones, as discussed
in [14, 15, 16]4. Their thermodynamic properties may not be obtained simply from the r+ = r− limit
of the nonextremal ones. For example, they can form equilibria with the environments at arbitrary
temperature. This is because their topology near the horizon is different from the nonextremal
ones. If we only consider the Euclidean time direction and the radius direction, the topology of the

4[14, 15, 16] argue that even when the area of the horizon for the extremal black hole is not zero, the entropy still
vanishes. This seems to contradict with the string theory calculations. Although there are some efferts trying to resolve this
discrepancy, for example [17] and the references therein, the reason for this discrepancy is still not fully understood. However
we do not need this result in our paper since the area of the extremal black brane discussed in this paper is zero and hence
it has no entropy.
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nonextremal brane is R2 near the horizon while the one for the extremal brane is S1 × R. So there
is no need to avoid the conical singularity for the extremal brane and it can have arbitrary period
in the Euclidean time direction hence arbitrary temperature. There is also other evidence that the
extremal black branes can not be seen as the continuous extremal limit of the nonextremal ones, e.g.
[17]. The extremal black branes also have zero horizon area hence no entropy [18]. Because of their
BPS nature and zero entropy property, they may also split into smaller extremal branes with fewer
charges without changing the entropy. However, if we do not care about this, we could still include
the nondilatonic extremal brane in our discussion. We will see that only when the potential conjugate
to the charge at the boundary is fixed at a certain value can it exist. In this case, it has zero Gibbs
energy which means that it can coexist with the “hot flat space”. For dilatonic extremal branes, since
the horizon is already singular, our “zero-loop” approximation is not appropriate near the horizon.
Therefore we would not consider them in our discussion.

The organization of this paper is as follows: In section 2, we review the reduced action or the
Gibbs free energy for black brane and obtain the one for the bubble. In section 3, we discuss the
phase structure of this grand canonical ensemble including black branes, bubbles and the “hot flat
space”. The final section contains some discussion on the extremal cases and the problems we meet.

2 The action

Let us recall the black p-brane solution in Euclidean signature in space-time dimension D = d+ d̃+2,
(d = p+ 1)

ds2 = △+△
− d

D−2
− dt2 +△

d̃

D−2
− (dx1)2 +△

d̃

D−2
−

p
∑

i=2

(dxi)2 +△−1
+ △

a
2

2d̃
−1

− dρ2 + ρ2△
a
2

2d̃
− dΩ2

d̃+1

A[p+1] = −ieaφ0/2

[

(

r−
r+

)d̃/2

−
(

r−r+
ρ2

)d̃/2
]

dt ∧ dx1 ∧ . . . ∧ dxp,

F[p+2] ≡ dA[p+1] = −ieaφ0/2d̃
(r−r+)

d̃/2

ρd̃+1
dρ ∧ dt ∧ dx1 ∧ . . . ∧ dxp,

e2(φ−φ0) = △a
−, (1)

where a is the dilaton coupling and in supergravity theories with maximal supersymmetry, a2 =

4 − 2dd̃
D−2 . △± is defined as △± = 1 −

(

r±
ρ

)d̃
for r+ > r−, with r± being the two parameters

characterizing the solution and related to the charge and the mass of the black brane. φ0 is the
asymptotic value of the dilaton at infinity which is related to the string coupling gs = eφ0 . We have
extracted one spatial direction x1 from the sum of the spatial directions. See [19, 20] for details of the

solution. From the metric, we see that the physical radius of the d̃ + 1 sphere should be ρ̄ ≡ △
a
2

4d̃
− ρ

and we also define r̄± ≡ △
a
2

4d̃
− r±. The charge is calculated to be Qd =

Ω
d̃+1d̃√
2κ

e−aφ0/2(r+r−)
d̃/2.

As mentioned in the introduction, the metric of the bubble is obtained from the black brane metric
just by interchanging the time coordinate t and one of the world volume spatial coordinate x1

ds2 = △
d̃

D−2
− dt2 +△+△

− d

D−2
− (dx1)2 +△

d̃

D−2
−

p
∑

i=2

(dxi)2 +△−1
+ △

a
2

2d̃
−1

− dρ2 + ρ2△
a
2

2d̃
− dΩ2

d̃+1
. (2)

The form field A[p+1] and dilaton φ are kept unchanged. The space-time is restricted to the ρ > r+
region. The singularity of the form field at ρ = 0 is excluded from the geometry and the charge is
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the result of the flux around the noncontractible Sd̃+1. The period of the x1 direction is chosen to
avoid the conical singularity at ρ = r+ and so the solution is regular. This solution can be obtained
independently without referring to the black brane solution by directly solving the classical equation
of motion. It can have the same boundary condition as the black brane when we put it in to a cavity.
Since for an ensemble we only fix the boundary data, any classical solution that satisfies the boundary
conditions can form an equilibrium with the cavity; therefore one can not exclude the bubble state
from the black brane phase structure.

While there is an event horizon at ρ = r+ for the black brane, there is no horizon for bubbles. For
black p-branes, the inverse of the local temperature is fixed to be

β(ρ̄) = △1/2
+ △

− d

2(d+d̃)

− β∗ = △1/2
+ △−1/d̃

−
4πr̄+

d̃

(

1− r̄d̃−

r̄d̃+

)
1
d̃
− 1

2

(3)

whereas the local radius of the x1 direction is arbitrary. However, for bubbles, the inverse of the local
temperature is arbitrary but the local period of x1 is

L(ρ̄) = △1/2
+ △

− d

2(d+d̃)

− L∗ = △1/2
+ △−1/d̃

−
4πr̄+

d̃

(

1− r̄d̃−

r̄d̃+

)
1
d̃
− 1

2

(4)

to avoid the conical singularity. β∗ and L∗ in above equations are the inverse temperature and the
period seen from infinity respectively.

As in [9, 12], we put the black brane or bubble inside a cavity with a fixed radius ρ̄ = ρ̄B . To
establish a grand canonical ensemble, we then fix all the local quantities at the wall of the cavity: the
inverse temperature β̄, local period L̄ in x1 direction, local volume Vp−1 of the xi (i = 2, . . . , p) direc-
tions, dilaton φB , and the potential Φ̄ conjugate to the charge at the boundary ρ̄B . The charge/flux

can be now expressed using the boundary data as Qd =
Ω

d̃+1d̃√
2κ

e−aφB/2(r̄+r̄−)
d̃/2 with r̄± evaluated

at the boundary. We can also define the potential Φ in the local inertial frame using the form field
A[p+1] ≡ −i

√
2κΦdt̄∧ dx̄1 . . . dx̄p where (t̄, x̄1, . . . , x̄p) are the coordinates in the local inertial frame.

So Φ is the conjugate potential for Q and one can easily obtain

Φ̄ = Φ(ρ̄B) =
1√
2κ

eaφB/2

(

r̄−
r̄+

)
d̃

2
(△+

△−

)
1
2

∣

∣

∣

∣

∣

ρ̄=ρ̄B

. (5)

With this setup for the grand canonical ensemble, the classical Euclidean action for the black brane
is obtained in [9]

IbraneE = −
β̄L̄Vp−1Ωd̃+1

2κ2
ρ̄d̃B

[

(d̃+ 2)

(△+

△−

)1/2

+ d̃(△+△−)
1/2 − 2(d̃ + 1)

]

−
4πL̄Vp−1Ωd̃+1

2κ2
r̄d̃+1
+ △− 1

2
− 1

d̃

−

(

1− r̄d̃−

r̄d̃+

)
1
2
+ 1

d̃

− β̄L̄Vp−1QdΦ̄, (6)

where we have expressed the volume Vp = L̄Vp−1. According to the “zero-loop” approximation of the
path integral, the Gibbs free energy G can be obtained from the classical action by G = IE/β̄ [21].
Since G = E−TS−VpQdΦ̄, we can identify the energy E as the first term in (6) divided by β̄, which
is consistent with the ADM mass as ρ̄B → ∞ [22], and the entropy S from the second term which is
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the same as the one obtained in [18]. Since the bubble metric is just obtained by interchanging t and
x1 coordinate, we expect to obtain the bubble action by interchanging β̄ and L̄ in the brane action:

IbubbleE = −
β̄L̄Vp−1Ωd̃+1

2κ2
ρ̄d̃B

[

(d̃+ 2)

(△+

△−

)1/2

+ d̃(△+△−)
1/2 − 2(d̃+ 1)

]

−
4πβ̄Vp−1Ωd̃+1

2κ2
r̄d̃+1
+ △− 1

2
− 1

d̃

−

(

1− r̄d̃−

r̄d̃+

)
1
2
+ 1

d̃

− β̄L̄Vp−1QdΦ̄ (7)

As in the black brane case, one could check that by requiring the local minimum of the action with
respect to charge Qd and r+, we recover the equation of state L̄ = L(ρ̄B) and Φ̄ = Φ(ρ̄B) for
equilibrium. This justifies the validity of this bubble action. Due to the absence of a horizon, the
entropy of the bubble is zero and hence the sum of the first and the second term devided by β̄ can
be identified as the energy of the bubble, which can be checked to be consistent with the definition of
ADM mass as ρ̄B → ∞.

For future convenience, we define the dimensionless variables

x =

(

r̄+
ρ̄B

)d̃

, b =
β

4πρ̄B
, R =

L

4πρ̄B
, q =

(

Q∗
d

ρ̄B

)d̃

, ϕ =
√
2κe−aφB/2Φ . (8)

where

Q∗
d ≡

(√
2κQd

Ωd̃+1d̃
eaφB/2

)
1
d̃

. (9)

We use the barred variables b̄, ϕ̄, R̄ to denote the quantities fixed on the boundary. With these
dimensionless variables, one can rewrite the conditions for equilibrium as

b̄ = b(x, q), b(x, q) ≡ 1

d̃

x1/d̃(1− x)1/2

(

1− q2

x2

)
d̃−2
2d̃
(

1− q2

x

)
1
d̃

(10)

for black branes, while for bubbles

R̄ = R(x, q) , R(x, q) ≡ 1

d̃

x1/d̃(1− x)1/2

(

1− q2

x2

)
d̃−2
2d̃
(

1− q2

x

)
1
d̃

, (11)

and

ϕ̄ = ϕ(x, q) , ϕ(x, q) ≡ q

x

(

1− x

1− q2

x

)
1
2

(12)

for both branes and bubbles. We first constraint the range of x, q to 0 ≤ q < x < 1, and hence
0 ≤ ϕ < 1. In fact, this range can be extend to x = q < 1, ϕ = 1 continuously, which will be
considered in the discussion section. The x = q = 1 is not well defined and in this limit ϕ could have
arbitary value. We will argue that this case can not be physically reached exactly and near this point
our “zero-loop” approximation is not applicable.

5



We can also define the reduced action for black branes

ĨbraneE (b̄, R̄, ϕ̄; q, x) =
2κ2IE

(4π)2ρ̄d̃+2
B Vp−1Ωd̃+1

= −b̄R̄



(d̃+ 2)

(

1− x

1− q2

x

)1/2

+ d̃(1− x)1/2
(

1− q2

x

)1/2

− 2(d̃ + 1) + d̃qϕ̄





− R̄x1+1/d̃

(

1− q2

x2

1− q2

x

)1/2+1/d̃

(13)

and by exchanging b̄ and R̄ we obtain the reduced action for bubbles

ĨbubbleE (b̄, R̄, ϕ̄; q, x) = − b̄R̄



(d̃+ 2)

(

1− x

1− q2

x

)1/2

+ d̃(1− x)1/2
(

1− q2

x

)1/2

− 2(d̃ + 1) + d̃qϕ̄





− b̄x1+1/d̃

(

1− q2

x2

1− q2

x

)1/2+1/d̃

. (14)

The grand potential or the Gibbs free energy is proportional to the reduced action divided by b̄.
Therefore, for a fixed inverse temperature b̄, they differ only by a positive constant factor. So, to
compare the Gibbs free energies of the bubble and the black brane at a fixed temperature, we can just
use the reduced actions instead. Notice that even though we use the same x in the bubble and brane
action, this does not mean that they are equal. They are independent variables since the physical
meanings of r+ for the black brane and the bubble are different. We also do not differentiate these
two variables in the following discussion and this could be easily understood from the contexts.

3 Phase structure

If (10), (11) and (12) have solutions for fixed b̄, R̄, ϕ̄, there could be locally stable black branes or
bubbles in the grand canonical ensemble. To achieve this, first we can solve equation (12) to obtain

q2

x2
=

ϕ̄2

1− (1− ϕ̄2)x
(15)

and by substituting (15) into b(x, q), R(x, q) in (10) and (11), we find

bϕ̄(x) ≡ b(x, q) = Uϕ̄(x) , for black branes, (16)

and Rϕ̄(x) ≡ R(x, q) = Uϕ̄(x) , for bubbles, (17)

where

Uϕ̄(x) ≡
x

1
d̃ [1− (1− ϕ̄2)x]

1
2

d̃(1− ϕ̄2)
1
2
− 1

d̃

. (18)

So to solve (10) and (11) is to solve ū = Uϕ̄(x) for fixed ū and ϕ̄, with ū = b̄ for black brane and ū = R̄
for bubble, and then from (15) we find q for the black brane or the bubble. Note that, in general, for
b̄ 6= R̄, the solution for the bubble and the black brane may not be the same. We use x̄ to denote the
solution for the black brane and ȳ for the bubble. If x̄ 6= ȳ, the bubble and the black brane do not
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have the same charge/flux from (15) and one can easily find out that the one with larger x solution
carries more charge/flux.

The discussion on the solutions of ū = Uϕ̄(x) under different conditions has already been done in
[12] for the black brane, and can be directly used in the bubble case. The results can be summarized
as follows,

1. For
√

d̃
2+d̃

< ϕ̄ < 1, Uϕ̄(x) is monotonically increasing for 0 < x < 1. If ū > Uϕ̄(1) there is no

solution, and if 0 < ū < Uϕ̄(1), there is one unstable solution. The Uϕ̄ vs. x graph is shown in
figure 1(a).

2. For ϕ̄ <
√

d̃
2+d̃

, there is a local maximum for Uϕ̄(x) with

umax =

(

2

2 + d̃

)
1
d̃
[

d̃(d̃+ 2)
(

1− ϕ̄2
)

]− 1
2

<
1
√

2d̃

(

2

2 + d̃

)
1
d̃

(19)

at

xmax =
2

(2 + d̃)(1− ϕ̄2)
. (20)

(a) When d̃
2+d̃

< ϕ̄ <
√

d̃
2+d̃

, the Uϕ̄ vs. x graph is shown in figure 1(b).

i. 0 < ū < Uϕ̄(1), there is one unstable solution.

ii. Uϕ̄(1) < ū < umax, there are two solutions: the smaller is unstable, and the larger is
locally stable with ĨE > 0.

(b) For ϕ̄ < d̃
2+d̃

, we define x̄g =
4(d̃+1)

(d̃+2)2(1−ϕ̄2)
where ug = Uϕ̄(x̄g) =

(4(d̃+1))
1
d̃

(d̃+2)
1+ 2

d̃

√
1−ϕ̄2

and Ĩ(x̄g) =

0. The Uϕ̄ vs. x graph for this case is shown in figure 1(c).

i. 0 < ū < Uϕ̄(1), there is one unstable solution with ĨE > 0.

ii. For ug < ū < umax, there are two solutions: the smaller is unstable, and the larger is
locally stable with ĨE > 0.

iii. For Uϕ(1) < ū < ug, there are two solutions: the smaller is unstable, and the larger is
locally stable with ĨE < 0.

By changing ū into b̄ or R̄, we can obtain the property of the black brane or the bubble respectively.
Whether the final state of the system is a black brane, a bubble or the “hot flat space” depends on
which one has the smallest reduced action. There are four different cases. The first one, if both b̄ or
R̄ are chosen in cases 1, 2(a)i, 2(a)ii, 2(b)i, 2(b)ii, both black brane and bubble are either unstable
or locally stable with ĨE > 0. Since the “hot flat space” is an equilibrium state with ĨE = 0, and we
suppose there is no other unknown equilibrium with ĨE < 0 in these cases, the system will tend to the
“hot flat space”, in line with the results of [12]. However, there is a problem in this claim, because
the “hot flat space” may not be the global minimum of the Gibbs energy. We will come to this point
in the discussion section. The second one, if b̄ is chosen in cases 2(b)i or 2(b)ii but R̄ is chosen in case
2(b)iii, the locally stable bubble will have ĨE < 0 and the black brane is either unstable or has ĨE > 0.
Thus, the final state will be the bubble. There could also be a problem in this claim which will be
discussed later. The third case is interchanging b̄ and R̄, bubble and black brane in the previous case.
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x

Uj
UjH1L

1

u

x1

(a)

x

Uj

xmax

umax

1

UjH1L

u

x1

(b)

x

Uj

xmax

umax

UjH1L

1

u

x1 x2

ug

xg

(c)

Figure 1: The Uϕ̄ vs. x diagrams for different ϕ̄: (a) for
√

d̃
2+d̃

< ϕ̄ ≤ 1. (b) for d̃
2+d̃

< ϕ̄ <

√

d̃
2+d̃

. (c) for

ϕ̄ < d̃
2+d̃

.
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z

FHzL

zminH=xmaxL

Figure 2: The F (z) is increasing for z > zmin = xmax.

The final complicated case is when both b̄ and R̄ are chosen in case 2(b)iii where both bubble and
black brane have negative reduced actions. In this case we have to compare these two negative ones.

For this purpose, we can express the reduced on-shell action for the black brane and the bubble
in the same form: for the black brane

ĨbraneE = −b̄R̄Fϕ̄(x̄) (21)

while for the bubble
ĨbubbleE = −b̄R̄Fϕ̄(ȳ) (22)

where

Fϕ̄(z) = (d̃+ 2)
√

[1− (1− ϕ̄2)z] +
d̃

√

[1− (1− ϕ̄2)z]
− 2(d̃+ 1) (23)

with 0 ≤ ϕ̄ < d̃/(d̃ + 2) and 0 < z < 1, x̄ and ȳ being the solutions for (10) and (11) for the black
brane and the bubble respectively. Fϕ̄(z) has a minimum at zmin = 2

(2+d̃)(1−ϕ̄2)
, which is equal to xmax

in (20), and is increasing in the interval zmin < z < 1 while decreasing in 0 < z < zmin as indicated in
figure 2. As a result, of the bubble and the black brane, the larger one will have smaller action. Since
the monotonic property of b vs. x or R vs. x is depicted in the same diagram in figure 1(c) for fixed
ϕ̄, which is decreasing for x > xmax = zmin, the black brane will be larger, i.e. x̄ > ȳ, when R̄ > b̄,
and inversely, the bubble will be larger when b̄ > R̄. Therefore, when R̄ > b̄ the black brane will have
smaller reduced action and when R̄ < b̄, the reduced action for the bubble is smaller.

Finally, the possible phase structure of this grand canonical ensemble can be summarized as follows,

1. When d̃
d̃+2

< ϕ̄, the final state is the “hot flat space”.

2. When 0 < ϕ̄ < d̃
d̃+2

,

(a) When b̄ ∈ (0, Uϕ̄(1)) ∪ (ug,+∞) and R̄ ∈ (0, Uϕ̄(1)) ∪ (ug,+∞), the final state is the “hot
flat space”.

(b) When b̄ ∈ (Uϕ̄(1), ug) and R̄ ∈ (0, Uϕ̄(1)) ∪ (ug,+∞) , the final state is the black brane.
Reciprocally, when b̄ ∈ (0, Uϕ̄(1)) ∪ (ug,+∞) and R̄ ∈ (Uϕ̄(1), ug), the final state is the
bubble.
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(c) When Uϕ̄(1) < b̄ < R̄ < ug the final state is the black brane. Inversely, when Uϕ̄(1) < R̄ <
b̄ < ug, the final state is the bubble.

(d) There could be some coexisting states:

• Three components coexisting point: b̄ = R̄ = ug.

• The bubble and black brane coexisting phase: Uϕ̄(1) < b̄ = R̄ < ug.

• The black brane and “hot flat space” coexisting phase: b̄ = ug, for R̄ > ug or R̄ ∈
(0, Uϕ̄(1)). And the bubble and “hot flat space” coexisting phase: R̄ = ug, for b̄ > ug
or b̄ ∈ (0, Uϕ̄(1)).

4 Discussion

In the previous section we have discussed the possible phase structure of the grand canonical ensemble
for the bubble, black brane, “hot flat space” system. Compared with the system with only black brane
and “hot flat space”, the phase structure depends not only on the potential Φ̄ (or the dimensionless
ϕ̄), temperature T (or inverse temperature β̄, dimensionless b̄) but also on the size of one world volume
spatial direction R̄. However there could be some region of the phase space where our ”zero-loop”
approximation fails and we must exclude these region from our discussion. To see this, let us recount
the phase structure here in another way. If we fix d̃/(d̃+ 2) < ϕ̄, there is nothing interesting but the
“hot flat space”. If we fix 0 < ϕ̄ < d̃/(d̃ + 2), there could be different phase transition processes:

1. If we fix the temperature such that b̄ ∈ (0, Uϕ̄(1)) ∪ (ug,+∞) and increase the size of the x1

direction from small to large, at first the system will be the chargeless “hot flat space”. Then
just above R̄ = Uϕ̄(1) there is a phase transition to bubble with r̄+ close to the boundary of
the cavity and the charge close to the extreme value. Put another way, the bubble suddenly
appears from the boundary of the cavity. This is an instantly charging process with the Gibbs
free energy jumping discontinuously from zero to a negative one, which characterizes a “zeroth-
order” phase transition. Then as R̄ increases, r̄+ and the charge are decreasing gradually while
the Gibbs energy is increasing. After R̄ increases to R̄ = ug, where r̄+ and Qd decrease to
the corresponding values at xg and the Gibbs energy increases to zero, the system begins to
discharge and transforms to the “hot flat space” through a coexisting phase of the bubble and
the “hot flat space”. This is a first order transition with continuous Gibbs energy. Then the
system will stay in the “hot flat space”.

2. If we fix the temperature such that b̄ ∈ (Uϕ̄(1), ug) and do the same thing, at first the system is
a black brane, of which the horizon size and the charge do not change as R̄ increases. There will
be a phase transition to bubble at just above R̄ = Uϕ̄(1) where the charge suddenly increases to
near extremal one and the r̄+ also suddenly rises to near boundary. In other words, the same as
in the previous case, the near extremal bubble appears from the boundary. Similar to the process
in the previous case, the Gibbs energy decreases discontinuously which is a “zeroth-order” phase
transition. Then, as we increase R̄, the bubble becomes smaller and discharges gradually. When
R̄ is raised to R̄ = b̄, where the size of the bubble has shrunk to the same size as the original
black brane, the bubble begins to transform back to the black brane through their coexisting
phase. This is also a first order transition. After that, the system remains in the same black
brane phase, i.e. the charge and the horizon size no longer change.

We can also fix R̄ and raise b̄ as in above two processes, and the consequence is that the black brane
and the bubble will exchange their roles.

We have seen from above two cases that there are “zeroth-order” phase transition processes where
the Gibbs free energies are not continuous. In fact, in these cases, for R̄ < Uϕ̄(1), the Gibbs free energy
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around x = 1 for the bubble, although not being at the stationary points, have already dropped below
zero or below the one for the original black brane. Similarly, in the cases when we fix ϕ̄ ∈ (d̃/(d̃+2), 1)
where only the “hot flat space” exists, as the temperature is raised to a certain value, the reduced
action near x = 1, still not being at the stationary points, will also drop below zero. It seems that,
if the Gibbs energy here is correct for this thermodynamic system in these situations, the “hot flat
space” is not a global minimum of the Gibbs free energy, and the system tends to x = 1 bubbles or
black branes which are not the stationary points of the Gibbs free energy at first sight. Nevertheless,
from (15), there seems to be an extremal solution for x = q = 1 with arbitrary ϕ̄ < 1. Since extremal
branes can form equilibria with the environments having arbitrary temperature and R̄ [14, 15, 16],
one may think that this extremal brane (from the extremal limit of (1), there is no difference between
the bubble and the brane) will be the final steady state in all these cases. However, this is a spurious

solution of (15). To see this, we define r = (ρ̄/ρ̄B)
d̃ and look at ϕ at arbitrary ρ̄ which is just (5) with

ρ̄B changed to ρ̄, and using (15), we find:

ϕ(r, x) =
ϕ̄(r − x)1/2

(r(1− x) + xϕ̄2(r − 1))1/2
. (24)

From this equation, when r̄+ = ρ̄B which is the extremal case with x = 1, the only solution has
ϕ(r → 1, 1) = 1 and at the equilibrium, ϕ̄ = 1, which means that the x = q = 1 extremal one can
only have ϕ̄ = 1 boundary condition in equilibrium. This contradicts with the previous arbitary ϕ̄
solution. In consequence, the solution with x = q = 1 and arbitrary ϕ̄ could not be physically realized
exactly. If we first set r = 1 exactly (which is ρ̄ = ρ̄B) and x < 1, i.e. we set the boundary condition
first and then choose r̄+ < ρ̄B, we find the boundary condition ϕ(1, x) = ϕ̄ which could be arbitrary.
This implies that the x = q = 1 solution with arbitrary ϕ̄ can only be seen as a limiting case which
can not be reached exactly. This argument is similar to the one used in [23]. So we should exclude
this phase from the phase structure. Let us look at what happens near this extremal case but not
reaching it exactly. For black branes, as x and q are approaching 1, the curvature singularity at r− is
coming closer to the horizon and also closer to the wall of the cavity. Since the quantum effect will
be essential near the singularity, our “zero-loop” approximation is not appliable in these situations.
The Gibbs free energy near x = 1 may be modified by quantum corrections. Similarly, for bubbles,
when x, q → 1 quantum effects must be important near ρ = r+ and the wall. So, these “zeroth-order”
phase transitions may not be the correct behavior of the system and are just indications of the failure
of our method in describing the system under these circumstances. One possibility of the system near
x = 1 is that there is a new stationary point near x = 1 developed by quantum effects or by some
other unknown topological solutions, which may lift the Gibbs free energy near x = 1. If the new
stationary point is a global minimum, there will be a new phase. The other possibility is that there
is no new stationary points and the system itself is not well defined or is unstable, which means we
can not set up a steady grand canonical ensemble under such circumstances.

It is worth mentioning that some solutions with both bubbles and black holes present were found
in five dimensional pure gravity [24, 25] and can be uplift to string theory by embedding in eleven
dimensions and a series of dualities [26, 27]. There could be configurations of branes connected by
KK bubbles. It will be interesting to investigate whether the solutions obtained this way could play
a role in the phase space of the black brane and may also be related to the issue raised above. We
will leave this possibility as a future research direction.

After excluding the x = q = 1 extremal case, we can also study the extremal non-dilatonic brane
with x = q < 1 whose geometry at the horizon is not singular, for example, M2 brane and M5 branes
in M-theory, and D3 brane in string theory. From (13), we see that it has zero entropy automatically
because of its zero horizon area which is already known in [18]. From (15) we obtain ϕ̄ = 1 and
hence the Gibbs energy is zero for any b̄ from (13). Thus, it has the same Gibbs free energy as the
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“hot flat space”. Therefore, only at ϕ̄ = 1 could the extremal brane exist and it can also coexist
with the “hot flat space”. We should point out that this is a “zero-loop” result. If the higher order
fluctuations are taken into account, the Gibbs energy of the extremal brane and the “hot flat space”
may be different and these two states may not coexist. Since in our paper, we are considering only the
leading order approximation, we will list the coexisting state as a possible phase. As is mentioned in
the introduction section that the extremal brane can not be seen as a continuous extremal limit of the
nonextremal one, it must appear as a result of some noncontinuous processes such as pair production
or quantum tunnelling. But the dynamics behind these processes is not clear to us and is beyond the
scope of this paper. As for the extremal dilatonic brane, since the space-time geometry at the horizon
is singular, our method does not apply here and hence we exclude them from the phase structure.

So, if we take into account the discussion in this section, the phase structure listed at the end of
the previous section would be modified. First, another extremal brane and “hot flat space” coexisting
phase with ϕ̄ = 1 should be added to the phase structure. Second, in some regions of the phase
space, the final states of the system is not clear to us due to the limitation of the method and we

should exclude these regions from our discussion. In particular, when ϕ̄ > d̃
d̃+2

and either b̄ or R̄ less

than some value about which the “zero-loop” approximation is not applicable, we are not sure what
happens. We could estimate this value to be (1− ϕ̄2)1/2+1/d̃/(2(d̃+1)(1− ϕ̄)) by requiring the reduced
action to be zero at x = 1. For 0 < ϕ̄ < d̃/(d̃+ 2), we are still not sure about the phases when either
b̄ or R̄ is in (0, Uϕ̄(1)). We can not say too much about the final phases in these parts of phase space
at present stage. This problem could be left for future study.
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