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Abstract

In this paper we study in detail the effect of our recently proposed model of parity and charge-

parity (PCP) violating varying alpha on the Cosmic Microwave Background (CMB) photon passing

through the intra galaxy-cluster medium (ICM). The ICM is well known to be composed of mag-

netized plasma. According to our model, the polarization and intensity of the CMB would be

affected when traversing through the ICM due to non-trivial scalar photon interactions. We have

calculated the evolution of such polarization and intensity collectively, known as the stokes pa-

rameters of the CMB photon during its journey through the ICM and tested our results against

the Sunyaev-Zel’dovich (SZ) measurement on Coma galaxy cluster. Our model contains a PCP

violating parameter, β, and a scale of alpha variation ω. Using the derived constrained on the

photon-to-scalar conversion probability, P̄γ→φ, for Coma cluster in ref.[34] we found a contour plot

in the (ω, β) parameter plane. The β = 0 line in this parameter space corresponds to well studied

Maxwell-dilaton type models which has lower bound on ω ' 6.4 × 109 GeV. In general, as the

absolute value of β increases, lower bound on ω also increases. Our model in general predicts

the modification of the CMB polarization with a non-trivial dependence on the parity violating

coupling parameter β. However, it is unconstrained in this particular study. We show that this

effect can in principle be detected in the future measurements on CMB polarization such that β

can also be constrained.
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I. INTRODUCTION

There has been growing interests in the recent past to extend all the standard model

of particle physics and test against the present day high precession measurements. Parity

violation has already been proved to be one of its simplest and straightforward extension. It

is already a well established fact that there exists parity (P) and charge-parity (CP) viola-

tion in the electroweak sector. This particular observation drives people for the last several

years to study various different possible sources of PCP violation beyond the standard model

[1–5]. The basic idea of all these models is to add an explicit parity violating term in the

Lagrangian. Interestingly all those different PCP violating models predicts different poten-

tially observable phenomena such as cosmic birefringence [1, 2] and left-right asymmetry in

the gravitational wave dynamics [3, 4] which could be detectable in the future experiments.

Recently we have also constructed a parity and charge-parity (PCP) violating model [6] in

the framework of “varying alpha theory” with the advantage over that of other scalar field

model such as Carroll’s in that the origin of the parity violation may be better physically

motivated.

String theory gives us an ample evidences to consider theories of varying fundamental

constants in nature. Since string theory is actually a higher dimensional theory, all the

fundamental constants are emergent because of dimensional reduction. So our hope is that

future high precession cosmological as well as laboratory experiments may provide some

signatures of new physics, which also includes the variation of fundamental constants.

After the proposal of a consistent framework of variation of fine structure constant α

by Bekenstein [7], an extensive effort have been made for the last several years on the

theoretical [8–10] as well as the observational side [11–15] of this α variation. The important

point to mention that it is not the other observable effect but the effect of direct fine

structure constant variation on the cosmology which has been considered extensively in

the literature. What we want to emphasize is that our recently proposed PCP violating

extension to this model opens up the possibility to test it against various other observable

effect apart from just the variation of α in the direct laboratory measurement [16] as well as

indirect cosmological measurement. This is the indirect cosmological measurement leading

to the stringent constraint on a varying alpha model which is the main subject of study of

our present papaer. We have already put constraints on our model parameters space against
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various laboratory experiments like BFRT [17], PVLAS [18] and Q&A [19]. The main

goal of all these experiments is to measure the change of states of a polarized laser beam

propagating through the region of externally applied magnetic field. External magnetic field

induced polarization in a model of scalar(pseudo scalar) coupled with electromagnetic field

has been the subject study for a long time [20–35]. The model that we recently introduced

also exhibits this effect induced from the PCP violating term in our varying fine structure

constant theory [6]. This motivates us to use a different class of experiments to constrain

the parameters of a given varying fine structure constant theory. Such approach has not

been explored before.

In terms of simple well know dilaton or axion electrodynamic models our model can be

thought of as a natural generalization of all those where we have both parity even and parity

odd coupling with photon. But more importantly it is not just an arbitrary addition but

a basic well known underlying assumption of varying fine structure constant which dictates

us the form of the scalar field coupling function with the electromagnetic field up to some

unknown constant which will be determined from the observation. So, from our current

study not only we can constrain those constant parameters but also can shed some light

on the possible variation of fine structure constant over a cosmological time. Our current

study will be particularly focused on CMB observation and how it constrains our model

parameter in the same spirit as of all the previous studies separately on the scalar or axion

electrodynamics models. In this regard our study can, therefore, be thought of as a coherent

study of all those scalar and axion electromagnetic models studied so far. Our model has

two independent parameters namely ω and β. It is the parameter β, the ratio between

axion and scalar type coupling with photon field, which parametrizes the PCP violating

coupling strength. In the present study, we will see how this PCP violating parameter β

effects various observable quantities.

In our previous work [16] we put bounds on our model parameters based on the birefrin-

gence and the dichroism of the vacuum induced from the non-trivial coupling of photon in

the laboratory based experiment. We would like to point out that the bounds we derived

in our previous study is completely excluded compared with the bound we found in the

present study. This essentially tells us that with the current experimental parameter val-

ues it is impossible to see any signal of birefringence and the dichroism in those laboratory

experiments.
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In this paper, we will be exploring another class of cosmological observations to constrain

our model parameters. We will analyze the effect of our PCP violating varying fine structure

constant model on the CMB photon when passing through the ICM. From various cosmolog-

ical observations it has already been verified that ICM consists of strong magnetized plasma

with the magnetic field up to 30 µG. In the presence of this ICM plasma, the CMB photons

encounter an inverse Compton scattering with the electron. This effect is known as SZ effect.

This scattering process does not affect the number density but changes the energy distri-

bution of the incoming CMB photons. As it is well known, CMB photons coming from the

last scattering surface encode a wealth of information related to the properties of structure

formation and more importantly the information about the inflationary dynamics in the very

early universe. All the important effects on CMB photon after the last scattering, therefore,

should be carefully investigated. As we just mentioned, SZ effect is one of those which have

already been studied quite intensively. If there exists some light scalar field that couples to

photon, then we should be able to see the modification of the CMB spectrum due to the

non-zero photon-to-scalar conversion probability amplitude in the presence of background

magnetized plasma. There exist many different models where this phenomena can occur.

In this regard, standard axion-photon and dilaton-photon system have been studied quite

extensively from theoretical as well as phenomenological point of view [28–33]. Another

model called chameleon model [36] has also non-trivial effect on CMB [34, 35]. In our model

which is the generalisation of the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory of

varying fine structure constant, has also natural coupling between scalar and photon with

parity violation. In this paper we will explore in detail the effect of our model on the CMB

photon passing through the ICM magnetized plasma, with emphasis on the effect of PCP

violation.

We organize this paper as follows: in Section II, after briefly reviewing our PCP violating

“varying alpha theory” [6], we will analyse in detail the optical properties and calculate the

evolution of the stokes parameter of the electromagnetic wave when it is passing through

the magnetized plasma. In the subsequent section III, we will analyse the effects of our

model on CMB photon. We calculate the evolution of stokes parameters of CMB photon

when passing though the ICM magnetized plasma. As we have mentioned before, we will

test our result against the SZ measurement of a particular galaxy cluster, the Coma Galaxy

cluster. The model of the ICM magnetized plasma we will be using is the well-known
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power spectrum model. We will analytically calculate approximate expression for the stokes

parameters of the incoming CMB photon after passing through the ICM magnetic field and

plasma of a galaxy cluster. Then in section IV, after briefly reviewing the general properties

the galaxy cluster magnetic field, we will use our approximate expression of the photon-

to-scalar conversion probability, P̄γ→φ, which is responsible for the additional modification

of the CMB temperature over the standard SZ effect, to constrain our model parameter.

We will use the derived upper bound on P̄γ→φ from the Coma cluster in the reference [34]

to constrain the scale of variation of fine structure constant ω. Subsequently in section V

we discuss about the modification to the polarization stokes parameter of the CMB photon

and its observational aspects. Until now we do not have any observation on the change of

polarization of the CMB photon due to the ICM mainly because of experimental difficulty.

We suggest that several recent experiments on the polarization measurement such as STP-

Pole, ALMA, POLAR, which are either ongoing or under development, with there high

angular resolution can in principle help to constrain the parameter space of our model.

Concluding remarks and future prospects are provided in Section VI.

II. OPTICS IN A PCP VIOLATING VARYING ALPHA THEORY

A varying alpha theory [7–9] is usually referred to as a theory of spacetime variation of the

electric charge of any matter field. The fine-structure constant in such a theory, therefore,

conveniently parametrazied by α = e20e
2φ(x) in natural units. According to above definition

this theory enjoys a shift symmetry in φ i.e. φ → φ + c and also the modified U(1) gauge

transformation eφAµ → eφAµ+χ,µ. So, an unique gauge-invariant, shift-symmetric and PCP

violating Lagrangian for the modified scalar-electromagnetic fields can be written as

L = M2
pR −

ω2

2
∂µφ∂

µφ −
1

4
e−2φFµνF

µν +
β

4
e−2φFµνF̃

µν + Lm, (1)

where electromagnetic field strength tensor can be expressed as

Fµν = (eφaν),µ − (eφaµ),ν = Aν,µ −Aµ,ν . (2)

with Aµ = eφaµ as a modified electromagnetic gauge potential. R is the curvature scalar

and β is the PCP violating coupling parameter to be determined from the observation. we

also set e0 = 1 for convenience. As can be easily seen, the above action reduces to the usual
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form when φ is constant. The parameter ω sets a characteristic scale of the theory above

which one expects Coulomb force law to be valid for a point charge. Shift symmetry protects

the scalar field not to have any arbitrary potential function in our Lagrangian. Of course

one can break this shift symmetry by introducing a potential term, which has recently been

studied in [37]. We will leave this for our future study in the context of PCP violating

varying alpha theory.

In this section we will do the general analysis in detail on the scalar-photon mixing

phenomena in the background plasma with magnetic field. Our study would be relevant

to the present day and also future various precision cosmological as well as astrophysical

optical measurements. The Maxwell and scalar field equations turn out to be of standard

type with the modifications coming from non-trivial scalar field φ coupling .

�φ =
e−2φ

2ω2

[

−FµνF
µν + βFµνF̃

µν
]

, (3)

∇ · E = −(−2∇φ ·E+ 4β∇φ ·B),

∂η(E)−∇×B = 2(φ̇E−∇φ×B)− 4β(φ̇B+∇φ× E),

∇ ·B = 0,

∂ηB+∇×E = 0,

(4)

As is well known from various measurements, at cosmological as well as astrophysical

scales there exists a background magnetic field which may have a significant effect on the

electromagnetic field coming from various sources. In this paper we are particularly inter-

ested in studying the effect on the CMB photon. Studying the effect of some other external

field on the CMB photon is of particular interest because of its prime importance in cosmol-

ogy.With this motivation in mind, we will try to calculate the effect of magnetized plasma

background on the electromagnetic wave. In terms of vector potential i.e. B = ∇×A, the

above equations can be written in the following suitable form

(∇2 − ∂2
t )A = −4βB∂tφ− 2(∇φ×B)

(∇2 − ∂2
t )φ =

2B2

ω2
φ−

2

ω2
B · (∇×A) + +

4β

ω2
B · ∂tA (5)

In this case we assume the background magnetic field is B. Because of smallness of the effect

we consider linear order equations for the scalar-photon system. In the above derivation we
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use the gauge condition ∇·A = 0 and consider the scalar potential A0 = 0. Now, assuming

the propagation direction of the electromagnetic wave to be in the z direction, we take the

form the fields ansatz to be

A(z, t) = A0e−i̟t ; φ(z, t) = φ0e−i̟t (6)

where A = {Ax,Ay, 0}. In order to solve them analytically, we will follow the same pro-

cedure as in [20]. We further assume that the background magnetic field variation is very

small compared to the scalar and the photon frequency ̟. With this assumption we can

approximate the dispersion operator to be

∂2
z +̟2 = (̟ + i∂z)(̟ − i∂z) = (̟ + k)(̟ + i∂z) ≃ 2̟(̟ + i∂z), (7)

assuming the dispersion relation to be k = n̟ with |n − 1| ≪ 1. Therefore, we can write

down the above system of eqs.5 as

(i∂z +̟)Ax − i(By + 2βBx)φ = 0 (8)

(i∂z +̟)Ay + i(Bx − 2βBy)φ == 0 (9)

(i∂z +̟)φ−
B2

ω2̟
φ−

i

ω2
(Bx − 2βBy)Ay +

i

ω2
(By + 2βBx)Ax = 0 (10)

Now if we take into account the plasma effects, the above set of linear equations can be

expressed as follows:

(i
d

dz
+M)











Ax

Ay

Φ











= 0 (11)

Where M =











̟ +∆x 0 −i(By + 2βBx)

0 (̟ +∆y) i(Bx − 2βBy)

i
ω2 (By + 2βBx) − i

ω2 (Bx − 2βBy) ̟ − B
2

ω2̟











.

Here M is called scalar and photon mixing matrix. The new notation are

∆x,y = ∆QED +∆CM +∆plasma (12)

All the terms in the second expression of the above equation have been considered before

in the axion-photon study. ∆QED comes from the effect of vacuum polarization giving rise

to the refractive index of photon. This term is also known to be associated with the lowest
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order non-linear Maxwell Lagrangian (Euler-Heisenberg term). ∆CM is known as Cotton-

Mouton term which is the effect of birefringence of gases and liquids in the presence of a

magnetic field. The last term is due to the background plasma through which the photon

traversed. The usual expression for those terms are as follows:

∆x
QED =

7

2
̟ζ, ∆y

QED = 2̟ζ

∆x
CM −∆y

CM = 2πCB2
0, ∆plasma = −

̟2
plasma

2̟
= 4α0

ρe
me

1

2̟
, (13)

where ζ = (α0/(45π)(B0/Bc)
2,Bc ≡ m2

e/e = 4.41 × 1013 G the critical field strength, me

the electron mass, e the electron charge and α the fine structure constant. Note that in the

above expression for ζ , we ignore the correction due to the fine structure constant variation

as it contributes to the higher order in fluctuation in Eq.5.

Now in order to solve the above set of equations we define

A = e−̟(t−z)+iζ(z)Ā ; φ = e−̟(t−z)+iζ(z)φ̄ (14)

where ζ ′(z) = −̟2
plasma/2̟. With these new variables the above set of equations can be

written as follows

(
d

dz
+ M̄)











Āx

Āy

eiSΦ











= 0 (15)

Where M̄ =











0 0 −(By + 2βBx)e
−iS

0 0 (Bx − 2βBy)e
−iS

1
ω2 (By + 2βBx)e

iS − 1
ω2 (Bx − 2βBy)e

iS 0











Where we define

S(z) = −

∫ z

0

(

̟2
plasma

2̟
−

B2

ω2̟

)

dx (16)

In order to solve the above equations of motion we will make an approximation following

Ref.[34], where the amplitude of the mixing matrix is small, i.e, Tr[MM†] < 1. Let us

consider the solution of the form










Āx(z)

Āy(z)

eiS(z)Φ(z)











≃ (I+ J1 + J2 + · · · )











Āx(0)

Āy(0)

eiS(0)Φ(0)











(17)
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where

J1 =

∫ z

0

M̄(x)dx =











0 0 −B∗
y

0 0 B∗
x

By

ω2 −Bx

ω2 0











; J2 =

∫ z

0

M̄ ′(x)M̄(x)dx (18)

where

Bi =

∫ z

0

(Bi − 2βǫijBj)e
iSdx (19)

with ǫxy = 1, ǫyx = −1. Once we know the approximate solution, we can write down the

polarization states of the electromagnetic field under study in terms of Stokes parameters

I(z) = |Ax|
2 + |Ay|

2 (20)

Q(z) = |Ax|
2 − |Ay|

2 (21)

U(z) = 2Re(A∗
xAy) (22)

V (z) = 2Im(A∗
xAy) (23)

where, I is intensity, Q(z), U(z) are linear polarization and V (z) is circular polarization of

the electromagnetic field. After traversing the path length z, polarization states take the

following explicit form

I(z) = I(0)(1− Pγ→φ) +Q(0)Q(z) + U(0)U(z) − V (0)V(z), (24)

Q(z) = Q(0)(1− Pγ→φ) + I(0)Q(z) + U(0)(U(z) − 2L1(z))− V (0)(V(z)− 2L2(z)),

U(z) = U(0)(1− Pγ→φ) + I(0)U(z)− V (0)(Pγ→φ − 2L3(z))−Q(0)(V(z)− 2L1(z)),

V (z) = V (0)(1− Pγ→φ) + I(0)V(z)− U(0)(Pγ→φ − 2L3(z))− V (0)(V(z)− 2L2(z)),

where we have defined

Pγ→φ =
1

2ω2
(|Bx|

2 + |By|
2) ; Q(z) =

1

2ω2
(|Bx|

2 − |By|
2), (25)

U(z) =
1

2ω2
(B∗

xBy + B∗
yBx) ; V(z) =

1

2ω2
(B∗

xBy − B∗
yBx),

L1(z) =
1

2ω2

∫ z

0

(B∗′

x By + B′
xB

∗
y) ; L2(z) =

1

2ω2

∫ z

0

(B∗′

x By − B′
xB

∗
y),

L3(z) =
1

2ω2

∫ z

0

(B∗′

x Bx + B′
yB

∗
y),

In the above expressions we assume the initial correlations as follows:

< φ∗(0)Ai(0) >= 0 ; < A∗
i (0)φ(0) >= 0 ; < φ∗(0)φ(0) >= 0 (26)
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The photon-to-scalar or scalar-to-photon transition amplitude is defined by Pγ→φ(z). Vari-

ation of fine structure constant leads to an effective change in photon intensity, which in

turn effects on the CMB temperature. It can also induce polarization of the photon when

traverses a long cosmological distance. We have already discussed in the introduction that

we are interested to study the effect of ICM on the CMB photon traversing through it.

Therefore, in order to make an estimate of the amount of effect due to the variation of

fine structure constant, we have to consider a specific model of magnetic field B variation

and also the electron density ρe variation at the galaxy cluster scale. As the CMB pho-

ton passes through the ICM, its frequency distribution changes due to inverse Compton

scattering SZ effect with the electrons in the plasma. This essentially means the non-

vanishing photon to scalar conversion probability Pγ→φ(z). In this paper we will estimate

the effect due to this conversion probability considering particular model of magnetic field

and electron density variation in the galactic medium closely following the reference [34].

The particular model that we will be considering is Power spectrum model for the spa-

tial variation of galaxy cluster magnetic field B and the electron density ρe. We will also

be discussing about the effect on the polarization states of the CMB photon. It is well

known that the initial states of the CMB photon are very lightly polarised compared to its

intensity. According to the observation fractional linear polarization compared to the inten-

sity parametrized by 〈Q(0)2〉1/2/I(0), 〈U(0)2〉1/2/I(0) ∼ O(10−6) and the fractional circular

polarization 〈V (0)2〉1/2/I(0) ≪ O(10−6). So essentially the change of states of the CMB

photon after traversing a long intergalactic distance z is proportion to the initial intensity

I(0) and conversion probability Pγ→φ(z).

I(z) ≃ I(0)(1− Pγ→φ) ; Q(z) ≃ I(0)Q(z)

U(z) ≃ I(0)U(z) ; V (z) ≃ I(0)V(z) (27)

Once we get the above approximate expression for the stokes parameters for the electro-

magnetic wave, we can analyse the effect on CMB photon which is believed to be one of the

important probes to understand the cosmology. As we have discussed before, the framework

that we built up is readily applicable to analyse the evolution of states of CMB photon

passing through the galaxy clusters. In the following sections we will apply our framework

and do the quantitative estimates of the temperature as well as polarization modulations on

the CMB photon due to ICM magnetized plasma fields.
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III. THE POWER SPECTRUM MODEL AND THE EFFECT ON CMB

The most realistic model for the magnetic field B and the electron density ρe in a galaxy

cluster is described by the so-called power spectrum model [38]. The most relevant physical

quantities are the two point correlation functions of δBi and δρe, defined by

RBij(x) = < δBi(y)δBi(x+ y) >=
1

4π

∫

d3kPBij(k)e
ik·x, (28)

Re(x) = < δρe(y)δρe(x+ y) >=
1

4π

∫

d3kPe(k)e
ik·x. (29)

In the power spectrum model the magnetic field fluctuation component is approximately as-

sumed to be gaussian random variable, i.e < δBi >= 0, where the average is taken over full

spatial length of a galaxy cluster through which the CMB photon is propagating. With this

assumptions one can show PBij(k) =
1
3
δijPB(k). In the above expression for the power spec-

trum we also assumed that the fluctuations are approximately position independent. The

corresponding correlation lengths for the fluctuation of electron density and the magnetic

field are defined by [39]

LB =

∫∞

0
kdkPB(k)

2
∫∞

0
k2dkPB(k)

; Le =

∫∞

0
kdkPe(k)

2
∫∞

0
k2dkPe(k)

(30)

Now in order to estimate the modified polarization of states and intensity of a CMB photon

after traversing a distance L through the galaxy cluster, the basic quantity we have to

calculate is Gij(x) =< B∗
i (y)Bj(y + x) >. The main goal is to express the above correlation

functions in terms of two power spectra PB(k) and Pe(x). As we mentioned before, in order

to calculate this we will closely follow the procedure of [34].

In order to avoid complications in our main text, we only quote our essential expressions

which are directly related to the observable quantity. All the detail calculations have been

given in the appendix. One can see that to the leading order in 1/ω2 and β, the photon-to-

scalar conversion probability can be written in the following compact form

P̄γ→φ = P̄ reg
γ→φ + P̄ ran

γ→φ +
8β2

3

(
∫ ∞

∆̄

+

∫ ∞

∆̄′

)

kdkFk
(1).

To simplify our further calculations in the above expression we consider the propagating

photon with a single frequency ̟ so that ∆̄ = ∆̄′. . For convenience, we have separated the

total scalar conversion probability amplitude into a term coming from the regular(”reg”)

ICM magnetic field B0 and the other terms coming from the random(”ran”) magnetic field
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δB. We will provide the expressions for P̄ reg
γ→φ and P̄ ran

γ→φ in our subsequent discussions. With

these new definitions on the part of scalar to photon transition probability one can also check

that the expression for the induced polarization of the CMB photon, after traveling through

the ICM of length L, becomes

V̄ (L) ≃ −βI(0)P̄ ran
γ→φ, (31)

Q̄(L) ≃ I(0)P̄ reg
γ→φ(cos 2θ − 4β sin 2θ),

Ū(L) ≃ I(0)P̄ reg
γ→φ(sin 2θ + 4β cos 2θ). (32)

One can immediately see that in addition to the standard scalar-photon coupling contri-

bution, all the observable quantities depend non-trivially on the PCP violating parameter

β.

In order to calculate the amount of effect of the magnetized plasma on the incoming CMB

photon, we need to consider observed power spectrum PB(k) and Pe(k) of the magnetic field

and electron density respectively. On the small scales it is customary to parameterize the

power spectrum by power law in momentum space as follows:

k2PB(k) = PB

(

k

k0

)γ

; k2Pe(k) = P2
e k

γ, (33)

where PB and Pe(k) are the normalization constants. γ < −1 and k0 = 1kpc−1. A special

universal value γ = −5/3 on small scale corresponds to the well-known spectral index for

the three dimensional Kolmogorov’s theory of turbulence. We also assume that this power

law form holds for a wide range of scales of the magnetic and electron density fluctuations

in the ICM. Interestingly, observations on many different galaxy clusters suggest that on a

wide range of spatial scales, the power spectrum is consistent with the Kolomogorov one. It

is, therefore, straight forward to calculate

∫ ∞

∆̄

kdkPB(k) ∝

∫ ∞

∆̄

kdkPe(k) ∝ ∆̄γ , (34)

where ∆̄ =
(

̟2
plasma

2̟
−

B̄2
0

̟ω2

)

. The critical length scale ∆̄ composed of two part, the first

part which is related to the well-known quantity called plasma frequency, is dependent on

the average electron density, and the other part is dependent on the background magnetic

field strength. The latter part also depends on the scale of fine structure constant variation
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ω2. In terms of the length scale, we can write

̟2
plasma

2̟
≃ 0.208× 102

1

pc

(

2π100 GHz

̟

)

( ρ̄e
10−3cm−3

)

,

B̄2
0

̟ω2
≃ 4.29× 10−6 1

pc

(

2π100 GHz

̟

)(

B̄0

30µG

)(

1 GeV

ω

)2

. (35)

It can be easily observed from the above expressions that the value of magnetic field depen-

dent part is in fact very small, even for ω ≃ O(1) GeV, compared to the plasma frequency

part. This is also in accord with our previous perturbative expansions of the various mag-

netic correlation functions in terms of standard two point correlation function. As is known

for a typical galaxy cluster, if we consider the CMB photon frequency, ω ≈ 30 − 300 GHz

then inverse of the first line of the Eq.35 takes the approximate value ≃ 10−3 − 0.1 pc.

Therefore, all the observable quantities like Pγ→φ, Q, U and V , which are sensitive to the

critical length scale, is controlled by the plasma frequency of the Intra-galactic plasma [46].

It is important point to note that the measurement, so far, probes the power spectrum at

the spatial scales larger than the few kiloparsecs. In order to proceed further we will as-

sume, therefore, that the power spectrum Eq.33, which holds for the momentum k > k∗,

also includes the critical length scale ∆̄. On the other hand for k < k∗, the power spectrum

remains almost constant in consistent with the observation [43]. With these assumptions,

following [34], the normalization constant for the assumed power spectrum PB and P2
e can

be approximately estimated as

k−γ
0 PB ≃

2
(

γ
γ+1

− 1
x

)γ

(

log(x)− 1
γ

)γ+1L
γ+1
B

〈δB · δB〉, (36)

P2
e ≃

2
(

γ
γ+1

− 1
x

)γ

(

log(x)− 1
γ

)γ+1L
γ+1
e 〈δρeδρe〉, (37)

where for the typical galaxies, the value of x ∼ 10 − 200. From the assumed log-normal

distribution of the electron density, it is straightforward to check that Ie = 1+ 〈δρeδρe〉/ρ̄2e.

For example, the electron density fluctuation measurement on our own galaxy suggests the

approximate value of Ie ∼ 1− 2. In the subsequent analysis, we also assume LB ≈ Le which

is in accord with the various observations in different galaxy clusters.

Our analysis so far revealed that the fluctuating component of the ICM magnetic field δB

and plasma density δρe fields play the crucial role in the modification of the CMB intensity
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and polarization tensor. On the other hand, the background regular components (B0, ρ̄e of

those quantities set the inherent critical scale of the system. Using the above results, in the

subsequent sections, we will estimate the amount of effects such as temperature variation

(SZ-like effect) and also the induced polarization of the CMB making use of all the known

parameters for the Coma cluster.

IV. GALAXY CLUSTER’S MAGNETIC FIELD AND SZ-LIKE EFFECT

Because of the non-trivial scalar-photon interaction which depends on the nature of the

magnetic field and plasma distribution, we have seen that the energy spectrum as well as

the polarization states of the CMB photon change non-trivially when traversing through

ICM. Furthermore, in order to understand the early universe physics and also the physics

of structure formation, it is essential to observe correct initial state of the CMB photon at

the last scattering surface(LSS). With that in mind, all the intermediate effects on CMB

photon, from the LSS to the observer on Earth, should be taken into consideration. We

have already seen in our model that, because of the photon-to-scalar conversion probability,

the modification of the intensity as well as polarization states of the CMB photon depends

strongly on the strength and distribution of the magnetic field and plasma density in ICM.

It is an experimental fact that the ICM carries magnetic field with strength as high as 30

µG [40]. One of the common methods to determine the magnetic field profile of the ICM is

to the observation of the Faraday rotation of the plane of polarization of the electromagnetic

wave coming from the extended polarized radio sources either behind or embedded within

the galaxy cluster under study. Observations and numerical simulations suggests that ICM

magnetic field can be best described by the power spectrum model [39] that we have con-

sidered in our above analysis. The basic underlying assumption behind this power spectrum

model is the statistical homogeneity and isotropy of the fluctuations of magnetic field and

electron density on a large volume of the galaxy cluster under consideration. The linearly

polarized radio emission experiences a rotation of the plane of polarization when it traverses

through the ICM with a background magnetic filed which has a component along the line

of propagation. The observed polarization angle is proportional to the square of the wave-

length and a quantity called RM, which is a proportionality constant. The mathematical
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expression for RM along the line-of-sight in the ẑ direction of a source located at zs is

RM(zs) = a0

∫ zs

0

ρe(xẑ)Bz(xẑ)dz, (38)

where a0 = α3
0/π

1/2m2
e,Bz is the magnetic field along the line-of-sight, and the observer

position is at x = 0.

In order to understand better about the magnetic field structure in the ICM, one needs

to understand electron distribution as well. It is observed that the shape of the electron

density distribution also has some correlation with the background magnetic field in the

medium. Experimentally, for example from the ROSAT full-sky survey, the electron density

distribution has been determined from the X-ray surface brightness profile of the hot and

diffused gas that fills the ICM. It is well-known that the radial profile of electron density

from the galaxy core could be well fitted to a β profile [41]:

ρe(r) = ρ0

(

1 +
r2

r2c

)−3β/2

(39)

where β ∼ O(1) and positive. ρ0 is the mean electron density and rc is the core radius

of the galaxy cluster. For a typical galaxy cluster, the values of those parameters are

rc ∼ 100−200kpc, β ∼ 2/3, and ρ0 ∼ 0.0001−0.01 cm−3. In addition to the main component

of the electron density there exists a fluctuating component that can be best characterized

by using the power spectrum model. Standard magneto-hydrodynamic(MHD) simulation

of galaxy cluster formation suggests that the total magnetic energy should follow the power

law behavior of electron density: 〈B2〉 ∝ 〈ρe〉η. Various theoretical arguments and the

observations [42] predict that η ≃ 1.

As we have already mentioned before, the CMB photon encounters an inverse Compton

scattering with the electrons in the ICM plasma. This effect is known as SZ effect. This

scattering process changes the energy distribution of the incoming CMB photon. The CMB

is believed to be one of the important cosmological probes. So, all the important effects

on CMB photon after the last scattering should be carefully investigated. We just stated

that SZ effect is one of those effects which have already been studied quite intensively. We

have calculated in the previous section that because of non-trivial scalar-photon interaction,

the frequency spectrum of the CMB changes because of the non-zero conversion probability

amplitude. There exist many different kind of scalar field models where this phenomena

exists due to the non-trivial scalar-photon coupling. All those models have been studied
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quite extensively from the theoretical as well as phenomenological point of view [28–33].

All those fields are collectively known as axion-like particles (ALPs). One of the interesting

examples, which has recently been gotten much attention, is known as chameleon field [36].

The effective mass of the chameleon depends on the density of the surrounding matter

distribution. Therefore, in the low density region of space, this chameleon field also plays

like a ALP. Extensive studies have been done on its effect on the cosmology, more specifically

in the context of the present paper see [34, 35]. As we have stated before, our model of PCP

violating varying alpha predicts non-trivial effect on the photon field traversing through the

magnetized plasma. So, we will be able to see how our parity violating coupling can lead

to the various effects on the CMB photon. As we know the intensity of the CMB photon

is related to its temperature. The variation of temperature, therefore, is related to the

variation of the intensity as follows:

δT

T0
=

(1− e−µ̟)

µ̟

δI

I0
, (40)

where, the Boltzmann factor µ = 1
kBT0

with average CMB temperature T0 ≃ 2.75K. We

have seen before due to the scalar-photon coupling, the intensity of the CMB photon changes

due to the ICM magnetic field and the electron density distribution. The point we would

like to emphasize that, the variation of fine structure constant can lead to a new kind of

non-trivial foreground effect on CMB photon. The temperature variation of CMB due to

the scalar-photon conversion probability, can then be expressed as

δT

T0
≈

(e−µ̟ − 1)

µ̟
P̄γ→φ(L). (41)

In terms of physical quantities, the expression for P̄γ→φ(L) turns out to be

P̄γ→φ(L) =

(

I3eB
2
∗

N 2ω2
−

B2
0 cos(∆̄Leff )

N 2ω2

)

̟2ρ̄−2
e +

πLeffI
2
e (1 + 4β2)N γ

2γω2

(

P2
eB

2
∗

ρ̄2e
+

2IePB

3kγ
0

)

̟−γρ̄γe ,

(42)

where we define

B2
∗ = B2

0 +
2

3
〈δB · δB〉 ; ∆̄ =

ρ̄0N

̟
. (43)

For the power spectrum model typically −2 ≤ γ < −1, which obviously includes Kolmogorov

model of three dimensional turbulence where the exponent γ = −5/3. Several observations

suggest that the regular component, B0 of ICM magnetic field, is much smaller than that
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of the random part δB. For example the ICM magnetic field in the central region of the

Coma cluster has been determined from the Faraday RMs measurement [44]. The strength

of the regular part of the magnetic field is estimated to be 0.2 ± 0.1µG with the coherence

length of the order of 200 kpc. Where as the strength of the random part is 8.5 ± 1.5µG

with the coherence length on much shorter scales of LB ∼ 1kpc. If we assume that the

coherence length, Le, and the power spectrum of the electron density fluctuation δρe/ρ̄e are

proportional to that of the magnetic fluctuation, then the approximate expression for the

dominant contribution to the scalar-to-photon conversion probability becomes

P̄γ→φ(L) ≈
2I3e 〈δB · δB〉

3N 2ω2
̟2ρ̄−2

e +
2πLeffI

2
e (1 + 4β2)N γ

6γω2

P2
e 〈δB · δB〉

ρ̄2e
̟−γρ̄γe .

(44)

At this point it is important to mention the behavior of the standard thermal SZ effect

which changes the intensity of the CMB photon in the following way [45]

δT

T0
=

κBTe

me
τ0

(

µ̟ coth
(µ̟

2

)

− 4
)

, (45)

with Te being the temperature of the electron in the ICM plasma. The quantity τ0 =
∫

σTρe(z)dz is known as optical depth. σT is called Thompson cross-section. One can

see, therefore, that the thermal SZ effect is linear in electron density ρe compared to the

power law behavior of SZ-like effect due to the varying alpha scalar field. Power law type

frequency dependence in eq.(44) compared to the non-power law type frequency dependence

in the standard thermal SZ effect could in principle be detectable from the observation in

the future high precession experiments.

In this paper, to constrain our model parameters, we will use the bound on the photon-

to-scalar conversion probability derived in the reference [34]. The specific result that we are

going to use is for the nearby Coma galaxy cluster. There exits detailed measurements of the

ICM magnetic field and also the SZ effect of this particular cluster by various experiments

like OVRO, WMAP and MITO. As has been derived in the reference [34], the upper bound

on the photon-to-scalar conversion probability for the Coma cluster is

P coma
γ→φ (204GHz) < 6.2× 10−5 (46)

with the 95% confidence level. It is also argued that the above upper limit is not much

sensitive to the value of the exponent of the power spectrum, γ. In this paper we are not
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going to discuss about the derivation of the above constraint. Interested reader may consult

the reference we mentioned. Now for the Coma cluster, the numerical value for the two

parts of the scalar-to-photon conversion probability, eq.(44), turns out to be

2〈δB · δB〉

3N 2ω2
̟2ρ̄−2

e ≈
2.7× 1015

ω2
GeV2

(

δB

8.5µG

)2
( ̟

2π 204GHz

)

(

4× 10−3cm−3

ρe

)2

,

LeffN γP2
e 〈δB · δB〉

6|γ|ω2ρ̄2e
̟−γ ρ̄γe ≈

2.44× 4.07γ × 1018+2γ

2πω2
GeV2

(

2π 204GHz

̟

)γ (
ρe

4× 10−3cm−3

)γ

×

(

δB

8.5µG

)2(
LB

1kpc

)γ+1(
L

200kpc

)

.

(47)

From the above expressions, the constrain, on the scale of fine structure constant ω, depends

on several a priori unknown quantities like ICM magnetic field B, electron density ρe, Co-

herence length LB, exponent of the power spectrum of magnetic filed γ etc. Accuracy of the

constrains, therefore, depend severely on the observations of the properties of ICM. One can

observe that depending upon the value of the power spectrum exponent γ, the frequency

dependence of P̄γ→φ changes which in turn affect on the upper bound of ω. If we consider the

aforementioned value of the power spectrum exponent −2 < γ < −1 and using the bound

on P coma
γ→φ (204GeV) eq.46, one can get a contour plot Fig.(1) for the parameter space (β, y)

where we denote ω = 10y. In the plot, we have considered the reasonable value of Ie to be

≈ 1 which is based on the electron density fluctuations in our own galaxy. Numerical value

of all the other parameters are considered to be that of the aforementioned Coma galaxy

cluster. The shaded region is excluded due to non-observation of any SZ-like effect coming

from the scalar field.

In order to elaborate more on the possible bounds on the parameter space and also

compare with our previous results coming from the laboratory based experiments [16], in

what follows we consider a specific β = 2 line in the parameter space for two different values

of γ. It is straight forward to check that for β ≈ 2, one gets

ω2P̄γ→φ ≈ (2.7− 102.85)× 1015. (48)

After using the above constrain coming from the Coma cluster Eq.46, for β = 2 the above

eq.48 gives us the lower bound on ω to be

ω ≥ (0.66− 4.04)× 1010 GeV. (49)
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FIG. 1: Bounds on PCP violating parameter β and the scale of varying fine structure constant ω

using the possible bound on scalar to photon conversion probability P coma
γ→φ (204GeV) < 6.2×10−5 for

the well known Coma galaxy cluster. This bound has been derived in [34] from the SZ measurement

on the Coma galaxy cluster.

It is clear from the above contour plot that as absolute value of β increases, the lower bound

also increases for ω.

At this point it is worth comparing our present analysis with our previous bound coming

from the laboratory based experiments we mentioned before [16]. In our previous study

we had considered different laboratory based experimental results to constrain the model

parameters. Using the experimental constrain on the rotation and ellipticity of a polarized

electromagnetic wave passing through a magnetized region, we derived the possible bounds

to be 1 ≤ ω2[GeV2] ≤ 1013 and −0.5 ≤ β ≤ 0.5. The primary assumption behind those

constrains was that, β should be less than unity. However, in our present study, it is clear

that even if we consider β = 0, the parameter ω is always ' few × 109GeV. It is also

clear from the fig.2 that our previous bound on ω is completely excluded by the present

CMB bound. Therefore, we can infer that if optical rotation and dichroism measured in the

laboratory is sourced only by the possible variation of fine structure constant then it is almost

impossible to see any positive signal with the current available values of the experimental
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FIG. 2: Comparing bounds on β and ω coming from CMB observation on Coma galaxy cluster

fig.1 and particular laboratory experiment called BFRT from our previous paper [16]

parameters and accuracy of the experiment.

Our present analysis does not help us to constrain β. In order to constrain this we need

to consider the polarization measurement of CMB. As we have mentioned before, with the

present day experimental precession, it is very difficult to measure the change of polarization

due the galaxy clusters. In the subsequent section we will discuss about the prediction of

our model on the change of the polarization of the CMB due to the ICM magnetized plasma.

The future experiments may shed some light on the existence of the parity violation through

the CMB polarization measurement.

V. PARITY VIOLATING EFFECT ON CMB POLARIZATION

As we have already discussed before, in the presence of background ICM magnetic field

and plasma density, varying alpha scalar field alters the polarization states of the CMB

photon. The leading order contribution to this change of the polarization comes from the

photon-to-scalar conversion probability Pγ→φ. The random part P ran
γ→φ contributes to the

stokes parameter V which gives rise to the circular polarization of the CMB photon. On the
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other hand, the regular part, P reg
γ→φ, induces linear polarization of the CMB photon. The

expressions for the induced polarization of the CMB along the line of sight are

V̄(L) ≃ −βP̄ ran
γ→φ, (50)

Q̄(L) ≃ P̄ reg
γ→φ(cos 2θ − 4β sin 2θ),

Ū(L) ≃ P̄ reg
γ→φ(sin 2θ + 4β cos 2θ), (51)

where the expression for the regular part of the conversion probability is

P̄ reg
γ→φ(L) =

(

I3eB
2
0

N 2ω2
−

B2
0 cos(∆̄Leff)

N 2ω2

)

̟2ρ̄−2
e +

πLeffI
2
eN

γP2
eB

2
0

2γω2ρ̄2e
̟−γ ρ̄γe ,

(52)

and the expression for the random part is given in eq.44. We have already discussed that

the contribution from the regular magnetic field part B0 is very small compared to the

contribution from the random magnetic field δB. To the leading order in 1/ω2, therefore,

magnitude of the induced circular polarization V̄ (L) ≫ Q̄(L), Ū(L). It is easy to see that

the dominant contribution in the Eq.52 is coming from the electron density fluctuation.

Using all the measured quantity for the Coma cluster, one gets

πLeffN γP2
eB

2
0

2|γ|ω2ρ̄2e
̟−γ ρ̄γe ≈

6.4× 4.07γ × 1014+2γ

ω2
GeV2

(

2π 204GHz

̟

)γ (
ρe

4× 10−3cm−3

)γ

×

(

δB

0.2µG

)2(
LB

1kpc

)γ+1(
L

200kpc

)

. (53)

This is clearly in magnitude of the order of 10−4 lower than that of P̄ ran
γ→φ(L) mentioned

before. If we use our previous bound on ω from the Eq.49, the prediction of the linear

polarization, which is coming from the regular part of the magnetic field in the ICM, comes

out to be

P̄ reg
γ→φ(L) ≤ (0.89− 1.51)× 10−10. (54)

This is much less than that of the circular polarization which is proportional to

P̄ ran
γ→φ(L) ≤ 6.2× 10−5, (55)

The interesting point, we would like mention, is about its non-trivial dependence on the

parity violating parameter β. We have mentioned before that β could be greater than unity.

Because of this fact, two linear polarizations Q̄(L) and Q̄(L) could be of opposite sign.
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In principle this effect can potentially be detectable from the next generation experiments.

There exist few earth based experiments such as SPT-Pol, ALMA, POLAR, which are either

ongoing or under development, have detectors to measure the polarization of CMB also on

the low scale. All these experiments with high angular resolution could in principle shed

some light on the parity violating effect on the polarization of the CMB.

Before closing this section we would like to discuss about the induced polarization coming

from the random magnetic component of the ICM. We have seen that the circular polariza-

tion is induced by the random part of the magnetic field and the linear polarization can also

get some contribution from the random part of the magnetic field. Since the magnitude and

direction of the polarization stokes parameters coming from the random part of the ICM

magnetic field depend on its magnitude and direction , the average over the many line of

sights of those random contributions will vanish. The effective contribution from the random

magnetic field, therefore, can be encoded in the variance σ2 of those stokes parameters Q,U

and V. Now according to the standard definition, one can get the variance of the stokes

parameters Q to be [34],

σ2
Q = 〈Q(∆1)Q(∆2)〉 − 〈Q(∆1)〉〈Q(∆2)〉,

≈
1

2

(

P 2
γ→φ(∆1,∆2)− β2P ran

γ→φ
2(∆1,∆2) + P reg

γ→φ
2(∆1,∆2)((1− 16β2) cos 4θ − 8β sin 4θ)

)

+ (∆2 → −∆2).

In the above derivation we have approximated B′s to be Gaussian and therefore all the

expectation values can be written in terms of two point correlation function. With the

similar definition, it can be easily shown that the variance of the other stokes parameters

come out to be:

σ2
U ≈

1

2

(

P 2
γ→φ(∆1,∆2)− β2P ran

γ→φ
2(∆1,∆2)− P reg

γ→φ
2(∆1,∆2)((1− 16β2) cos 4θ − 8β sin 4θ)

)

+ (∆2 → −∆2),

σ2
V ≈

1

2

(

P 2
γ→φ(∆1,∆2) + β2P ran

γ→φ
2(∆1,∆2)− P reg

γ→φ
2
(∆1,∆2)(1 + 4β2)

)

+ (∆2 → −∆2).

As we have discussed in the previous section, the contribution from the random magnetic

field is much greater than the regular contribution in the photon to scalar conversion proba-

bility. So to the leading order in magnitude we can clearly see from the above variance that

all the polarization Stokes parameters are proportional to the P ran
γ→φ. The expression for the
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variance can be approximated as

σ2
Q ≈

1

2
P 2
γ→φ(∆1,∆2)−

β2

2
P ran
γ→φ

2(∆1,∆2) + (∆2 → −∆2),

σ2
U ≈

1

2
P 2
γ→φ(∆1,∆2)−

β2

2
P ran
γ→φ

2(∆1,∆2) + (∆2 → −∆2),

σ2
V ≈

1

2
P 2
γ→φ(∆1,∆2) +

β2

2
P ran
γ→φ

2(∆1,∆2) + (∆2 → −∆2).

But as we have stated before, experimentally the random contribution is very difficult to

measure with the present level of experimental accuracy. Regarding this problems of mea-

surement, an elaborate discussion has been provided in reference [34]. We are not going to

discuss it further. The essential point, that we would like to infer, is that for the contri-

bution coming from the regular magnetic field part B0 of the ICM, we do not have such

measurement problems. Although the magnitude of that contribution (∼ 10−10) is very

small compared to the intrinsic polarization of the CMB photon (∼ 10−7), the recent ex-

periment like ALMA, with the order of few arc second angular resolution, could help to put

stringent bound on our model parameters or in principle could detect some positive signal

regarding the parity violation in the photon sector.

VI. CONCLUSIONS

The theory of varying fine structure constant has been the subject of intense study in

the last several years. Cosmological impact of this variation has been studied quite exten-

sively. Various cosmological as well as laboratory based observations on this variation of

fine structure constant have been considered to constrain the varying alpha parameter ω.

Recently we have constructed a particular model based on this varying alpha theory which

includes explicit PCP violation in the photon sector [6]. In this paper we have studied our

aforementioned PCP violating varying alpha model in the light of a new class of cosmological

observations which have not been considered before. We considered the SZ measurement

of Coma galaxy cluster to constrain our model parameters. In this particular measurement

the temperature variation of CMB is being measured. The basic underlying mechanism

behind this measurements is the existence of a non-trivial interaction between photon and

high temperature plasma field in the ICM. As stated before, if there exists a light scalar

field which has non-trivial coupling with the photon field then one would expect additional
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SZ-like effect on CMB. This is what we have studied in detail in this paper. In our model [6]

we have introduced a non-trivial PCP violating scalar-photon interaction within the varying

alpha theory framework. Although the experiments under consideration are insensitive to

the properties of the background field due to the weakness of its coupling with matter, they

nevertheless can help to constrain our varying alpha model parameters ω and β through

the possible frequency-dependent upper limit on the temperature variation within the error

bar of the usual thermal SZ measurement. We have calculated the approximate analytic

expression of our model for those measurable quantities such as stokes parameters of CMB

photon passing through the ICM. The model is characterized by two independent param-

eters β and ω that measure the strength of PCP violation and the scale of fine structure

constant variation, respectively.

As we mentioned before in our previous study [16] we had considered different laboratory

based experimental results to constrain our model parameters. In our present study we use

the SZ measurement of CMB photon passing through the galaxy cluster to constrain our

parameters. Using the measurement on Coma galaxy cluster we found from fig.1, the lower

bound on ω depends on the value of PCP violating parameter β. If we choose β = 0 line

which corresponds the standard Maxwell-dilaton type model, we approximately reproduce

the known bound ω ≥ 109GeV. According to our study in this paper the polarization

measurement of CMB photon is essential to constrain the parity violating parameter. If the

fine structure constant is varying then the variation can lead to a certain degree of linear

and circular polarizations to the CMB photon when it is passing through the magnetized

medium. We have a definite prediction on the amount of circular polarization and linear

polarization. But short-coming is that even though the circular polarization is induced by

the parity violating parameter β, the contribution is coming from the random magnetic field

part of ICM. As has been mentioned, it is very difficult to detect this signal mainly because

of its random nature over a very small angular scale. In other words, the line of sights are

typically separated by distance of the order of the coherence scale (LB) of random magnetic

field. In order to detect the signal, one, therefore, needs to increase the angular resolution

of an experiment to a very high precession. There exist measurements of polarization of

photons at the galactic scale such as that of the Milky Way. We could in principle use those

measurements to constrain our model parameter and also check the consistency with present

bound.
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Appendix

In this section we will provide all the details of the calculation for the stokes parameters.

In order to get the expression for the photon-to-scalar conversion probability amplitude and

the polarization of state we consider the following procedure. We divide the total magnetic

field as a regular and a random part like B = B̄ + δB. Similarly we can define the total

electron density as ρe = ρ̄e + δρe where ρ̄e is the constant average electron density over the

galaxy cluster L. Let us define a new quantity

DB2(z) =
1

z

∫ z

0

(2B̄ · δB(x) + δB(x) · δB(x))dx =
1

z

∫ z

0

DB2(x)dx (56)

δ̄e(z) =
1

z

∫ z

0

δe(x)dx =
1

z

∫ z

0

δρe(x)

ρ̄e
dx, (57)

such that due to randomness of the density fluctuation over the length L, δ̄e(L) = 0. If we

define a new variable Z = (1 + δe)x, the integral

Bi =

∫ L

0

(Bi − 2βǫijBj)e
iSdx =

∫ L

0

(Bi − 2βǫijBj)

1 + δe
e
−i

(

∆̄+
DB2(Z)

̟ω2

)

Z
dZ, (58)

where

∆̄ =

(

2πα0ρ̄e
2me̟

−
B̄2

̟ω2

)

. (59)

In the above expressions we assume |δ̄e(z)| ≪ 1 along the photon path. For further simpli-

fication it would be useful to do another change of variable like

T =

(

1 +
DB2(Z)

̟ω2∆̄

)

Z. (60)

Therefore, the final expression for Bi takes the form

Bi(∆̄) =

∫ Leff

0

(Bi − 2βǫijBj)
(

1 + DB2(T )

̟ω2∆̄

)

(1 + δe)
e−i∆̄TdT, (61)
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where Leff =
(

1 + DB2(L)

̟ω2∆̄

)

L. As we have mentioned before to estimate the intensity I(z)

and polarization states Q(z),U(z) and V(z) of the CMB photon, the main quantity of our

interest is Gij . In term of the new variable as explained above, Gij takes the following form

at different frequencies

Gij(∆̄, ∆̄′) =< B∗
i (T, ∆̄)Bj(T

′, ∆̄′) >=

∫ Leff

0

∫ Leff

0

Fij(T, T
′)ei(∆̄T−∆̄′T ′)dTdT ′. (62)

We define the correlation function as

Fij(T, T
′) =

〈

(Bi − 2βǫikBk)(B
′
i − 2βǫilB′

l)
(

1 + DB2(T )
̟ω2∆̄

)(

1 + DB2(T ′)
̟′ω2∆̄′

)

〉

〈 1

(1 + δe)(1 + δ′e)

〉

(63)

In the above expression for the correlation function we assume that the magnetic field fluctu-

ation δB and electron density fluctuation δρe are uncorrelated. Isotropy of the fluctuations

can simplify the above Eq.63 for Fij(T, T
′) to

Fij(T, T
′) =

〈

B̄
eff
i B̄

eff
j

(

1 + DB2(T )

̟ω2∆̄

)(

1 + DB2(T ′)

̟′ω2∆̄′

) +
1

3

EijδB · δB′

(

1 + DB2(T )

̟ω2∆̄

)(

1 + DB2(T ′)

̟′ω2∆̄′

)

〉

Rδ(T, T
′).(64)

Where we have defined

Eij = (δij − 4βǫij + 4β2ǫikǫjk) ; B̄
eff
i = (B̄i − 2βǫikB̄k)

Rδ(T, T
′) =

〈 1

(1 + δe)(1 + δ′e)

〉

(65)

We have assumed the isotropy and the approximate position independent fluctuations of the

cluster magnetic field and electron density. With this assumption the power spectrum of

physical interests can then be defined by a simple Fourier transformation

Gij(∆̄, ∆̄′) ==
1

4π

∫ Leff

0

dT

∫ Leff

0

dT ′

∫

d3kFk
ije

ik(T−T ′)ei(∆̄T−∆̄′T ′), (66)

In order to proceed further we will do some approximation adopting from [34]. We have

mentioned before that we will be interested in dealing with the CMB photon passing through

the ICM. The typical frequency of the CMB photon is ̟ ≃ 10−5−10−3eV propagating over

the distance around 100 kpc through the galaxy clusters. One can easily check therefore that

in general |∆̄|Leff ≫ 1 as long as 2πα0ρ̄e/me is not finely tuned to be ≃ B̄2/ω2. In order

to get an approximate analytic expression for the above correlation function Gij(T, T
′), we

further assume that the fluctuation of B and ρe are such that Fk
ij falls off faster that k−3 for
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k > k∗. Where k−1
∗ should be related to the characteristic coherent lengths LB and Le of B

and ρe fluctuations respectively in a galaxy cluster under consideration. This is also believed

to be a reasonable assumption that max(∆̄, ∆̄′) ≪ L−1
B
, L−1

e . With all these assumptions and

considering max(|∆̄|Leff , |∆̄′|Leff ) ≫ 1 one can get the following expression to the leading

order

e−i(∆−Leff )Gij(∆̄, ∆̄′) ≈
2 cos(∆−Leff )

∆̄∆̄′
Fij(0) −

2 cos(∆+Leff)

∆̄∆̄′
Fij(Leff ẑ) (67)

+
π sin(∆−Leff )

2∆−

[
∫ ∞

∆̄

kdkFk
ij +

∫ ∞

∆̄′

kdkFk
ij

]

where ∆± = (∆̄ ± ∆̄′)/2. ẑ is the direction along the propagation of light. In the above

expression for the two point correlation function

Fij(0) =

〈

B̄
eff
i B̄

eff
j

(

1 + DB2

̟ω2∆̄

)2 +
1

3

EijδB · δB
(

1 + DB2

̟ω2∆̄

)2

〉

〈 ρ̄2

ρ2

〉

, (68)

where we have used the relation ̟′∆′ = ̟∆. The effective distance Leff , through which

the CMB photon is traveling, is much larger than the coherence length of the fluctuations.

So leading contribution to Fij(Leff) should be coming from the regular magnetic field part

of the ICM.

Fij(Leff ) =

〈

B̄
eff
i B̄

eff
j

(

1 + DB2(x)

̟ω2∆̄

)(

1 +
DB2(x+Leff )

̟ω2∆̄

)

〉

(69)

Now we need to express last two terms of Eq.67 in terms of known correlation functions. If

we assume the fluctuation of ρe is log-normal then one can write down

〈 ρ̄2

ρ2

〉

=
〈ρ2

ρ̄2

〉3

= I3e (70)

Based on this log-normal distribution, it is consistent to separate the fluctuation ρe into

approximately independent short and long wavelength fluctuation such that ρe = ρ̄e(1 +

δs)(1 + δl). We also assume that the short wavelength fluctuations are linear up to some

cut-off scale k−1
lin . The long wave length fluctuations are assumed to be above this scale and

not necessarily be linear. With the above assumptions, one can show [34]

Rδ ≃ I2e (x)[1 + ρ̄−2
e Re(x)]. (71)

From the above expression for the momentum k ≫ klin, we can approximately have

Rk
δ = I2e ρ̄

−2
e Pe(k)]. (72)
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Now, let us define

∫ ∞

∆̄

kdkFk
ij = B̄

eff
i B̄

eff
j

∫ ∞

∆̄

kdkFk
(0) +

Eij
3

∫ ∞

∆̄

kdkFk
(1). (73)

Following argument in [34], we can write down

∫ ∞

∆̄

kdkFk
(0) =

〈

1
(

1 + DB2

̟ω2∆̄

)2

〉

∫ ∞

∆̄

kdkRδ
k + I3e

∫ ∞

∆̄

kdkRk
0B, (74)

∫ ∞

∆̄

kdkFk
(1) =

〈

δB · δB
(

1 + DB2

̟ω2∆̄

)2

〉

∫ ∞

∆̄

kdkRδ
k + I3e

∫ ∞

∆̄

kdkRk
1B, (75)

where new definitions are
〈

1
(

1 + DB2(T )
̟ω2∆̄

)(

1 + DB2(T ′)
̟′ω2∆̄′

)

〉

=
1

4π

∫

d3kRk
0Be

i(T−T ′)·k (76)

〈

δB · δB′

(

1 + DB2(T )
̟ω2∆̄

)(

1 + DB2(T ′)
̟′ω2∆̄′

)

〉

=
1

4π

∫

d3kRk
1Be

i(T−T ′)·k (77)

Therefore, all the physical quantities, Eq.27 that we are interested in, can be expressed in

terms of Gij as follows:

Pγ→φ =
1

2ω2
δijGij ; Q(z) = −

1

2ω2
(δxiǫyj + δyiǫxj)Gij,

U(z) =
1

2ω2
(δxiǫxj − δyiǫyj)Gij ; V(z) =

1

2ω2
ǫijGij , (78)

where index ”i” is running for x and y coordinate. It is straight forward to check from the

above expressions that, V (z) is non-vanishing as expected from the PCP violating term.

Therefore, to the leading order, it should be proportional to β/ω2. By using the following

identities, δijEij = δii(1 + 4β2) and ǫijEij = −4βδii, one gets

V̄ (L) ≃ −
2βI(0)e−i(∆−Leff )

3ω2

[

2 cos(∆−Leff )I
3
e

∆̄∆̄′

〈

δB · δB
(

1 + DB2

̟ω2∆̄

)2

〉

(79)

+
π sin(∆−Leff )

∆−

(
∫ ∞

∆̄

+

∫ ∞

∆̄′

)

kdkFk
(1)

]

.

The PCP violating term in our Lagrangian, therefore, induces a certain degree of circular

polarization to the incoming CMB photon propagating through the ICM magnetized plasma.

The contribution is strongly depending upon the fluctuating part of the ICM magnetic field.

If we have only regular part of the magnetic field, the induced circular polarization vanishes

to the leading order in PCP violating parameter β.
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If we consider the regular component of the ICM magnetic field B̄x = B0 cos θ and

B̄y = B0 sin θ, then one can easily show the following approximate expressions for the other

stokes parameters

Q̄(L) = −
1

2ω2
(δxiǫyj + δyiǫxj)Gij ≃ e−i(∆−Leff )A(∆̄, ∆̄′)(cos 2θ − 4β sin 2θ),

Ū(L) =
1

2ω2
(δxiǫxj − δyiǫyj)Gij ≃ e−i(∆−Leff )A(∆̄, ∆̄′)(sin 2θ + 4β cos 2θ), (80)

where the expression for A is

ω2A(∆̄, ∆̄′) ≈ +
I3eB

2
0 cos(∆−Leff )

∆̄∆̄′

〈

1
(

1 + DB2

̟ω2∆̄

)2

〉

−
B2

0 cos(∆+Leff )

∆̄∆̄′

〈

1
(

1 + DB2(x)
̟ω2∆̄

)(

1 +
DB2(x+Leff )

̟ω2∆̄

)

〉

+
πB2

0 sin(∆−Leff )

4∆−

[
∫ ∞

∆̄

kdkFk
(0) +

∫ ∞

∆̄′

kdkFk
(0)

]

.

Due to the PCP violation, two linear polarization states of the CMB are effected oppositely

to the leading order in β/ω2. Finally the expression for the photon-to-scalar conversion

probability amplitude becomes

ei(∆−Leff )P̄γ→φ =
1

2ω2
ei(∆−Leff )δijGij

≈ +
I3e cos(∆−Leff )

∆̄∆̄′ω2

〈

B2
0 +

2
3
δB · δB

(

1 + DB2

̟ω2∆̄

)2

〉

−
B2

0 cos(∆+Leff )

∆̄∆̄′ω2

〈

1
(

1 + DB2(x)
̟ω2∆̄

)(

1 +
DB2(x+Leff )

̟ω2∆̄

)

〉

(81)

+
π sin(∆−Leff )

4∆−ω2

[

B2
0

(
∫ ∞

∆̄

+

∫ ∞

∆̄′

)

kdkFk
(0) +

2(1 + 4β2)

3

(
∫ ∞

∆̄

+

∫ ∞

∆̄′

)

kdkFk
(1)

]

.

It is important to note that, the photon-to-scalar conversion probability depends on the

parity violating parameter to the order β2. The intuitive reason behind this is that the

energy density of the electromagnetic field does not depend on β linearly. In order to

express all the above quantities in terms of magnetic and electron density power spectrum,

we need to use perturbative expansion. To the leading order in 1/ω2, all the correlation

functions appeared in the above expressions for the stokes parameters can be expressed as
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follows:
〈

1
(

1 + DB2

̟ω2∆̄

)2

〉

≈

〈

1− 2
DB2

̟ω2∆̄

〉

= 1− 2
〈δB · δB〉

̟ω2∆̄
,

〈

1
(

1 + DB2(x)
̟ω2∆̄

)(

1 + DB2(x′)
̟ω2∆̄

)

〉

≈ 1− 2
〈δB · δB〉

̟ω2∆̄
,

〈

δB(x) · δB(x′)
(

1 + DB2(x)
̟ω2∆̄

)(

1 + DB2(x′)
̟ω2∆̄

)

〉

≈ 〈δB(x) · δB(x′)〉

(

1−
10

3

〈δB · δB〉

̟ω2∆̄

)

. (82)

In the above expressions, we assume that the distribution of the fluctuating magnetic field

δB in the ICM is approximately gaussian. With this approximation, one can express all

the unknown correlation functions in terms of ICM magnetic and electron density power

spectrum namely PB and Pe as follows:

∫ ∞

∆̄

kdkFk
(0) = I2e ρ̄

−2
e

(

1− 2
〈δB · δB〉

̟ω2∆̄

)∫ ∞

∆̄

kdkPe(k), (83)

∫ ∞

∆̄

kdkFk
(1) =

(

1−
10

3

〈δB · δB〉

̟ω2∆̄

)[

I2e ρ̄
−2
e 〈δB · δB〉

∫ ∞

∆̄

kdkPe(k) + I3e

∫ ∞

∆̄

kdkPB(k)

]

.

It is important to note that all the relevant observable quantities are depending on a critical

length scale called ∆̄−1.
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