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We consider the the effect of the electron cloud about a vorton in the CFL-K0 high-density phase
by numerically solving the ultrarelativistic Thomas-Fermi equation about a toroidal charge. Includ-
ing electrons removes the electric monopole contribution to the energy, and noticeably decreases the
equilibrium radius of these stable vortex loops.

I. INTRODUCTION

The behavior of matter at very high densities, like
those found at the core of neutron stars, remains largely
an open problem. This is due to a lack of reliable meth-
ods to extract information directly from QCD. But since
the temperatures relevant for the physics of neutron stars
is very low (as compared to the Fermi energy) a num-
ber of observables of interest depend only on properties
of the low lying excitations of the ground state. In the
case of dense matter it is believed that those excitations
are pseudo-Nambu-Goldstone (NG) bosons arising from
the spontaneous breaking of certain approximate symme-
tries. The study of these quasiparticles using the meth-
ods of effective field theory opens up the possibility of a
more reliable understanding of dense matter.

The breaking of symmetries in high-density QCD is
related to quark pairing. At high density, evidence now
points towards color superconductivity where quarks pair
in different combinations depending on the temperature
and chemical potential[1–4]. This pairing uses the BCS
mechanism, just like electron pairing in conventional elec-
trical superconductors. However, color superconductiv-
ity is a much richer phenomenon than electrical super-
conductivity because quarks carry flavor and color while
electrons do not—different color superconducting phases
arise depending on which quarks pair. The nature of the
NG bosons depends crucially on the pattern of symmetry
breaking and, consequently, on the kinds of quark pairing
found in the ground state.

At asymptotically high density, three-flavor QCD is be-
lieved to pair in a pattern known as color-flavor-locking
(CFL), as it pairs all quarks[5]. At lower densities, where
the QCD coupling is not small, the problem is more com-
plicated and a plethora of phases have been suggested (for
a review see [6, 7]). Perhaps the most likely phase at very
high density is the CFL-K0 phase, which seems guaran-
teed to be the energetically favored phase for some range
of large densities[8, 9]. This range may include densi-

∗ bedaque@umd.edu
† evanb@umd.edu
‡ gji@umd.edu
§ nang@mbhs.edu

ties relevant for compact astrophysical objects and thus
may be phenomenologically relevant for extracting pre-
dictions about extreme environments, like the inner cores
of neutron stars.

The NG modes of the CFL phase form an SU(3) octet,
and are named in direct analogy with the in vacuo SU(3)
flavor octet, but at high density the “kaons” are the light-
est particles [10–14]. As they live in an SU(3) octet, their
behavior is described by a theory resembling familiar chi-
ral perturbation theory. As the chemical potential µ is
lowered and the quark masses become relevant some of
the NG modes become lighter. When µ is low enough, the
neutral “kaons” would have a negative mass-squared, and
instead condense with some vacuum expectation value,
turning the CFL phase into CFL-K0[8, 9]. This neutral
kaon condensate provides a superfluid background that is
the stage for interesting topological defects. The reason
the neutral, as opposed to the charged, kaons condense is
the small differences in their mass induced by isospin vi-
olating quark masses and electromagnetic effects. These
differences are small so a condensate of charged kaons
is almost degenerate with the favored neutral kaon con-
densate. This peculiar situation provides a physical re-
alization of the so-called “superconducting string” solu-
tions, suggested in more abstract contexts[15] and also
appearing in some models describing beyond the Stan-
dard Model physics[16–19] . Regular global vortices ap-
pear due to the K−condensation. At their core, the value
of the K0 condensate vanishes, as it is the case in all vor-
tices. Since there is a close competition between neutral
and charged kaon condensates, the charged kaons will
then condense in the core of the K0 vortex. The con-
densation of a charged particle leads to electrical super-
conductivity (not color superconductivity) along the vor-
tex. Loops of superconducting vortices (“vortons”) can
be stabilized by the supercurrent running around them.
The mechanism, roughly speaking, is that the energy of
a vorton has two main contributions. One is the tension
along their length, which creates an energy that scales
with its radius R and drives a vorton to be small. How-
ever, the energy of a vorton includes terms that scale like
J2/Q2R where J is its angular momentum and Q its elec-
tric charge. These terms prevent a vorton from collaps-
ing. This mechanism was invoked in [20] in the context
of quark dense matter. It was subsequently pointed out
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[21, 22] that, just like in the case of cosmological vortons,
the currents necessary to stabilize a vorton could be high
enough that they would quench the superconductivity of
the vortex core, destroying its supercurrent and render-
ing the stability mechanism mute. The quenching effect
can, however, be counteracted by electric charge. A vor-
ton with an overall electric charge, in addition, would be
more stable on account of Coulomb repulsion between
opposong sides of the loop.

A more quantitative theory of quark matter vortons
appeared only recently. In Ref. [23], the equilibrium size
of vortons containing charge as well current was esti-
mated by making a variety of approximations and as-
sumptions. It was found that stabilizing a vorton so that
its equilibrium radius was several times the thickness of
its core δ and thus could really be identified as a torus,
required large electric charges (Z ∼ 104). With such a
large charge, it is possible that ambient electrons which
are in the bulk to ensure charge neutrality could be pulled
close to the vorton, shielding its electric fields, and signif-
icantly reducing the effectiveness with which the electric
charge aided in stabilizing the vorton in the first place.
We call these vortons with neutralizing orbiting electrons
vortonium to easily distinguish them from unshielded or
bare vortons.

It is the purpose of this paper to account for these
electrons and to find the equilibrium radius of a vorto-
nium “nucleus”. We use the Thomas-Fermi approxima-
tion to find the electrons’ semiclassical charge distribu-
tion, allowing them to shield the electric field. Second,
having found the electron distribution, we can compute
the energy in the electric field numerically, without mak-
ing geometrical or multipole approximations. Intuitively,
when including electrons we should find that vortons have
a smaller equilibrium radius, because there are exactly
enough electrons to kill the monopole field. We find that
making these improvements decreases the equilibrium ra-
dius of a vorton of given angular momentum and electric
charge significantly.

II. CFL+K0

To understand vortons, we first must understand the
phase in which they appear. When the quark masses are
negligible compared to the chemical potential µ, the CFL
phase is described by the quarks pairing according to[24]

〈
qaL,iCq

b
L,j

〉
= −

〈
qaR,iCq

b
R,j

〉
=

1

gs
µ2∆ εabZεijZ (1)

where q are the quarks which carry color a, b ∈ {1, 2, 3},
flavor i, j ∈ {u, d, s}, and helicity R,L indices. The di-
mensionful scale ∆ is known as the gap, and gs is the
strong coupling constant. This condensate breaks the full
SU(3)C ×SU(3)L×SU(3)R×U(1)B ×U(1)A symmetry
down to SU(3)C+L+R×Z2×Z2, where the first remain-
ing Z2 comes from breaking U(1)B and the second from

breaking the approximate U(1)A symmetry that Dirac
fermions enjoy at asymptotically high density.

Simple counting suggests that there should be 18
Nambu-Goldstone mesons, but eight of these are eaten
by the gluons, which gain masses ∼ gsµ, indicating that
the phase is color superconductive[10]. The condensate
breaks the electromagnetic U(1)EM ⊂ SU(3)L×SU(3)R,
but there remains an unbroken gauge symmetry that
arises from a linear combination of the eighth gluon and
the photon. This unbroken gauge symmetry, which we
call U(1)Q is “mostly” electromagnetism: when αEM is
small the contribution from the eighth gluon is small,
the differences between αQ and αEM are small, and the
dielectric constant εCFL differs from εvacuum by only
a small amount. All of these corrections are at least
O (αEM ) suppressed, and we henceforth refer to the re-
maining U(1)Q symmetry as electromagnetism for con-
venience.

After the gluons eat eight of them, ten NG modes re-
main. Two describe bulk superfluidity that results from
breaking the baryon and axial symmetries. The other
eight are an octet of the SU(3)C+L+R. Because these
eight “mesons” share group structure with the in vacuo
mesons that are described by flavor SU(3), these modes
are named in an analogous manner. The theory contains
a chiral field Σ which can take on a vacuum expectation
value Σ0. The eight mesons πa are small fluctuations
about Σ0, so that Σ = exp (iπaλa/f) Σ0, where λa are
the usual 8 Gell-Mann matrices with Tr

(
λiλj

)
= 2δij

and f plays a role analogous to the pion decay constant.
To lowest-order, the effective theory describing the

CFL phase is described by the Lagrangian [8, 10–13]

Leff =
f2

4
Tr
(
∇0Σ† · ∇0Σ− v2DiΣ

† ·DiΣ
)

+ 2ADet (M) Tr
(
M−1Σ + h.c.

)
− 1

4
F 2, (2)

where the derivatives are

DµΣ = ∂µΣ− iAµ [Q,Σ] ,

∇0Σ = D0Σ + i

[
MM†

2pF
,Σ

]
, (3)

M = diag (mu,md,ms) is the quark mass matrix, Q =
e
3diag (2,−1,−1) is the matrix of the quark charges under
U(1)Q, Aµ is the U(1)Q gauge field, F its corresponding
field strength tensor, A, f , and v low-energy constants,
and pF the Fermi momentum, which we take to be equal
to the chemical potential µ.

The leading-order mass term differs from the usual chi-
ral Lagrangian, which has a term linear in M. A heuristic
way to understand this difference is that the CFL con-
densate leaves Z2 remnants of the left- and right-SU(3)
symmetries, so that left- and right-handed quark number
should be preserved modulo 2, while terms linear in M
mix left- and right-handedness and violate this conserva-
tion and are thus forbidden. The mass term included
in this Lagrangian is not the only O

(
M2
)

term, but
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the other possible terms are higher-order in the power-
counting scheme developed in Ref. [8].

Interestingly, the low-energy constants can be matched
to perturbative QCD calculations at asymptotic µ. Such
matching calculations give [10, 12]

f2 =
21− 8 ln 2

18

µ2

2π2
, v2 =

1

3
, and A =

3

4π2
∆2. (4)

Armed with this information, one can easily find the
masses of the CFL mesons at asymptotically large µ. Ex-
panding about Σ0 = 11, one finds that the O

(
M2
)

term
gives masses [8]

mπ± = ∓µdu +

√
4A

f2
(md +mu)ms,

mK± = ∓µsu +

√
4A

f2
md(ms +mu), (5)

mK0,K̄0 = ∓µsd +

√
4A

f2
mu(ms +md),

where µij = (m2
i − m2

j )/(2µ) is the fictitious chemical
potential which arises from the M commutator terms
in the time-like derivatives. As µ comes down from
infinity, the kaons and charged pions get a fictitious
strangeness chemical potential from the MM∗/2pF com-
mutator terms in the time-like derivatives, and are incen-
tivized to condense. The other mesons have even larger
masses, but as they lie on the diagonal of Σ when the
other fields vanish, their masses do not get contributions
from the commutator term and are not encouraged to
condense.

Since the neutral kaons are the lightest, they condense
first. The charged kaons are have almost the same mass
as the neutral kaons—the difference is dependent on the
mass difference md − mu and also on electromagnetic
effects. However, the interactions between mesons in
the effective theory strongly disfavors two meson species
from condensing at once and, if K+ condensed, electrons
would have to be sprinkled throughout the bulk with an
additional cost in energy due to the electrons’ Fermi en-
ergy.

With all of the other NG modes vanishing, the expec-
tation value of the neutral kaons is [8]

cos

(∣∣K0
∣∣√2

f

)
=
m2
K0

µ2
sd

(6)

where mK0 is given in (5). Since cosine is restricted to be
in the interval [−1, 1] we see that if m2

K0/µ2
sd > 1, there

is no neutral kaon condensate at all. From the form of
the chiral field Σ = exp (iπaλa/f) Σ0, it is clear that the
value of the kaon expectation value is a compact variable
whose value only matters modulo 2π, and thus it is not
surprising that cosine shows up in the expression for the
K0 condensate.

III. BARE VORTONS IN CFL-K0

The background condensate of neutral kaons provides a
standard superfluid in which we can study global vortex
strings. As in any standard superfluid, the condensate
must vanish at a vortex’s center in order to remain single-
valued. One feature of the CFL-K0 superfluid is that
the other mesons could condense but interactions prevent
more than one species from condensing. Since the center
of a superfluid vortex is evacuated, it is natural to expect
that the cores of these vortices may contain a condensate
of the next lightest species—the charged kaon. Thus, the
superfluid vortices have at their core a superconducting
condensate which may carry electrical current or hold an
electrical charge. A vorton is a vortex loop with this
superconducting core.

A detailed analysis of the stability of a vorton without
electrons is given in Ref. [23]. There, an in-depth discus-
sion about the stability of vortons with a fixed electrical
charge and angular momentum is provided. A vortex nat-
urally has an associated tension, so a vortex loop would
naturally shrink to nothing and destroy itself very quickly
unless stabilized in some manner. When the inner con-
densate does not break a gauge symmetry, the stability
of a vorton is easy to understand. Requiring that the
core contain some fixed number of particles which have a
preferred density can provide a pressure along the length
of the vortex. Alternatively, the condensate can have a
phase which wraps around the length of the vortex. Be-
cause the condensate must be single valued, this phase
must be quantized, and is inherently topological. The
topological winding number N enters quadratically into
the tension F⊥ as (N/R)2, while the usual terms in the
tension are a constant c independent ofR (the energy cost
of suppressing the background condensate minus the sav-
ings provided by allowing the core to condense). Then
the energy F ∼ 2πRF⊥ ∼ N2/R + cR has a preferred
equilibrium radius R0.

However, the gauged case is a bit more tricky. It was
also noted in [23] that due to gauge invariance, the topo-
logical winding number N of K+ that wraps around the
length of the vorton and the magnetic fluxoid threaded
through a vorton ΦB , while separate observables, always
enter the Lagrangian and the energy functional F in just
the right combination so as to give the angular momen-
tum J , so that we need not specify them separately but
instead need only specify J . In field theory, angular mo-
mentum depends on one space and one time derivative,
while the charge depends on a time derivative. From the
form of the derivatives (2) one concludes that the time
and space derivatives are traded in the energy for Q and
J/QR.

The classical stability of ungagued vortons is well un-
derstood. In particular, Refs. [25, 26] show vorton stabil-
ity against elliptical deformations numerically, and care-
fully consider splitting and pinching instabilities, which
arise from the delocalization of the charge and current
from the vorton core. We expect the vortons considered
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here to avoid these instabilities. The electromagnetic en-
ergy should only aid in the stability against geometric
deformations, as changes in shape will disrupt the cylin-
drical symmetry of the fields and increase the energy they
contain. We did not explicitly check for stability against
pinching and splitting, but again we expect the gauged
nature of these vortons to help, because the mutual re-
pulsion of like charges should impede clumping and com-
pressing of the K+condensate.

In order to get an analytical feel for the energy func-
tional F of a vorton without surrounding electrons,
Ref. [23] makes several approximations. The first is that
instead of computing the F directly for a vortex loop,
instead the tension F⊥ for a straight superconducting
vortex is used and simply multiplied by the length of
the vortex 2πR, which directly neglects curvature effects.
This contribution to F accounts for all of the space in
a torus whose radius and thickness are both R. To that
contribution, the electromagnetic energy is approximated
by its leading multipole contributions–the electric field
by the monopole contribution and the magnetic field by
the dipole contribution. These far-field energies account
for the space outside a circumscribed sphere of radius
2R around the inner torus. The apple-core-shaped space
outside of the torus but inside of the sphere was left un-
accounted for. Artificially partitioning space and only
taking only the leading multipole moments both reduce
the accuracy of F .

The leading far-field electric part of F is easily com-
puted and is given by

FE-far =

∫ ∞
2R

d3r
1

2

(
Q

4πr2

)2

=
(eZ)2

16πR
(7)

The electric part of F that is outside of the vortex core
but within the torus is given by

FE-near = 2πR

∫ R

δ

d2r⊥
1

2

(
λ

2πr

)2

=
(eZ)2

8πR
log

(
R

δ

)
(8)

In order improve upon the results in [23], we will mini-
mize a modified F . We will minimize

F = Fold − FE-far − FE-near + FTF (9)

where Fold is the main analytical result of [23] and FTF is
the energy in the electric fields that we find numerically
by solving the Thomas-Fermi equations for a toroidal
charge of radius R, thickness δ, and charge eZ. In the
next section, we will use the Thomas-Fermi approxima-
tion to find the semiclassical shape of the electron cloud
surrounding a toroidal charge. Replacing our approxima-
tions with FTF accounts for electrons, avoids partitioning
space artificially for the electric energy, and avoids the
multipole approximation for the electric energy. We will
not change the expressions for the angular momentum or
other expressions which depend on the electric field. For
details on the non-Coulomb part of the vorton energy we
point the reader to Ref. ([23]).

IV. SHIELDING BY ELECTRONS

In this section we give the method for numerically cal-
culating the energy in the electric fields FTF , accounting
for electrons. The Thomas-Fermi approach approximates
the electron density as

n =
1

3π2
p3
F . (10)

where pF is a local fermi momentum and we work in units
where ~ = c = ε0 = 1. Gauss’ law,

∇2φ = en (11)

tells us how to compute the electric potential φ given a
fixed distribution of charges n. We also include the equi-
librium condition that the marginal energy cost of mov-
ing an electron from one point to another should zero,

d (pF − eφ) = 0 (12)

where we have used the ultrarelativistic approximation√
p2 +m2 ≈ pF , as we will find that the electrons’ fermi

momentum is significantly higher than their mass. This
approximation may not be justified for electrons near the
edge of the electron cloud, but we will find that most elec-
trons live near the vorton, and thus are contained in a vol-
ume O

(
106fm3

)
, meaning that (for Z ∼ 105) they have

a Fermi momentum ∼ 300 MeV � me = .511 MeV and
the ultrarelativistic approximation is appropriate. We
then know that

pF − eφ = −eφ∞ (13)

where φ∞ is a constant that describes the electric poten-
tial at infinity.

Resolving (10), (11), and (13) for an equation depend-
ing only on φ yields

∇2φ =
16

3
α2(φ− φ∞)3 (14)

Since φ∞ is a constant, ∇2φ∞ is zero and may be sub-
tracted from the left-hand side, and we can absorb φ∞
into φ by a simple change of variables. Equivalently, we
can pick φ∞ = 0. This is a manifestation of gauge invari-
ance, and picking φ∞ = 0 is a choice of gauge. Eq. (14) is
the ultrarelativistic generalization of the usual Thomas-
Fermi equation and its solution, with appropriate bound-
ary conditions, is the central theme of this paper.

The Thomas-Fermi approximation neglects the inter-
action among the electrons but, at the high electron den-
sities occurring in most of the electron cloud this is a
very small effect. It also neglects the energy associated to
gradients of the density. Again, these gradients are neg-
ligible compared to the momenta of the electrons them-
selves. By solving this nonlinear differential equation
with φ∞ = 0 subject to boundary conditions that ac-
count for the toroidal charge representing the vorton and
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the total charge neutrality of the whole system we find
a φ that self-consistently dictates and accounts for the
distribution of electrons.

Electrons distributed according to (14) also play a
role in the crusts of strange stars[27–30] and the electro-
spheres of quark-nugget models of dark matter[31]. The
magnitude of the electric field around vortons and these
stars are O

(
1017Volts/cm

)
. So, all that distinguishes the

behavior of the electrons in strange star crusts is the ge-
ometry of the attractive charge. Moreover, the crusts of
strange stars are so thin that the ultrarelativistic approx-
imation is legitimate throughout. A simplifying quality
of the stars is their size: they are so large that their
electric field may be considered locally uniform, so that
(14) is need only be solved in one dimension. Where
our equipotentials are spherical we find similar radial be-
havior to these crusts; in regions near the vorton the ra-
dius provides an additional scale which spoils any obvious
similarities. Quark nuggets, on the other hand, have elec-
trospheres distributed according to (14) near the quark
matter crust, but to match the dark-matter phenomenol-
ogy of the ratio of the 511 keV line to the MeV continuum
requires careful numerical solutions that go well outside
the ultrarelativistic regime. Even in the ultrarelativistic
regime near these objects the electron densities are at
most 1010a−3

0 ≈ 6 · 10−5fm−3, whereas typical electron
densities around a vorton are about Z/R3 ∼ 10−3fm−3,
significantly larger, and direct comparison is more diffi-
cult.

To solve take advantage of the geometry of the situa-
tion, we solved (14) in toroidal coordinates , defined in
terms of the usual Cartesian coordinates by

u = −2 Im arccoth
(

(
√
x2 + y2 + iz)/a

)
v = 2 Re arccoth

(
(
√
x2 + y2 + iz)/a

)
(15)

ϕ = arctan(y/x)

where a is the radius of the reference circle (which does
not exactly correspond to the radius of the vorton) and
Re and Im give the real and imaginary parts, respectively.
We use the fundamental domain

−π < u ≤ π 0 ≤ v <∞ − π < ϕ ≤ π, (16)

where a large v corresponds to being near the reference
circle, and v near 0 corresponds to a very large circle
that comes close to the z-axis. The surface of the vorton
occurs at vmax = sinh−1

√
(R/δ)2 − 1. Our expression

for the energy of a vorton already accounts for the en-
ergy in the superconducting core v > vmax, so we restrict
to the domain 0 ≤ v < vmax. Excluding electrons from
v > vmax creates an artificial pressure which can make δ
artificially smaller. Numerically we find that this effect
makes changes to δ that are ∼10%. Since our problem
has cylindrical symmetry, the ground-state electron dis-
tribution will not depend on the axial coordinate ϕ and
we suppress it henceforth.

The Laplacian for these u, v toroidal coordinates is

∇2φ =
1

a2
(cos(u)− cosh(v))×[

(cos(u) coth(v)− csch(v))∂vφ+ sin(u)∂uφ (17)

+(cos(u)− cosh(v))
(
∂2
u + ∂2

v

)
φ
]
.

We discretized u and v onto a 32×32 grid, and promoted
φ to φ(t) where t is a fictitious time coordinate. Then, we
numerically solve the coupled ordinary differential equa-
tion,

∇2φ− 16

3
α3φ3 =

csch(v)

(r2 − δ2)3/2

dφ

dt
(18)

so that if φ(tf ) reaches a temporal fixed point at some
late time tf , it must also automatically satisfy (14). The
function multiplying dφ/dt was picked to alleviate some
numerical instabilities, but the final solution of (14) is
independent of this choice as long as dφ/dt vanishes.

The toroidal coordinate u spans a range −π to π.
The value u = 0 corresponds to the xy−plane with
x2 + y2 > a2, while u = π corresponds to that same plane
but with x2+y2 < a2. Since our physical setup has parity
across this plane, we can reduce the region where we need
to solve (14) to 0 ≤ u ≤ π, with the boundary conditions

∂uφ(0, v) = ∂uφ(π, v) = 0. (19)

This reduction of the physical space allows us to get a
more reliable solution while using a grid of the same size.

Axial symmetry about the z−axis (which corresponds
to v = 0) entails that the solution must obey

∂vφ(u, 0) = 0. (20)

By symmetry alone we have specified the conditions on
three out of the four boundaries of the region.

The final boundary is at the wire. There, we enforce
that the electric field is that of a wire of linear charge
density Ze/2πR and circular cross-section πδ2,

∂vφ(u, vmax) = 2

(
Ze

2πR

)
coth (vmax) . (21)

This condition matches the electric field to the electro-
magnetic gauge field inside the vorton, whose form are
found explicitly in [23]. All the boundaries are subject
to Neumann conditions (as expected by gauge symme-
try), so to numerically stabilize the solution we specify
the gauge φ(0, 0) = φ∞ = 0.

The important question now arises: how does the sys-
tem know how many electrons to use to shield the vor-
ton at long distances? That is, how does it come about
that the long-distance field behavior does not include a
monopole piece? It isn’t clear that we have implemented
this physically desirable constraint. We will now show
that with the symmetries we have specified, toroidal co-
ordinates implement this constraint automatically.
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A straightforward manipulation shows that the spher-
ical coordinate r is given by

r2 = a2 cosh v + cosu

cosh v − cosu
(22)

and so large r2 corresponds to small u2 + v2. The multi-
pole expansion of φ,

φ(~r) = φ∞ −
Qtotal

4π

1

r
−
~d · r̂
4π

1

r2
+ · · · (23)

corresponds to

φ(u, v) = φ∞ −
Qtotal

4π

√
u2 + v2

2a
−
~d · r̂
4π

u2 + v2

4a2
+ · · · .

(24)
when both u and v are small. We choose φ∞ to be

zero as a choice of gauge, and ~d = 0 is enforced by
parity and axial symmetries. However, it is not obvi-
ous that we have enforced Qtotal = 0. Part of the puz-
zle is that all of the surface at infinity is mapped to a
single point, (u, v) = (0, 0). However, on the bound-
aries u = 0 and v = 0 we have already recognized that
parity and axial symmetry require ∂uφ(0, v) = 0 and
∂vφ(u, 0) = 0 respectively, meaning that near (0, 0) φ is
flat in both directions—exactly what we need to guaran-
tee Qtotal = 0. Charge neutrality is accidentally achieved
by our other symmetry conditions in these coordinates,
which makes implementing such a solution easy.

Unlike the usual application of the Thomas-Fermi
equation to atoms with spherical symmetry which de-
pend only on the charge Ze, a dimensionless number, the
solution for a toroidal charge does not have a simple scal-
ing behavior, as there are length scale R, δ and not just Z
and the electron mass, and the Laplacian does not scale
simply as the familiar spherical case does. Thus, for ev-
ery Z, we solve the differential equation for many R and
δ. It is possible to reduce this three-parameter space to
a two-parameter space but for pedagogical simplicity we
simply sample the three-dimensional space. We show one
set of equipotentials from a numerical solution in Fig. 1.
One can easily verify that far from the charge the equipo-
tentials appear spherical, slightly closer the charge the
equipotentials resemble oblate spheroids, near the charge
there are bialy-shaped equipotentials, and most near the
toroidal charge the equipotentials seem toroidal.

As a check on the numerical accuracy of the procedure,
we integrate up the total electric charge outside of the
toroidal charge Z and hope to find −Z. That is we ask

−Z ?
=

∫
outside

2πdA ∇2φ(u, v) (25)

where the 2π comes from the axial integration and dA
is the uv−area differential, including the appropriate Ja-
cobian. This expectation was satisfied to within 1.8%
for every choice of parameters; only 2% of the numeri-
cal solutions had a disagreement between the left- and
right-hand sides of more than 1%; only a quarter of the

FIG. 1. (color online) Four equipotentials from a typical
numerical solution to the Thomas-Fermi equation with a
toroidal charge.

solutions disagreed by more than 0.5%. Moreover, with
a finer and finer grid the fulfilling of (25) is better and
better.

From the solution φ(u, v) for a given Z, R, and δ, we
compute the energy

FTF (Z,R, δ) =

∫
2πdA

1

2
(−∇φ)2. (26)

For ease of comparison with the results in [23]
we computed FTF for R ∈ [80, 800]fm in steps
of 20 fm, δ ∈ [1, 35]fm with steps of 1 fm, and
Z ∈ {250, 500, 750} ∪ ([1250, 50000] with steps of 1250)
and used these data points to construct an interpolating
function that worked for any set of parameters within
those ranges and extrapolated to larger δ. Unlike the
parts of F which care about the chemical potential and
other parameters which might change depending on the
environment, FTF only cares indirectly through R and
δ. Therefore, once FTF (Z,R, δ) is constructed, it can be
used for any choice of the chemical potential, the gap,
etc.

As a way to check the quality of the electron-free ap-
proximation, we can examine the ratio of the actual en-
ergy in the Thomas-Fermi calculation to the approxi-
mated energy, FTF /(FE-far + FE-near). We find that for
small radii (R . 100fm), where the electrons can’t do
much shielding, the approximation overestimates by at
least a factor of 2. At very small radiiR ∼ δ, the electron-
free approximation may actually be an underestimate,
but the charge ceases to have an obviously toroidal shape,
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and as other approximations involved in finding the equi-
librium radius of a vorton breakdown, is not of physical
interest. With larger radii, where the electrons can shield
the Coulomb energy well, the approximation tends to be
off by roughly a factor of 5, but the ratio seems to lose
any strong R dependence. This comparison is depicted
in Fig. 2.

FIG. 2. The ratio between the numerically computed energy
FTF and the approximation FE-far + FE-near as a function of
the vorton radius, for Z ∈ [1250, 40 000] with steps of 1250
and δ ∈ [20, 35]fm with steps of 1 fm. The exact identity
of each curve is irrelevant; the generic behavior gives rough
insight.

With FTF (Z,R, δ) in hand, we can pick a (Z, J) pair,
and simply minimize the energy F given in (9). For
concreteness and ease of comparing to unshielded vor-
tons, we use the same example parameters as [23], a gap
∆ = 66 MeV, an overall chemical potential µ = 450 MeV,
and quark masses (mu,md,ms) ≈ (2, 5, 95) MeV. These
parameters don’t appear in FTF and thus one calcula-
tion of FTF empowers us to examine any relevant density
and gap. We show R/δ as a function of (Z, J) in Fig. 3,
and we compare the equilibrium radii of shielded and
unshielded vortons in Fig. 4. With quick examination of
Fig. 3 it is evident that the effect of electron shielding
shrinks the equilibrium radius for values of (Z, J) where
the unshielded calculation is believable (Z & 6000), and
that this effect becomes stronger for larger Z.

One interesting effect that can be seen in Fig. 4 is that
shielded vortons are actually larger than their unshielded
counterparts for small Z and J . This behavior fits with
the low-R trend seen in Fig. 2 and should be interpreted
as the electron degeneracy helping prevent the vorton’s
collapse. However, the results in this regime are not
trustable, as it is precisely the same region where the
fictitious pressure that arises from restricting the elec-
trons to v > vmax shrinks δ by 20% to 40%. To under-
stand this area well, one would have to allow electrons
into the excluded regime in v, and would need to solve
the Thomas-Fermi equation (14) simultaneously with the
equations of motion for the two kaon types, which is be-

FIG. 3. The equilibrium radius R0 compared to the string
thickness δ of a shielded vorton at equilibrium as a function
of the vorton charge Ze and angular momentum J .

FIG. 4. The ratio R/δ for a vorton with electron shielding
compared to R/δ for the same vorton with no electron shield-
ing as a function of Z and J . The rough nature of the small
Z and J region is due to sampling a rough grid—a finer grid
would resolve these features.
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yond the scope of this work.
More careful examination of Fig. 3 shows that not only

are shielded vortons smaller, but compared to unshielded
vortons they grow more slowly as one increases Z. This
is the expected behavior, as to first order putting a posi-
tive charge in the vorton is cancelled by a shielding elec-
tron. If this cancellation were exact, a shielded vorton’s
size would be independent of Z. Only when one includes
Pauli blocking does a shielded vorton’s equilibrium radius
grow. A related final observation is the increasing success
of the electric shielding by electrons. As Z gets larger, the
ratio of shielded equilibrium radius and the unshielded
equilibrium radius drops. This is also expected, as larger
Z corresponds to larger R, and a larger R enables elec-
trons to live in the central hole of the vorton more readily,
shielding the vorton’s charge more effectively.

V. SUMMARY AND OUTLOOK

In this paper we consider the effect of electron shielding
on the equilibrium radius of vortons in the CFL-K0 phase
at high density. For parameter values where unshielded
vortons were reasonably large and had a clear toroidal
shape with an aspect ratio R/δ of a few (Z & 6000),
the electron shielding of vortonium, as expected, shrinks
both the radius and aspect ratio for a given Z and also
diminishes the response of R/δ to a change in Z.

By allowing that portion to be shielded with electrons
and applying a relativistic Thomas-Fermi approximation,
we have accounted for the electron cloud surrounding
such a vorton and have relieved some of uncontrolled
approximations concerning the toroidal geometry of vor-
tons in CFL-K0. We have shown that the energy in the
electric field considered in Ref. [23] is unrealistically op-
timistic insofar as it drastically changes the equilibrium
shape of the vorton as compared to the more realistic

vortonium. The reduced size of vortonium may be un-
derstood by realizing that the far-fields considered for
unshielded vortons is predominantly a monopole piece
while for vortonium it is a quadrupole.

Two directions seem obvious for pursuing the physics
of CFL-K0 vortons further. The first is to try to cure all
of the issues we have touched on in this work: attempt to
find, in a toroidal geometry, the actual mean-field wave-
functions of the neutral and charged kaon condensates
for a vorton, while simultaneously incorporating electron
shielding and allowing electrons to penetrate the core
and not artificially excluding them, and could account
for curvature effects. Work in this direction will almost
certainly require intensive numerical calculations.

The other possible direction is to try to estimate the
vorton production rate in the early times in the neutron
star life as it goes from a high temperature disordered
phase to a low temperature CFL-K0 phase. This num-
ber is important to gauge the vorton influence on neutron
star phenomenology. Along the same lines, one might
consider the decay rate of these objects through weak
effects, to try and estimate how long any created popu-
lation might persist in these extreme environments. This
line of inquiry would help prioritize any other work on
vortons at high density, and would provide the most di-
rect route to understanding if vortons might contribute
to observable astrophysical phenomena.
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