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I. INTRODUCTION

The aim of this paper is to derive general and explicit expressions for the unrenormalized

and renormalized dressed propagators of fermions in parity-nonconserving theories with

inter-generation mixing, and to discuss their important physical properties and implications.

The results presented here immediately apply to the Standard Theory of Elementary

Particle Physics, usually referred to as the Standard Model (SM), as well as its extensions.

As has been known for a long time, the quark fields are subject to inter-generation mixing,

as implemented by the Cabibbo-Kobayashi-Maskawa (CKM) [1] quark mixing matrix. Since

neutrino oscillations have been observed experimentally and lower mass bounds have been

established, the lepton fields are known to also undergo inter-generation mixing. An early

treatment of flavor-changing self-energies, both for leptons and quarks in bound states,

which, however, focuses on finite renormalization effects, may be found in Ref. [2]. On the

other hand, our treatment is quite general and takes into account the full mixing amplitudes.

The renormalization of the CKM matrix has been recently discussed by several authors; see,

for example, Ref. [3] and references cited therein. Mixing renormalization has also been

worked out for theories involving Majorana neutrinos [4].

This paper is organized as follows. Section II discusses the derivation of the unrenormal-

ized dressed propagators. The mass eigenvalues, the corresponding mass counterterms, and

the effect of inter-generation mixing on their determination are also analyzed. Section III

discusses the renormalization of the dressed propagators. Invoking the Aoki-Hioki-Kawabe-

Konuma-Muta (AHKKM) renormalization conditions and employing very useful relations

from Matrix Algebra, it is shown explicitly that the renormalized dressed propagators satisfy

important physical properties. Section IV contains our conclusions. The Appendix explains

how to derive the two-loop expression for the mass eigenvalues presented in Sec. II, and how

to express the mass counterterms in terms of the unrenormalized self-energies.

II. UNRENORMALIZED DRESSED PROPAGATOR OF MIXED FERMION

SYSTEM

As is well known, the unrenormalized mass matrix can be brought to diagonal form

with non-negative eigenvalues by means of bi-unitary transformations on the left- and right-
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handed fields. On this basis, the unrenormalized inverse propagator is −iIij(/p), where

Iij(/p) = (/p−m0
i )δij − Σij(/p), (1)

i, j are flavor indices1 and the self-energies Σij(/p) are given by

Σij(/p) = (/pB
+
ij + A+

ij)a+ + (/pB
−
ij + A−

ij)a−. (2)

In Eq. (2), A±
ij, B

±
ij are Lorentz-invariant functions of p2 and a± = (1± γ5)/2 are the chiral

projectors.2

Equations (1) and (2) can be written in compact form, as

I(/p) = (/pS+ − T+)a+ + (/pS− − T−)a−, (3)

where S+ and T+ are matrices defined by

(S±)ij = δij − B±
ij (p), (T±)ij = m0

i δij + A±
ij(p). (4)

The unrenormalized dressed propagator is iP (/p) = i(I(/p))−1.3 Writing (I(/p))−1 = (/pU+ −

V+)a+ + (/pU− − V−)a−, we find the relations

S+V+ + T−U+ = 0, (5)

S−V− + T+U− = 0, (6)

p2S+U− + T−V− = 1, (7)

p2S−U+ + T+V+ = 1, (8)

where 1 stands for the unit matrix.

In order to express U± and V± in terms of S± and T±, we first solve for V− in Eq. (6) and

insert the result in Eq. (7). This leads to

U− =
[

p2S+ − T−(S−)
−1T+

]−1
, (9)

V− = −(S−)
−1T+U−. (10)

1 In this paper, repeated indices are not summed, unless a summation symbol is explicitly included.
2 Throughout this paper, we adopt the notational conventions of Bjorken and Drell [5].
3 Here and in the following, the matrix iP (/p) is referred to as the unrenormalized propagator. The particle

propagators are the elements of this matrix, namely iPij(/p). An analogous denomination is used in Sec. III

for the renormalized propagator iP̂ (/p) and the renormalized particle propagators iP̂ij(/p).
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Next we solve for V+ in Eq. (5) and insert the result in Eq. (8), which leads to

U+ =
[

p2S− − T+(S+)
−1T−

]−1
, (11)

V+ = −(S+)
−1T−U+. (12)

More convenient forms for U± are obtained by writing

U− =
[(

p2 − T−(S−)
−1T+(S+)

−1
)

S+

]−1
= (S+)

−1
[

p2 −DC
]−1

, (13)

U+ =
[(

p2 − T+(S+)
−1T−(S−)

−1
)

S−

]−1
= (S−)

−1
[

p2 − CD
]−1

, (14)

where

C = T+(S+)
−1, D = T−(S−)

−1. (15)

It is also convenient to introduce the matrices

E = (S+)
−1T−, F = (S−)

−1T+. (16)

Using Eqs (9)–(14), (15), and (16), the unrenormalized dressed propagator is given by iP ,

where

P = (/p+ E)(S−)
−1(p2 − CD)−1a+ + (/p+ F )(S+)

−1(p2 −DC)−1a−, (17)

which is fully expressed in terms of the self-energy matrices S± and T±. The matrices

(p2 − CD)−1 and (p−DC)−1 are related by similarity transformations, as

(p2 − CD)−1 = C(p2 −DC)−1C−1 = D−1(p2 −DC)−1D. (18)

Writing

(p2 − CD)−1 =
α+

det(p2 − CD)
, (p2 −DC)−1 =

α−

det(p2 −DC)
, (19)

where α+ and α− are the corresponding adjoint matrices,4 we see that the determinants are

equal and that α+ and α− are related by the same similarity transformations as in Eq. (18).

Thus, the squared mass eigenvalues M2
i are the zeros of det(p2−CD), namely they satisfy

det(M2
i − Y (M2

i )) = 0, (20)

Y (p2) = (CD)(p2). (21)

4 Given a square matrix M , in this paper the adjoint matrix AdjM means the transpose of the matrix

whose elements are the cofactors of M (see, for example, Ref. [6].) We recall that the cofactor Cij of the

element mij of M is (−1)i+j times the determinant of the matrix obtained by deleting the i-th row and

the j-th column of M .
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The off-diagonal elements of Y (p2) arise from inter-generation mixing and are, therefore, of

O(g2) or higher, where g is a generic weak-interaction gauge coupling. As a consequence,

if terms of O(g4) are neglected, only the diagonal elements of p2 − Y (p2) contribute to the

determinant, and the eigenvalues are of the form

M̃2
i = Ỹii(M̃

2
i ) +O(g4), (22)

where Ỹii(p
2) denotes Yii(p

2) in the absence of O(g4) contributions. If, instead, terms of

O(g4) are retained, but three-loop contributions and higher are neglected, there are two ad-

ditional effects: (i) there are now terms of O(g4) in Yii(p
2) and (ii) the non-diagonal elements

Yij(p
2) (i 6= j) contribute to the determinant. As a consequence, the mass eigenvalues are

now of the form

M2
i = Yii(M

2
i ) +

∑

j 6=i

(YijYji)(M
2
i )

M2
i −M2

j

+O(g6, g4αs). (23)

In the Appendix, we outline the derivation of Eq. (23) and show how Eqs. (4), (15), (21), and

(23) can be used to express the mass counterterms in terms of the unrenormalized self-energy

functions A± and B±, in the approximation of neglecting three-loop-contributions.

III. RENORMALIZED DRESSED PROPAGATOR OF MIXED FERMION SYS-

TEM

In order to renormalize P [cf. Eq. (17)], we recall that the unrenormalized propagator

is the Fourier transform of 〈0| T (Ψ0(x)Ψ
0
(0)) |0〉, where the zero superscripts denote the

unrenormalized fields. In our case, they are column and row fields with components labeled

by flavor indices. In the following discussion, we assume for simplicity that the fermions are

stable. Decomposing the fields into right- and left-handed components, as

Ψ0 = a+Ψ
0
+ + a−Ψ

0
−, Ψ

0
= Ψ

0

+a− +Ψ
0

−a+, (24)

and taking into account the effect of the chiral projectors a±, it is easy to see that the

first, second, third, and fourth terms of P arise from 〈0|T (Ψ0
−Ψ

0

−) |0〉, 〈0|T (Ψ0
+Ψ

0

−) |0〉,

〈0|T (Ψ0
+Ψ

0

+) |0〉, and 〈0|T (Ψ0
−Ψ

0

+) |0〉, respectively.

Shifting the fields according to

Ψ0
+ = Z

1/2
+ Ψ+, Ψ

0

+ = Ψ+(Z
1/2
+ )†, , (25)

Ψ0
− = Z

1/2
− Ψ−, Ψ

0

− = Ψ−(Z
1/2
− )†, (26)
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where Ψ± are the renormalized fields, we see that the four terms in P are multiplied on

the left and right by various combinations of Z
1/2
± and (Z

1/2
± )† factors. Since the time-

ordered products are now expressed in terms of renormalized fields, in order to obtain the

renormalized propagator iP̂ , we must divide out such factors. Specifically, the first term in

P must be multiplied on the left by Z
−1/2
− and on the right by (Z

−1/2
− )†, the second term by

Z
−1/2
+ on the left and (Z

−1/2
− )† on the right, the third term by Z

−1/2
+ on the left and (Z

−1/2
+ )†

on the right, and the fourth term by Z
−1/2
− on the left and (Z

−1/2
+ )† on the right.

Thus, the renormalized propagator is iP̂ , where

P̂ = /pZ
−1/2
− (S−)

−1(p2 − CD)−1(Z
−1/2
− )†a+

+ Z
−1/2
+ E(S−)

−1(p2 − CD)−1(Z
−1/2
− )†a+

+ /pZ
−1/2
+ (S+)

−1(p2 −DC)−1(Z
−1/2
+ )†a−

+ Z
−1/2
− F (S+)

−1(p2 −DC)−1(Z
−1/2
+ )†a−. (27)

Recalling Eqs. (15) and (16), we see that the third and fourth terms are related to the first

and second ones, respectively, by the exchange + ↔ −.

We now note that the Z−1/2 factors in Eq. (27) can be absorbed in a redefinition of the

self-energy matrices S± and T±, namely

Ŝ± = (Z
1/2
± )†S±Z

1/2
± , T̂± = (Z

1/2
∓ )†T±Z

1/2
± . (28)

Using Eq. (28), P̂ can be written in the compact form

P̂ = (/p+ Ê)(Ŝ−)
−1(p2 − ĈD̂)−1a+ + (/p+ F̂ )(Ŝ+)

−1(p2 − D̂Ĉ)−1a−, (29)

where

Ĉ = T̂+Ŝ
−1
+ , D̂ = T̂−Ŝ

−1
− , Ê = Ŝ−1

+ T̂−, F̂ = Ŝ−1
− T̂+. (30)

In particular, ĈD̂ and CD are related by a similarity transformation, as

ĈD̂ = (Z
1/2
− )†CD(Z

1/2
− )†−1, (31)

so that det(p2 − ĈD̂) = det(p2 − CD) and the mass eigenvalues are the zeros of either

determinant. The matrices Ŝ±, T̂±, Ĉ, D̂, Ê, and F̂ are the renormalized counterparts of

S±, T±, C, D, E, and F , respectively.

In analogy with Eq. (18), we have the relations

(p2 − ĈD̂)−1 = Ĉ(p2 − D̂Ĉ)−1Ĉ−1 = D̂−1(p2 − D̂Ĉ)−1D̂. (32)
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We note that ĈD̂ and F̂ Ê are also related by a similarity transformation and so are (p2 −

ĈD̂)−1 and (p2 − F̂ Ê)−1, namely

Ŝ−1
− ĈD̂Ŝ− = F̂ Ê, Ŝ−1

− (p2 − ĈD̂)−1Ŝ− = (p2 − F̂ Ê)−1. (33)

Interchanging + ↔ −, we obtain

Ŝ−1
+ D̂ĈŜ+ = ÊF̂ , Ŝ−1

+ (p2 − D̂Ĉ)−1Ŝ+ = (p2 − ÊF̂ )−1. (34)

Using Eqs. (30), (32), (33), and (34), Eq. (29) can be cast in the alternative form

P̂ = a−(p
2 − F̂ Ê)−1Ŝ−1

− (/p+ Ĉ) + a+(p
2 − ÊF̂ )−1Ŝ−1

+ (/p+ D̂). (35)

It differs from Eq. (29) in that the chiral projectors a± are on the left side of the expression.

In both Eqs. (29) and (35), the cofactors of a− and a+ are related by the exchange + ↔ −.

Writing

(p2 − ĈD̂)−1 =
α̂+

det(p2 − ĈD̂)
, (p2 − D̂Ĉ)−1 =

α̂−

det(p2 − D̂Ĉ)
, (36)

(p2 − F̂ Ê)−1 =
β̂+

det(p2 − F̂ Ê)
, (p2 − ÊF̂ )−1 =

β̂−

det(p2 − ÊF̂ )
, (37)

where α̂± and β̂± are the corresponding adjoint matrices (cf. Footnote 4), the similarity

relations in Eqs. (32)–(34) tell us that

det(p2 − ĈD̂) = det(p2 − D̂Ĉ) = det(p2 − F̂ Ê) = det(p2 − ÊF̂ ), (38)

and

Ŝ−1
∓ α̂± = β̂±Ŝ

−1
∓ , (39)

a relation that plays an important rôle in our discussion of the propagator’s properties. We

recall that in the previous equations, Ŝ±, T̂±, Ĉ, D̂, Ê, F̂ , α̂±, and β̂± are functions of p2.

We now turn our attention to the renormalization conditions. As emphasized in the semi-

nal work of AHKKM [7], a fundamental physical property of the renormalized propagator iP̂

is that, as /p → mn, where mn is one of the mass eigenvalues, the pole (/p−mn)
−1 should be

present only in the diagonal element iP̂nn of the renormalized propagator matrix. In order

to implement this property, as well as the conventional requirement that the pole residue

equals the imaginary unit, AHKKM proposed suitable conditions on the renormalized in-

verse propagators, which were described both graphically and mathematically.
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Recalling Eq. (3), in our general matrix notation the renormalized inverse propagator is

−iÎ(/p), where

Î(/p) = (/pŜ+ − T̂+)a+ + (/pŜ− − T̂−)a−. (40)

An alternative expression is

Î(/p) = a−(/pŜ+ − T̂−) + a+(/pŜ− − T̂+), (41)

where the chiral projectors a± are placed on the left. The homogeneous AHKKM renormal-

ization conditions read

un(/p)Înl(/p) = 0, (42)

Îln(/p)un(/p) = 0, (43)

where un(/p) is a spinor that satisfies /pun(/p) = mnun(/p), un(/p) its hermitian adjoint, and n

and l are flavor indices.

Inserting Eq. (40) into Eq. (42), we have

(

mnŜ±(m
2
n)− T̂±(m

2
n)
)

nl
= 0. (44)

Multiplying on the right by Ŝ−1
± (m2

n)lj, summing over l, and remembering the definitions in

Eq. (30), this becomes

Ĉ(m2
n)nj = D̂(m2

n)nj = mnδnj , (45)

which implies

[

(ĈD̂)(m2
n)
]

nn
= m2

n,
[

(ĈD̂)(m2
n)
]

nj
= 0 (j 6= n), (46)

with the analogous result for (D̂Ĉ)(m2
n).

Inserting Eq. (41) into Eq. (43), recalling the definitions in Eq. (30), and carrying out

the analogous analysis, we obtain

Ê(m2
n)in = F̂ (m2

n)in = mnδin, (47)

which leads to

[

(ÊF̂ )(m2
n)
]

nn
= m2

n,
[

(ÊF̂ )(m2
n)
]

in
= 0 (i 6= n), (48)

and the analogous result for (F̂ Ê)(m2
n).
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Equation (46) tells us that, as p2 → m2
n, all the elements in the n-th row of p2− ĈD̂ and

p2−D̂Ĉ vanish. Therefore, the only non-vanishing cofactors of (p2−ĈD̂) and (p2−D̂Ĉ) are

those corresponding to the elements of that row, namely the cofactors Cnl. Since the adjoint

matrices are the transpose of the cofactor matrices (cf. Footnote 4), we conclude that the

only non-vanishing elements of α̂±(m
2
n) are those in the n-th column, namely the elements

(α̂±)in(m
2
n). Similarly, from Eq. (48) we see that, as p2 → m2

n, all the elements in the n-th

column of p2 − F̂ Ê and p2 − ÊF̂ vanish. Consequently, the only non-vanishing elements of

β̂±(m
2
n) are those in the n-th row, namely (β̂±)nj(m

2
n). In combination with Eq. (39), these

results imply that, as p2 → m2
n, the only non-vanishing elements of the matrices Ŝ−1

∓ α̂± and

β̂±Ŝ
−1
∓ are the diagonal nn elements (Ŝ−1

∓ α̂±)nn(m
2
n) = (β̂±Ŝ

−1
∓ )nn(m

2
n). Thus,

(

Ŝ−1
∓ α̂±

)

ij
(m2

n) =
(

β̂±Ŝ
−1
∓

)

ij
(m2

n) = 0 (i or j 6= n). (49)

To examine the effect of these results on the renormalized propagators, we insert Eq. (36)

and Eq. (37) into Eq. (29) and Eq. (35), respectively. Recalling Eq. (38), we obtain

P̂ =
(/p+ Ê)(Ŝ−)

−1α̂+a+ + (/p+ F̂ )(Ŝ+)
−1α̂−a−

det(p2 − ĈD̂)
(50)

from Eq. (29), and

P̂ =
a−β̂+(Ŝ−)

−1(/p+ Ĉ) + a+β̂−(Ŝ+)
−1(/p+ D̂)

det(p2 − F̂ Ê)
(51)

from Eq. (35).

Using Eqs. (45), (47), and (49), one readily verifies that, as p2 → m2
n, the only non-

vanishing elements in the numerators of Eqs. (50) and (51) are, in fact, the diagonal nn ele-

ments. Thus, the explicit expressions of the renormalized propagator iP̂ , given in Eqs. (29),

(35), (50), and (51), indeed satisfy the fundamental physical property that the (/p−mn)
−1

pole is present only in the diagonal element iP̂nn of the propagator matrix.

The inhomogeneous AHKKM renormalization conditions are

1

/p−mn
Înn(/p)un(/p) = un(/p), (52)

un(/p)Înn(/p)
1

/p−mn

= un(/p). (53)

Inserting Eq. (40) into Eq. (52), expanding the numerator about /p = mn, and using Eq. (44),
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we find the renormalization conditions
{

Ŝ−(m
2
n) +mn

[

mn

(

Ŝ+ + Ŝ−

)

− T̂+ − T̂−

]′
}

nn

= 1,

[

Ŝ−(m
2
n)
]

nn
=

[

Ŝ+(m
2
n)
]

nn
, (54)

where the prime symbol stands for the derivative with respect to p2, evaluated at p2 = m2
n.

Inserting Eq. (41) into Eq. (53), we obtain the same result.

In order to analyze the effect of Eq. (54), we evaluate the residue of the (/p−mn)
−1 pole

in P̂ using Eq. (50) and focus on the a+ term. We expand det(p2 − ĈD̂) about p2 = m2
n

through O(p2 − m2
n). Since p2 = m2

n is a zero of the determinant, the first term vanishes,

and we have

det(p2 − ĈD̂) =
[

det(p2 − ĈD̂)
]′

(p2 −m2
n) + · · · . (55)

Using the well known expression

(detM)′ = Tr (M ′ AdjM) , (56)

the r.h.s. of Eq. (55) becomes Tr
[

α̂+(1− (ĈD̂)′)
]

(p2 −m2
n) + · · · . Multiplying by /p−mn,

taking the limit /p → mn, and recalling Eqs. (43) and (47), we see that the residue of the

(/p−mn)
−1 pole in the a+ term of Eq. (50) is

Res+ =

(

Ŝ−1
− α̂+

)

nn
(m2

n)

Tr
[

α̂+

(

1− (ĈD̂)′
)] . (57)

To simplify this expression, we insert Ŝ−Ŝ
−1
− = 1 in the argument of the trace. Recalling

again Eq. (49), we find

Tr

[

Ŝ−Ŝ
−1
− α̂+

(

1−
(

ĈD̂
)′
)]

=
(

Ŝ−1
− α̂+

)

nn

[(

1−
(

ĈD̂
)′
)

Ŝ−

]

nn

, (58)

and the residue becomes

Res+ =
1

{[

1−
(

ĈD̂
)′
]

Ŝ−

}

nn

, (59)

where it is understood that all the functions are evaluated at p2 = m2
n.

Taking into account Eqs. (45)–(47), Eq. (59) becomes

Res+ =
1

{

Ŝ− +mn

[

mn

(

Ŝ+ + Ŝ−

)

− T̂+ − T̂−

]′
}

nn

. (60)
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Thus, the renormalization condition of Eq. (54) indeed implies that

Res+ = 1. (61)

Calling Res− the residue of the (/p − mn)
−1 pole in the a− term of Eq. (50), an analogous

analysis shows that

Res− = 1. (62)

We conclude that, when the inhomogeneous renormalization condition of Eq. (52) is imposed,

the poles in our explicit expressions for the renormalized propagator [cf. Eqs. (29), (35), (50),

and (51)] have residues i.

IV. CONCLUSIONS

We derived general and explicit expressions for the unrenormalized and renormalized

dressed propagators of fermions in parity-nonconserving theories with inter-generation mix-

ing [cf. Eqs. (17), (29), (35), (50), and (51)]. We analyzed the determination of the mass

eigenvalues and the corresponding mass counterterms in the approximation of neglecting

three-loop contributions [cf. Eqs. (23) and (A9)]. In particular, we discussed the effect of

inter-generation mixing on these determinations. Using the AHKKM renormalization con-

ditions and applying very useful relations from Matrix Algebra, we showed explicitly that

our renormalized dressed propagator [cf. Eqs. (29), (35), (50), and (51)] satisfy important

physical properties. This also demonstates that the AHKKM renormalization conditions,

which were proposed in connection with the one-loop renormalization of the SM [7], are

valid to any order of perturbation theory.
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Appendix A: Appendix

In this appendix, we outline the derivation of Eq. (23) in the approximation of neglecting

three-loop contributions and show how it can be applied to express the mass counterterms

in terms of the basic self-energy functions A±(p2) and B±(p2) in Eq. (2). For simplicity, we

consider the three-generation case.

As explained in the paragraph containing Eqs. (20) and (21), the mass eigenvalues are

the zeros of det(p2−Y (p2)), where Y (p2) = (CD)(p2) and the matrices C and D are defined

in Eq. (15). Using Eqs. (4), (15), and (21), we find

Y = (M0)2 + Z, (A1)

where M0 is the diagonal bare mass matrix with elements m0
i and

Z = (M0)2B−(1 +B−) +M0(A− + A−B− +B+A−) +M0B+(1 +B+)M
0

+ A+(1 +B+)M
0 + A+M

0B− +M0B+M
0B− + A+A−. (A2)

In Eq. (A1), we have separated out the squared bare mass term (M0)2 and the one- and

two-loop contributions contained in Z. We recall that A±, B±, Y , and, consequently, Z are

functions of p2. It is further convenient to split

(M0)2 = M2 + δM2, (A3)

where M is the renormalized mass matrix whose elements are the mass eigenvalues and δM2

is the mass counterterm matrix. Thus,

Y = M2 +X, (A4)

where

X = δM2 + Z. (A5)

We note that, in Eq. (A4), M2 contains the zeroth-order terms, while X contains the one-

and two-loop contributions.

Neglecting three-loop contributions, in the three-generation case the eigenvalue equation

det(p2 − Y (p2)) = 0 becomes

(p2−Y11)(p
2−Y22)(p

2−Y33)−(p2−Y11)Y23Y32−(p2−Y22)Y13Y31−(p2−Y33)Y12Y21 = 0. (A6)
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Consider the neighborhood of p2 = M2
1 , where M1 is one of the mass eigenvalues: dividing

by (p2 − Y22)(p
2 − Y33), we have

(p2 − Y11)

[

1−
Y23Y32

(p2 − Y22)(p2 − Y33)

]

=
Y13Y31

p2 − Y33

+
Y12Y21

p2 − Y22

. (A7)

The factors Y23Y32, Y13Y31, and Y12Y21 are of two-loop order or higher. As p2 → M2
1 , we see

from Eq. (A4) that, to leading order, we have p2−Y22 = M2
1 −M2

2 and p2−Y33 = M2
1 −M2

3 .

Thus, neglecting three-loop contributions, as p2 → M2
1 , Eq. (A7) reduces to

M2
1 = Y11(M

2
1 ) +

(Y12Y21)(M
2
1 )

M2
1 −M2

2

+
(Y13Y31)(M

2
1 )

M2
1 −M2

3

, (A8)

which is a particular case of Eq. (23).

Recalling Eqs. (23), (A1), and (A3), the mass counterterms are then

δM2
i = (m0

i )
2 −M2

i

= (m0
i )

2 − Yii(M
2
i )−

∑

j 6=i

(YijYji)(M
2
i )

M2
i −M2

j

= −Zii(M
2
i )−

∑

j 6=i

(ZijZji)(M
2
i )

M2
i −M2

j

, (A9)

where Z is defined in Eq. (A2). In the last equality of Eq. (A9), we have replaced Yij → Zij,

since both are equal when i 6= j [cf. Eq. (A1)].

We note that, subject to our approximation, the amplitudes involving linear powers of

A± and B± in Eq. (A2) contain both one- and two-loop contributions.

Using Eq. (A2), we find for the diagonal terms

Zii = (m0
i )

2(B+ +B− +B2
+ +B2

−)ii +m0
i (A+ + A− + A+B+ + A−B− +B+A−)ii + (A+A−)ii

+
3

∑

j=1

[

m0
j(A+)ij(B−)ji +m0

im
0
j (B+)ij(B−)ji

]

. (A10)

We note that Zii depends not only on the bare fermion masses m0
i and m0

j displayed in

Eq. (A10), but also on additional ones present in the loop diagrams. We refer generically

to the latter as m0
l . Consistently with our approximation, in the contributions of two-loop

order, we replace the bare masses m0
i , m

0
j , and m0

l by the mass eigenvalues Mi, Mj , and Ml,

respectively. In the contributions of one-loop order, we replace

m0
i =

(

M2
i − Z

(1)
ii (M2

i )
)1/2

, (A11)
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and similarly for m0
l . In Eq. (A11), the superscript (1) stands for the one-loop contribution,

namely

Z
(1)
ii = M2

i

(

B
(1)
+ +B

(1)
−

)

(M2
i ) +Mi

(

A
(1)
+ + A

(1)
−

)

(M2
i ), (A12)

with an analogous expression for Z
(1)
ll .

The contributions involving ZijZji with j 6= i in Eq. (A9) are already of two-loop order or

higher, so that in the off-diagonal amplitudes Zij with j 6= i, we simply replacem0
i , m

0
j , m

0
l →

Mi,Mj,Ml. In this way, subject to the approximation of neglecting three-loop contributions,

the mass counterterms δM2
i given in Eq. (A9) are fully expressed in terms of the basic self-

energies A±(M
2
i ) and B±(M

2
i ) of Eq. (2) and the mass eigenvalues.
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