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We use the known soft and collinear limits of tree- and one-loop scattering amplitudes – computed
over a decade ago – to explicitly construct a subtraction scheme for next-to-next-to-leading order
(NNLO) computations. Our approach combines partitioning of the final-state phase space together
with the technique of sector decomposition, following recent suggestions in Ref. [1]. We apply this
scheme to a toy example: the NNLO QED corrections to the decay of the Z boson to a pair of
massless leptons. We argue that the main features of this subtraction scheme remain valid for
computations of processes of arbitrary complexity with NNLO accuracy.

I. INTRODUCTION

Asymptotic freedom and factorization of short- and
long-distance effects in the hard scattering of hadrons to-
gether allow us to employ perturbative computations in
QCD to extract information about the physics of parton-
parton interactions. Perturbative QCD computations are
organized by “loop order” in an expansion in the strong
coupling constant. At both leading- and next-to-leading
order in αs, the conceptual framework for perturbative
QCD computations is well-established. While this does
not necessarily make such calculations easy, or even fea-
sible in some cases, the existence of a general framework
is needed to claim a full understanding of the structure
of perturbative QCD at these orders.

The crucial element of such an understanding is the
concept of infrared and collinear safety. It leads to com-
putational algorithms [2] that permit the calculation of
arbitrary hadron-collider observables to next-to-leading
order (NLO) accuracy. These methods rely upon approx-
imating matrix elements containing an additional mass-
less particle by appropriate limits in singular regions of
phase space. These limits are simple enough to be in-
tegrated over the unresolved phase space of the radiated
particle, without any reference to a particular observable.
Unfortunately, the situation is much more confusing at
next-to-next-to-leading order (NNLO) and beyond. To
illustrate this point, we note that no NNLO computa-
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tion of a cross section for a 2 → 2 scattering process
with strongly interacting particles exists, in spite of the
fact that a large number of two-loop virtual amplitudes
[3–7] and all singular limits of tree- and one-loop ampli-
tudes [8–15] have been known for over ten years. The
reason is that a working algorithm that combines these
ingredients to obtain physical cross sections has not been
formulated. Consequently, a significant number of ex-
isting fully differential NNLO computations [16–30] were
performed using unorthodox approaches, that are only
remotely related to mainstream NLO subtractions ideas
considered generalizable to higher orders [2].

An alternative NLO subtraction scheme due to Frix-
ione, Kunszt and Signer (FKS) [31], was not the scheme
of choice when NLO computations were initially be-
ing undertaken, but has received renewed interest re-
cently [32]. The main idea of the FKS subtraction is to
partition the phase-space such that in every sector only
one definite external particle i can become soft, or two
definite external particles i and j can become collinear to
each other. If such a partitioning exists, it is clear that
all singularities in a given sector are easily extracted if
the unresolved phase space is parameterized in terms of
the energy of particle i and the relative angle between
directions of particles i and j.

In the case of NNLO computations the “elementary
building block” is the double-unresolved phase space,
where two given particles can become soft or collinear
to a third particle. Extraction of singularities in the
triple collinear limit is non-trivial, but can be accom-
plished by applying the technique of sector decomposi-
tion [16, 33, 34] to the three-parton unresolved phase-
space. However, early applications of sector decomposi-
tion at NNLO [16, 20, 21] did not perform an initial par-
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tition of the phase space to separate collinear singulari-
ties, and instead attempted to find a suitable phase-space
parameterization for an entire process at NNLO. The
complexity of this endeavor slowed down the progress
of NNLO computations for hadron-collider observables
using sector decomposition after initial success with such
computations for the hadro-production of the Higgs and
electroweak bosons.

It was recently pointed out by Czakon [1, 35] that by
combining the idea of phase-space partitioning from FKS
with the idea that sector decomposition can be applied to
real emission integrals [16, 34], a powerful framework for
NNLO computations is obtained. The purpose of this pa-
per is to elaborate on this observation and show explicitly
how this framework can be used to obtain physics results.
We extend the results of Refs. [1, 35] in several ways.

• We demonstrate how to obtain the real-virtual cor-
rections in a similar fashion as the double-real cor-
rections. This allows the known NLO results for
the process with an extra parton to be recycled into
the NNLO calculation, using an FKS partitioning
of the phase space combined with known results
for the eikonal current and the one-loop splitting
amplitudes [14].

• We address the scheme dependence of the NNLO
result by comparing the conventional dimensional
regularization calculation with one performed in
the four-dimensional helicity scheme.

• We show that the initial-state triple collinear pa-
rameterization introduced in Ref. [1] also furnishes
a suitable framework in which to extract singular-
ities from the final-state triple-collinear region of
phase space (we explain in detail in the text the
exact definitions of the double-collinear and triple-
collinear regions).

• We introduce a convenient parameterization for
handling the double-collinear regions of phase
space, based on an iterated application of the
Catani-Seymour phase-space mapping at NLO [2].

For the sake of simplicity, we study two-loop QED cor-
rections to the decay rate of the Z-boson to an electron-
positron pair. Dealing with QED corrections offers sig-
nificant simplifications, yet is far from trivial, and is a
good place in which to develop and test ideas.

In the following sections we explain in detail our ap-
proach. In Section II, we discuss the extraction of sin-
gularities from double-real radiation corrections. In Sec-
tion III, we explain how one-loop corrections to the one-
photon real-emission process are treated. In Section IV
we describe the dependence of the results on the choice
of the regularization scheme. In Section V we present
our conclusions.

II. DOUBLE REAL RADIATION

We consider the decay of a Z-boson to an e+e−γγ fi-
nal state, Z(pZ) → e+(p+)+ e−(p−)+γ(p1)+γ(p2). We
must design a strategy to integrate the squared matrix
element for this process over the phase space of the final-
state particles. This is non-trivial because such an inte-
gration eventually leads to phase-space regions that con-
tain collinear1 and soft singularities. The main problem
is not that such singularities exist, but that in different
regions of phase space, different subsets of particles lead
to singularities in the matrix elements. As a first step,
we partition the phase-space such that we know which
final-state particles can develop singularities in each par-
tition.
We begin by describing the collinear partitioning. We

introduce four functions

∆±
i = 1− n± · ni, (1)

where ni is a unit vector in the direction of the pho-
ton i and n± are the unit vectors in the directions of
the positively- and negatively-charged leptons. For each
photon, we introduce a partition of unity

1 =
∆+

i

∆+
i +∆−

i

+
∆−

i

∆+
i +∆−

i

= ρ+i + ρ−i , (2)

and obtain

1 =
2
∏

i=1

(ρ+i + ρ−i ) = ρ+1 ρ
+
2 + ρ−1 ρ

−
2 + ρ+1 ρ

−
2 + ρ−1 ρ

+
2 . (3)

We introduce ρai ρ
b
j = δ−a,−b

ij , and re-write the previous
equation as

1 = δ−−
12 + δ++

12 + δ−+
12 + δ+−

12 . (4)

Each of the contributions on the right-hand side of
Eq. (4) defines a primary sector whose phase space we
must parameterize separately. The superscripts of each
δ indicate the potentially singular collinear directions for
each of the two photons. For example, in the primary sec-
tor labeled by δ−−

12 both photons can become collinear to
the electron. In the sector labeled by δ+−

12 only one pho-
ton can be collinear to the electron, while the other can
become collinear to the positron. Using Eq. (4), we de-
compose the phase-space as

dLipse+e−γ1γ2
=
∑

a,b=±

dLipsabe+e−γ1γ2
, (5)

where

dLipsabe+e−γ1γ2
=

1

2!

∫

[dp−][dp+][dp1][dp2]

× (2π)dδd(pZ − p− − p+ − p1 − p2)δ
ab
12 ,

(6)

1 We treat all final state particles as massless.
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For convenience, we introduce the short-hand notation
[dp] = dd−1p/(2p0(2π)

d−1), where d = 4 − 2ǫ is the di-
mensionality of space-time. The overall 1/2! is the sym-
metry factor for the two final-state photons.
Out of the four primary sectors, two sectors contain

triple-collinear singularities where both photon momenta
are collinear to either the electron or positron momen-
tum. The other two sectors contain double-collinear
singularities, where the momentum of one photon is
collinear to the electron momentum while the other pho-
ton is collinear to the positron. It is sufficient to under-
stand one triple-collinear and one double-collinear par-
tition. The remaining primary sectors are obtained by
a simple re-labeling of the final-state particles. When
discussing phase-space parameterizations in the relevant
sectors, we make use of the fact that the electron and
positron cannot develop soft singularities, and that in
the process Z → e+e−γ1γ2, the kinematic configuration
where the electron and positron momenta are collinear
is non-singular. If such singularities could occur, only
an additional partitioning would be required to handle
them.

A. The triple collinear sector

1. Phase-space parameterization

We consider the δ−−
12 primary sector, where the pho-

tons and the electron can develop collinear singularities.
We must also consider soft singularities that appear when
the energies of one or both photons vanish. Our discus-
sion of the phase-space parameterization closely follows
Refs. [1, 35].
We first explain how the energies of the two photons

are parameterized. We denote the sum of the four-
momenta of the electron and positron by Q = p+ + p−.
Momentum conservation implies pZ − p1 − p2 = Q and
0 < Q2 < m2

Z . We write m2
Z −Q2 = ∆m2

Z , 0 < ∆ < 1.
Squaring the momentum conservation equation, we find

m2
Z − 2mZ(E1 + E2) + 2E1E1(1− n1 · n2) = Q2, (7)

where E1,2 are the energies of the two photons and n1,2

are three-dimensional unit vectors along their momenta.
We parameterize the photon energies by Ei = ξimZ/2,
and the relative angle between them by η12 = (1 − n1 ·
n2)/2. Solving for ξ1 or ξ2 in Eq. (7) then yields

ξ1 =
∆− ξ2

1− ξ2η12
or ξ2 =

∆− ξ1
1− ξ1η12

. (8)

We can remove the symmetry factor in Eq. (6) by re-
quiring that E1 > E2 and by using the fact that the
matrix element is symmetric under the interchange of γ1
and γ2. We obtain

dLips−−
e+e−γ1γ2

= (2π)d
∫

[dp−][dp+][dp1][dp2]δ
−−
12 ×

δd(pZ − p− − p+ − p1 − p2)θ(ξ1ξmax(ξ1)− ξ2),

(9)

where

ξmax(ξ1) = min

[

1,
1− ξ1

ξ1(1− ξ1η12)

]

. (10)

We decompose the four-particle phase-space into “regu-
lar” and “singular” phase-spaces:

dLips−−
e+e−γ1γ2

= dLipsreg × dLips−−
sing, (11)

where

dLips−−
sing = [dp1][dp2] δ

−−
12 θ(ξ1ξmax(ξ1)− ξ2), (12)

and

dLipsreg = [dp−][dp+](2π)
dδ(d)(Q − p+ − p−). (13)

We begin with a discussion of the singular phase-space.
We note that since the Z-boson decays at rest and there
are only four particles in the final state, we can choose
the momenta of any three particles to be in the four-
dimensional space, without any (d−4)-dimensional com-
ponents. The three-momentum of the fourth particle is
determined by momentum conservation, and is also in the
four-dimensional space. To have a simple parametriza-
tion, we choose the direction of the electron momentum
to be the z-axis. Then, p− = E−(1,n−), n− = (0, 0, 1)
and p1,2 = E1,2 (1,n1), where n1 = (sin θ1, 0, cos θ1) and
n2 = (sin θ2 cosϕ, sin θ2 sinϕ, cos θ2). We also introduce
the following notation for the scalar product of n− with
n1,2:

η1,2 =
1− n− · n1,2

2
. (14)

We then find the scalar products

2pi · p− = 2E−mZξiηi, 2p1 · p2 = m2
Zξ1ξ2η12. (15)

We now write the parametrization of the singular phase-
space using the angular variables just introduced:

dLips−−
sing =

δ−−
12 θ(ξ1 − ξ2)

64π2

(mZ

2π

)2d−4

× dΩ
(d−2)
1 dΩ

(d−3)
2 dξ1 ξ1−2ǫ

1 dξ2 ξ1−2ǫ
2

× dη1 [η1(1− η1)]
−ǫ dη2 [η2(1− η2)]

−ǫ

× d cosϕ
(

1− cos2 ϕ
)−1/2−ǫ

.

(16)

The goal is to rewrite the integration over cosϕ in a way
that makes the factorization of singularities manifest. To
this end, we introduce the variable κ:

κ =
(1− cos(θ1 − θ2)) (1 + cosϕ)

2 (1− cos(θ1 − θ2) + (1 − cosϕ) sin θ1 sin θ2)
. (17)

Because cosϕ can be used to parameterize η12, we will
need a relationship between η12 and κ. It can be easily
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derived by solving the above equation for cosϕ and then
using the solution in the expression for η12. We find

η12 =
(η1 − η2)

2

Ñ(η1, η2, κ)
, (18)

where

Ñ(η1, η2, κ) = η1 + η2 − 2η1η2

− 2(1− 2κ)
√

η1η2(1− η1)(1− η2).
(19)

Finally, we need the Jacobian for the ϕ → κ variable
transformation, and a simple expression for sin2 ϕ = 1−
cos2 ϕ. The relevant equations are

d cosϕ

dκ
=

2η212
(η1 − η2)2

, 1− cos2 ϕ =
4κ(1− κ)η212
(η1 − η2)2

.

(20)
We can now change variables ϕ → κ in Eq. (16) for the
singular phase-space. We find

dLips−−
sing =

δ−−
12 θ(ξ1 − ξ2)m

2d−4
Z

24+2ǫ(2π)2d−2

× dΩ
(d−2)
1 dΩ

(d−3)
2 dξ1 ξ1−2ǫ

1 dξ2 ξ1−2ǫ
2

× dη1 [η1(1− η1)]
−ǫ

dη2 [η2(1 − η2)]
−ǫ

× dκ (κ(1− κ))−1/2−ǫ η1−2ǫ
12

|η1 − η2|1−2ǫ
.

(21)

As we will see later, Eq. (21) gives us the singular phase
space in a form that is convenient for the extraction of
singularities.
Next, we discuss the regular phase space. We write it

as

dLipsreg = [dp−][dp+](2π)
dδ(d)(Q− p+ − p−)

=
dΩ

(d−1)
e−

2(2π)d−2

E1−2ǫ
−

2(Q0 −Q · n−)
,

(22)

where E− = Q2/[2(Q0−Q·n−)] is the electron energy. It
is important to understand which elements of the calcu-
lation can be simplified by setting the number of space-
time dimensions to four, d → 4. In the context of the
phase-space discussion, we factor out the leading order
phase-space for Z → e+e− in Eq. (22) and treat is as
four-dimensional. Everything else in Eq. (22) is treated
with exact ǫ-dependence. The leading-order phase-space
that we use in what follows reads

dLipsZ→e+e− =
dΩ(d−1)

8(2π)d−2

(mZ

2

)−2ǫ

→
d cos θdϕ

32π2
. (23)

The regular phase-space becomes

dLipsreg = dLipsZ→e+e−
2E−

(Q0 −Q · n−)

(

2E−

mZ

)−2ǫ

,

(24)
where dLipsZ→e+e− is taken in four dimensions, as in
Eq. (23).

With the explicit parametrization of the phase space
at hand, we are ready to discuss how the momenta of the
final-state particles are generated. We follow the simple
procedure described below:

1. first, we use ξ1,2, η1,2, κ to generate the energies and
momenta of the two photons;

2. second, we calculate Q = pZ − p1 − p2;

3. third, we obtain E− = Q2/(2(Q0 − Q · n−)), as-
suming n− is along the z-axis;

4. finally, the four-momentum of an electron is taken
as p− = E−(1, 0, 0, 1), and the four-momentum of
the positron is calculated by p+ = pZ−p1−p2−p−.

The remaining issue is the extraction of singularities
from the matrix element of Z → e+e−γ1γ2 in the δ−−

12

sector. The matrix element is singular if either photon
is soft, and also if either photon momentum is collinear
to the electron momentum. By analyzing the potentially
singular denominators, it is straightforward to find that
there are three sectors to consider. These sectors are
identified by changes of variables (ξ, η, κ) → {xi=1..5}
that we make in order to factor out all singularities from
the matrix element. The three sectors are2:

1. S−−
1 , where ξ1 = x1, ξ2 = xmaxx2x1, η1 = x3,

η2 = x4x3, κ = x5;

2. S−−
2 , where ξ1 = x1, ξ2 = xmaxx2x4x1, η1 = x3x4,

η2 = x3, κ = x5;

3. S−−
3 , where ξ1 = x1, ξ2 = xmaxx2x1, η1 = x2x3x4,

η2 = x3, κ = x5.

For each of the sectors Si we must express the phase-
space through the new variables and find the singular
limits of the amplitudes. We illustrate how this is accom-
plished for the sector S−−

1 . The remaining two sectors
are handled in a similar fashion. We note that we obtain
three sectors, rather than the five obtained in Ref. [1],
because of our restriction to QED, which does not con-
tain the analog of a triple-gluon vertex and therefore has
a slightly simplified singularity structure.

2. The sector S
−−
1

For the sector S−−
1 , we write the phase-space in the

following form

dLips−−
S1

= dLips−−

S1

[

x4
1x

2
2x

2
3x4m

2
Zδ

−−
12

]

,

dLips−−

S1

= dNorm PSw (PS)
−ǫ

×
dx1

x1+4ǫ
1

dx2

x1+2ǫ
2

dx3

x1+2ǫ
3

dx4

x1+ǫ
4

dκ

π(κ(1 − κ))1/2
,

(25)

2 We use the notation xmax for the function ξmax(x1)
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where

dNorm = dLipsZ→e+e−
Γ(1 + ǫ)2m2d−6

Z

(4π)d
BRR
ǫ ,

BRR
ǫ = 1−

π2

2
ǫ2 − 2ζ3ǫ

3 +
3π4

40
ǫ4 +O(ǫ5),

(26)

and the normalization factors are given by

PSw =
x2
max(1 − x4)

N(x3, x4, x5)

2E−

(Q0 −Q · n−)
,

PS = 16

[

(1− x4)

N(x3, x4, x5)

]2

(1− x3)(1 − x4x3)

× [κ(1− κ)]x2
max

(

2E−

mZ

)2

.

(27)

Note that the normalization of the various pieces is cho-
sen so that the mZ -dependent factor in dNorm can be
factored out entirely. This will be true for both the two-
loop virtual and real-virtual contributions. The factor
of m2

Z in the square brackets in Eq. (25) is present to
make the product of the square bracket and the ampli-
tude squared for Z → e+e−γγ dimensionless. Note also
that dNorm in Eq. (26) is the same for all sectors, and
that we will be using it in equations for other sectors be-
low. The function N(x3, x4, x5) appears in the equation
for η12 after it is expressed through the new variables. It
reads

N(x3, x4, x5) = 1 + x4 − 2x3x4

− 2(1− 2x5)
√

x4(1− x3)(1− x3x4).
(28)

The momenta of all the particles are written through x-
variables in the following way:

E1 =
mZ

2
x1, E2 =

mZ

2
x1x2xmax,

η12 =
x3(1− x4)

2

N(x3, x4, x5)
,

cos θ1 = 1− 2x3, cos θ2 = 1− 2x3x4.

(29)

Angles θ1,2 are the polar angles for the two photons. We
take sin θ1,2 to be positive-definite. We choose photon γ1
to be in the x− z plane, so that ϕ1 = 0. The azimuthal
angle of the photon ϕ2 is calculated to be

sinϕ2 =

√

4x5(1− x5)(1− x4)

N(x3, x4, x5)
, cosϕ2 = λ

√

1− sinϕ2
2,

(30)
where λ = sgn((1 − cos θ1 cos θ2) − 2η12). Finally, the
momenta of the two photons are given by

p1 = E1(1, sin θ1, 0, cos θ1),

p2 = E2(1, sin θ2 cosϕ, sin θ2 sinϕ, cos θ2).
(31)

The momentum of the electron is p− = E−(1, 0, 0, 1),
and the positron four-momentum is obtained from mo-
mentum conservation.

With the parameterization of the phase-space at hand,
we can discuss extraction of singularities from the matrix
element. To this end, the factor in square brackets in
Eq. (25) is combined with the amplitude squared. This
should give a finite expression in all singular limits. We
introduce the regular function

F1({xi=1..5}) =
[

x4
1x

2
2x

2
3x4m

2
Zδ

−−
12

]

|MZ→e+e−γγ |
2,
(32)

A calculation of Z → e+e−γγ contribution to Z-decay
rate involves integration of the function F1 over the
phase-space in Eq. (25):

∫

dLips−−

S1

F1(x1, x2, x3, x4, x5). (33)

Because of the structure of dLips−−

S1

in Eq. (25), the in-

tegrand is singular if one of the integration variables xi,
i = 1, ..4 vanishes. Such singularities can be extracted
by writing

x−1−niǫ
i = −

1

niǫ
δ(x)+

[

1

xi

]

+

−nǫ

[

lnxi

xi

]

+

+O(ǫ2) (34)

for all of the singular variables. The plus-distributions
are defined in a standard way:

1
∫

0

dx

[

1

x

]

+

f(x) =

1
∫

0

dx
f(x)− f(0)

x
. (35)

Resolving the plus-distributions as in Eq. (35), we find
that the integration in Eq. (33) requires knowing F1 when
one or more of its arguments vanishes. The calculation
of these limits requires care. Although the function F1

is regular everywhere, the matrix element MZ→e+e−γγ

is singular when certain x-variables vanish. The physical
limits that correspond to a set of particular x-variables
vanishing can be deduced from the expressions for the
momenta given in Eqs. (29, 31). We describe the relevant
limits below.

• If x1 = 0, the energies of both photons vanish. This
corresponds to the double-soft limit. In the double-
soft limit, the QED eikonal currents completely fac-
torize and we obtain

|MZ→e+e−γγ |
2 → e4J1J2|MZ→e−e+ |

2, (36)

where the square of the eikonal current for the pho-
ton i reads

Ji =
2p− · p+

(p− · pi)(p+ · pi)
. (37)

The scalar products are computed using the ex-
plicit parametrization of the momenta given in
Eqs.(29, 30, 31). We obtain for the function F1

F1|x1=0 =
16e4

m2
Z

|MZ→e−e+ |
2. (38)
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• If x1 6= 0 but x2 = 0, the photon γ1 is hard and the
photon γ2 is soft. The matrix element becomes

|MZ→e+e−γ1γ2
|2 → e2J2|MZ→e+e−γ1

|2 (39)

in this limit. Calculating the function F1 for x1 6=
0, x2 = 0, we obtain

F1|x2=0 = e2
4(p+ · p−)x

2
1x3

E−E+x2
max

(1− n+ · n1)

∆12

× |MZ→e+e−γ1
|2,

(40)

where ∆12 =
2
∏

i=1

(1− ni · n+ − ni · n−).

• Equation (40) develops singularities when x3 → 0,
in which case photon γ1 becomes collinear to the
electron. We do not show helicity labels in what
follows because helicity is conserved along massless
fermion lines. In the collinear limit we find

|MZ→e+e−γ1
|2 ≈

2e2

s1e
Peγ(ǫ, z)|MZ→e+ẽ− |

2, (41)

where the momentum of ẽ− is given by the sum
p− + p1, Peγ(ǫ, z) is the e → e + γ splitting func-
tion given in the Appendix, and s1e = 2p− · p1 =
2E−mZx1x3. Upon evaluating F1 in that limit, we
obtain

F1|x2=0,x3=0 =
16e4x1

mZE−x2
max∆12

Peγ(ǫ, z)

× |MZ→e+ ẽ− |
2.

(42)

The fraction of energy carried away by the electron
in the e → e+ γ splitting is expressed through the
variable z = 1/(1 +mZx1/(2E−)).

• We next consider the x4 = 0 limit, which corre-
sponds to the photon momentum p2 being collinear
to the electron momentum p−. We calculate

F |x4=0 =
e2x3

1x2x3δ
−−
12 mZ

E−xmax
Peγ(ǫ, z)

× |MZ→e+ ẽ−γ1
|2,

(43)

where the momentum of ẽ− is p− + p2 and z =
1/(1 +mZxmaxx2x1/(2E−)).

• Finally, we consider x3 = 0. This limit corresponds
to the triple collinear limit, when the momenta of
photons γ1 and γ2 are parallel to the electron mo-
mentum p−. In the triple collinear limit the matrix
element factorizes as

|MZ→e+e−γ1γ2
|2 =

(

2e2

s12e

)2

× Pǫ,eγ1γ2
(ǫ, ze, z1, z2)|MZ→e+ ẽ− |

2,

(44)

where the momentum of ẽ− is p− + p1 + p2 and
the triple splitting function Peγ1γ2

can be found in
the Appendix. The energy fractions in this case are
given by

ze =

[

1 +
mZ

2E−

x1(1 + xmaxx2)

]−1

,

z1 =
mZx1

2E−

ze, z2 =
mZx1x2xmax

2E−

ze.

(45)

To compute F1 at x3 = 0, we introduce the notation

s12e ≈ 2E−mZx1x3d12e +O(x2
3),

d12e = 1 + x2xmaxx4

+
mZ

2E−

x1x2xmax(1− x4)
2

N(0, x4, x5)
.

(46)

Using this notation, the function F1 is easy to write
down. As an example, we present an explicit result
for F1(x1, x2, 0, x4, x5) in the CDR regularization
scheme:

F1|x3=0 =
e4

E2
−

|MZ→e+ẽ− |
2

{

x2
1x2

2xmax
[P1(ǫ, ze, z1, z2)

+P2(ǫ, ze, z2, z1)] +
x2
1x

2
2x4

d12e
P2(ǫ, ze, z1, z2)

+
x2
1x2

d12exmax
P2(ǫ, ze, z2, z1)− (1 − ǫ)2

x2
1x

2
2x4

d212e

×

(

xmaxx2x4 +
1

xmaxx2x4

)

+ 2ǫ(1− ǫ)
x2
1x

2
2x4

d212e

}

.

(47)

The functions P1 and P2 are presented in the Ap-
pendix.

The above formulae describe all the QED singular lim-
its in the sector S−−

1 . They can be implemented in a
computer code in a straightforward way.

B. The double collinear sector

We next consider the δ−+
12 primary sector. The singu-

larities in this sector arise when the photon γ1 is collinear
to the electron, and the photon γ2 is collinear to the
positron. Soft singularities for both photons are possi-
ble.

1. The phase-space parametrization

To develop a suitable description of the four-particle
phase space in this partition, we make use of the momen-
tum parametrization developed by Catani and Seymour
[2] for next-to-leading order calculations. Specifically, we
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adopt the momentum mapping for final-final dipoles, us-
ing the language of Ref. [2]. We will also use the nomen-
clature employed in Ref. [2] to describe different particles
contributing to the dipoles, to make clear the connection
to the discussion in that reference.
We parameterize the phase-space for Z → e+e−γ1γ2

in two steps. In the first step, we treat photon γ1 as
“emitted”, the electron as “emitter” and the positron as
“spectator”. The 3 → 2 momentum mapping in this case
is given in Ref. [2]. It is determined by the momentum
conservation equation

γ1 + p− + p+ = p̃1− + p̃+, (48)

and the relations between old and new momenta:

p1 = z1p̃1− + y1(1− z1)p̃+ + p1,⊥,

p− = (1− z1)p̃1− + y1z1p̃+ − p1,⊥,

p+ = (1− y1)p̃+.

(49)

The momenta p̃1− and p̃+ are light-like: p̃21− = p̃2+ = 0.
The momentum p1,⊥ is orthogonal to both of them. For
the momentum parametrization in Eq. (49), the phase-
space reads

dLips(p−, p+, p1, p2) =
dLips(p̃1−, p̃+, p2)

2!

×
dy1dz1dΩ

(1)
d−2

4(2π)d−1
(2p̃1− · p̃+)

1−ǫ

× (1− y1)
1−2ǫ

y−ǫ
1 (z1(1− z1))

−ǫ
.

(50)

In the second step, we apply a similar mapping for the
momenta of the “reduced” reaction Z → p̃1− + p̃+ + p2,
by considering γ2 as “emitted”, ẽ+ as “emitter” and ẽ1−
as “ spectator”. The momentum conservation equation
becomes

p̃1− + p̃+ + p2 = p̃+2 + ˜̃p1−, (51)

and the new momentum parameterizations read

p2 = z2p̃+2 + y2(1− z2)˜̃p1− + p2,⊥,

p̃+ = (1− z2)p̃+2 + y2z2 ˜̃p1− − p2,⊥,

p̃1− = (1− y2)˜̃p1−.

(52)

Continuing with the parametrization of the phase-space
shown in Eq. (50), we obtain

dLips(p−, p+, p1, p2) =
dLips(˜̃p1−, p̃2+)

2!

× (m2
Z)

2−2ǫ
dy1dz1dΩ

(1)
d−2

4(2π)d−1

dy2dz2dΩ
(2)
d−2

4(2π)d−1

× y−ǫ
1 z−ǫ

1 y−ǫ
2 z−ǫ

2 (1− y1)
1−2ǫ

× (1 − y2)
2−3ǫ(1− z2)

1−2ǫ(1− z1)
−ǫ.

(53)

We can express the momenta of all particles through
y1,2, z1,2. We choose ˜̃p1−, p̃2+ to be along the positive

and negative z-axis respectively. The corresponding mo-
menta read

˜̃p1− =
mZ

2
(1, 0, 0, 1) , p̃2+ =

mZ

2
(1, 0, 0,−1) . (54)

We choose p2,⊥ along the x-axis and use Eq. (52) to ob-
tain p̃+ and p2. We find

p2 =
mZ

2

(

z2 + y2(1− z2), 2
√

z2(1 − z2)y2,

0, y2(1− z2)− z2

)

,

p̃+ =
mZ

2

(

(1 − z2 + y2z2),−2
√

z2(1− z2)y2,

0, y2z2 − (1 − z2)
)

.

(55)

We can write momenta of the photon γ1 and the electron
using the above equations. The only semi-intricate step
is the derivation of p1,⊥. We find

p1,⊥ = −mZ

√

z1z2(1− z1)y1(1 − y2)y2n
ϕ
+

+mZ

√

z1(1− z1)y1(1− y2)(1 − z2)n
ϕ
⊥,

(56)

where

n
ϕ
+ = (cosϕ, 0, 0, cosϕ) , n

ϕ
⊥ = (0, cosϕ, sinϕ, 0) .

Using Eq. (56), we derive the following expression for the
energy of the photon γ1:

E1 =
mZ

2

[

z1(1− y2) + y1(1− z1)(1 − z2 + y2z2)

− 2
√

y1z1(1− z1)z2y2(1 − y2) cosϕ
]

.
(57)

The energy of the photon γ2 can be read off from Eq. (55).
We now rewrite Eq. (53) by factoring out the Born

phase-space and several other factors, similar to what
has been done for the triple-collinear sector. From the
momentum parametrization we see that, in addition to
y1,2, z1,2, we need the azimuthal angle ϕ to describe the
phase space. There are no singularities associated with
this angle in the double-collinear sector, so we take it
to be ϕ = 2πx5, 0 ≤ x5 ≤ 1. In Eq. (53) we identify

dLips(˜̃p1−, p̃2+) with the leading order phase-space and
obtain

dLips(p−, p+, p1, p2) = dNorm Psw PS−ǫ
gen

× dy1dz1dy2dz2dx5y
−ǫ
1 z−ǫ

1 y−ǫ
2 z−ǫ

2 m2
Z ,

(58)

where dNorm is given in Eq. (26). The other factors read

PSw =
1

2
(1− y1)(1 − y2)

2(1 − z2),

PSgen = 4(1− y1)
2(1− y2)

3(1− z2)
2

× (1− z1)(1 − cos2 ϕ).

(59)

There are two scalar products that can become singular
in the collinear limits:

2p+ · p2 = (1 − y1)y2m
2
Z ,

2p− · p1 = y1(1 − y2)(1 − z2)m
2
Z .

(60)
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Analyzing these scalar products and the expressions for
the photon energies in Eqs.(55,57), we conclude that for
the photon i = 1, 2, the soft singularity corresponds to
yi = 0, zi = 0, while the collinear singularity corresponds
to yi = 0 and zi 6= 0. We also note that the apparent van-
ishing of scalar products and photon energies at yi, zi = 1
also implies vanishing of the electron or positron energy,
and for this reason does not lead to non-integrable sin-
gularities.

The two singular limits for each photon are factorized
with the help of the two sectors yi < zi and zi < yi. Since
there are two photons, we get four sectors altogether. We
show below the changes of variables needed to completely
factorize singularities in each sector:

S−+
1 ,where y1 = x1, z1 = x1x2, y2 = x3, z2 = x3x4,

S−+
2 ,where y1 = x2x1, z1 = x1, y2 = x3, z2 = x3x4,

S−+
3 ,where y1 = x1, z1 = x1x2, y2 = x3x4 z2 = x3,

S−+
4 ,where y1 = x2x1, z1 = x1, y2 = x3x4, z2 = x3.

(61)

We note that in sector S−+
1 , there are only soft singu-

larities. In sectors S−+
2 , S−+

3 , there is a soft singularity
for one of the photons, and both soft and collinear sin-
gularities for the other. In sector S−+

4 there are soft
and collinear singularities for both photons. The extrac-
tion of all the limits in all sectors is similar to the triple
collinear limit that we already discussed. For illustrative
purposes, we only discuss the most difficult sector S−+

4 .

2. Sector S
−+

4

To discuss singular limits in sector S−+
4 it is convenient

to introduce the following short-hand notation for the
photon energies:

E1 =
mZ

2
x1Ω1, E2 =

mZ

2
x3Ω2, (62)

where

Ω1 = (1 − y2) + x2(1− z1)(1 − z2 + y2z2)

− 2
√

x2(1 − z1)z2y2(1− y2) cosϕ,

Ω2 = 1 + x4 (1− z2) .

(63)

In this sector, singularities occur if any of the variables
x1, x2, x3, x4 vanishes. To enable extraction of singulari-
ties, we write the phase space as

dLipse+e−γ1γ2
= dNorm Psw PS−ǫ

×
dx1

x1+2ǫ
1

dx2

x1+ǫ
2

dx3

x1+2ǫ
3

dx4

x1+ǫ
4

dx5

×
[

x2
1x2x

2
3x4m

2
Zδ

−+
12

]

,

(64)

where dNorm is the same as in the triple collinear limit.
The other factors read

PSw =
1

2
(1− y1)(1 − y2)

2(1− z2),

PS = 4(1− y1)
2(1− y2)

3(1− z1)

× (1− z2)
2(1 − cos2 ϕ).

(65)

The finite function in this case is given by the product of
the term in brackets in Eq. (64) and the squared matrix
element for Z → e+e−γ1γ2:

F4({xi=1,..5}) = x2
1x2x

2
3x4δ

−+
12 |MZ→e+e−γ1γ2

|2. (66)

We now describe several of the singular limits in this
sector.

• The double-soft limit corresponds to x1 = 0 and
x3 = 0. In this limit, the function F4 evaluates to

F4|x1=0,x3=0 =
16e4

m2
ZΩ1Ω2

|MZ→e+e− |
2. (67)

• If x1 = 0 and x4 = 0, the photon γ1 is soft and the
photon γ2 is collinear to the positron. The function
F4 reads

F4|x1=0,x4=0 =
32x3e

4

(1− z2)m2
ZΩ1∆12

× Peγ(ǫ, z)|MZ→ẽ+e− |
2,

(68)

where z = 1/(1 + E2/E+) and the ẽ+ momentum
is p+ + p2.

• If x1 = 0, the photon γ1 becomes soft and the func-
tion F4 reads

F4|x1=0 =
8x2

3x4e
2(p− · p+)(1− n− · n2)

(1 − y2)(1 − z2)mZE+Ω1∆12

× |MZ→e+e−γ2
|2.

(69)

• A new type of singular limit corresponds to x2 = 0
and x4 = 0. This double-collinear limit corresponds
to photon γ1 collinear to the electron and photon γ2
collinear to the positron. The function F4 evaluates
to

F4|x2=0,x4=0 =
16e4x1x3

m2
Z(1− z2)∆12

× Peγ(ǫ, z1)Peγ(ǫ, z2)|MZ→ẽ− ẽ+ |
2,

(70)

where z1 = 1/(1+E1/E−) and z2 = 1/(1+E2/E+).
The momentum of ẽ− is the sum of the e− and γ1
momenta, and the momentum of ẽ+ is the sum of
the e+ and γ2 momenta.

The calculation of other limits proceeds along similar
lines. The resulting expressions are again straightforward
to implement in a computer code.
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III. VIRTUAL CORRECTIONS TO SINGLE

PHOTON EMISSION

In this Section we discuss the one-loop corrections to
the single photon emission process Z → e+e−γ. We
first explain the partitioning of the phase-space and its
parametrization. We then discuss how to compute sin-
gular limits of scattering amplitudes.
Consider the process Z → e−e+γ1. Singularities can

arise if the photon is either soft or collinear to the electron
or positron. To account for the collinear divergences, we
partition the phase space as

1 = δ−1 + δ+1 , (71)

where δ±1 = ρ∓1 , and ρ±1 are defined in Section II. We
write

dLipse+e−γ1
=
∑

a=±

dLipsae+e−γ1
, (72)

where

dLipsae+e−γ1
=

∫

[dp−][dp+][dp1]

× (2π)dδd(pZ − p− − p+ − p1) δ
a
1 .

(73)

In what follows, we consider the primary sector δ−1 ,
where a collinear singularity can only occur when mo-
menta of the electron and the photon become parallel.
The other sector δ+1 gives a symmetric contribution that
can be analyzed identically. We use a parametrization
that is similar to the two-photon case. For dLips−e+e−γ1

,
we parameterize the photon energy as E1 = mZξ1/2 and
the relative angle between the photon and the electron as
cos θ1 = 1−2η1. The reference frame is fixed by requiring
that the electron momentum is along the z-axis and that
the photon momentum is in the x − z plane. Explicitly,
we write

p− = E− (1, 0, 0, 1) ,

p1 =
mZξ1
2

(1, sin θ1, 0, cos θ1) .
(74)

The momentum of the positron is determined from mo-
mentum conservation, p+ = pZ − p− − p1. The en-
ergy of the electron is found by first computing the
momentum Q = pZ − p1 and then calculating E− =
Q2/[2(Q0 −Q · ne)]. Finally, with this parametrization
of the momenta, and borrowing notation that we already
used when discussing the double-real emission, we write
the phase space as

dLips−e−e+γ = LipsZ→e+e−

dΩ
(d−2)
γ−

(2π)d−1

×
m2−2ǫ

Z E−

2(Q0 −Q · n−)

(

2E−

mZ

)−2ǫ

×
dξ1

ξ1+2ǫ
1

dη1

η1+ǫ
1

(1− η1)
−ǫ [ξ21η1δ

−
1

]

.

(75)

We use Eq. (75) to construct a finite, integrable func-
tion when it is combined with the squared matrix el-
ement. To this end, we note that ξ1 and η1 are al-
ready suitable variables for the extraction of singularities,
with ξ1 controlling the soft limit and η1 controlling the
collinear limit. The squared matrix element in the real-
virtual case is given by the interference of the tree and
one-loop Z → e+e−γ amplitudes. We employ Passarino-
Veltman reduction to express the one-loop scattering am-
plitude Z → e+e−γ in terms of one-loop integrals, and
use the QCDloops program [36] to compute master inte-
grals.
At first, it appears that we must simply repeat what

we have done for the double-real emission corrections,
extracting singularities of the matrix elements when ξ1
or η1 goes to zero. However, there is a subtlety here.
One-loop amplitudes are not rational functions of ξ1 and
η1, in contrast to their tree-level counterparts. To ame-
liorate this problem, we note that the master integrals
which produce singularities in the δ−1 sector can depend
on se1 = 2p− · p1 raised to a non-integer power. Symbol-
ically,

2Re
(

M
(1)
Z→e+e−γM

(0)∗
Z→e+e−γ

)

= B1 +B2(se1)
−ǫ, (76)

where B1,2 are functions that can be Taylor expanded
around the se1 = 0 limit. Since se1 ∼ ξ1η1, the second
term in the above equation provides additional O(ǫ) con-
tributions to the exponents of singular variables. Obtain-
ing those exponents correctly is crucial for constructing a
valid expansion of the real-virtual corrections in inverse
powers of ǫ. Because there are two terms in Eq. (76), we
must introduce two functions F1,2(ξ1, η1) to parameterize
the matrix element. We write

[

ξ21η1δ
−
1

]

2Re
(

M
(1)
Z→e+e−γM

(0)∗
Z→e+e−γ

)

=

F1(ξ1, η1) + ξ−ǫ
1 η−ǫ

1 F2(ξ1, η1) = F (ξ1, η1).
(77)

Away from the singular points ξ1 = 0 and η1 = 0, the
function F (ξ1, η1) is obtained by computing one-loop cor-
rections to the radiative decay Z → e+e−γ using stan-
dard techniques. In the singular limits, we must distin-
guish between the two contributions. Inserting Eq. (77)
into the phase space and performing the plus-distribution
expansion for the ξ1 and η1 variables, we generate many
terms with ξ1 = 0 and/or η1 = 0. We now discuss how
to obtain F1,2 at these singular points.
First, we consider the case ξ1 = 0, which corresponds

to the photon γ1 becoming soft. In that limit, both tree
and one-loop QED amplitudes factorize into the products
of the eikonal current and the corresponding amplitudes
with the photon removed [15]:

M
(0,1))
Z→e+e−γ → e

(

p− · ǫ1
p− · p1

−
p+ · ǫ1
p+ · p1

)

M
(0,1)
Z→e+e− , (78)

where ǫ1 is the photon polarization vector. Using this
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result, it is easy to find the limit of the function F (ξ1, η1):

F |ξ1=0 = lim
ξ1=0

[

ξ21η1δ
−
1

× 2Re
(

M
(1)
Z→e+e−γM

(0)∗
Z→e+e−γ

)

]

=
4e2

m2
Z

2Re
(

M
(1)
Z→e+e−M

(0)∗
Z→e+e−

)

.

(79)

Because no terms that behave like ξ−ǫ appear in this
limit, we conclude that

F1(0, η1) = F (0, η1), F2(0, η1) = 0. (80)

The next step is the calculation of the collinear η1 = 0
limit. It is much more involved. The factorization in this
case is given in terms of splitting amplitudes [14]:

M
(0)
Z→e−e+γ1

→ Split
(0)
e∗
λ
→e−γM

(0)
Z→e−e+ ,

M
(1)
Z→e−e+γ1

→ Split
(0)
e∗
λ
→e−γM

(1)
Z→e−e+

+ Split
(1)
e∗
λ
→e−γM

(0)
Z→e−e+ .

(81)

Hence, the one-loop amplitude factorizes into the one-
loop splitting amplitude times the tree photon-less ampli-
tude, and the tree splitting amplitude times the one-loop
photon-less amplitude. The relevant splitting functions
were computed in Ref. [14]. They are given in terms of
“standard matrix elements”. For an e∗ → eaγb splitting,
the situation here, the QED splitting amplitudes are

Split(0) = −
ūa 6ǫbue∗

sab
,

Split(1) = −2
(

r3(z)Split
(0) − r4(z)Split

(2)
)

,

(82)

where

Split(2) =
2ūa 6kbue∗(ka · ǫb)

s2ab
, (83)

and the two functions r3,4(z) parameterize loop contri-
butions to the splitting functions. We must square the
splitting functions and sum over the polarizations of the
final-state particles. We find

Split(0) × Split(0) →
2

sab
Peγ(ǫ, z),

Split(0) × Split(2) → −
2

sab

z(1 + z)

1− z
.

(84)

We can now use Eqs. (81, 82, 84), to derive the collinear
η1 → 0 limit of the matrix element:

Re
(

M
(0)∗
Z→e+e−γM

(1)
Z→e+e−γ

)

→

2Peγ(ǫ, z)

s1e
Re
(

M
(0)∗
Z→e+e−M

(1)
Z→e+e−

)

−
4

s1e

(

Peγ(ǫ, z)r3(z) +
z(1 + z)

1− z
r4(z)

)

.

× Re
(

M
(0)∗
Z→e+e−M

(0)
Z→e+e−

)

,

(85)

where s1e = 2p− · p1. The two functions r3,4(z) are pro-

portional to s−ǫ
1e =

(

m2
Zξη(1 − z)

)−ǫ
(see Ref. [14]). Con-

sequently, the first term in the right hand side of Eq. (85)
contributes to the function F1(ξ1, 0), and the second term
contributes to function F2(ξ1, 0). We find

F1|η1=0 =
ξ1Peγ(ǫ, z)

E−mZ
Re
(

2M
(0)∗
Z→e+e−M

(1)
Z→e+e−

)

,

(86)

where further simplifications are possible since z = 1−ξ1.
The limit of the function F2 is more complicated. It reads

F2(ξ1, 0) = −2Re
[

M
(0)
Z→e+e−M

(0)
Z→e+e− (−z)

−ǫ
]

×
2ξ1

E−mZ

(

Peγ(ǫ, z)r̃3(z) +
z(1 + z)

1− z
r̃4(z)

)

,

(87)

where the two functions r̃3,4(z) are re-scaled versions of
r3,4(z) in Ref. [14]. They are

r̃3 = −
1

2

(

zf1(z)− 2f2 +
(1 − δRǫ)ǫ

2

(1− ǫ)(1 − 2ǫ)
f2

)

,

r̃4 =
1

2

ǫ2(1 − δRǫ)

(1− ǫ)(1 − 2ǫ)
f2,

(88)

where δR = 0 in the FDH scheme [37] and δR = 1 in
conventional dimensional regularization (CDR). The two
functions f1,2 can be found in Ref. [14].
Finally, we comment on the construction of the expan-

sion of the real-virtual contribution in plus distributions.
The key point is that after the expansion is performed, we
are able to get rid of F1,2(ξ1, η1) in favor of F (ξ1, η1), for
all values of ξ1, η1 except the singular ones. At the sin-
gular points, we have unambiguous expressions for F1,2,
as shown above.

IV. REGULARIZATION SCHEMES

We note that most of the formulae presented in the
previous sections do not make reference to a particular
regularization scheme. They are valid independently of
the scheme. Only the splitting functions, the tree-level
Z → e+e−γ amplitude, and the one-loop Z → e+e−γ
and Z → e+e− amplitudes change upon switching the
scheme. As an illustration, consider the various con-
tributions to the triple-collinear primary sector in Sec-
tion IIA. The double-soft contribution to the function
F1 in Eq. (36) is given by the product of the square
of eikonal currents and the tree-level matrix element for
the Z → e+e− process. The eikonal current is scheme-
independent, while if we choose to work with physical
four-dimensional polarizations of the Z-boson, the ma-
trix element for Z → e+e− becomes scheme-independent
as well.
The real-virtual corrections proceed similarly. As ex-

plained in Section III we require the tree and one-loop
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matrix element for Z → e+e−γ, the one-loop matrix el-
ement for Z → e+e−, and the tree- and one-loop split-
ting functions for e → e + γ. All of these objects are
scheme-dependent, but this scheme-dependence is well-
understood. In particular, the scheme-dependence of the
splitting functions is given in Ref. [14], while the scheme-
dependence of the one-loop non-singular amplitudes can
be found in Ref. [38].

Hence, it appears that within the framework discussed
here any regularization scheme is allowed. The only non-
trivial, scheme-dependent contribution at NNLO that
needs to be computed explicitly is the two-loop vir-
tual corrections. We emphasize that in this framework,
no O(ǫ) terms of the double real emission amplitude
Z → e+e−γγ or real-virtual amplitude Z → e+e−γ need
to be known through higher orders in ǫ, even in CDR.
It seems at first glance that the O(ǫ) contribution to the
Z → e+e−γ amplitude is required, since it can hit a 1/ǫ
pole when the other photon has become collinear, lead-
ing to a finite contribution. However, it has been sug-
gested recently that this term cancels when the double-
real and real-virtual corrections are summed [39]3. We
have checked this statement by comparing the result from
summing the double-real and real-virtual contributions
in two different ways: with the full O(ǫ) contribution re-
tained, and with the O(ǫ) term instead replaced by its
collinear limit. The sum of double-real and real-virtual
is identical in these two cases, indicating that this term
does indeed not contribution to the final result for the
cross section. We note that simply dropping the O(ǫ)
term would lead to a mismatch between the squared am-
plitude and the approximation we use in the collinear
limits, causing a divergence in the integration. It is non-
trivial to track exactly how the O(ǫ) contribution cancels
against similar terms in the collinear splitting functions,
but since collinear limits are universal, the replacement
that we advocate above appears to offer an easy, practical
solution.

V. NUMERICAL CHECKS

To prove the utility of this method, we compute the
contributions of double-real, real-virtual and virtual cor-
rections to the decay rate of the Z-boson into leptons.
For simplicity, we take the coupling of the Z-boson to
leptons to be vector-like, and ignore all diagrams which
contain photon vacuum-polarization contributions or its
unitary cuts. We compare separately the double-real and
real-virtual corrections to the four-and three-particle cuts
of the vector-vector correlator, which we obtain using the
optical theorem. We have presented these contributions

3 The reason for this cancellation is a well-understood indepen-
dence of NLO QED corrections to Z → e+e−γ on the regular-
ization scheme.

separately because of the significant numerical cancella-
tions between the double-real radiation, the real-virtual
corrections, and the two-loop virtual terms that occur
when summing them to obtain the total NNLO correc-
tion to the decay rate. The three- and four- particle cuts
of three-loop master integrals required for such compu-
tation can be found in Ref. [40]. We present this com-
parison in the CDR scheme. Note, however, that the
polarization vectors of the Z-boson are not continued to
d-dimensions, making the tree decay rate Z → e+e− ǫ-
independent. We also set mZ = 1. We write

ΓZ→e+e− = Γ
(0)
Z→e+e−

(

1 +
3

4

α

π
+
(α

π

)2

δ(2)

)

, (89)

where δ(2) is further split into three contributions :

δ(2) = δ
(2)
RR + δ

(2)
RV + δ

(2)
V V . (90)

The result for the inclusive decay width can be obtained
from the literature [41].
The two-loop virtual correction can trivially be ob-

tained from the known result for the two-loop fermion
form-factor. For this reason we do not present it here.
From the analytic computation based on the optical the-
orem we find

δ
(2)
RR =

0.5

ǫ4
+

1.5

ǫ3
−

1.7246

ǫ2
−

14.074

ǫ
− 24.228;

δ
(2)
RV = −

1

ǫ4
−

3

ǫ3
+

3.1794

ǫ2
+

22.88

ǫ
+ 32.94.

(91)

These results can be compared directly to our computa-
tions based on the soft and collinear limits of the relevant
matrix elements. Before we present the corresponding
results, we note one complication. There are interfer-
ence contributions contained in Z → e+e−e+e− that can
not be disregarded. Typically, these interference parts
of the four-fermion final state correspond to certain cuts
of non-planar diagrams and, hence, become part of our
check. The four-fermion interference contribution only
contains collinear singularities, and can be analyzed in
the same way as the double-real emission contributions
discussed in Section II. Because of the existence of this
contribution, we split the double-real result into e+e−γγ
and e+e−e+e− final states. From our numerical calcula-
tion, we obtain

δ
(2),4e
RR = −

0.1799

ǫ
− 1.79,

δ
(2),γ
RR =

0.5

ǫ4
+

1.5

ǫ3
−

1.726(5)

ǫ2
−

13.94(3)

ǫ
− 22.61(8),

δ
(2)
RV = −

1

ǫ4
−

3

ǫ3
+

3.179

ǫ2
+

22.84

ǫ
+ 32.97(3).

(92)

The sum of the two double-real emission corrections
agrees with Eq. (91), as does the real-virtual contribu-
tion, indicating the correctness of the numerical results.
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VI. CONCLUSIONS

In this paper we have described in detail a subtrac-
tion scheme which enables fully differential calculation at
NNLO accuracy. By combining several ideas present in
the literature, including an FKS partitioning of the final-
state phase space and sector decomposition, the universal
singular limits of amplitudes derived over a decade ago
can finally be used to obtain actual physical cross sec-
tions. Our ideas are explained using the simple test case
of Z → e+e− as an example. We discussed how to par-
tition the phase space based on the collinear-singularity
structure of the matrix element, and presented the ex-
plicit phase-space parameterizations from which the soft
and collinear singularities can be extracted as poles in ǫ
using sector decomposition. The treatment of the real-
virtual corrections is described in a way that generalizes
to more complicated processes. Numerical results that
check our techniques were presented. We have chosen
to work in the CDR regularization scheme, although the
presented framework remains valid in other schemes such
as FDH. It has been pointed out that difficulties exist
when extending FDH to NNLO [42]. Although they can
be fixed [43], with our current understanding the use of
CDR imposes no additional technical difficulties, as dis-
cussed in Section IV.
One point we wish to emphasize about the result pre-

sented here is its generalization to more complicated pro-
cesses. As mentioned earlier, one of the problems with
earlier sector-decomposition based approaches to NNLO
calculations was the need to completely reconsider the
phase space and extraction of singularities upon changing
the process. In particular, if one knew the NNLO cor-
rections to Z → e+e−, but wanted to study the NNLO
corrections to Z → e+e−γ, now would have to start from
scratch. That is no longer the case for the framework
described here. Differential Z decay serves as a building
block for handling all final-state singularities, as we now
describe.
We will consider the real-radiation correction Z →

e+(p+) + e−(p−) + γ(p1) + γ(p2) + γ(p3), the most diffi-
cult contribution, for definiteness. Introduce the follow-
ing partition of phase space:

1 =
1

D

∑

(i,j)∈(1,2,3)

{δij,+ + δij,− + δij,+− + δij,−+} . (93)

Here, δij,k allows pi and pj to be soft, but not any other
particles; it also only allows collinear singularities when
pi, pj , pk are collinear. δij,kl allows only pi and pj to be
soft, and also allows only the collinear limits pi ‖ pk and
pj ‖ pl. D is the sum of all δ. It is simple to construct the
appropriate δ functions, as discussed in Ref. [1]. Consider
the partition with δ12,+ for concreteness. The contribu-
tion of this real-radiation correction to the differential
cross section is schematically

dσ

dO0
=

∫

dLipse+e−γ1γ2γ3
|M|2δ (O −O0)

δ12,+
D

(94)

where O is an observable being studied and M is the ma-
trix element. In this partition, there is no soft or collinear
singularity associated with p3. We should therefore be
able to use the phase-space parameterization and singu-
larity extraction described in this paper, which handles
the double-unresolved limit of photons p1 and p2. To
make this manifest, rewrite the phase space of Eq. (94)
as

dLipse+e−γ1γ2γ3
= ds+−12[dp3][dp+−12]dLipse+e−γ1γ2

× δ(d)(pZ − p3 − p+−12), (95)

where s+−12 is the invariant mass of all final-state par-
ticles except the hard photon. The parameterization of
momenta in dLipse+e−γ1γ2

is chosen to be the same as
in Section IIA. The form of p3 in this parameterization
is irrelevant; no soft or collinear singularities are asso-
ciated with this momentum. We can simply reuse the
NNLO results for Z → e+e− to obtain the corrections to
Z → e+e−γ. Adding additional photons to the final state
only increases the number of partitions required. In this
sense, Z → e+e− serves as a building block for extract-
ing final-state singularities from any process. While we
have demonstrated this for only one partition, it follows
similarly for the others.
We are excited about the possible applications of these

ideas to more phenomenologically interesting processes.
We believe there is significant potential for applying these
ideas to the calculation of 2 → 2 scattering processes at
the LHC, and we look forward to their continued devel-
opment.

Acknowledgments K.M. gratefully acknowledges use-
ful conversations with Z. Kunszt and F. Caola, and would
like to thank the KITP at UCSB for hospitality during
the work on this paper. This research is supported by the
US DOE under contract DE-AC02-06CH11357 and the
grant DE-FG02-91ER40684, by the NSF under grants
PHY-0855365 and PHY05-51164, and with funds pro-
vided by Northwestern University.

Appendix: Splitting functions

We collect here the splitting functions that we employed
in this computation, in the CDR regularization scheme.
For the e → e+ γ splitting, we have

Peγ(ǫ, z) =
2

1− z
− (1 + z)− ǫ(1− z). (96)

For the e → eγ1γ2 splitting, we find [13]

Peγγ(ǫ, z, z1, z2) =
s212e

2s1es2e
P1(ǫ, ze, z1, z2)

+
s12e
s1e

P2(ǫ, ze, z1, z2)

+ (1− ǫ)

[

ǫ− (1− ǫ)
s2e
s1e

]

+ (1 ↔ 2),

(97)
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where the functions P1,2 read

P1(ǫ, ze, z1, z2) = ze

(

1 + z2e
z1z2

− ǫ
z21 + z22
z1z2

− ǫ(1 + ǫ)

)

,

P2(ǫ, ze, z1, z2) =
ze(1− z1) + (1− z1)

3

z1z2
+ ǫ2(1 + ze)

− ǫ(z21 + z1z2 + z22)
(1− z2)

z1z2
.

(98)
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