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Abstract

Amixing of near-threshold quarkonium-like resonances with heavy meson-antimeson

pairs results in an enhancement of heavy quark spin symmetry breaking, since the me-

son pairs are not eigenstates of the heavy quark spin. The decomposition of P -wave

states of meson pairs in terms of the heavy-quark-pair spin states is considered in

the channel with JPC = 1−−, which is directly produced in e+e− annihilation. Spe-

cific processes are suggested for experimental study of the effects of the mixing with

heavy meson pairs and of the internal spin structure of bottomonium and charmonium

resonances.



1 Introduction

The strength of the interaction depending on the heavy quark spin is proportional to the

inverse of the heavy quark mass, so that in the limit of infinite mass the spin of the

heavy quark is conserved. This well known behavior is prominently illustrated by hadronic

transitions between lower states of bottomonium and charmonium: e.g. the transitions

Υ(2S) → Υ(1S) η and ψ(2S) → J/ψ η, requiring rotation of the spin of the heavy quark

pair, are significantly suppressed relative to the corresponding heavy quark spin conserv-

ing transitions Υ(2S) → Υ(1S) ππ and ψ(2S) → J/ψ ππ [1]. The observed ratio of the η

emission rate to that of the pion pair in these transitions is fully in line with the theoretical

estimates [2, 3]. However, a completely different behavior is observed [4] in the decays of the

Υ(4S) resonance, where the rate of the transition Υ(4S) → Υ(1S) η actually exceeds that of

Υ(4S) → Υ(1S) ππ. It has been pointed out [5] that the enhancement of the former rate can

result from an admixture in the Υ(4S) of a four-quark state with a different alignment of the

spin of the heavy quark pair (relative to the spin of the resonance), with a mixing with BB̄

heavy meson pairs being a natural source of such an admixture, which clearly corresponds

to an enhanced effect of the heavy quark spin symmetry breaking.

It can be argued on general grounds that the effects of the deviation from the heavy

quark spin symmetry due to mixing with states of heavy meson pairs should be significantly

enhanced for the quarkonium-like states in a mass band near the open flavor threshold.

Indeed, in the heavy mesons the deviation at a finite heavy quark mass from the spin sym-

metry limit results in the splitting µ between the masses of the vector and the pseudoscalar

mesons, µ ≈ 46MeV for the B mesons, and µ ≈ 140MeV for the D mesons. For the

quarkonium-like states whose masses are well away from the thresholds for the heavy meson

pairs, i.e. separated from these thresholds by a mass gap ∆M ≫ µ, the possible effects of

the spin-symmetry breaking in the mesons can be estimated as proportional to the dimen-

sionless ratio µ/∆M . Clearly, this parameter becomes of order one for the quarkonium-like

resonances in the immediate vicinity of the threshold region, such as e.g. Υ(4S) and Υ(5S)

for bottomonium.

An extreme example of apparent breaking of the heavy quark spin rules is provided

by the recently found Zb(10610) and Zb(10650) isovector resonances [6], which decay with

comparable rate to the levels of ortho-bottomonium: Zb → Υ(nS) π, (n = 1, 2, 3), as well as

to para-bottomonium: Zb → hb(kP ) π, (k = 1, 2). This behavior is naturally explained [7] if

the Zb resonances are interpreted as ‘molecular’ states, i.e. as threshold resonances made from

1



S wave meson-antimeson pairs with the quantum numbers IG(JP ) = 1+(1+): Zb(10650) ∼
B∗B̄∗, and Zb(10610) ∼ (B∗B̄ − B̄∗B). The heavy meson pairs in the states with quantum

numbers IG(JP ) = 1+(1+) are not eigenstates of the total spin of the bb̄ quark pair, SH = 0−H
or SH = 1−H , but rather are two orthogonal completely mixed states [7]:

Zb(10610) ∼ (B∗B̄ − B̄∗B) ∼ 1√
2

(

0−H ⊗ 1−SLB + 1−H ⊗ 0−SLB
)

,

Zb(10650) ∼ B∗B̄∗ ∼ 1√
2

(

0−H ⊗ 1−SLB − 1−H ⊗ 0−SLB
)

, (1)

where 0−SLB and 1−SLB stand for the two possible spin states of the ‘rest’ degrees of freedom

besides the heavy quark spin. In other words, these are the two possible JP = 1+ states

of an S-wave pair of heavy mesons in the limit of spinless b quark (‘SLB’ states). In this

picture and due to the heavy quark spin symmetry the observed decays of the Zb resonances

to Υ(nS) π proceed due to the presence of the ortho- (1−H) heavy quark spin state in each

of the resonances, while the transitions to the para- states of bottomonium, proceed due to

the part of the spin wave function with 0−H .

A complete classification of S-wave threshold states of heavy meson pairs in terms of

their SH ⊗ SSLB structure is described in Refs.[8, 9]. Of these states two more states with

JP = 0+ made of BB̄ and B∗B̄∗ also contain mixtures of ortho- and para- heavy quark pairs.

In this paper a similar analysis in terms of the spin of the heavy quark pair and the

angular momentum of the ‘rest’ degrees of freedom is applied to the states of heavy meson

pairs with isospin zero and JPC = 1−−. This channel is of a special interest due to the direct

formation of such states in e+e− annihilation. Clearly, these quantum numbers correspond

to a P -wave relative motion of the mesons 1. It is necessary to emphasize that unlike the

isovector states, considered [7, 8, 9] in connection with the Zb resonances, and which are

in fact states of a heavy meson pair, the isoscalar JPC = 1−− states of heavy meson pairs

should be considered as an admixture to the pure heavy quarkonium states, of which the ones

produced in e+e− annihilation are 3S1 states of the heavy quark pair. In the considered here

classification in terms of their SH⊗SSLB structure, the quarkonium 3S1 states are 1
−
H⊗0+SLB,

since the (absent) ‘rest’ degrees of freedom are in the vacuum state corresponding to 0+SLB.

A possible small admixture of 3D1 heavy quark pair, which is to be classified as that of a

1−H ⊗ 2+SLB arises in the second order in the breaking of the heavy quark symmetry and is

neglected here.

1A possible presence of an F wave for a B∗B̄∗ pair can be neglected in the near-threshold region.
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In what follows, for definiteness and simplicity of the notation, the properties of the

bottomonium-like states and of B(∗) meson-antimeson pairs are discussed. An application

to similar properties of charmonium and D(∗) mesons will be mentioned separately.

The rest of the paper is organized as follows. In Sec. 2 the transformation from the states

of meson pairs to the eigenstates of the heavy quark spin is derived. In Sec. 3 an application

of the spin symmetry to production of heavy meson pairs in e+e− annihilation is discussed,

and in Sec. 4 properties of specific bottomonium-like and charmonium-like vector resonances

are considered. Finally, the discussion and results are summarized in Sec. 5.

2 Spin structure of the JPC = 1
−− heavy meson pairs

There are four different P -wave states of the heavy mesons with JPC = 1−−:

BB̄ : pi (B
†B) ;

B∗B̄ − B̄∗B√
2

:
i

2
ǫijkpj (B

∗†
k B − B∗

kB
†) ;

(B∗B̄∗)S=0 :
pi√
3
(B∗†

j B
∗
j ) ;

(B∗B̄∗)S=2 :

√

3

5

pk
2

(

B∗†
i B

∗
k +B∗†

k B
∗
i −

2

3
δik B

∗†
j B

∗
j

)

. (2)

The states (B∗B̄∗)S=0 and (B∗B̄∗)S=2 correspond to two possible values of the total spin S

of the B∗B̄∗ meson pair. The wave functions in the r.h.s are written in terms of the c.m.

momentum ~p and the wave functions of the pseudoscalar and vector mesons and have the

same normalization for each state.

The four states of the meson pairs in Eq.(2) are not eigenstates of either the operator of

the total spin ~SH of the heavy quark pair, nor of the operator ~JSLB = ~SSLB + ~L, describing

the angular momentum in the limit of spinless b quark. Clearly, there are four possible

combinations of such eigenstates that match the overall quantum numbers JPC = 1−−:

ψ10 = 1−−
H ⊗ 0++

SLB , ψ11 = 1−−
H ⊗ 1++

SLB , ψ12 = 1−−
H ⊗ 2++

SLB , and ψ01 = 0−+
H ⊗ 1+−

SLB . (3)

The first three of these combinations involve an ortho- state of the bb̄ pair with different

alignment of the total spin SH = 1 relative to the total angular momentum of the state,

while the fourth combination involves a para- bb̄ state, i.e. with SH = 0, while the overall

angular momentum is provided by that of the ‘rest’ degrees of freedom, JSLB = 1 (and a
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negative C parity, which in simple terms of ‘the light quark pair’ qq̄ corresponds to a 1P1

state).

The explicit expansion of the four states in Eq.(2) in terms of the four eigenfunctions ψab

can be readily found, similarly to the method used in Ref. [7] by replacing in Eq.(2) the wave

functions of the B(∗) mesons with interpolating expressions in terms of nonrelativistic spinors

b (b†) for the b (anti)quark and the nonrelativistic spinors q and q† for the ‘rest’ degrees of

freedom in the mesons, B ∼ (b†q), B∗
i ∼ (b† σi q), and performing the Fierz transformation,

e.g.

(b†q)(q†b) = −1

2
(b† σi b)(q

† σi q)−
1

2
(b†b)(q†q) .

The result has the form:

BB̄ :
1

2
√
3
ψ10 +

1

2
ψ11 +

√
5

2
√
3
ψ12 +

1

2
ψ01 ;

B∗B̄ − B̄∗B√
2

:
1√
3
ψ10 +

1

2
ψ11 −

√
5

2
√
3
ψ12 ;

(B∗B̄∗)S=0 : − 1

6
ψ10 −

1

2
√
3
ψ11 −

√
5

6
ψ12 +

√
3

2
ψ01 ;

(B∗B̄∗)S=2 :

√
5

3
ψ10 −

√
5

2
√
3
ψ11 +

1

6
ψ12 . (4)

One can easily check that the matrix of the transformation from the H ⊗ SLB eigenstates

to the states of the meson pairs is orthogonal.

3 Production of heavy meson pairs in e+e− annihilation

The heavy mesons are produced by the electromagnetic current of the heavy quark, e.g.

(b̄ γµb), which in the nonrelativistic near-threshold region corresponds to the structure 1−−
H ⊗

0++
SLB. Therefore in the limit of exact heavy quark spin conservation the relative amplitudes

for production of the four states of the meson pairs are given by the coefficients of ψ10 in

Eq.(4):

A(e+e− → BB̄) : A(e+e− → B∗B̄ + c.c.) : A
[

e+e− → (B∗B̄∗)S=0

]

: A
[

e+e− → (B∗B̄∗)S=2

]

=
1

2
√
3
:

1√
3
: −1

6
:

√
5

3
, (5)

which relation was first found in Ref. [10]. These ratios give rise to the relation between the

production cross section σ for each channel, normalized to the corresponding P -wave phase
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space factor v3 with v being the c.m. velocity 2:

σ

v3
(e+e− → BB̄) :

σ

v3
(e+e− → B∗B̄ + c.c.) :

σ

v3

[

e+e− → (B∗B̄∗)S=0

]

:
σ

v3

[

e+e− → (B∗B̄∗)S=2

]

= 1 : 4 :
1

3
:
20

3
. (6)

If the states of the vector meson pairs with S = 0 and S = 2 are not resolved and only the

total yield of the mesons is measured, as is the case in the existing data, the ratio for the

factors σ/v3 is given by

σ

v3
(e+e− → BB̄) :

σ

v3
(e+e− → B∗B̄ + c.c.) :

σ

v3
(e+e− → B∗B̄∗) = 1 : 4 : 7 . (7)

This relation, pointed out long ago [11], is a direct consequence of exact heavy quark spin

symmetry. In fact this relation is in a dramatic contradiction with most of the known data on

production of B(∗) mesons as well as of the charmed mesons [12, 13, 14] in e+e− annihilation

near the corresponding thresholds, and this contradiction is a good illustration of the strong

breaking of the spin symmetry in near-threshold region. Such behavior is known already

from the early observations of the charmonium-like peak ψ(4040) where the yield of the

vector meson pairs D∗D̄∗ greatly exceeds that implied by the relation (7).

It appears reasonable to consider the relative yield of different heavy meson pairs as

an indicator of the internal structure of a quarkonium-like state in terms of the H ⊗ SLB

decomposition described by the relations (4). In this regard it would be helpful if the yield

of two possible waves for the vector meson pairs were resolved experimentally, since these

two waves correspond to substantially different spin-symmetry structures. In particular the

S = 0 wave has a nonvanishing projection on the eigenstate ψ01 corresponding to para- state

of the heavy quark pair, while for the S = 2 wave the admixture of the para- state is zero.

One way of resolving the contribution of the two waves is by the angular distribution in the

angle θ between the direction of the vector meson pair and that of the e+e− beams:

d

d cos θ
σ
[

e+e− → (B∗B̄∗)S=0

]

∝ 1− cos2 θ ;

d

d cos θ
σ
[

e+e− → (B∗B̄∗)S=2

]

∝ 1− 1

7
cos2 θ . (8)

2It should be noted that taking into account the difference of the phase space factors is beyond the exact

symmetry limit and is not necessarily justified
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4 Specific quarkonium-like resonances

4.1 Υ(4S)

Due to the proximity of Υ(4S) to the BB̄ threshold it is likely that the four-quark admixture

in it is dominated by the pseudoscalar meson pair. The H⊗SLB structure of such admixture

is given by the first line in Eq.(4). One can notice that in addition to the state ψ11 that

is presumably [5] responsible for the greatly enhanced rate of Υ(4S) → Υ(1S) η the BB̄

component contains also an admixture of the state ψ01 with a spin-singlet bb̄ pair. Therefore

if the assumption of the dominance of a BB̄ admixture in Υ(4S) is correct, one should

expect an enhancement of the (yet unknown) decay Υ(4S) → ηb ω, which is very strongly

suppressed for a pure bb̄ bottomonium by the spin symmetry.

Furthermore, the presence of the states ψ11 and ψ12 should generally give rise to a dipion

D-wave coupled to the spins of the bottomonium resonances in the transition Υ(4S) →
Υ(1S) ππ:

A[Υ(4S) → Υ(1S) π(p1)π(p2)] = AS (~Υ
(4)·~Υ(1))+AD

[

p1ip2j + p1jp2i −
2

3
δij (~p1 · ~p2)

]

Υ
(4)
i Υ

(1)
j ,

(9)

where the coefficients AS and AD for respectively the spin-decoupled amplitude and the

spin-coupled one are generally scalar functions of the pion momenta. In the soft-pion limit

AD is a constant, while AS should be bilinear in the pion momenta and energies: AS =

a ε1ε2 + b(~p1 · ~p2) [15, 16] 3. The admixture of the spin-dependent D-wave can be tested

experimentally by a deviation of the angular distribution of the leptons emerging in the

decay Υ(1S) → ℓ+ℓ− from the standard 1 + cos2 θ. Another probe can be a measurement

of a correlation between the direction of a single pion momentum (e.g. π+ in the transition

Υ(4S) → Υ(1S) π+π−) with the direction of the initial beams. In the absence of a spin-

coupled D wave the distribution is isotropic, while for a pure D-wave the distribution is

(1− 21
47

cos2 θ). In reality both amplitudes are likely to be present with the spin independent

term AS being dominant, and the spin dependent part representing a ‘new’ effect. In this

case it may require a study of the full angular information to untangle the spin structure of

the amplitude. The expression for the full angular correlations in this process is given in the

Appendix.

3The discussed here coefficients are related, up to a common overal normalization, to the coefficents A,

B and C introduced in Ref. [15] as: a = B −A, b = A+ 2C/3, AD = C
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4.2 Υ(5S)

The resonance Υ(5S) with mass of approximately 10.87GeV is well above the thresholds for

nonstrange B(∗) mesons, so that the spin symmetry breaking due to the mixing with non-

strange mesons should not be large. The resonance however is very close to the threshold

at 10.83GeV for the pair of vector strange B∗
s mesons, and it is likely that the mixing with

such pairs is most important. In other words, it is plausible that the dominant structure

of the Υ(5S) is a mixture of a pure-bottomonium-like state 1−−
H ⊗ 0++ and a pair B∗

s B̄
∗
s .

Assuming that a conversion of the latter admixture with hidden strangeness into pairs of

nonstrange B mesons is somewhat OZI suppressed, one can expect that the relative yield

of the nonstrange mesons should be close to the symmetry limit relation (7). The available

data [1] give the ratio of the cross sections

σ
[

Υ(5S) → BB̄
]

: σ
[

Υ(5S) → B∗B̄ + c.c.
]

: σ
[

Υ(5S) → B∗B̄∗
]

≈ 1 : 2.5 : 7 , (10)

which is not very far away from the symmetry relation (without an account for the difference

of the phase space factors), and in fact is the only known instance, where the ratio looks in

any sense like that following from the heavy quark spin symmetry. In any case, the relative

yield of the non-strange mesons is significantly closer to the relation (7) than that for the

strange B(∗)
s meson pairs, where the double-vector state absolutely dominates in the ratio.

The latter behavior clearly agrees with the assumption that the dominant spin symmetry

breaking component in Υ(5S) is B∗
s B̄

∗
s .

Another indication of a suppressed spin symmetry breaking in Υ(5S) in the sector with-

out hidden strangeness is provided by its dipion transitions to lower bottomonium levels.

The resonance Υ(5S) is known [17] to experience dipion transitions to both orthobottomo-

nium, Υ(5S) → Υ(nS) ππ, and parabottomonium, Υ(5S) → hb(kP ) ππ. There is however

an important difference between these processes. Namely, the former transitions proceed

through both the Zb resonances and through a non-resonant mechanism, while in the latter

transitions to the parabottomonium levels hb the non-resonant background is small (in fact

compatible with zero in the available data [6]). The strong suppression of direct transitions

to the para- states indicates that there is essentially no presence of the state 0−+
H ⊗ 1+−

SLB

without hidden strangeness in the spin structure of the Υ(5S), in agreement with unbro-

ken spin symmetry. Additionally a suppression of this state within Υ(5S) is indicated by

the data [6] on the ratio of the coupling the resonance to the channels Zb(10610) π and

Zb(10650) π, which data are compatible with the ratio equal to one, as it should be, given
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the structure (1) of the Zb resonances
4.

The sector with no hidden strangeness can be further studied in the dipion transitions

to the lower Υ(nS) states, namely by a search for a spin-coupled dipion D wave as was

discussed for the Υ(4S) resonance. In fact it has been noted in Refs. [6] that the quality

of a fit to the Dalitz plot distribution for the process Υ(5S) → Υ(1S) π+π− is significantly

improved by inclusion of the f2(1270) resonance in the dipion channel. If confirmed, the

contribution of this resonance would imply a presence of the spin-coupled D wave, and may

be interpreted as arising from an admixture in Υ(5S) of ψ11 and/or ψ12 states without hidden

strangeness. Such behavior however would be somewhat problematic to make compatible

with the relation (10) and the presented arguments in favor of a naturally small breaking of

the heavy quark spin in Υ(5S) due to mixing with pairs of nonstrange B(∗) mesons. Possibly,

some understanding of the spin and (hidden) flavor structure of the light-meson pairs with

invariant mass above 1GeV emitted in the Υ(5S) → Υ(1S) transitions can be gained from

a comparison of the Υ(5S) → Υ(1S) π+π− and Υ(5S) → Υ(1S)KK̄ data.

An additional option for such study is provided by the possible dipion transitions from

Υ(5S) to the 13DJ states of bottomonium. A hint (at about 2.5 σ significance) at an ex-

istence of such transitions at a level feasible for observation is contained in Ref. [17]. Di-

pion transitions between the Υ resonances and the 3DJ states of bottomonium were dis-

cussed [18, 19, 20, 21] in terms of the multipole expansion in QCD, which does not appear

to be applicable to the process Υ(5S) → 13DJ ππ. However it can be argued without relying

on the multipole expansion that the form of the amplitude for this process is uniquely deter-

mined in the heavy quark symmetry limit, if one also uses the soft pion properties. Indeed,

if the initial Υ(5S) state is a pure 1−−
H ⊗ 0++

SLB, the spin polarization of the bb̄ pair coincides

with the polarization vector amplitude of the resonance ~Υ(5). The final 3D state is a pure

bottomonium, and its wave function factorizes into a product of the S = 1 spin polarization

vector ~χ and the D wave coordinate wave function φij. The heavy quark spin conservation

implies that the amplitude for the transitions Υ(5S) →3DJ ππ is proportional to the scalar

product (~Υ(5) · ~χ), while the orbital L = 2 state is generated by the pions, which thus have

to be in the D-wave. Given that the soft pion theorems require the amplitude to vanish

when the four-momentum of either of the pions goes to zero, the form of the amplitude for

the coupling of the pions to the coordinate part of the D state wave function is uniquely

determined as p1ip2jφij with ~p1 and ~p2 being the momenta of the pions. Thus the amplitudes

4The latter argument is due to A. Bondar.
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for the transitions to all three 3DJ states with J = 1, 2, 3 are determined by one constant A:

A
[

Υ(5S) →3DJ π(p1)π(p2)
]

= Ap1ip2jΥ
(5)
k P (J)χkφij , (11)

where P (J) is the projector of the direct product χkφij on the state with definite J .

The amplitude in Eq.(11) implies that the transition rate for each J is proportional to

the statistical weight 2J + 1, and that the distribution in the angle ϑ between the two pion

momenta is the same for all three states:

dΓ

d cosϑ
∝ 1 +

1

3
cos2 ϑ . (12)

A difference between the final states with different J arises in the correlation of the directions

of the pion momenta with the initial e+e− beams. The corresponding formulas for these

angular correlations are given in the Appendix.

Regarding the discussed four-quark component of the Υ(5S) resonance with hidden

strangeness, the composition of the B∗
s B̄

∗
s pairs in terms of the states with total spin of the

meson pair S = 0 and S = 2 is yet unknown. If the S = 0 state is present, then, according to

Eq.(4) there should be a 0−+ ⊗ 1+−
SLB component with hidden strangeness in the structure of

the resonance. Such component should likely give rise to the processes Υ(5S) → hb(kP ) η,

Υ(5S) → hb(1P ) η
′ and Υ(5S) → ηb φ. Generally, an admixture of B∗

s B̄
∗
s states with either

total spin of the mesons introduces also 1−−
H ⊗1++

SLB and 1−−
H ⊗2++

SLB components with hidden

strangeness in the spin structure of the resonance. The former should result in enhanced

transitions Υ(5S) → Υ(1S) η, Υ(5S) → Υ(1S) η′ and Υ(5S) → Υ(2S) η as well as in a

presence of the spin-coupled D wave of light mesons in the transitions Υ(5S) → Υ(1S)KK̄

and Υ(5S) → Υ(1S) ηη.

One of the tests of the light-flavor composition of the spin symmetry breaking components

is provided by the relative yield of η and η′. For a pure ss̄ admixture one expects, e.g.

Γ [Υ(5S) → Υ(1S) η′]

Γ [Υ(5S) → Υ(1S) η]
≈ p3η′

2 p3η
and

Γ [Υ(5S) → hb(1P ) η
′]

Γ [Υ(5S) → hb(1P ) η]
≈ pη′

2 pη
. (13)

4.3 Charmonium-like vector resonances

The scale of the heavy quark spin symmetry breaking in the charmed D mesons, µ ≈
140MeV, is larger than in the B mesons due to smaller mass of the charmed quark. Therefore

the discussed effects of the spin symmetry violation near open heavy flavor threshold cover

a broader range of masses of charmonium-like states. In particular, the e+e− cross section
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for production of charmed meson pairs with and without hidden strangeness displays an

intricate behavior [12, 13, 14] in this region of c.m. energy, that generally is quite different

from the symmetry prediction in Eq.(7).

As already mentioned, the resonance ψ(4040) with mass just above the D∗D̄∗ threshold

couples most strongly to the vector meson pairs to the extent that it has been suggested [11]

that this resonance is mostly a ‘molecular’ state made from vector meson pairs. In line with

the previous discussion it is possible that a (presumably) large four-quark component in

ψ(4040) can give rise to an enhanced process ψ(4040) → J/ψ η. The transition ψ(4040) →
ηc ω may also be enhanced to a detectable level, if there is a presence of (D∗D̄∗)S=0 pairs in

the ψ(4040) internal structure.

Similar expectations also apply to the resonance ψ(4160), i.e. a possible existence of the

transitions ψ(4160) → J/ψ η and/or ψ(4160) → ηc ω depending on the internal structure of

ψ(4160) in terms of H⊗SLC states. The additional peculiarity of this state is that its dipion

transition to the paracharmonium level hc, ψ(4160) → hc ππ, has been observed [22] at a rate

comparable to that of ψ(4160) → J/ψ ππ. At first glance this resembles the bottomonium

processes Υ(5S) → hb(kP ) ππ. The bottomonium transitions, proceed through the isovector

Zb resonances with essentially absent non-resonant background [6]. Therefore one might sug-

gest that similar isovector resonances, Zc, do exist for charmonium and that those enhance

the spin symmetry breaking decay ψ(4160) → hc ππ. It should be noted however that the

exotic resonance mechanism is possible but not absolutely necessary for explaining this pro-

cess, since this can proceed due to a paracharmonium component within the ψ(4160) induced

by the enhanced spin symmetry breaking. Naturally, it is possible that both mechanisms

contribute to the decay. In this regard a study of the transition ψ(4160) → hc η is of great

interest, since this spin symmetry breaking process is not contributed by the hypothetical Zc

resonances. A hint at an observation of this decay at a 3σ level has been reported [22]. If con-

firmed, the η transition would imply a presence in ψ(4160) of a four-quark component with

spin-singlet cc̄ pair. If the light quark pair in this component is not exclusively ss̄, i.e. with

hidden strangeness, then the ππ transition can proceed through a non-resonant mechanism.

In case the light quark pair is dominated by ss̄, the mechanisms for the η and ππ transitions

to the hc state would have to be different (modulo a violation of the OZI rule). The (hidden)

light flavor composition of the four-quark component can in principle be tested by measuring

the ratio of the rates of η and η′ emission: Γ[ψ(4160) → J/ψ η′]/Γ[ψ(4160) → J/ψ η].

For the still higher in mass charmonium resonance Y (4260) the decays to charmed meson
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pairs do not appear to be significant [12], so that breaking of spin symmetry due to mixing

with meson pairs does not look plausible. A certain increase in the yield of three body final

states, D(∗)D̄(∗)π has been observed at the energy of Y (4260), however the significance of

these states is not clear. The only reliably established decay channels for this resonance:

J/ψ ππ and J/ψKK̄, do not indicate any spin symmetry breaking. However there is a

hint [22] at existence of the decay Y (4260) → hc ππ. If confirmed, this process would imply

a breaking of the spin symmetry, which can arise either indeed through exotic resonances

Zc, or require some more complicated internal structure of the state Y (4260).

5 Summary

The breaking of the heavy quark spin symmetry is expected to be enhanced in quarkonium-

like states in the mass range near the thresholds for pairs of heavy mesons. This behav-

ior conspicuously shows in the Zb resonances but is also apparently present in the decay

properties of vector charmonium-like and bottomonium-like resonances that can be directly

produced and studied in e+e− annihilation. The discussed here enhanced violation of the

spin symmetry is attributed to mixing of the quarkonium-like states with pairs of heavy

mesons. The meson-antimeson pairs are not eigenstates of the heavy quark spin operator,

but rather mixtures of such states, as described, in the JPC = 1−− channel, by the formulas

(4). The four-quark admixture in quarkonium-like resonances can thus be studied in terms of

mixing with meson pairs through decay processes violating the heavy quark spin symmetry.

Such processes include those requiring rotation of the total spin of the heavy quark pair,

e.g. Υ(4S) → Υ(1S) η, Υ(5S) → Υ(nS) η, ψ(4160) → J/ψ η and a presence of spin-coupled

D-wave in di-meson transitions of the type Υ(4S) → Υ(nS) ππ, or Υ(5S) → Υ(1S)KK̄.

Testing a presence of such D-wave would require an experimental study of angular correla-

tions described by Eq.(14). An even more illustrative of the spin symmetry breaking would

be an observation of transitions to spin-singlet levels of quarkonium such as Υ(5S) → ηb ω,

ψ(4160) → ηc ω, and Υ(5S) → hb η (and, possibly, Υ(5S) → hb η
′), ψ(4160) → hc η. Further-

more, it has been assumed throughout the present discussion that some degree of separation

between four-quark states with and without hidden strangeness is provided by the OZI rule.

It is not yet known to what extent this rule can be applied within the quarkonium-like

resonances, neither its dependence on the quantum numbers of the SLB states is known.

Therefore it would be quite instructive to study processes with different light flavor content,
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e.g. KK̄ emission vs. ππ, or η′ vs. η. It can be also noted that a study of internal spin

structure of JPC = 1−− quarkonium-like resonances would greatly benefit from a separate

measurement of the yield of vector meson pairs in the two possible P -wave states: one with

the total spin S of the meson pair equal to zero, and the other with S = 2. These two

states can be separated e.g. by the angular distribution relative to the direction of the e+e−

beams. These two states significantly differ in terms of the spin structure of the heavy quark

pair, and their admixture in quarkonium-like resonances generally leads to different decay

properties.
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Appendix

Angular correlations in the decay Υ(4S) → Υ(1S) ππ.

Introducing unit vectors ~n1 and ~n2 along respectively the direction of the initial e+e− beams

and the direction of the lepton pair in the decay of the final Υ(1S) resonance, the angular

distribution can be found from the amplitude in Eq.(9) in the form:

|A[Υ(4S) → Υ(1S) π(p1)π(p2)]|2 = |AS|2
[

1 + (~n1 · ~n2)
2
]

−

2Re(ASA
∗
D)

[

2 (~p1 · ~n1)(~p2 · ~n1) + 2 (~p1 · ~n2)(~p2 · ~n2)−
4

3
(~p1 · ~p2)−

(~p1 · ~n2)(~p2 · ~n1)(~n1 · ~n2)− (~p1 · ~n1)(~p2 · ~n2)(~n1 · ~n2) +
2

3
(~p1 · ~p2)(~n1 · ~n2)

2
]

+

|AD|2
[

2 p21p
2
2 −

2

9
(~p1 · ~p2)2 − p21 (~p2 · ~n1)

2 − p22 (~p1 · ~n1)
2 − p21 (~p2 · ~n2)

2 − p22 (~p1 · ~n2)
2−

2

3
(~p1 · ~n1)(~p2 · ~n1)(~p1 · ~p2)−

2

3
(~p1 · ~n2)(~p2 · ~n2)(~p1 · ~p2)+

(~p1 · ~n1)
2(~p2 · ~n2)

2 + (~p1 · ~n2)
2(~p2 · ~n1)

2 +
4

9
(~p1 · ~p2)2(~n1 · ~n2)

2+

2 (~p1 · ~n1)(~p2 · ~n1)(~p1 · ~n2)(~p2 · ~n2)−
2

3
(~p1 · ~p2)(~n1 · ~n2)(~p1 · ~n1)(~p2 · ~n2)−

2

3
(~p1 · ~p2)(~n1 · ~n2)(~p1 · ~n2)(~p2 · ~n1)

]

, (14)
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where p2 stands for ~p 2.

Angular correlations in the decay Υ(5S) →3DJ ππ.

Introducing a unit vector ~n in the direction of the beams one can find from the amplitude

in Eq.(11) the triple correlations between ~n and the pion momenta for each final state:

∑

pol

∣

∣

∣A[e+e− → Υ(5S) →3D1 ππ]
∣

∣

∣

2
=

3C

5

[

2p21p
2
2 +

2

9
(~p1 · ~p2)2 − (~p1 · ~n)2p22 − (~p2 · ~n)2p21 +

2

3
(~p1 · ~p2)(~p1 · ~n)(~p2 · ~n)

]

;

∑

pol

∣

∣

∣A[e+e− → Υ(5S) →3D2 ππ]
∣

∣

∣

2
=

2C

3

[

p21p
2
2 + (~p1 · ~p2)2 +

3

2
(~p1 · ~n)2p22 +

3

2
(~p2 · ~n)2p21 − (~p1 · ~p2)(~p1 · ~n)(~p2 · ~n)

]

;

∑

pol

∣

∣

∣A[e+e− → Υ(5S) →3D3 ππ]
∣

∣

∣

2
= (15)

2C

15

[

16p21p
2
2 + 4 (~p1 · ~p2)2 − 3 (~p1 · ~n)2p22 − 3 (~p2 · ~n)2p21 + 2 (~p1 · ~p2)(~p1 · ~n)(~p2 · ~n)

]

,

where the sum runs over the polarizations of the final 3DJ resonances and the constant C

is the same in these expressions, so that the total transition rate to a state with fixed J

is proportional to the statistical weight 2J + 1. By averaging over the directions of one

pion momentum, these triple correlations can be readily simplified to expressions for the

angular distribution over the angle θ between a single pion momentum and the direction of

the beams:

d

d cos θ
Γ
[

e+e− → Υ(5S) →3D1 ππ
]

∝ 1− 21

47
cos2 θ ;

d

d cos θ
Γ
[

e+e− → Υ(5S) →3D2 ππ
]

∝ 1 +
7

11
cos2 θ ;

d

d cos θ
Γ
[

e+e− → Υ(5S) →3D3 ππ
]

∝ 1− 1

7
cos2 θ , (16)
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