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Bounds on the Higgs mass from the Tevatron and LHC are determined using exclusive jet bins
to maximize sensitivity. Scale variation in exclusive fixed-order predictions underestimates the
perturbative uncertainty for these cross sections, due to cancellations between the perturbative
corrections leading to large K factors and those that induce logarithmic sensitivity to the jet-bin
boundary. To account for this, we propose that scale variation in the fixed-order calculations should
be used to determine theory uncertainties for inclusive jet cross sections, whose differences yield
exclusive jet cross sections. This yields a theory correlation matrix for the jet bins such that the
additional uncertainty from large logarithms due to the jet boundary cancels when neighboring
bins are added. This procedure is tested for H + 0, 1 jets, WW + 0 jets, and W + 0, 1, 2 jets,
and found to be generally applicable. For a case where the higher-order resummation of the jet
boundary corrections is known, we show that this procedure yields fixed-order uncertainties which
are theoretically consistent with those obtained in the resummed calculation.

I. INTRODUCTION

In the search for the Higgs boson at the Tevatron and
the Large Hadron Collider (LHC), the data are divided
into exclusive jet bins. This is done because the back-
ground composition depends on the number of jets in the
final state, and the overall sensitivity can be increased
significantly by optimizing the analysis for Higgs + 0, 1,
and 2 jet signals. The primary example is theH → WW ∗

decay channel, which dominates the current Tevatron ex-
clusion limits around mH ≃ 2mW [1, 2], and is one of the
important channels for mH

>
∼ 130GeV being pursued at

the LHC [3, 4]. The importance of the Higgs + 1 jet
channel in H → ττ and H → WW ∗ was demonstrated
explicitly in Refs. [5, 6]. Similarly, for H → γγ, which
plays an important role for mH

<
∼ 130GeV, the search

sensitivity can be improved by optimizing the analysis
for different jet bins [7].
Since the measurements are performed in each jet bin,

the perturbative uncertainties in the theoretical predic-
tions must also be evaluated separately for each jet mul-
tiplicity [8]. Furthermore, to combine the results in the
end, the correlations between the theoretical uncertain-
ties in the different jet bins as well as in the total cross
section have to be understood and taken into account.
In the winter 2011 Tevatron analyses of gg → H →

WW ∗ [2], the perturbative uncertainties in the signal
cross section are evaluated using common scale variation
for the exclusive jet bins, which yields [8]

∆σtotal

σtotal
= 66.5%×

(

+5%
−9%

)

+ 28.6%×
(

+24%
−22%

)

+ 4.9%×
(

+78%
−41%

)

=
(

+14%
−14%

)

. (1)

The three terms are the contributions from the 0, 1, and
(≥ 2)-jet bins with their relative scale uncertainties in
brackets. By using a common scale variation the uncer-
tainties are effectively 100% correlated and are added lin-
early, such that the ±14% scale uncertainty in the total

cross section is reproduced.
For the 0-jet bin, which is the most sensitive search

channel in H → WW ∗, one applies a strong veto on
additional jets. It is often argued that with the jet veto
the perturbative uncertainties improve, yielding scale un-
certainties from fixed-order perturbation theory that are
smaller than those in the total cross section, as seen in
Eq. (1). This apparent improvement arises from can-
cellations between two sources, large corrections to the
total cross section (large K factors) and the large correc-
tions from logarithmic dependence on the jet veto. Since
the improvement arises from a cancellation between two
large and predominantly independent perturbative series,
it must be assessed carefully.
We propose a simple procedure to estimate more real-

istic perturbative uncertainties for exclusive jet bins from
fixed-order perturbation theory. The method is designed
for processes with large K factors or large perturbative
corrections in inclusive cross sections and takes into ac-
count the structure of the various perturbative series. As
we will see, it can also be applied in general. The essential
idea is to first independently determine the uncertainties
in the inclusive N -jet cross sections σ≥N , and then use
them to compute the uncertainty in the exclusive N -jet
cross section σN from the difference

σN = σ≥N − σ≥N+1 . (2)

To a first approximation the perturbative series for σ≥N

can be considered unrelated for differentN . For instance,
their series start at different orders in αs, and there is
a priori no direct relation between the modifications to
the series caused by the jet cuts that define these two
inclusive samples. Therefore, as explained in detail in
Sec. II, we can work in the limit where the fixed-order
perturbative uncertainties in the σ≥N ’s can be taken as
uncorrelated, leading to

∆2
N = ∆2

≥N +∆2
≥N+1 . (3)

The uncertainty in the exclusive cross section is larger
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than that in the corresponding inclusive one, which ac-
counts for its more complicated perturbative structure.
Equation (2) also leads to an anti-correlation between the
cross sections in neighboring jet bins. When neighboring
bins are added the sensitivity to the boundary between
them cancels and the uncertainty reduces accordingly.
For example, for the 0-jet bin in H → WW ∗ discussed

above, we have σ0 = σtotal − σ≥1. Here, σ≥1 contains
double logarithms of the jet pT cut, whereas σtotal does
not involve any jet definition, so their perturbative series
can be considered largely independent. Therefore, tak-
ing their perturbative uncertainties ∆total and ∆≥1 as
uncorrelated, the covariance matrix for {σ0, σ≥1} is1

(

∆2
total +∆2

≥1 −∆2
≥1

−∆2
≥1 ∆2

≥1

)

. (4)

Using this matrix to compute the uncertainty in σ0+σ≥1

reproduces ∆total as it should.
We should mention that we are only discussing here the

uncertainties due to unknown higher-order perturbative
corrections, which are commonly estimated using scale
variations. We do not discuss parametric uncertainties,
such as PDF and αs uncertainties, which have been ex-
tensively discussed, recently for example in Refs. [9–16].
In the next section we present the arguments leading to

our proposal for evaluating the perturbative uncertainties
for exclusive jet bins, and discuss the structure of the
perturbative series. In Sec. III, we apply our method to
a variety of processes. We start in Secs. III A and III B
with discussion and numerical results for gg → H+0 jets
and gg → H + 1 jets. In Sec. III C, we consider pp →
WW+0 jets, which is an important background for Higgs
production. In Secs. III D, III E, and III F we consider
W + 0, 1, 2 jets, which are important backgrounds for
missing-energy searches. In Sec. IV, we consider again
gg → H + 0 jets and test our method for the fixed-order
uncertainties against a case where the resummation of
the large logarithms induced by the jet binning is known
to next-to-next-to-leading logarithmic (NNLL) accuracy.
We conclude in Sec. V. In App. A, we give expressions
for the uncertainties and correlations for the case where
one considers 0, 1, and (≥ 2)-jet bins as in Eq. (1).

II. JET BIN UNCERTAINTIES

To examine in more detail the modification of the per-
turbative series that takes place for exclusive jet bins,
we will consider the example of the 0-jet bin and (≥ 1)-
jet bin. The total cross section, σtotal, is divided into a

1 Since these are theory uncertainties, there is no strict reason to
combine them in a particular way. We add them in quadrature
since this is the most convenient for discussing correlations and
error propagation.

0-jet exclusive cross section, σ0(p
cut), and the (≥ 1)-jet

inclusive cross section, σ≥1(p
cut),

σtotal =

∫ pcut

0

dp
dσ

dp
+

∫

pcut

dp
dσ

dp

≡ σ0(p
cut) + σ≥1(p

cut) . (5)

Here, p denotes the kinematic variable which is used to
divide the cross section into jet bins. For most of our
analysis we take p ≡ pjetT , which for Eq. (5) is the largest
pT of any jet in the event. In this case, σ0(p

cut
T ) only

contains events with jets having pT ≤ pcutT , and σ≥1(p
cut
T )

contains events with at least one jet with pT ≥ pcutT .
In Eq. (5) both σ0 and σ≥1 depend on the phase space

cut, pcut, and by construction this dependence cancels
in their sum. This means that the additional perturba-
tive uncertainty induced by this cut, call it ∆cut, must
be 100% anti-correlated between σ0(p

cut) and σ≥1(p
cut).

That is, the contribution of ∆cut to the covariance matrix
for {σ0, σ≥1} must be of the form

Ccut =

(

∆2
cut −∆2

cut

−∆2
cut ∆2

cut

)

. (6)

The questions then are: (1) How can we estimate ∆cut,
and (2) how is the overall perturbative uncertainty ∆total

of σtotal related to the uncertainty for σ0 and σ≥1.
To answer these questions, we discuss the perturba-

tive structure of the cross sections in more detail. By
restricting the cross section to the 0-jet region, one re-
stricts the collinear initial-state radiation from the collid-
ing hard partons as well as the overall soft radiation in
the event. This restriction on additional emissions leads
to the appearance of Sudakov double logarithms of the
form L2 = ln2(pcut/Q) at each order in a perturbative
expansion in the strong coupling constant αs, where Q is
the hard scale of the process. For Higgs production from
gluon fusion, Q = mH , and the leading double logarithms
appearing at O(αs) are

σ0(p
cut
T ) = σB

(

1−
3αs

π
2 ln2

pcutT

mH
+ · · ·

)

, (7)

where σB is the Born (tree-level) cross section.
The total cross section just depends on the hard scale

Q, which means by choosing the scale µ ≃ Q, the fixed-
order expansion does not contain large logarithms and
has the structure2

σtotal ≃ σB

[

1 + αs + α2
s +O(α3

s)
]

. (8)

2 These expressions for the perturbative series are schematic. They
do not show the convolution with the parton distribution func-
tions (PDFs) contained in σB , nor do they display µ dependent
logarithms. In particular, the single logarithms related to the
PDF evolution are not displayed, since they are not the loga-
rithms we are most interested in discussing.



3

The coefficients of this series can be large, corresponding
to the well-known large K factors. For instance, the cross
section for gg → H doubles from leading order to next-
to-leading order (NLO) even though αs ∼ 0.1. As usual,
varying the scale in αs (and the PDFs) one obtains an
estimate of the size of the missing higher-order terms in
this series, corresponding to ∆total.

The inclusive 1-jet cross section has the perturbative
structure

σ≥1(p
cut) ≃ σB

[

αs(L
2 + L+ 1) (9)

+ α2
s(L

4 + L3 + L2 + L+ 1) +O(α3
sL

6)
]

,

where the logarithms L = ln(pcut/Q) arise from cutting
off the IR divergences in the real emission diagrams. For
pcut ≪ Q the logarithms can get large enough to over-
come the αs suppression. In the limit αsL

2 ≃ 1, the
fixed-order perturbative expansion breaks down and the
logarithmic terms must be resummed to all orders in αs

to obtain a meaningful result. For typical experimental
values of pcut fixed-order perturbation theory can still be
considered, but the logarithms cause large corrections at
each order and dominate the series. This means varying
the scale in αs in Eq. (9) directly tracks the size of the
large logarithms and therefore allows one to get some es-
timate of the size of missing higher-order terms caused
by pcut, that correspond to ∆cut. Therefore, we can ap-
proximate ∆cut = ∆≥1, where ∆≥1 is obtained from the
scale variation for σ≥1.

The exclusive 0-jet cross section is equal to the differ-
ence between Eqs. (8) and (9), and so has the schematic
structure

σ0(p
cut) ≃ σB

{

[

1 + αs + α2
s +O(α3

s)
]

−
[

αs(L
2+ L+ 1) + α2

s(L
4+ L3+ L2+ L+ 1)

+O(α3
sL

6)
]

}

. (10)

In this difference, the large positive corrections in σtotal

partly cancel against the large negative logarithmic cor-
rections. For example, at O(αs) there is a value of L
for which the αs terms in the schematic Eq. (10) cancel
exactly, indicating that at this pcut the NLO cross sec-
tion has vanishing scale dependence and is equal to the
LO cross section, σ0(p

cut) = σB . We will see this ef-
fect explicitly in our examples below, using the complete
perturbative expressions. We will find that this occurs
for values of pcut in the experimentally relevant region.
Due to this cancellation, a standard use of scale varia-
tion in Eq. (10) does not actually probe the size of the
logarithms, and thus is not suitable to estimate ∆cut.

Since ∆cut and ∆total are by definition uncorrelated,
by associating ∆cut = ∆≥1 we are effectively treating
the perturbative series for σtotal and σ≥1 as independent
with separate (uncorrelated) perturbative uncertainties.
That is, considering {σtotal, σ≥1}, the covariance matrix

is diagonal,

(

∆2
total 0

0 ∆2
≥1

)

. (11)

This is consistent, since for small pcut the two series have
very different structures. In particular, there is no reason
to believe that the same cancellations in σ0 will persist
at every order in perturbation theory at a given pcut.
From Eq. (11) it follows that the perturbative uncer-

tainty in σ0(p
cut) is given by ∆2

total +∆2
≥1, i.e., by sum-

ming the inclusive cross section uncertainties in quadra-
ture. It also follows that the complete covariance matrix
for the three3 quantities {σtotal, σ0, σ≥1} is

C =







∆2
total ∆2

total 0

∆2
total ∆2

≥1 +∆2
total −∆2

≥1

0 −∆2
≥1 ∆2

≥1






, (12)

where ∆total and ∆≥1 are considered uncorrelated and
are evaluated by separately varying the scales in the
fixed-order predictions for σtotal and σ≥1(p

cut), respec-
tively. The ∆≥1 contributions in the lower right 2 × 2
matrix for σ0 and σ≥1 are equivalent to Eq. (6) with
∆cut = ∆≥1. Note that in this 2 × 2 space all of ∆total

occurs in the uncertainty for σ0. This is reasonable from
the point of view that σ0 starts at the same order in αs as
σtotal and contains the same leading virtual corrections.
The limit ∆cut = ∆≥1 which Eq. (12) is based on is

of course not exact but an approximation. However, the
preceding arguments show that it is a more reasonable
starting point than using a common scale variation for
the different jet bins. The latter usually results in the
cross sections being 100% correlated, as in Eq. (1), and
in particular does not account for the additional pcut in-
duced uncertainties. In our numerical examples below,
we will see that our method produces more sensible un-
certainty estimates for fixed-order predictions. In Sec. IV
we will compare the estimates from our method with
those obtained by an explicit resummation in the jet-
veto variable. This provides further evidence that our
method gives consistent uncertainty estimates. Resum-
mation provides a way for improving predictions for the
central value of the cross section, together with better
estimates of ∆cut and the structure of the theory corre-
lation matrix, as discussed in Sec. IV.
It is straightforward to generalize the above discussion

to jet bins with more jets. For the N -jet bin we replace
σtotal → σ≥N , σ0 → σN , and σ≥1 → σ≥N+1, and take
the appropriate σB . If the perturbative series for σ≥N ex-
hibits large αs corrections, then the additional large loga-
rithms present in σ≥N+1 will again lead to cancellations

3 The fact that only two of three are independent is reflected in
the matrix, i.e. any 2 × 2 submatrix can be used to derive the
full 3× 3 matrix using the relation σtotal = σ0 + σ≥1.
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when we consider the difference σN = σ≥N − σ≥N+1.
Hence, ∆≥N+1 will again give a better estimate for the
∆cut that arises from separating σ≥N into jet bins σN and
σ≥N+1. Another advantage of our procedure is that it is
easily generalized to more than two jet bins by iteration.
The case of three jet bins is given in App. A.

III. EXAMPLE PROCESSES

To elucidate the effect of pjetT vetoes on the fixed-order
cross sections and demonstrate our method, we will now
go through several explicit examples, considering in turn
H + 0 jets, H + 1 jet, WW + 0 jets, and W + 0, 1, and
2 jets. All of our NLO pT spectra are obtained using
the MCFM code [17–20]. As our jet algorithm we use
anti-kT for the LHC results and a cone algorithm for the
Tevatron results with R = 0.5 for both.

A. Higgs + 0 Jets

In Higgs production via gluon fusion the cross section is
known to next-to-next-to-leading order (NNLO) [21–28],
and exhibits large perturbative corrections. Consider the
numerical results for the Higgs production cross section
for mH = 165GeV, µf = µr = mH/2, and MSTW2008
NNLO PDFs [29], for which αs ≡ αs(mH/2) = 0.1189.
Here one finds [30–33]

σtotal = (3.32 pb)
[

1 + 9.5αs + 35α2
s +O(α3

s)
]

, (13)

for the LHC at Ecm = 7TeV. Note that there is an
α2
s in the Born cross section, σB = 3.32 pb, but only

the relative size of the corrections is important for our
discussion. For the Tevatron the series is

σtotal = (0.15 pb)
[

1 + 9.0αs + 34α2
s +O(α3

s)
]

. (14)

In both cases the large K factors are clearly visible.4 For
the inclusive 1-jet cross section at the LHC one finds

σ≥1

(

pjetT ≥ 30GeV, |ηjet| ≤ 3.0
)

= (3.32 pb)
[

4.7αs + 26α2
s +O(α3

s)
]

,

σ≥1

(

pjetT ≥ 25GeV)

4 Using instead µf = µr = mH the coefficients of the αs and
α2
s terms increase to 11 and 65 for the LHC and 12 and 74 for

the Tevatron, respectively. The αs coefficients for the Tevatron
for example arise as 9.0 = 4.9 + 2.0 + 2.1 (µ = mH/2) and
12.0 = 4.9+5.7+1.4 (µ = mH ) where the three contributions are
respectively from the terms in the partonic cross section propor-
tional to δ(1−z), terms involving the plus functions [1/(1−z)]+
and [ln(1−z)/(1−z)]+, and the remaining terms that are nonsin-
gular for z → 1. When separating these different terms we keep
the overall 1/z factor in the convolution integral with measure
dz/z.

= (3.32 pb)
[

6.0αs + 32α2
s +O(α3

s)
]

. (15)

The first values correspond to the ATLAS and CMS ref-
erence cuts, and the second to current ATLAS and CMS
H → WW ∗ analyses [3, 4]. Similarly, for the typical cuts
used in H → WW ∗ at the Tevatron [2], one finds

σ≥1

(

pjetT ≥ 20GeV, |ηjet| ≤ 2.5
)

= (0.15 pb)
[

4.1αs + 27α2
s +O(α3

s)
]

. (16)

In both Eqs. (15) and (16) one clearly sees the impact of
the large logarithms on the perturbative series. Compar-
ing to Eqs. (13) and (14) one also sees the sizeable nu-
merical cancellation between the two series at each order
in αs. The extent of this cancellation depends sensitively
on the value of pcut.
The perturbative uncertainties on these inclusive cross

sections can now be used to determine the exclusive cross
section uncertainties. Varying the scale up and down
by a factor of two around mH/2 gives for the Tevatron
σtotal = (0.386± 0.040) pb and σ≥1 = (0.132± 0.034) pb

with the pjetT and ηjet cuts as in Eq. (16). Adding these in
quadrature according to the upper-left entry in Eq. (4)
gives

σ0 = (0.254± 0.052) pb , (17)

i.e., a 20% uncertainty. In contrast, when doing a
scale variation directly in the fixed-order expansion for
σ0(p

cut), as in Eq. (1), one implicitly assumes that the
perturbative uncertainties between the series for σtotal

and σ≥1 are 100% correlated, giving σ0 = (0.254±0.006).
Here this leads to an underestimate for the remaining un-
certainty. For the LHC, using the reference cuts, we get
σtotal = (8.70±0.75) pb and σ≥1 = (3.08±0.59) pb, lead-
ing to

σ0 = (5.63± 0.96) pb , (18)

i.e., a 17% uncertainty. In contrast, the direct scale vari-
ation for σ0 yields σ0 = (5.63 ± 0.15), which is again an
underestimate.
The two procedures of evaluating uncertainties can be

compared as a function of pcutT , and in the upper left
panel of Fig. 1 we do so for σ0(p

cut
T ) for Higgs produc-

tion. Results for σ0 are obtained at NNLO for the LHC
at Ecm = 7TeV, using MCFM to calculate the pcutT
dependence, FEHiP [30, 31] for the total NNLO cross
section, and µ = mH/2 for central values. The cen-
tral value is the solid blue curve, and the green dashed
and dotted lines show the results of direct exclusive scale
variation by a factor of two. For small values of pcutT

the cancellations that take place for σ0(p
cut) cause the

error bands to shrink. In particular, the direct exclu-
sive scale uncertainty vanishes at pcutT ≃ 25GeV, where
there is an almost exact cancellation between the two
series in Eq. (10), and the uncertainty curves pinch to-
gether. In contrast, the outer red solid lines show the
result of our method, which combines the independent in-
clusive uncertainties to obtain the exclusive uncertainty,
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FIG. 1: Perturbative predictions for H+0 jets (upper left panel), WW +0 jets (lower left panel), H+1 jet with pjetT1 ≥ 30GeV

(upper right panel), and H + 1 jet with pjetT1 ≥ 120GeV (lower right panel). Central values are shown by the blue solid curves,
direct scale variation in the exclusive jet bin by the green dashed and dotted curves, and the result of combining independent
inclusive uncertainties to get the jet-bin uncertainty by the outer red solid curves.

∆2
0 = ∆2

total +∆2
≥1. One can see that for large values of

pcutT this combined inclusive uncertainty estimate repro-
duces the direct exclusive scale variation, since σ≥1(p

cut)
becomes small. On the other hand, for small values
of pcutT the uncertainties obtained in this way are now
more realistic, because they explicitly take into account
the large logarithmic corrections. The features of this
plot are quite generic. In particular, the same pattern
of uncertainties is observed for the Tevatron, when we
take µ = mH as our central curve with µ = 2mH and
µ = mH/2 for the range of scale variation, and whether
or not we only look at jets at central rapidities. We also
note that using independent variations for µf and µr does
not change this picture, in particular the µf variation for
fixed µr is quite small.

Since both NLO and NNLO results for σ0(p
cut
T ) are

available, it is also useful to consider the convergence,
which we show in Fig. 2 for the Tevatron (top row) and
the LHC at 7TeV (bottom row). In the left panels we
directly vary the scales in σ0(p

cut
T ) to estimate the un-

certainty, while in the right panels we again propagate

the uncertainties from the inclusive cross sections. As we
lower pcutT , the direct exclusive scale variation uncertainty
estimate decreases at both NLO and NNLO, and eventu-
ally becomes very small when the curves pinch and the
uncertainty is clearly underestimated. In contrast, the
combined inclusive scale variation gives realistic uncer-
tainties for all values of pcutT . In particular, there is con-
siderable uncertainty for small pcutT where the summation
of logarithms is important.

B. Higgs + 1 Jet

As our next example we consider the 1-jet bin in Higgs
production from gluon fusion. This jet bin is defined by
two cuts, one which ensures that the jet with the largest
pT is outside the 0-jet bin, pjetT1 ≥ pcutT1 , and one which
ensures that the jet with the next largest pT is restricted,
pjetT2 ≤ pcutT , so that we do not have 2 or more jets. The
1-jet cross section can be computed as a difference of
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FIG. 2: Fixed-order perturbative uncertainties for gg → H +0 jets at NLO and NNLO. The upper row is for the Tevatron and
the lower row for the LHC with Ecm = 7TeV. On the left, the uncertainties are obtained from the direct scale variation in
σ0(p

cut
T ) between µ = mH/4 and µ = mH . On the right, the uncertainties are obtained by independently evaluating the scale

uncertainties in σtotal and σ≥1(p
cut) and combining them in quadrature. (For the LHC case the dark shaded NNLO bands

correspond to results in the top-left panel of Fig. 1. The direct exclusive scale variation band corresponds to the dashed green
lines, and the combined inclusive uncertainty band corresponds to the solid red lines.)

inclusive cross sections with these cuts,

σ1 = σ≥1

(

pjetT1 ≥ pcutT1

)

− σ≥2

(

pjetT1 ≥ pcutT1 , p
jet
T2 ≥ pcutT

)

.
(19)

For convenience we adopt the notation that pcutT is always
used for the cutoff that determines the upper boundary
of the jet bin under consideration, which gives the analog
of the L dependent terms in Eq. (10).
The inclusive cross section σ≥1 that includes the 1-

jet bin exhibits large perturbative corrections, much as
σtotal does for the 0-jet bin. For σ≥1 the large corrections
are caused in part by the large double logarithmic series
in ln(pjetT1/mH), but remains predominantly independent

of the large double logarithms of L = ln(pjetT2/mH) which
control the series for σ≥2. With µf = µr = mH/2, mH =
165GeV, and MSTW2008 NNLO PDFs, we find

σ≥1

(

pjetT1 ≥ 30GeV)

= (2.00 pb)
[

1 + 5.4αs +O(α2
s)
]

,

σ≥2

(

pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (2.00 pb)
[

3.6αs +O(α2
s)
]

. (20)

For σ1 = σ≥1 − σ≥2 there is a sizeable cancellation be-

tween these αs terms. If we lower the cut to pjetT2 ≥
22GeV then the logarithm increases and there is an al-
most exact cancellation with the 5.4αs. In the top right
panel of Fig. 1 we plot σ1 as a function of pcutT , and we
again see that this cancellation occurs in a region where
there is a dramatic decrease in the direct exclusive scale
dependence (green dashed and dotted curves). Using the
inclusive uncertainties for σ≥1 and σ≥2, and adding them
in quadrature, gives the solid red curves, which again
avoids this problem and provides a more realistic esti-
mate for the perturbative uncertainty.
Using the result from App. A we can examine the

full uncertainties and correlation matrix with 0, 1, and
(≥ 2)-jet bins in Higgs production. For the cuts in
Eq. (20) varying the scale by factors of two, we have
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σtotal = (8.70 ± 0.75) pb, σ≥1 = (3.29 ± 0.62) pb, and
σ≥2 = (0.85 ± 0.49) pb, corresponding to relative uncer-
tainties of 8.6%, 18.8%, and 57%, respectively. We let
δ(x) denote the relative percent uncertainty of the quan-
tity x, and ρ(x, y) the correlation coefficient between x
and y. App. A yields

δ(σ0) = 18% , δ(σ1) = 32% ,

ρ(σ0, σtotal) = 0.77 , ρ(σ1, σ≥2) = −0.62 ,

ρ(σ0, σ1) = −0.50 , (21)

where we have only shown the nonzero correlations. Note
that σ0 and σ1 as well as σ1 and σ≥2 have a substantial
negative correlation because of the jet-bin boundary they
share, while σ0 and σ≥2 are uncorrelated.
In contrast, the direct exclusive scale variation results

in all the cross sections being 100% correlated. Due to the
cancellations between the perturbative series, this leads
to much smaller (and unrealistic) uncertainties, with our
choice of cuts δ(σ0) = 2.3% and δ(σ1) = 5.5%, which is
reflected in the pinching of the green lines in Fig. 2. (Note
that increasing the range of scale variation or separately
varying µr and µf does not mitigate this problem.) The
analog of Eq. (1) for this example would be

0.62× 2.3%+ 0.28× 5.5%+ 0.10× 57% = 8.6% . (22)

When all σi are 100% correlated, σ0 is forced to have
a smaller relative uncertainty than σtotal, as in Eq. (1),
since it has to make up for the much larger uncertainties
in σ≥2.
In addition to the cross sections in each jet bin, we can

also consider the relative jet fractions f0 = σ0/σtotal and
σ1/σtotal, which are often used in experimental analyses.
The perturbative theory uncertainties and correlations
for the jet fractions follow by standard error propagation
from those in Eq. (21). The general expressions are given
in App. A, and we find

δ(f0) = 13% , δ(f1) = 33% ,

ρ(f0, σtotal) = 0.42 , ρ(f1, σtotal) = −0.26 ,

ρ(f0, f1) = −0.80 . (23)

Comparing to Eq. (21), the use of jet fractions with σtotal

in the denominator yields a nonzero anti-correlation for
σtotal with the 1-jet bin, and decreases the correlation for
σtotal with the 0-jet bin.
It is also interesting to consider the case with pjetT1 ≥

120GeV, where the logarithms of pjetT1/mH are not large.
The cross section σ≥1 now has a smaller perturbative

correction, but for a region of cuts on pjetT2 there are still

substantial cancellations in σ1. For instance, for pjetT2 ≥
60GeV we have

σ≥1

(

pjetT1 ≥ 120GeV)

= (0.31 pb)
[

1 + 2.9αs +O(α2
s)
]

,

σ≥2

(

pjetT1 ≥ 120GeV, pjetT2 ≥ 60GeV)

= (0.31 pb)
[

3.7αs +O(α2
s)
]

, (24)

and the αs terms completely cancel around pjetT2 ≥
70GeV. In the bottom right panel of Fig. 1 we plot
σ1 as a function of pcutT for this scenario. Once again the
combined inclusive uncertainties (solid red curves) give
a better estimate than the direct exclusive scale uncer-
tainty determined by up/down µ variation in σ1 (green
dotted and dashed curves). It is interesting to notice that

the curves dive and a logarithmic summation in pjetT2 be-
comes important earlier now, i.e., at much larger values
for pjetT2, when the cut on pjetT1 is raised. For p

jet
T1 ≥ 120GeV

and pjetT2 ≤ 30GeV fixed-order perturbation theory does
not yield a controlled expansion, and the resummation of
the jet-veto logarithms is clearly necessary.

C. WW + 0 Jets

The process pp → WW + 0 jets is the dominant irre-
ducible background for theH → WW ∗ search in the 0-jet
bin, and also exhibits a relatively large K factor ∼ 1.5.
Hence, it is interesting to contrast the scale uncertainties
here with those found for H+0 jets. Including the Higgs
search cuts (modulo the jet veto), the K factor for WW
becomes larger than two [19], but we will not include
those cuts in our analysis here. With µr = µf = mW ,
NLO MSTW2008 PDFs, and αs ≡ αs(mW ) = 0.1226,
the total pp → WW cross section is

σtotal = (32.5 pb)
[

1 + 3.6αs +O(α2
s)
]

, (25)

while for the inclusive 1-jet cross section with logarithms
of pcutT we have

σ≥1

(

pjetT ≥ 30GeV) = (32.5 pb)
[

2.8αs +O(α2
s)
]

. (26)

Thus, when we consider σ0 = σtotal − σ≥1 there is a size-
able cancellation for the αs terms. In Fig. 1, lower left
panel, we show σ0 for pp → WW + 0 jets as a function
of pcutT . Once again the green curves from direct exclu-
sive scale variation exhibit a pinching near pcutT ∼ 30GeV
due to cancellations between the two perturbative series
in Eqs. (25) and (26), leading to an underestimate of the
perturbative uncertainty. The combined inclusive uncer-
tainty estimate again mitigates this problem. The pat-
tern of uncertainties here is the same as forH+0 jets and
H + 1 jet, just with smaller overall uncertainties. Just
like for H + 0 jets using independent variations for µf

and µr does not change the picture, the µf variation for
fixed µr is again quite small.

D. W + 0 Jets

The exclusive process pp → W + N jets is an impor-
tant benchmark process at the LHC and also an impor-
tant SM background for new physics searches looking for
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FIG. 3: Fixed-order perturbative uncertainties for the exclusive pp → W + 0, 1, 2 jet cross sections at NLO for the LHC with
Ecm = 7TeV. Central values are shown by blue solid curves, direct exclusive scale variation in the exclusive jet bin by the
green dashed and dotted curves, and the result of combining independent inclusive uncertainties to get the jet-bin uncertainty
by the outer red solid curves.

missing energy. In this section we consider pp → W + 0
jets, which provides us with a case to test our method
when the perturbative corrections in the inclusive cross
sections are not as large. For simplicity, we only work to
NLO here. Using µf = µr = mW for the central value
and MSTW2008 NLO PDFs, the inclusive W production
cross section is

σtotal = (80.7 nb)
[

1 + 1.3αs +O(α2
s)
]

, (27)

where we have summed over W±, and have not included
the leptonic branching fractions. For the inclusive 1-jet
cross section we have

σ≥1

(

pjetT ≥ 30GeV) = (80.7 nb)
[

0.9αs +O(α2
s)
]

. (28)

The perturbative coefficients in Eqs. (27) and (28) are
much smaller than in Higgs production. The resulting
predictions for σ0(p

cut
T ) are shown in the top left panel of

Fig. 3, where the different lines have the same meaning as
in Fig. 1. Since the αs corrections are not very large here,
the µf scale variation in the PDFs dominates over the µr

variation in αs and produces a 100% negative correlation
between σtotal and σ≥1. (Keeping µf fixed at mW and
only varying µr results in the expected pinching of the
green lines.) This means their scale uncertainties add
linearly in σ0, which maximizes the uncertainty in this
0-jet cross section. In this case, our method, shown by
the solid red lines, gives an uncertainty band very similar
to direct exclusive scale variation. Hence, our method
of using independent inclusive uncertainties still remains
consistent for this situation.

E. W + 1 Jets

For pp → W+1 jet the perturbative corrections in σ≥1

are larger than those in the W total cross section, which
is in part influenced by logarithms from the lower cut on
pjetT1, the pT of the leading jet. The situation for the W+1
jet bin is similar to H + 1 jet. Considering Eq. (19) the
series for the inclusive 2-jet cross section, σ≥2, has large

double logarithms L = ln(pjetT2/mW ) of the second largest
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jet pT , which are independent of those in the perturbative
series for σ≥1. Taking µ = mW for central values, and
using MSTW2008 PDFs at NLO, the total W+ + W−

cross sections with both jet cuts at 30GeV are

σ≥1

(

pjetT1 ≥ 30GeV)

= (8.61 nb)
[

1 + 3.4αs +O(α2
s)
]

,

σ≥2

(

pjetT1 ≥ 30GeV, pjetT2 ≥ 30GeV)

= (8.61 nb)
[

2.5αs +O(α2
s)
]

. (29)

Once again the result for σ≥2 and the precise cancella-
tion that occurs in σ1 is quite sensitive to pcutT , the cut on

pjetT2, yielding an almost exact cancellation of the 3.4αs

for pjetT2 ≥ 25GeV. In the top-right panel of Fig. 3 we
plot σ1 as a function of pcutT , with direct exclusive scale
variation (green dashed and dotted curves) and those de-
rived from independent inclusive uncertainties (solid red
curves). Just like for H +1 jet, the direct exclusive scale
variation curves pinch, while the inclusive curves avoid
this problem and remain realistic.
We can also consider what happens when we make a

larger cut on pjetT1. Here, unlike for Higgs, the relative
size of the perturbative correction in σ≥1 increases. For
instance,

σ≥1

(

pjetT1 ≥ 80GeV)

= (1.07 nb)
[

1 + 5.3αs +O(α2
s)
]

,

σ≥2

(

pjetT1 ≥ 80GeV, pjetT2 ≥ 60GeV)

= (1.07 nb)
[

4.1αs +O(α2
s)
]

. (30)

For pjetT2 ≥ pcutT in σ≥2 the resulting 1-jet cross section σ1

is shown as a function of pcutT in the bottom-left panel of
Fig. 3. The situation for the uncertainties is similar to
that for the less stringent cut on pjetT1 in the upper-right
panel. Much like in H + 1 jet the logarithms start to
influence the cross section at larger values of pcutT for the

larger pjetT1 cut.

F. W + 2 Jets

As our last example we consider W + 2 jets, and for
simplicity we only consider the case of W+ production.
The inclusive 2-jet and 3-jet cross sections with all jets
cut at 30GeV are

σ≥2

(

pjetT1,2 ≥ 30GeV) = (1.60 nb)
[

1 + 1.0αs +O(α2
s)
]

,

σ≥3

(

pjetT1,2,3 ≥ 30GeV) = (1.60 nb)
[

2.3αs +O(α2
s)
]

,

(31)

and the resulting exclusive 2-jet cross section as a func-
tion of the pcutT on the third jet is shown in the bottom-
right panel in Fig. 3.
There are two different types of diagrams contribut-

ing to this process, those having two external quark lines
and two gluon lines at lowest order (qqgg), and those

having four external quark lines at lowest order (qqqq).
The qqgg-type contributions have the same behavior as
W + 1 jet, again displaying a pinching in the direct ex-
clusive scale variation curves. On the other hand, in
the qqqq-type contributions the PDF scale dependence
dominates, similar to what we observed for W + 0 jets.
The combination of the two leads to the behavior seen in
Fig. 3 at large pcutT , where the scale uncertainties in the
inclusive 2-jet cross section are asymmetric. Here there
is some choice for how to combine the scale variation into
an uncertainty estimate for σ≥2 (green dashed and dot-
ted curves). The choice one makes for σ≥2 simply propa-
gates into the equivalent choice for the exclusive 2-jet bin
σ2 (solid red curves). For simplicity in the bottom-right
panel of Fig. 3 we still use µ = mW /2 and µ = 2mW to
determine ∆≥2, in which case the central value should be
taken as the center of the band rather than the blue line
for µ = mW .
ForW+2 jets in Fig. 3 the pinching caused by the qqgg

contributions is again mitigated by combining the inclu-
sive uncertainties. Hence, we see that our method can
be applied and gives more stable uncertainty estimates
even in more complicated cases where several components
contribute to the cross section.
Note that we have also checked that when increasing

the cuts on the two leading jets, the same effect as inH+1
jets and W + 1 jets happens here as well. Namely, the
jet-veto logarithms from restricting the third jet become
more important earlier and influence the cross section at
larger values of pcutT for larger pjetT1,2 cuts.

IV. RESUMMATION FOR HIGGS + 0 JETS

In Sec. III we have seen that direct exclusive scale
variation often leads to an accidental underestimate of
the uncertainties for exclusive jet bin cross sections for
a range of experimentally relevant cuts. Instead combin-
ing independent uncertainties on inclusive cross sections
yields a more uniform (and larger) uncertainty band for
the exclusive jet bins. The region where direct exclusive
scale variation runs into trouble borders the region where
the resummation of the large logarithms of pjetT becomes
important. In this section, we test how realistic the fixed-
order scale uncertainties are by comparing them to a case
where the resummation of large logarithms induced by
the jet bin are known to NNLL+NNLO accuracy.
We again consider H + 0 jets from gluon fusion. At

NNLL order accuracy the resummation is sensitive to
the precise jet algorithm used to define pjetT , and other
complications in the required theoretical setup. To avoid
these issues, we will use a slightly different variable to
define the 0-jet bin, an inclusive event shape known as
beam thrust [34],

Tcm =
∑

k

(Ek − |pzk|) . (32)

The sum over k runs over all particles except the Higgs
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FIG. 4: Comparison of gg → H + 0 jets using T cut
cm at fixed NNLO with the resummed results at NNLL+NNLO. For the

fixed-order uncertainties in σ0 we use independent inclusive scale variations in σtotal and σ≥1. The uncertainty method for the
resummed results is described in the text.

decay products. Beam thrust essentially measures the
thrust of an event along the ẑ beam axis. When Tcm ≤
T cut
cm , from Eq. (32) we see that events in σ0(Tcm) are only

allowed to contain hard radiation in the forward regions
at large rapidities, and hence this cut vetoes central jets.
Much like with pjetT the perturbative series for this σ0 has
double logarithms, for example the analog of Eq. (7) is

σ0(T
cut
cm ) = σB

(

1−
3αs

π
ln2 T cut

cm

mH
+ · · ·

)

. (33)

For beam thrust, the all-order resummation of per-
turbative corrections is known to NNLL order for both
H + 0 jets and V + 0 jets [35–37]. For Higgs produc-
tion the computation has been extended to fully include
all NNLO corrections, and it was observed that the re-
summed cross section at NNLL+NNLO had larger uncer-
tainties than the pure NNLO result for σ0(Tcm ≤ T cut

cm )
utilizing direct exclusive fixed-order scale variation. This
lead to the conclusion that the direct exclusive scale vari-
ation underestimates the fixed-order perturbative uncer-
tainties in the 0-jet bin. In the resummed calculation,
fixed-order αs expansions are carried out at three dis-
tinct scales (hard µH , jet/beam µB , and soft µS) which
appear in the corresponding factorization theorem. The
uncertainties in the resummed cross section are obtained
by varying these scales. Varying µH up and down by
a factor of two moves all three scales up and down, and
hence is a scale variation that is correlated with the usual
scale variation for the inclusive cross section. Varying µB

or µS while holding µH fixed explicitly accounts for addi-
tional higher order uncertainties induced by the presence
of the large jet-veto logarithms, and hence allow us to
determine ∆cut.
In Fig. 4 we compare the remaining perturbative un-

certainties after resummation at NNLL+NNLO, shown
by the darker orange bands, to the NNLO uncertainties
obtained with the fixed-order method advocated here,

which are shown by the lighter gray bands. The results
for the NNLL+NNLO cross section are obtained from
Ref. [37].5 The left panel shows the results for the Teva-
tron and the right panel the results for the LHC at 7TeV.
The fact that the resummation reduces the perturbative
uncertainties, as it should, shows that our method of us-
ing independent inclusive scale variations yields more ro-
bust fixed-order uncertainties.

In the resummed calculation, σtotal is by construction
not affected by the µS and µB variations. We denote
the combined µS and µB uncertainty by ∆SB . It pro-
vides a direct estimate of the cut-induced uncertainty,
∆cut = ∆SB, which is anti-correlated between σ0(T

cut
cm )

and the corresponding σ≥1(T
cut
cm ) = σtotal − σ0(T

cut
cm ).

On the other hand, the µH variation affects all the cross
sections yielding an uncertainty component that is 100%
correlated between them. In particular, it is responsi-
ble for estimating the perturbative uncertainty of σtotal,
for which it is equivalent to the usual fixed-order scale
variation, ∆Htot = ∆total. The full covariance matrix for
{σtotal, σ0, σ≥1}, that is the analog of Eq. (12) but for

5 We have made a small improvement to Ref. [37]. The
NNLL+NNLO results of Ref. [37] fully incorporate the NNLO
corrections by adding so-called nonsingular fixed-order contribu-
tions, which are terms that do not appear in an expansion of the
strict NNLL result. In Ref. [37] the nonsingular contributions
were obtained for the sum of O(αs)+O(α2

s) cross-sections using
FEHiP [30, 31]. Here we use a much higher statistics spectrum
from MCFM [17], which allows us to separately determine the
nonsingular cross sections at O(αs) and O(α2

s). The only place
this improvement is visible is for T cut

cm ≤ 3GeV, where the re-
summed cross sections are now consistent with zero within the
displayed uncertainties.
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the resummed result, is then

C = CSB + CH ,

CSB =







0 0 0

0 ∆2
SB −∆2

SB

0 −∆2
SB ∆2

SB






, (34)

CH =







∆2
Htot ∆Htot∆H0 ∆Htot ∆H≥1

∆Htot ∆H0 ∆2
H0 ∆H0 ∆H≥1

∆Htot ∆H≥1 ∆H0 ∆H≥1 ∆2
H≥1






,

where ∆SB is obtained from the envelope of the µS and
µB variations, and CSB is equivalent to Ccut in Eq. (6).
The ∆Hi are obtained from the µH variation and satisfy
∆Htot = ∆H0 +∆H≥1. The full uncertainty in the 0-jet
bin shown by the darker red bands in Fig. 4 is then given
by ∆2

SB +∆2
H0, which is the 0-bin entry on the diagonal

of C.6

Compared to Eq. (34), using a direct exclusive scale
variation at fixed order would correspond to taking
∆SB → 0 and obtaining the analog of the ∆Hi by scale
variation without resummation (µH = µB = µS). On the
other hand, our proposed fixed-order method would cor-
respond to taking ∆SB → ∆≥1 and ∆H≥1 → 0, such that
∆H0 = ∆Htot → ∆total. Hence, the resummation of the
jet-veto logarithms allows one to capture both types of
uncertainties appearing in the two different fixed-order
methods. Note that the numerical dominance of ∆2

SB

over ∆H0∆H≥1 in the 0-jet region is another way to jus-
tify the preference for using the combined inclusive scale
variation over the direct exclusive scale variation when
given a choice between these two methods.
As an example, consider T cut

cm = 20GeV. At fixed
NNLO, the inclusive cross sections are σtotal = (8.70 ±
0.75) pb and σ≥1 = (2.25± 0.62) pb. Using Eq. (12), this
gives

δ(σ0) = 15% , δ(σ≥1) = 28% ,

ρ(σ0, σtotal) = 0.77 , ρ(σ≥1, σtotal) = 0 ,

ρ(σ0, σ≥1) = −0.64 . (35)

For σ0 this corresponds to the gray bands in Fig. 4,
and the structure here is very similar to what we saw
in Eq. (21).
From our resummed result using Eq. (34) we obtain

δ(σ0) = 11.8% , δ(σ≥1) = 19.7% ,

ρ(σ0, σtotal) = 0.04 , ρ(σ≥1, σtotal) = 0.33 ,

ρ(σ0, σ≥1) = −0.82 , (36)

6 In the results of Ref. [37], the envelope of all three scale variations
was used to obtain the total uncertainty. The slightly modified
procedure we use here, which adds ∆SB and ∆H in quadrature,
gives very similar results, but has the advantage that it also
allows for a straightforward treatment of the correlations.

which for σ0 corresponds to the orange bands in Fig. 4.
After resummation neither of σ0 and σ≥1 is strongly cor-
related with σtotal anymore, which at first sight is per-
haps a bit surprising. However, for small T cut

cm this is
not unexpected and is simply due to the fact that the
central values and remaining perturbative uncertainties
are dominated by the resummed logarithmic series (i.e.
∆SB dominates numerically over ∆H0 and ∆H≥1). In
fact, this supports our arguments in Sec. II, that the
uncertainties from higher-order terms in the logarithmic
series for σ≥1 and the fixed-order series for σtotal can and
should be considered independent, which lead to Eq. (11).
Comparing Eqs. (35) and (36), we see that the uncer-

tainties obtained from our fixed-order method follow a
similar pattern for the relative uncertainties for σ0 and
σ≥1 as observed in the resummed result, with a strong
negative correlation between them. Since resummation
provides an improved treatment of the cut-induced ef-
fects, we take this as further evidence that the method
of using inclusive fixed-order cross section uncertainties
provides a consistent way to obtain reliable estimates of
perturbative uncertainties in exclusive jet bins. In par-
ticular it provides a suitable starting point for an un-
certainty estimate, that can be further refined when an
appropriate resummed result becomes available.

V. CONCLUSIONS

We have proposed a method to estimate perturbative
uncertainties in fixed-order predictions of exclusive jet
cross sections that accounts for the presence of large
logarithms at higher orders caused by the jet binning.
The method uses the fixed-order calculations of inclusive
cross sections, σ≥N and σ≥N+1, for which the standard
scale variation provides reasonable uncertainty estimates,
and combines these inclusive uncertainties into an esti-
mate for the corresponding exclusive N -jet cross section
σN = σ≥N − σ≥N+1, treating the inclusive cross sections
as uncorrelated.
We have illustrated this procedure for a variety of pro-

cesses, including analysis of H + 0, 1 jets, WW + 0 jets,
and W + 0, 1, 2 jets with MCFM, and showed that it
yields more robust estimates of theory uncertainties than
direct exclusive scale variation. We have also shown for
a specific case with H+0 jets that it leads to fixed-order
uncertainties that are theoretically consistent with the
corresponding resummed predictions. In jet bins used
for new physics searches, we anticipate that it should
yield realistic uncertainty estimates for standard model
backgrounds. We also expect that it provides a suitable
fixed-order starting point for the central values, uncer-
tainties, and jet bin correlations, which can be improved
by higher-order logarithmic resummation.
Our treatment of the fixed-order exclusive and inclu-

sive cross sections has followed the standard approach of
always using cross section results at the same order in
αs. It would be interesting to study whether this can be
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relaxed when using differences of inclusive cross sections
to compute the central values for the jet bins. For exam-
ple, for gg → H one could independently compute σtotal

at NNLO, and σ≥1 and σ≥2 each at NLO, and then use
these to compute the jet bins as σ0 = σtotal − σ≥1 and
σ1 = σ≥1 − σ≥2. Since we argued that the inclusive se-
ries can be treated independently, it may be consistent to
include them to different orders to compute the central
value and uncertainties of σ1. This would have the ad-
vantage of allowing one to utilize the NLO result for σ≥2

without destroying the consistent perturbative expansion
for σ≥1 and σtotal when the jet bins are added together.
Since in this case the perturbative order of the jet bound-
ary between σ1 and σ≥2 does not match up, this deserves
a dedicated study before being used in practice.
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Appendix A: Case of Three Jet Bins

In this appendix we generalize Eq. (12) to the case of
0, 1, and (≥ 2)-jet bins that is actually used in current
Higgs searches. Since only neighboring jet bins will be
correlated, the generalization to more than three jet bins
is not any more complicated.
We start from the inclusive cross sections σtotal, σ≥1,

σ≥2, and denote their absolute uncertainties by ∆total,
∆≥1, ∆≥2 and their relative uncertainties by δi = ∆i/σi.
We define the exclusive cross sections and event fractions

σ0 = σtotal − σ≥1 , f0 =
σ0

σtotal
,

σ1 = σ≥1 − σ≥2 , f1 =
σ1

σtotal
. (A1)

The covariance matrix for the four quantities
{σtotal, σ0, σ1, σ≥2} is given by

C =













∆2
total ∆2

total 0 0

∆2
total ∆2

total +∆2
≥1 −∆2

≥1 0

0 −∆2
≥1 ∆2

≥1 +∆2
≥2 −∆2

≥2

0 0 −∆2
≥2 ∆2

≥2













.

(A2)

Of course, only three of these four quantities are inde-
pendent. For example, σtotal = σ0 + σ1 + σ≥2, and it is
easy to check that ∆(σ0 + σ1 + σ≥2)

2 = ∆2
total, which is

given by the sum of all entries in the lower 3× 3 matrix.
The relative uncertainties of σ0,1 following from Eq. (A2),
written in terms of relative quantities, are

δ(σ0)
2 =

1

f2
0

δ2total +
( 1

f0
− 1
)2

δ2≥1 ,

δ(σ1)
2 =

(1− f0
f1

)2

δ2≥1 +
(1− f0

f1
− 1
)2

δ2≥2 . (A3)

Similarly, the correlation coefficients for σ0 and σ1 fol-
lowing from Eq. (A2) are

ρ(σ0, σtotal) =

[

1 +
δ2≥1

δ2total
(1 − f0)

2

]−1/2

,

ρ(σ0, σ1) = −

[

1 +
δ2total
δ2≥1

1

(1− f0)2

]−1/2

×

[

1 +
δ2≥2

δ2≥1

(

1−
f1

1− f0

)2
]−1/2

,

ρ(σ0, σ≥2) = 0 ,

ρ(σ1, σtotal) = 0 ,

ρ(σ1, σ≥2) = −

[

1 +
δ2≥1

δ2≥2

(

1−
f1

1− f0

)−2
]−1/2

. (A4)

The relative uncertainties for f0 and f1 are

δ(f0)
2 =

( 1

f0
− 1
)2
(

δ2total + δ2≥1

)

, (A5)

δ(f1)
2 = δ2total +

(1− f0
f1

)2

δ2≥1 +
(1− f0

f1
− 1
)2

δ2≥2 ,

and their correlations are

ρ(f0, σtotal) =

[

1 +
δ2≥1

δ2total

]−1/2

,

ρ(f0, f1) = −

(

1 +
1− f0
f1

δ2≥1

δ2total

)

( 1

f0
− 1
) δ2total
δ(f0)δ(f1)

,

ρ(f1, σtotal) = −
δtotal
δ(f1)

. (A6)
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