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The Drell-Yan mechanism for the production of lepton pairs is one of the most basic

processes for physics studies at hadron colliders. It is therefore important to have accurate

theoretical predictions. In this work we compute the two-loop virtual mixed QCD×QED

corrections to Drell-Yan production. We evaluate the Feynman diagrams by decomposing

the amplitudes into a set of known master integrals and theircoefficients, which allows us

to derive an analytical result. We also perform a detailed study of the ultraviolet and in-

frared structure of the two-loop amplitude and the corresponding poles inε . Using crossing

symmetry, we also determine the corresponding two-loop result for deep inelastic scattering.

PACS numbers: 12.38.Bx,13.40.Ks,12.15.Lk

I. INTRODUCTION

The Drell-Yan process is one of the most precise probes available at hadron colliders. It allows

for precise measurements of the gauge boson masses [1–3], widths [4, 5] and asymmetries [6]

and is very sensitive to physics beyond the Standard Model like new gauge bosons [7–10]. One

reason it is such a powerful probe is its very simplicity. Itsexperimental signature, two leptons

plus anything, is quite robust against radiative emission.Theoretically, it is perhaps the simplest

process to compute at hadron colliders. It was the first hadronic scattering process to be computed

at next-to-next-to-leading (NNLO) in QCD [11, 12], almost twenty years ago.
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In recent years, it has become clear that electroweak corrections [13–16] to Drell-Yan produc-

tion are also very important. Electroweak corrections can distort the line-shape and thereby affect

the measurement of the gauge boson masses. Radiative corrections can also become very large at

the high energies (several hundred GeV) which will be probedat the LHC.

An important next step to refining the prediction for Drell-Yan production is the calculation of

the complete mixed QCD and electroweak corrections. Currently, only the virtual corrections to

the quark – gauge boson vertex are known in the literature [17]. We embark on this project by

computing the simplest gauge-invariant part, the mixed QCD×QED virtual corrections. That is,

we ignore allW andZ boson interactions, and consider only virtual photon and gluon exchanges.

In addition, we take all fermions to be massless (except the top quark, which does not enter into

this part of the calculation). For most of the calculation, there is no barrier to including a non-

vanishing lepton mass. For the box contributions, however,one would need new master integrals

with two massive external legs and massive internal propagators. The effects of non-vanishing

masses (at least for components that do not involve box contributions) will be added at a later

stage of the project. Having computed the mixed QCD×QED virtual corrections, there are many

steps still required to complete the full calculation of mixed QCD and electroweak corrections.

The real corrections to QCD×QED are similar in complexity to the real corrections in the NNLO

QCD calculation of Drell-Yan production, except where theyinvolve mixed initial and final state

radiation. The two-loop virtual corrections involving massive gauge bosons promise to be more

challenging than the current calculation as some of the double-box master integrals that will be

needed are not yet known analytically. It may be that a combination of analytic and numerical

techniques will have to be employed on these contributions.The real corrections to terms involv-

ing massive vector boson exchange, however, are essentially NLO QCD calculations and can be

handled by methods that are now standard.

The amplitude of the Drell-Yan process is also related to electron-positron annihilation into

hadrons(quarks) and to deep inelastic scattering by crossing symmetry. In the latter reaction the

kinematic invariants take on different numerical values requiring different analytic continuations

of the complex functions in the amplitude compared to the Drell-Yan process.

The outline of this paper is as follows. In Section II we definesome generalities and our

notation. In Section III we give an outline of the calculation and in Section IV discuss the structure

of the ultraviolet and infrared poles. The results are presented in Section V and we present our

conclusions in Section VI. The Appendix contains supplementary information about the next-
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to-leading order process, the master integrals arising in the calculation, and the result for deep

inelastic scattering.

II. GENERALITIES AND NOTATION

We study the Drell-Yan process of quark (q) anti-quark ( ¯q) annihilation into a charged lepton (ℓ)

pair

q(p1)+ q̄(p2)→ ℓ−(p3)+ ℓ+(p4) (1)

wherep1, p2, p3, p4 denote the momenta of the particles, which are all considered as incoming

with p1+ p2+ p3+ p4 = 0. In the following we will use the Mandelstam variables

s = (p1+ p2)
2 = (p3+ p4)

2,

t = (p1+ p3)
2 = (p2+ p4)

2,

u = (p1+ p4)
2 = (p2+ p3)

2, (2)

or si j = (pi + p j)
2 to express scalar products of the external momenta.

The differential cross section is given by

dσV

dΩ
=

1
64π2s

1
4N2

c
∑
spin
color

|M |2, (3)

where the symbolNc denotes the number of colors of SU(Nc) and M is the matrix element.

Within this work we consider only virtual corrections to theDrell-Yan process. The perturbative

expansion of the corresponding squared matrix element is given by

∑
spin
color

|M |2 = NcQ2
qQ2

ℓ e4
(

A(0,0)+
(α

π

)

A(1,0)+
(αs

π

)

CF A(0,1)+
(α

π

)(αs

π

)

CF A(1,1)+ . . .
)

, (4)

whereQq and Qℓ are the electric charges of the initial state quarks and the final state leptons

in units of the elementary chargee. The symbolsα andαs are the fine structure constant and

the strong coupling constant, respectively;CF = (N2
c − 1)/(2Nc) denotes the Casimir operator

of the fundamental representation of SU(Nc). The dots stand for higher order corrections. Here

and in the following we will write the expansion of any function of α and αs as f (α,αs) =

∑m,n(α/π)m(αs/π)n f (m,n). The well-known leading order resultA(0,0) of Eq. (4) ind = 4−2ε

space-time dimensions reads

A(0,0) =
8
s2

(

t2+u2−s2ε
)

. (5)
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The one-loop QCD [18–21] and one-loop QED corrections [13] are known. For completeness

we will give the bare results forA(1,0) as well as forA(0,1) in Appendix A, since they are needed

for the subtraction of the ultraviolet poles through the renormalization procedure as well as for the

identification of the infrared poles. Beyond leading-order, the real corrections need to be taken

into account to obtain a physical cross section.

III. CALCULATION OF THE BARE PROCESS

Depending on the nature of the electromagnetic corrections, the QCD×QED corrections to

Drell-Yan production can be broken up into four classes, which are: initial state corrections, final

state corrections, mixed initial and final state corrections, and vacuum polarization corrections.

Sample diagrams for each of these four classes are shown in FIG 1.

q

q

e

e

(a)

q

q

e

e

(b)

q

q

e

e

(c)

q

q

e

e

(d1)

q

q

e

e

(d2)

FIG. 1: Example diagrams which contribute to the two-loop mixed QCD×QED corrections. The spiral lines

denote gluons, the wavy lines are photons and the straight lines are fermions which can either be quarks in

the initial state or leptons in the final state.

The initial state electromagnetic corrections consist of two-loop corrections to the quark –

photon vertex. A sample diagram of this class of correction is shown in FIG. 1(a). All of the

diagrams that appear in this portion of the calculation are topologically identical to diagrams that

appear in the two-loop QCD corrections to Drell-Yan production. By simultaneously computing

the two-loop QCD corrections and verifying the known result[22], we obtain a strong check on

this part of the calculation. We also include the interference of the one-loop QCD correction and
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the one-loop QED initial state correction. There is but one diagram of each sort.

The final state virtual corrections are quite trivial, sincethe only contributing two-loop diagram

is the one shown in FIG. 1(b), which is just the product of two one-loop triangle diagrams. The

virtual corrections to this channel also get a contributionfrom the interference of the one-loop

QCD corrections and the one-loop final state QED corrections. Again, there is but one diagram of

each sort.

The mixed initial and final state electromagnetic corrections are the most complicated terms in

this calculation and the only ones which involve the kinematic variablest andu in the loop inte-

grals. A sample diagram is shown in FIG. 1(c). Even the interference of the one-loop amplitudes is

relatively complicated as the electromagnetic part involves the sum of two one-loop box integrals.

The vacuum polarization correction terms are also easy to compute as the loops are simple two-

loop propagator integrals, like that shown in FIG. 1(d1), or the product of a one-loop propagator

integral and a one-loop triangle as in FIG. 1(d2). The interference of one-loop amplitudes is again

very simple as it only involves a single vacuum polarizationdiagram interfered with the single

one-loop QCD diagram.

We have performed two independent calculations of the virtual corrections and find complete

agreement. The Feynman diagrams are generated with QGRAF [23]. The symbolic algebra pro-

gram FORM [24] is used to implement the Feynman rules, to interfere the two-loop diagrams

with the tree-level contribution and to reduce the result toa set of Feynman integrals to be deter-

mined. The calculation proceeds in two steps. In the first step all the loop integrals are mapped

onto a small set of master integrals with the traditional integration-by-parts (IBP) method [25]

in combination with Laporta’s algorithm [26, 27]. In the second step these master integrals are

evaluated.

In one calculation, the integrals are reduced to master integrals using the program RE-

DUZE [28]. In the second calculation, the reduction has beenperformed with a FORM [24, 29, 30]

based implementation which uses the packages Q2E and EXP [31, 32] to identify the different

topologies and to adopt the proper notation. The program FERMAT [33] is used to simplify the

rational functions in the space time dimensiond.

We find that at the two-loop level, all integrals can be expressed in terms of eight master topolo-

gies which are shown in FIG. 2. All of the needed master integrals are known analytically in the

literature to sufficiently deep order in theε expansion and will be discussed in more detail in Ap-

pendix B. At the end, the reductions and the evaluations of the master integrals are substituted
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back into the FORM program to produce the final result.

p1

p2 p3

p4

k2+p1

k1-p2

k1-k2

(a)

p1

p2 p3

p4

k1

k1-p1-p2

k2

k2-p1-p2

(b) (c)

p1

p2 p3

p4

k 2
-p

2

k 1
-k

2

k1

k
1 +

p
3

k1-p1-p2

(d)

p1

p2 p3

p4

k 2
-p

2

k 1-
k 2

k2

k
1 +

p
3

k1-p1-p2

(e)

p1

p2

p3

p4

k 1

k
2-k

1-p
2

k
2-p

2

k1+
p1

k2+
p1

k
2 -k

1

(f)

(g1)

⊗ (k1+ p3)
2

(g2)

FIG. 2: The master topologies of the two-loop calculation ordered according to the number of internal lines.

The arrow on the lines denotes the momentum flow. The symbolsk1 andk2 are loop momenta. The integral

representation of diagram(g2) has an additional irreducible scalar product(k1 + p3)
2 in the numerator

indicated by the⊗ symbol.

IV. THE POLE STRUCTURE OF THE PROCESS

A. Ultraviolet Structure and Renormalization

We have performed renormalization in theMS scheme. Since we treat all particles as being

massless, we only need to renormalize the couplings. Coupling constant renormalization is gov-
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erned by theβ -functions,

βQED(α,αs) = µ2 d
dµ2

(α
π

)

= −β (2,0)
QED

(α
π

)2
−β (3,0)

QED

(α
π

)3
−β (2,1)

QED

(α
π

)2(αs

π

)

+ . . . ,

β (2,0)
QED =−

1
3

(

NℓQ2
ℓ +NcNuQ2

u+NcNd Q2
d

)

,

β (3,0)
QED =−

1
4

(

NℓQ4
ℓ +NcNuQ4

u+NcNd Q4
d

)

,

β (2,1)
QED =−

1
4
CF Nc

(

NuQ2
u+Nd Q2

d

)

, (6)

βQCD(αs,α) = µ2 d
dµ2

(αs

π

)

= −β (0,2)
QCD

(αs

π

)2
−β (0,3)

QCD

(αs

π

)3
−β (1,2)

QCD

(αs

π

)2(α
π

)

+ . . . ,

β (0,2)
QCD =

11
12

CA−
1
3

Tf Nq,

β (0,3)
QCD =

17
24

C2
A−

5
12

CATf Nq−
1
4
CF Tf Nq,

β (1,2)
QCD =−

1
8

(

NuQ2
u+Nd Q2

d

)

, (7)

whereµ is the renormalization scale,Nu is the number of up-type quarks,Nd is the number of

down-type quarks andNℓ is the number of charged leptons, whileQu, Qd andQℓ are their electric

charges,+2
3, −1

3 and−1, respectively. The symbolCA = Nc denotes the Casimir operator of the

adjoint representation of SU(Nc) and Tf = 1/2 is the normalization of the QCD charge of the

fundamental representation. Note that in Eqs. (6) and (7) the superscriptsi and j in the symbols

β (i, j)
QED andβ (i, j)

QCD represent the coefficients ofα andαs, respectively, for the(i + j − 1)-loop β -

functions of QED and QCD. This non-standard notation emphasizes that we are expanding in two

independent gauge couplings. The bare and renormalized couplings are related by

(

αB

π

)

=

(

eγE

4π

)ε
(α

π

)



1−
(α

π

)β (2,0)

ε
−
(α

π

)2





β (3,0)

2ε
−

(

β (2,0)

ε

)2




−
(α

π

)(αs

π

)β (2,1)

2ε
+ . . .

]

, (8)

(

αB
s

π

)

=

(

eγE

4π

)ε
(αs

π

)



1−
(αs

π

)β (0,2)

ε
−
(αs

π

)2





β (0,3)

2ε
−

(

β (0,2)

ε

)2




−
(α

π

)(αs

π

)β (1,2)

2ε
+ . . .

]

, (9)

wheree≃ 2.71828 is Euler’s number andγE ≃ 0.577216 is the Euler-Mascheroni constant. Since

the leading-order contribution to the squared matrix element is of orderα2 and we compute

terms through orderα3 αs, we need to keep QED renormalization terms proportional toβ (2,0)
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andβ (2,1)[34], while QCD renormalization does not contribute to our result. The fine-structure

constant can be converted, if needed, from the aboveMS scheme to the on-shell definition with a

conversion factor. This conversion is known to four-loop order in QED [35, 36].

B. Infrared Structure

An important check on our calculation is to verify that we have obtained the correct infrared

structure. Some years ago, Catani [37] proposed a formula predicting the leading poles (ε−4

throughε−2) of two-loop QCD amplitudes. At that time, theε−1 poles were presumed to be

process dependent and therefore unpredictable. Nonetheless, direct calculations [38–42] showed

that theε−1 terms seemed to follow a simple pattern based upon the numbers of quarks and gluons

that made up the external legs of the amplitude.

Subsequently, Sterman and Tejeda-Yeomans [43] reformulated Catani’s observation and identi-

fied the origins of the various terms. They also identified thethen-unknown term, the second-order

correction to the so-called “soft anomalous dimension” which prevented the prediction of theε−1

terms. Aybat, Dixon and Sterman [44, 45] have since computedthe two-loop corrections to the

soft anomalous dimension, permitting the prediction of thefull infrared structure of two-loop QCD

amplitudes.

C. The Infrared Structure of QCD Amplitudes

For a general 2→ n scattering process,

f1(p1,c1)+ f2(p2,c2)→ f3(p3,c3)+ · · ·+ fn+2(pn+2,cn+2) , (10)

where fi represent the flavors of the partons,pi their momenta andci their colors, we can write the

amplitude as a vector in the space of color tensors{(CI){ci}} as [37, 46, 47]

∣

∣

∣
Mf

(

pi ,
Q2

µ2 ,αs(µ2),ε
)〉

≡ ∑
L

Mf,L

(

pi ,
Q2

µ2 ,αs(µ2),ε
)

× (CL){ci} , (11)

whereQ is an (arbitrary) overall scale andµ is the renormalization scale.

In the formulation of Refs. [43–45], a renormalized amplitude may be factorized into three

functions: the jet functionJf, which describes the collinear dynamics of the external partons

that participate in the collision; the soft functionSf, which describes soft exchanges between
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the external partons; and the hard-scattering function|Hf〉, which describes the short-distance

scattering process
∣

∣

∣
Mf

(

pi ,
Q2

µ2 ,αs(µ2),ε
)〉

= Jf
(

αs(µ2),ε
)

Sf

(

pi ,
Q2

µ2 ,αs(µ2),ε
) ∣

∣

∣
Hf

(

pi ,
Q2

µ2 ,αs(µ2)
)〉

. (12)

The notation indicates that|Hf〉 is a vector andSf is a matrix in color space. As with any factor-

ization, there is considerable freedom to move terms about from one function to the others. It is

convenient [44, 45] to define the jet and soft functions,Jf andSf, so that they contain all of the

infrared poles but only contain infrared poles, while all infrared finite terms are absorbed into|Hf〉.

1. The Jet Function

The jet functionJf is found to be the product of individual jet functionsJ fi for each of the

external partons,

Jf
(

αs(µ2),ε
)

= ∏
i∈f

Ji
(

αs(µ2),ε
)

. (13)

Each individual jet function is naturally defined in terms ofthe Sudakov form factor [43],

Ji
(

αs(µ2),ε
)

= Jı̄
(

αs(µ2),ε
)

∼
[

M [i ı̄→1] (αs(µ2),ε
)

]1/2
(14)

The all-orders expression for the square root of the Sudakovform factor is [48–51]

Ji
(

αs(µ2),ε
)

= exp

{

1
4

∫ µ2

0

dξ 2

ξ 2

[

Ki
(

αs(µ2),ε
)

+Gi

(

−1, ᾱs

(

µ2

ξ 2 ,αs(µ2),ε
)

,ε
)

+
1
2

∫ µ2

ξ 2

d µ̃2

µ̃2 γK i

(

ᾱs

(

µ2

µ̃2 ,αs(µ2),ε
))

]

}

.

(15)

The functionsKi , Gi andγK i are anomalous dimensions that can be determined from fixed-order

calculations of the Sudakov form factors for quarks and gluons [22, 52–57]. Note thatγK i is the

cusp anomalous dimension andKi is determined, order by order, fromγK i . While theKi are pure

pole terms, theGi contain terms at higher order inε.

The jet functionsJ fi keep only the infrared poles from the logarithm of the form factor. The

expansion of the jet function to second order inαs is

lnJi
(

αs(µ2),ε
)

=−
(αs

π

)

[

1
8ε2γ(0,1)K i +

1
4ε

G
(0,1)
i (ε)

]

+
(αs

π

)2







β (0,2)
QCD

8
1
ε2

[

3
4ε

γ(0,1)K i +G
(0,1)
i (ε)

]

−
1
8

[

γ(0,2)K i

4ε2 +
G

(0,2)
i (ε)

ε

]







+ . . .

(16)
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where

γ(0,1)K i = 2Ci , γ(0,2)K i =Ci K =Ci

[

CA

(

67
18

−ζ2

)

−
10
9

Tf Nq

]

, Cq ≡CF , Cg ≡CA,

G
(0,1)
q =

3
2
CF +

ε
2

CF (8−ζ2) , G
(0,1)
g = 2β (0,2)

QCD −
ε
2

CAζ2,

G
(0,2)
q =C2

F

(

3
16

−
3
2

ζ2+3ζ3

)

+CF CA

(

2545
432

+
11
12

ζ2−
13
4

ζ3

)

−CF Tf Nq

(

209
108

+
1
3

ζ2

)

,

G
(0,2)
g = 4β (0,3)

QCD +C2
A

(

10
27

−
11
12

ζ2−
1
4

ζ3

)

+CA Tf Nq

(

13
27

+
1
3

ζ2

)

+
1
2
CF Tf Nq ,

(17)

Nq is the number of quark flavors andζn = ∑∞
k=11/kn represents the Riemann zeta-function of

integer argumentn. The coefficients of theβ -functions are given in Eqs. (6-7). Even though theGi

have terms at higher order inε, we only keep terms in the expansion that contribute poles tolnJi .

2. The Soft Function

Like the jet function, the soft function can be defined in terms of eikonal amplitudes and is

determined entirely by the soft anomalous dimension matrixΓΓΓSf ,

Sf

(

pi ,
Q2

µ2 ,αs(µ2),ε
)

= P exp

{

−
1
2

∫ µ2

0

d µ̄2

µ̄2 ΓΓΓSf

(

si j

µ2 , ᾱs

(

µ2

µ̃2 ,αs(µ2),ε
))

}

= 1+
1

2ε

(αs

π

)

ΓΓΓ(0,1)
Sf

+
1

8ε2

(αs

π

)2
ΓΓΓ(0,1)

Sf
×ΓΓΓ(0,1)

Sf

−
β (0,2)

QCD

4ε2

(αs

π

)2
ΓΓΓ(0,1)

Sf
+

1
4ε

(αs

π

)2
ΓΓΓ(0,2)

Sf
.

(18)

In the color-space notation of Refs. [37, 46, 47], the soft anomalous dimension is given by [44, 45]

ΓΓΓ(0,1)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

Ti ·T j ln

(

µ2

−si j

)

, ΓΓΓ(0,2)
Sf

=
K
2

ΓΓΓ(0,1)
Sf

, (19)

whereK = CA(67/18−ζ2)−10Tf Nq/9 is the same constant that relates the one- and two-loop

cusp anomalous dimensions. TheTi are the color generators in the representation of partoni,

multiplied by±1, depending on the whether the parton is a particle or antiparticle and whether

it is incoming or outgoing. In particular, outgoing quarks and gluons and incoming anti-quarks

are multiplied by+1, while incoming quarks and gluons and outgoing anti-quarks are multiplied

by −1. The conservation of color-charge is enforced by the identity ∑i Ti = 0. Another useful

identity is thatTi ·Ti =Ci . We note that there has been a great deal of work recently to understand
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the infrared structure of both massless and massive QCD amplitudes at two loops and beyond [58–

63], which explains the particularly simple form of the two-loop corrections to the cusp and soft

anomalous dimensions.

D. The Infrared Structure of QED Amplitudes

It has been found that the same factorization described in Eq. (12) can be applied to pure QED

amplitudes [42, 64]. The two-loop amplitudes for Bhabha scattering and fore+e− → γγ in mass-

less QED were found to obey the factorization formula of Catani [37] once the proper adjustments

are made to transform the QCD anomalous dimensions into QED anomalous dimensions.

The changes are as follows. The factors of the adjoint representation Casimir,CA, originate

from the gluon self interactions. As photons have no self interactions,CA is set to zero. The

fundamental representation Casimir,CF is replaced by the squared electric charge of the fermion,

CF →Q2
i . The factors ofTf Nq originate from inserting fermion bubbles into the gluon propagators.

In QED, the different types of fermions would be weighted by the squares of their electric charges,

Tf Nq → NcNuQ2
u+NcNd Q2

d+NℓQ2
ℓ . In the soft anomalous dimension, the color charge matrices

Ti are replaced by the (scalar) electric chargesQi . With these changes, the anomalous dimensions

for the QED jet function are

γ(1,0)K i = 2Q2
i , γ(2,0)K i = Q2

i KQED =
10
3

Q2
i β (2,0)

QED,

G
(1,0)
f =

3
2

Q2
f +

ε
2

Q2
f (8−ζ2) , G

(2,0)
f = Q4

f

(

3
16

−
3
2

ζ2+3ζ3

)

+Q2
f β (2,0)

QED

(

209
36

+ζ2

)

,

G
(1,0)
γ = 2β (2,0)

QED, G
(2,0)
γ = 2β (3,0)

QED ,

(20)

while the QED contribution to the soft anomalous dimension is

ΓΓΓ(1,0)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

Qi Q j ln

(

µ2

−si j

)

, ΓΓΓ(2,0)
Sf

=
KQED

2
ΓΓΓ(1,0)

Sf
=

5
3

β (2,0)
QED ΓΓΓ(1,0)

Sf
. (21)

Using these parameters, one can predict the infrared structure of two-loop QED amplitudes,

where the analog rules as in Eq. (19) apply for the signs. Whencomparing to the results of

Refs. [42, 64], one must account for the fact that those calculations are in the context of pure

QED, involving only leptons and photons. As the universality of theε−1 terms had not yet been
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established, the (color diagonal)H(2) factors for electrons and photons was quoted as

H(2)
e =−

(

3
8
−3ζ2+6ζ3

)

+N′
f

(

−
25
54

+
1
2

ζ2

)

,

H(2)
γ =

20
27

N′2
f +N′

f ,

whereN′
f ≡ NℓQ2

ℓ . Transforming the results above into the notation of Ref. [37], we find that the

H(2) terms may be more generally written as

H(2)
f =−Q4

f

(

3
8
−3ζ2+6ζ3

)

+Q2
f β (2,0)

QED

(

25
18

+
3
2

ζ2

)

,

H(2)
γ =

20
3

(

β (2,0)
QED

)2
−4β (3,0)

QED ,

(22)

where the subscriptf indicates any charged fermion – lepton or quark. With these modifications,

we find complete agreement with the results of Refs. [42, 64].

E. The Infrared Structure of QCD× QED Amplitudes

The leading terms in the infrared structure of QCD× QED corrections will come from the

overlap of the one-loop terms for pure QCD and pure QED. The intrinsically QCD× QED terms

will be second-order contributions to the jet and soft functions. Based upon the way the parameters

were determined for QED, we can make conjectures about the parameters for QCD× QED. Since

the generators for photons and gluons commute, we should again set theCA terms to zero. We

need to be a little more careful about theNf terms, however. Our approach is to tie theNf terms

to the coefficients of theβ -functions. The reason for this is that when theNf term is part of the

leading term in aβ -function, it represents the insertion of a fermion bubble into a gauge boson

propagator. Because the charge matrix of QCD is traceless, the bubble cannot connect a photon

to a gluon and therefore these terms cannot contribute to a second-order mixed correction. When

the Nf term is part of a second-order term in aβ -function, however, it represents a term like

those shown in FIG. 3, which can represent a second-order mixed correction. Examining the two-

loop anomalous dimensions in Eqs. (17) and (19), we see that the second order corrections to

the cusp and soft anomalous dimensions are proportional toK =CA(67/18−ζ2)−10Tf Nq/9=

(2/3−ζ2)CA + 10/3β (0,2)
QCD. Since we have argued that neither non-Abelian nor first-order β -

function corrections can contribute to second-order mixedcorrections, we conclude that there are

no mixed corrections to the cusp and soft anomalous dimensions at this order. That leaves only
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FIG. 3: Mixed second order contributions to the QED and QCDβ -functions.

theGi terms. By the same reasoning as for the cusp and soft anomalous dimensions, we set theCA

andNq terms to zero in formingG (1,1)
q , but we predict that theC2

F term should be transformed into

CF Q2
q. ForG (1,1)

g,γ , we again drop the non-Abelian and first-orderβ -functions, but we predict that

we should keep the second-orderβ -function terms to obtainG (1,1)
g = 2β (1,2)

QCD andG
(1,1)
γ = 2β (2,1)

QED.

We can thus write combined expressions for the jet and soft functions which we claim are valid

through second order in both QCD and QED,

lnJi(α(µ2),αs(µ2),ε) = −
(α

π

)

[

1
8ε2γ(1,0)K ,i +

1
4ε

G
(1,0)
i (ε)

]

−
(αs

π

)

[

1
8ε2γ(0,1)K ,i +

1
4ε

G
(0,1)
i (ε)

]

+
(α

π

)2







β (2,0)
QED

8ε2

[

3
4ε

γ(1,0)K i +G
(1,0)
i (ε)

]

−
1
8

[

1
4ε2γ(2,0)K i +

1
ε
G

(2,0)
i

]







+
(αs

π

)2







β (0,2)
QCD

8ε2

[

3
4ε

γ(0,1)K i +G
(0,1)
i (ε)

]

−
1
8

[

1
4ε2γ(0,2)K i +

1
ε
G

(0,2)
i

]







−
(α

π

)(αs

π

) 1
4ε

G
(1,1)
i + . . . , (23)

and

Sf

(

pi ,
Q2

µ2 ,α(µ2),αs(µ2),ε
)

= 1+
1

2ε

(α
π

)

ΓΓΓ(1,0)
Sf

+
1

2ε

(αs

π

)

ΓΓΓ(0,1)
Sf

+
1

8ε2

(α
π

)2
ΓΓΓ(1,0)

Sf
×ΓΓΓ(1,0)

Sf
+

1
8ε2

(αs

π

)2
ΓΓΓ(0,1)

Sf
×ΓΓΓ(0,1)

Sf
+

1
4ε2

(α
π

)(αs

π

)

ΓΓΓ(1,0)
Sf

×ΓΓΓ(0,1)
Sf

−
β (1,0)

QED

4ε2

(α
π

)2
ΓΓΓ(1,0)

Sf
−

β (0,2)
QCD

4ε2

(αs

π

)2
ΓΓΓ(0,1)

Sf
+

1
4ε

(α
π

)2
ΓΓΓ(2,0)

Sf
+

1
4ε

(αs

π

)2
ΓΓΓ(0,2)

Sf
, (24)

with

γ(1,0)K i = 2Q2
i , γ(2,0)K i = γ(1,0)K i KQED =

10
3

Q2
i β (2,0)

QED ,

γ(0,1)K i = 2Ci , γ(0,2)K i = γ(0,1)K i KQCD =

[(

2
3
−ζ2

)

CA+
10
3

β (2,0)
QCD

]

Ci ,

G
(1,0)
f =

3
2

Q2
f +

ε
2

Q2
f (8−ζ2) , G

(2,0)
f = Q4

f

(

3
16

−
3
2

ζ2+3ζ3

)

+Q2
f β (2,0)

QED

(

209
36

+ζ2

)

,

G
(1,0)
γ = 2β (2,0)

QED , G
(2,0)
γ = 2β (3,0)

QED ,
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G
(0,1)
f =

3
2
CF +

ε
2

CF (8−ζ2) ,

G
(0,2)
f =C2

F

(

3
16

−
3
2

ζ2+3ζ3

)

+CF CA

(

41
72

−
13
4

ζ3

)

+β (0,2)
QCD

(

209
36

+ζ2

)

,

G
(0,1)
g = 2β (0,2)

QCD −
ε
2

CAζ2 , G
(0,2)
g = 2β (0,3)

QCD +

(

19
18

−ζ2

)

CAβ (0,2)
QCD +

(

59
72

−
1
4

ζ3

)

C2
A ,

G
(1,1)
f =CF Q2

f

(

3
16

−
3
2

ζ2+3ζ3

)

, G
(1,1)
γ = 2β (2,1)

QED , G
(1,1)
g = 2β (1,2)

QCD ,

ΓΓΓ(1,0)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

Qi Q j ln

(

µ2

−si j

)

, ΓΓΓ(2,0)
Sf

=
KQED

2
ΓΓΓ(1,0)

Sf
=

5
3

β (2,0)
QED ΓΓΓ(1,0)

Sf
,

ΓΓΓ(0,1)
Sf

=
1
2 ∑

i∈f
∑
j 6=i

Ti ·T j ln

(

µ2

−si j

)

, ΓΓΓ(0,2)
Sf

=
KQCD

2
ΓΓΓ(0,1)

Sf
=

[(

1
3
−

1
2

ζ2

)

CA+
5
3

β (2,0)
QCD

]

ΓΓΓ(0,1)
Sf

.

(25)

F. The Infrared Structure of the Drell-Yan Amplitude

We can now examine our result for the Drell-Yan amplitude to see if we match the expected

infrared structure. We start from the factorization formula, Eq. (12), and expand both sides in

powers ofα andαs,

|MDY〉 = JDY SDY |HDY〉 (26)

=
∣

∣

∣
M

(1,0)
DY

〉

+
(α

π

)∣

∣

∣
M

(2,0)
DY

〉

+
(αs

π

)∣

∣

∣
M

(1,1)
DY

〉

+
(α

π

)(αs

π

)∣

∣

∣
M

(2,1)
DY

〉

=
∣

∣

∣H
(1,0)
DY

〉

+
(α

π

)(

J
(1,0)
DY

∣

∣

∣H
(1,0)
DY

〉

+S(1,0)
DY

∣

∣

∣H
(1,0)
DY

〉

+
∣

∣

∣H
(2,0)
DY

〉)

+
(αs

π

)(

J
(0,1)
DY

∣

∣

∣
H(1,0)

DY

〉

+S(0,1)
DY

∣

∣

∣
H(1,0)

DY

〉

+
∣

∣

∣
H(1,1)

DY

〉)

+
(α

π

)(αs

π

)[(

J
(1,1)
DY +J

(1,0)
DY S(0,1)

DY +J
(0,1)
DY S(1,0)

DY +S(1,1)
DY

)∣

∣

∣
H(1,0)

DY

〉

+
(

J
(1,0)
DY +S(1,0)

DY

) ∣

∣

∣
H(1,1)

DY

〉

+
(

J
(0,1)
DY +S(0,1)

DY

) ∣

∣

∣
H(2,0)

DY

〉

+
∣

∣

∣
H(2,1)

DY

〉]

. (27)

Because of the trivial color structure of the Drell-Yan amplitude, the soft anomalous dimen-

sion matrix is proportional to the unit matrix and may be treated as a scalar function. The

squared matrix element of Eq. (4) is related to the decomposition of the amplitude in Eq. (26)

by ∑ spin
color

|M |2 = (eγE/(4π))2ε (α
π
)2
〈MDY |MDY〉. The values of the jet and soft functions for the

Drell-Yan process are given by

J
(1,0)
DY =−

(

1
2ε2 +

3
4ε

)

(

Q2
q +Q2

ℓ

)

, J
(0,1)
DY =−

(

1
2ε2 +

3
4ε

)

CF ,

J
(1,1)
DY =

(

1
4ε4 +

3
4ε3 +

9
16ε2

)

CF
(

Q2
q +Q2

ℓ

)

−
1

2ε

(

3
16

−
3
2

ζ2+3ζ3

)

CF Q2
q ,
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S(1,0)
DY =−

1
2ε

[

(

Q2
q+Q2

ℓ

)

ln

(

µ2

−s

)

+2QqQℓ

(

ln

(

µ2

−t

)

− ln

(

µ2

−u

))]

,

S(0,1)
DY =−

1
2ε

CF ln

(

µ2

−s

)

,

S(1,1)
DY =

1
4ε2CF ln

(

µ2

−s

)[

(

Q2
q+Q2

ℓ

)

ln

(

µ2

−s

)

+2QqQℓ

(

ln

(

µ2

−t

)

− ln

(

µ2

−u

))]

. (28)

We find complete agreement between our result and the expected infrared structure presented in

Eq. (28), including the intrinsically QCD×QED term inJ
(1,1)
DY .

V. RESULTS

As our final result we present the interference of the finite hard-scattering terms that appear in

Eq. (27), defined by

2
(α

π

)2
Re
[〈

H(1,0)
DY

∣

∣

∣
H(2,1)

DY

〉

+
〈

H(1,1)
DY

∣

∣

∣
H(2,0)

DY

〉]

= NcQ2
qQ2

ℓ e4CF B(1,1) , (29)

where we performed the renormalization in theMS scheme as described in Section IV A. The

infrared poles are subtracted ind dimensions with the help of Eqs. (27-28). We decompose this

mixed QCD× QED two-loop contribution with respect to the charge factors

B(1,1) = QqQℓB(1,1)
qℓ +

t2+u2

s2

[

Q2
qB(1,1)

qq +Q2
ℓ B(1,1)

ℓℓ +Nc ∑
q′

Q2
q′ B

(1,1)
Σq′ +∑

ℓ′
Q2
ℓ′ B

(1,1)
Σℓ′

]

, (30)

where the sum overℓ′ andq′ runs over all leptons and quark flavors which are active in theclosed

fermion loop. Each of the five terms corresponds to one of the classes of diagrams shown in

FIG. 1 (a)-(d) and corresponds to a gauge invariant subset ofdiagrams in this decomposition. The

individual terms of Eq. (30) are

B(1,1)
qq =

511
4

−
83
3

π2+
67
30

π4−60ζ3+
(

−93+10π2+48ζ3
)

log

(

s
µ2

)

+

(

50−
14
3

π2
)

log2
(

s
µ2

)

−12 log3
(

s
µ2

)

+2 log4
(

s
µ2

)

, (31)

B(1,1)
ℓℓ = 128−

112
3

π2+
49
18

π4+
(

14π2−96
)

log

(

s
µ2

)

+

(

50−
14
3

π2
)

log2
(

s
µ2

)

−12 log3
(

s
µ2

)

+2 log4
(

s
µ2

)

, (32)

B(1,1)
Σq′ =

155
9

−
140
27

π2+16ζ3+

(

28
9

π2−
92
3

)

log

(

s
µ2

)
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+
112
9

log2
(

s
µ2

)

−
8
3

log3
(

s
µ2

)

, (33)

B(1,1)
Σℓ′ =

320
9

−
140
27

π2+

(

28
9

π2−
104
3

)

log

(

s
µ2

)

+
112
9

log2
(

s
µ2

)

−
8
3

log3
(

s
µ2

)

,(34)

B(1,1)
qℓ = 4

5u2− t2

s2 Li4

(

−u
s

)

−4

[

t
s
+4

u2

s2 log

(

−u
s

)]

Li3

(

−u
s

)

− Li2

(

−u
s

) [

8
3

t2+u2

s2 π2−2
t
s

log

(

−u
s

)

−2
u
s

log

(

−t
s

)

−
3u2+ t2

s2 log2
(

−u
s

)

−
3t2+u2

s2 log2
(

−t
s

)]

+2 log

(

s
µ2

) [

2

(

7
3

t2+u2

s2 π2

−
19t2+3t u+16u2

s2

)

log

(

−u
s

)

−3
t −u

s
log2

(

−u
s

)]

+ 2 log2
(

s
µ2

) [

t −u
s

log2
(

−u
s

)

+2
6u2+ t u+7t2

s2 log

(

−u
s

)]

− 8
t2+u2

s2 log3
(

s
µ2

)

log

(

−u
s

)

+4
t −u

s
ζ3

[

2 log

(

−u
s

)

−1

]

+ π2
[

4
3

t −u
s

+
8u+15t

3s
log

(

−u
s

)

+
5
6

u2+3t2

s2 log2
(

−u
s

)]

−π4 2
15

t −u
s

−
3u2+ t2

6s2 log4
(

−u
s

)

−
2
3

t +2u
s

log3
(

−u
s

)

−4
5u−2t

s
log2

(

−u
s

)

− 40
t
s

log

(

−u
s

)

+
5t2−u2

3s2 log3
(

−t
s

)

log

(

−u
s

)

− (t ↔ u) , (35)

where Lin(z) = ∑∞
k=1

zk

kn is the polylogarithm function and the symbol(t ↔ u) stands for the same

terms a given before only with the Mandelstam variablesu andt interchanged. As an additional

check of our calculation we have kept the complete dependence of the gauge parameter in the

gauge boson propagators and have verified their cancellation.

VI. SUMMARY & CONCLUSIONS

We have computed the two-loop virtual corrections to Drell-Yan production at orderαsα3.

The calculation of these mixed QCD×QED corrections includes two-loop corrections to the quark

vertex, one-loop corrections to the quark and lepton vertices, vacuum polarization corrections

to the photon propagator as well as two-loop box diagrams connecting the hadronic and leptonic

states. The computation is accomplished by reducing all Feynman integrals to a small set of master

integrals. The latter ones are known analytically to sufficiently high order in theε expansion

to allow us to derive an analytical result for the finite amplitude. In addition, we use crossing
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symmetry to obtain the result for the two-loop mixed QCD×QED corrections for deep inelastic

scattering.

We have also shown that the infrared structure of the mixed amplitudes follows from the same

universal factorization structure that governs the pure QCD and QED amplitudes and we have

determined the value of the two-loop mixed anomalous dimension.
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Appendix A: Bare next-to-leading order results in terms of master integrals

We present our bare results for the next-to-leading order processes in terms of the master inte-

grals and coefficients to all orders inε. For the one-loop QCD and QED corrections we adopt the

decomposition of the squared matrix element as given in Eq. (4); all quantities are considered as

bare. We find

A(0,1)
B =

A(0,0)

4

(

1−
2
ε
−2ε

)

Br
0(s) , (A1)

A(1,0)
B = (Q2

q+Q2
ℓ)A(0,1)

B +

(

∑
ℓ′

Q2
ℓ′ +Nc ∑

q′
Q2

q′

)

A(0,0) 1− ε
2ε −3

Br
0(s)

+ QqQℓ

[

(

10−
4
ε
−2ε

)

t −u
s

Br
0(s)+

(

6−
4
ε
+2ε

)

t −u
s

Br
0(u)

+

(

2
u(t2+3u2)

s
−3ε su

)

Dr
0(s,u)− (t ↔ u)

]

, (A2)

with the integrals

Br
0(s) =

(

4π µ2)ε
e−εγE 2Re

[

I (1)2 (s)
]

and Dr
0(s,u) =

(

4π µ2)ε
e−εγE 2Re

[

I (1)4 (s,u)
]

, (A3)

wheree≃ 2.71828 is again Euler’s number andγE ≃ 0.577216 is the Euler-Mascheroni constant.

The values of the master integralsI (1)2 andI (1)4 are given in Appendix B. In the coefficients of the

master integrals of Eqs. (A1-A2), spurious poles inε appear, which arise while solving the linear

system of IBP equations. As a result, one must know the masterintegrals which are multiplied

by such spurious poles at higher order in theε expansion. The same situation also occurs in the



18

two-loop amplitude. In principle, those spurious poles could be avoided by choosing an epsilon

finite basis [65]. However, since all necessary master integrals are known either in closed form

or to sufficiently high order inε, we retain the standard basis of master integrals, except for the

two-loop double box topology which will be discussed in Section B 2.

Appendix B: Master Integrals

The reduction process relates complicated integrals with many terms in the numerators and

denominators to “simpler” integrals with fewer terms in both numerators and denominators. In

general, it is preferred that the master integrals have numerators equal to unity, and denominators

which only contain propagators of unit strength, but this preference cannot always be satisfied.

In this calculation, we encounter eighteen two-loop masterintegrals. Of these, eight represent

distinct topologies which are shown in FIG. 2; the others arerelated to these eight by relabeling the

external legs. Only one of the distinct topologies has an irreducible numerator (or, equivalently, a

doubled propagator in the denominator).

All of the master integrals needed for this calculation are known in the literature. The double

box integrals, FIG. 2(g1) and FIG. 2(g2) are known as Laurent expansions in the dimensional

regularization parameterε. The others are all known in closed form and can be readily computed

using standard Feynman parametrization techniques.

In the following we define the master integralsI (k)p;s with loop momentak1 andk2 in Minkowski

space, where the superscriptk indicates the number of loops, the subscriptp denotes the number

of propagators ands enumerates integrals with the same number of loops and propagators. For

clarity, we also indicate the Mandelstam variables that appear as arguments.

1. One-loop master integrals

At one-loop order we have the five master integralsI (1)2 (s), I (1)2 (t), I (1)2 (u), I (1)4 (s, t) and

I (1)4 (s,u), which are define by

I (1)2 (s) = eεγE

∫

ddk1

i πd/2

1
D1D3

, I (1)4 (s,u) = eεγE

∫

ddk1

i πd/2

1
D1D2D3D4

, (B1)

with
D1 = k2

1+ i ε, D2 = (k1− p1)
2+ i ε,

D3 = (k1− p1− p2)
2+ i ε, D4 = (k1− p1− p2− p3)

2+ i ε.
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Their values are

I (1)2 (s) = eε γE (−s)−ε Γ2(1− ε)Γ(ε)
Γ(2−2ε)

, (B2)

I (1)4 (s, t) =
2eε γE

st
Γ(1+ ε)Γ2(−ε)

Γ(1−2ε)

[

(−s)−ε
2F1

(

1,−ε; 1− ε; 1+
s
t

)

+(−t)−ε
2F1

(

1,−ε ; 1− ε; 1+
t
s

)]

, (B3)

where 2F1(a, b; c; z) = ∑∞
k=0(a)k(b)k/(c)kzk/k! are hypergeometric functions,(a)n = Γ(a+

n)/Γ(a) is the Pochhammer symbol andΓ(x) is the gamma function.

2. Two-loop master integrals

a. Three-Line Topologies

There is one distinct three-line topology, shown in Fig. 2(a), which we labelI (2)3 (s) and define

by

I (2)3 (s) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D5D6D7

, (B4)

with

D5 = (k1− p2)
2+ i ε , D6 = (k1−k2)

2+ i ε , D7 = (k2+ p1)
2+ i ε.

Its value is

I (2)3 (s) = e2ε γE (−s)1−2ε ε3 Γ3(−ε)Γ(−1+2ε)
Γ(3−3ε)

. (B5)

In addition, we also needI (2)3 (t) andI (2)3 (u).

b. Four-Line Topologies

There are four four-line master integrals,I (2)4;1(s), I (2)4;2(s), I (2)4;2(t) and I (2)4;2(u) with two distinct

four-line topologies. One is a simple iterated bubble diagram, shown in Fig. 2(b), which evaluates

to the square of the expression in Eq. (B2); the other is shownin Fig. 2(c). They are defined by

I (2)4;1(s) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D1D3D8D9

, I (2)4;2(s) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D5D6D8D10

(B6)

with

D8 = k2
2+ i ε, D9 = (k2− p1− p2)

2+ i ε, D10 = (k1+ p1)
2+ i ε,
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and are given byI (2)4;1(s) = (I (1)2 (s))2,

I (2)4;2(s) = e2ε γE (−s)−2ε Γ(1−2ε)Γ2(−ε)Γ(1+ ε)Γ(1+2ε)
2(1−2ε)Γ(2−3ε)

. (B7)

c. Five-line Topologies

There are six five-line master integralsI (2)5;1(s, t,u), I (2)5;1(u,s, t), I (2)5;1(s,u, t), I (2)5;1(t,s,u),

I (2)5;2(s, t,u) and I (2)5;2(s,u, t) with two distinct five-line topologies, which are shown in Fig. 2(d)

and Fig. 2(e). The first topology has a bubble connecting two adjacent corners of a box, the other

five-line topology is a box diagram with a diagonal-line connecting opposite corners. They are

defined by

I (2)5;1(s,u, t) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D1D3D6D11D12

, (B8)

I (2)5;2(s,u, t) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D3D6D8D11D12

, (B9)

with

D11 = (k1+ p3)
2+ i ε, D12= (k2− p2)

2+ i ε ,

Their results read

I (2)5;1(s,u, t) = −
e2ε γE

s
Γ2(−ε)Γ(−1+2ε)

Γ(1−3ε)

[

(−u)−2ε Γ(1− ε)2F1

(

1,−ε; 1− ε; −
t
s

)

+ (−s)−2ε Γ(1+ ε)Γ(1−2ε)2F1

(

1, ε; 1− ε; −
t
s

)

]

, (B10)

I (2)5;2(s,u, t) = e2ε γE
Γ3(−ε)Γ(2ε)
2t Γ(1−3ε)

[

(−u)−2ε
(

1− 2F1

(

1,−2ε; 1−2ε; −
t
s

))

+ (−s)−2ε
(

1− 2F1

(

1,−2ε; 1−2ε; −
t
u

))

]

. (B11)

d. Six-line Topologies

There is only one six-line master integral, the non-planar triangle diagram, shown in Fig. 2(f)

and defined by

I (2)6 (s) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D1D6D7D10D12D13

, with D13 = (k2−k1− p2)
2+ i ε.
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Its result can be expressed with the help of generalized hypergeometric functions

pFq(a1, . . . ,ap;b1, . . . ,bq;z) = ∑∞
k=0(a1)k . . .(ap)k/((b1)k . . .(bq)k)zk/k! by

I (2)6 (s) = −e2ε γE (−s)−2−2ε Γ(1+2ε)

[

−
Γ(1− ε)Γ4(1−2ε)Γ(1+ ε)Γ2(1+2ε)

ε4Γ2(1−4ε)Γ(1+4ε)
−

4Γ2(1− ε)Γ(1−2ε)
ε4 Γ(1−4ε)

+
Γ2(1− ε)Γ(1−2ε)Γ(1+ ε)

2ε4 Γ(1−3ε) 3F2(1,−2ε ,−4ε ; 1−2ε, 1−3ε; 1)

+
4Γ2(1− ε)Γ(1−2ε)Γ(1+ ε)Γ(1+2ε)

ε4 Γ(1−4ε)Γ(1+3ε) 3F2(ε, ε, 1+2ε; 1+ ε, 1+3ε; 1)

−
Γ3(1− ε)

2ε4 Γ(1−3ε) 4F3(1, 1− ε,−2ε ,−4ε ; 1−2ε, 1−2ε, 1−3ε; 1)

]

. (B12)

Note that the closed-form expression given above appears todiffer slightly from that given by

Ref. [66]. However, by rearranging theΓ-functions and applying various hypergeometric identi-

ties, one finds that the two expressions are exactly equal.

e. Seven-line Topologies

There are four seven-line master integralsI (2)7;1(s, t), I (2)7;1(s,u), I (2)7;2(s, t) andI (2)7;2(s,u) with two

distinct topologies. One is the double-box topology where all propagators are of unit strength,

shown in FIG. 2(g1). It is defined by

I (2)7;1(s,u) = e2ε γE

∫

ddk1

i πd/2

ddk2

i πd/2

1
D1D3D5D6D8D9D14

, with D14= (k2+p3)
2+ i ε , (B13)

and known as a Laurent expansion inε [67]

I (2)7;1(s,u) = −
(−s)−2−2ε

u

{

−
4
ε4 +5

ℓ

ε3 −
1
ε2

[

2ℓ2−15ζ2
]

−
1
ε

[

4Li3(−x)−4ℓLi2(−x)

+ 2Li1(−x)
(

ℓ2+6ζ2
)

+
2
3
ℓ3+33ζ2ℓ−

65
3

ζ3

]

+
4
3
ℓ4+36ζ2ℓ

2−
88
3

ζ3ℓ

+ 87ζ4−4 (S2,2(−x)− ℓ S1,2(−x))+44Li4(−x)+4Li3(−x) (Li1(−x)−6ℓ)

+ 2Li2(−x)
(

ℓ2−2ℓLi1(−x)+20ζ2
)

+Li2
1(−x)

(

ℓ2+6ζ2
)

+
2
3

Li1(−x)
(

4ℓ3+30ζ2ℓ−6ζ3
)

+O (ε)
}

, (B14)

with ℓ = log(x), x = u/s and the generalized polylogarithm function Sn,p(z) =

(−1)n+p−1/(n−1)!/p!
∫ 1

0 dt′ logn−1(t ′) logp(1−zt′)/t ′.
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There are two equivalent representations for the second seven-line topology. One is the double-

box with a doubled propagator. The other representation is adouble-box with an irreducible

numerator, shown in FIG. 2(g2). The latter is defined by

I (2)7;2(s,u) = e2εγE

∫

ddk1

i πd/2

ddk2

i πd/2

(k1+ p3)
2

D1D3D5D6D8D9D14
. (B15)

When one uses the integral with the doubled propagator, the reduction procedure generates a spu-

rious pole inε, meaning that one needs the double-box integrals expanded to orderε1. When one

instead uses the above double-box with an irreducible numerator, the reduction does not generate

the extra pole, meaning that one only needs to expand the integrals to orderε0.

The double-box with an irreducible numerator was first calculated in [68], with the result

I (2)7;2(s,u) = e2ε γE (−s)−2−2ε Γ2(1+ ε)

{

9
4ε4 −

2
ε3 ℓ−

14ζ2

ε2 +
1
ε

[

4
3
ℓ3+28ζ2ℓ

+ 4(ℓ2+6ζ2)Li1(−x)+8Li3(−x)−8ℓLi2(−x)−16ζ3
]

−
4
3
ℓ4−26ζ2ℓ

2

−

[

16
3
ℓ3+52ζ2ℓ

]

Li1(−x)−5
[

ℓ2+6ζ2
]

Li21(−x)+
[

6ℓ2+20ℓLi1(−x)

− 8ζ2] Li2(−x)+ [8ℓ−20Li1(−x)] Li3(−x)+20 S2,2(−x)−20ℓ S1,2(−x)

− 28Li4(−x)+ [28ℓ+20Li1(−x)] ζ3−14ζ4+O (ε)

}

. (B16)

Appendix C: Deep inelastic scattering

In Section V, we presented the result for the Drell-Yan process where the kinematic invariants

have the propertys> 0> t, u. In deep inelastic scattering,q(p1)+ ℓ−(p4)→ q(p2)+ ℓ−(p3), the

kinematic invariants are in the regionu> 0> s, t. For this case, we present theMS renormalized

interference of the finite hard-scattering terms|HDIS〉 which are defined in complete analogy to the

Drell-Yan case in Section IV F

2
(α

π

)2
Re
[〈

H(1,0)
DIS

∣

∣

∣
H(2,1)

DIS

〉

+
〈

H(1,1)
DIS

∣

∣

∣
H(2,0)

DIS

〉]

= NcQ2
qQ2

ℓ e4CF C(1,1) . (C1)

For the quantityC(1,1) we perform the same decomposition as in Eq. (30) with

C(1,1) = QqQℓC
(1,1)
qℓ +

t2+u2

s2

[

Q2
qC(1,1)

qq +Q2
ℓ C(1,1)

ℓℓ +Nc ∑
q′

Q2
q′C

(1,1)
Σq′ +∑

ℓ′
Q2
ℓ′C

(1,1)
Σℓ′

]

. (C2)

The individual terms read as follows

C(1,1)
qq =

511
4

+
13
3

π2−
13
30

π4−60ζ3+
(

−93−2π2+48ζ3
)

log

(

−s
µ2

)
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+

(

50−
2
3

π2
)

log2
(

−s
µ2

)

−12 log3
(

−s
µ2

)

+2 log4
(

−s
µ2

)

, (C3)

C(1,1)
ℓℓ = 128−

16
3

π2+
π4

18
+
(

2π2−96
)

log

(

−s
µ2

)

+

(

50−
2
3

π2
)

log2
(

−s
µ2

)

−12 log3
(

−s
µ2

)

+2 log4
(

−s
µ2

)

, (C4)

C(1,1)
Σq′ =

155
9

−
20
27

π2+16ζ3+

(

4
9

π2−
92
3

)

log

(

−s
µ2

)

+
112
9

log2
(

−s
µ2

)

−
8
3

log3
(

−s
µ2

)

, (C5)

C(1,1)
Σℓ′ =

320
9

−
20
27

π2+

(

4
9

π2−
104
3

)

log

(

−s
µ2

)

+
112
9

log2
(

−s
µ2

)

−
8
3

log3
(

−s
µ2

)

,(C6)

C(1,1)
qℓ = D(1,1)

qℓ (u, t)+E(1,1)
qℓ (u, t) , (C7)

with

D(1,1)
qℓ (u, t) = 4

t2−5u2

s2 Li4

(

−s
u

)

−4

[

t
s
−4

u2

s2 log
(∣

∣

∣

s
u

∣

∣

∣

)

]

Li3

(

−s
u

)

+ Li2

(

−s
u

) [

2
3

t2+u2

s2 π2+2
t
s

log
(∣

∣

∣

s
u

∣

∣

∣

)

+2
u
s

log
(∣

∣

∣

s
t

∣

∣

∣

)

−
3u2+ t2

s2 log2
(∣

∣

∣

s
u

∣

∣

∣

)

−
3t2+u2

s2 log2
(∣

∣

∣

s
t

∣

∣

∣

)

]

−2 log

(

−s
µ2

) [

2

(

t2+u2

3s2 π2

−
19t2+3t u+16u2

s2

)

log
(∣

∣

∣

s
u

∣

∣

∣

)

+
3
2

t −u
s

π2+3
t−u

s
log2

(∣

∣

∣

s
u

∣

∣

∣

)

]

+ 2 log2
(

−s
µ2

) [

t −u
s

log2
(∣

∣

∣

s
u

∣

∣

∣

)

−2
6u2+ t u+7t2

s2 log
(∣

∣

∣

s
u

∣

∣

∣

)

+
t −u

s
π2

2

]

+ 8
t2+u2

s2 log3
(

−s
µ2

)

log
(∣

∣

∣

s
u

∣

∣

∣

)

−4
t−u

s
ζ3

[

2 log
(∣

∣

∣

s
u

∣

∣

∣

)

+1
]

+ π2 t −u
s

[

25
3
−

1
2

log
(∣

∣

∣

s
t

∣

∣

∣

)

log
(∣

∣

∣

s
u

∣

∣

∣

)

]

−π4 t −u
5s

−
3t2+u2

6s2 log4
(∣

∣

∣

s
u

∣

∣

∣

)

+
3t+4u

3s
log3

(∣

∣

∣

s
u

∣

∣

∣

)

+4
2t −5u

s
log2

(∣

∣

∣

s
u

∣

∣

∣

)

+40
t
s

log
(∣

∣

∣

s
u

∣

∣

∣

)

+
u
s

log
(∣

∣

∣

s
t

∣

∣

∣

)

log2
(∣

∣

∣

s
u

∣

∣

∣

)

+
t −u
2s

log2
(∣

∣

∣

s
t

∣

∣

∣

)

log2
(∣

∣

∣

s
u

∣

∣

∣

)

+
t2−5u2

3s2 log
(∣

∣

∣

s
t

∣

∣

∣

)

log3
(∣

∣

∣

s
u

∣

∣

∣

)

− (t ↔ u) (C8)

and

E(1,1)
qℓ (u, t) = π2

[

t −u
s

(

Li2

(

−s
u

)

−Li2

(

−s
t

))

+
t2+19u2

6s2 log2
(

−s
u

)

+
5t2−u2

6s2 log2
(s

t

)

−2
t2+u2

s2 log
(s

t

)

log

(

−s
u

)
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+
2
3

log

(

−s
u

)

+
4
3

log
(s

t

)

−6

]

. (C9)
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