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The Drell-Yan mechanism for the production of lepton pagone of the most basic
processes for physics studies at hadron colliders. It iethe important to have accurate
theoretical predictions. In this work we compute the twopoirtual mixed QCD<QED
corrections to Drell-Yan production. We evaluate the Fegnrdiagrams by decomposing
the amplitudes into a set of known master integrals and tuafficients, which allows us
to derive an analytical result. We also perform a detailediystof the ultraviolet and in-
frared structure of the two-loop amplitude and the corradpw poles ire. Using crossing

symmetry, we also determine the corresponding two-loagtrées deep inelastic scattering.

PACS numbers: 12.38.Bx,13.40.Ks,12.15.Lk

I. INTRODUCTION

The Drell-Yan process is one of the most precise probesabtaibt hadron colliders. It allows
for precise measurements of the gauge boson masses [1-€BhswW#, 5] and asymmetries [6]
and is very sensitive to physics beyond the Standard Mokielnew gauge bosons [7-10]. One
reason it is such a powerful probe is its very simplicity. diperimental signature, two leptons
plus anything, is quite robust against radiative emissidmeoretically, it is perhaps the simplest
process to compute at hadron colliders. It was the first mdszattering process to be computed
at next-to-next-to-leading (NNLO) in QCD [11, 12], almosfnty years ago.



In recent years, it has become clear that electroweak ¢amnsd13—-16] to Drell-Yan produc-
tion are also very important. Electroweak corrections datod the line-shape and thereby affect
the measurement of the gauge boson masses. Radiativetmmsezan also become very large at
the high energies (several hundred GeV) which will be pradtetie LHC.

An important next step to refining the prediction for Drel#Yproduction is the calculation of
the complete mixed QCD and electroweak corrections. Ctlyranly the virtual corrections to
the quark — gauge boson vertex are known in the literaturge Ve embark on this project by
computing the simplest gauge-invariant part, the mixed QQIED virtual corrections. That is,
we ignore alW andZ boson interactions, and consider only virtual photon andiglexchanges.
In addition, we take all fermions to be massless (exceptdpejtiark, which does not enter into
this part of the calculation). For most of the calculatidmere is no barrier to including a non-
vanishing lepton mass. For the box contributions, howewss, would need new master integrals
with two massive external legs and massive internal prapagia The effects of non-vanishing
masses (at least for components that do not involve box ibotitbns) will be added at a later
stage of the project. Having computed the mixed QCRED virtual corrections, there are many
steps still required to complete the full calculation of sdxQCD and electroweak corrections.
The real corrections to QCOQED are similar in complexity to the real corrections in thelNO
QCD calculation of Drell-Yan production, except where tlimyolve mixed initial and final state
radiation. The two-loop virtual corrections involving nsage gauge bosons promise to be more
challenging than the current calculation as some of the l@elitix master integrals that will be
needed are not yet known analytically. It may be that a coatlmn of analytic and numerical
techniques will have to be employed on these contributidhg. real corrections to terms involv-
ing massive vector boson exchange, however, are essgiiald QCD calculations and can be
handled by methods that are now standard.

The amplitude of the Drell-Yan process is also related tatsd@-positron annihilation into
hadrons(quarks) and to deep inelastic scattering by ecrgssimmetry. In the latter reaction the
kinematic invariants take on different numerical valuegurgng different analytic continuations
of the complex functions in the amplitude compared to thdlPfan process.

The outline of this paper is as follows. In Section Il we defgsmme generalities and our
notation. In Section Il we give an outline of the calculati@nd in Section IV discuss the structure
of the ultraviolet and infrared poles. The results are preskin Section V and we present our

conclusions in Section VI. The Appendix contains suppleiagninformation about the next-



to-leading order process, the master integrals arisinpenctlculation, and the result for deep

inelastic scattering.

II. GENERALITIESAND NOTATION

We study the Drell-Yan process of quadf énti-quark ¢) annihilation into a charged leptof)(
pair
A(p1) +a(P2) — £ (P3) +£"(Pa) (1)
where p1, p2, pP3, P4 denote the momenta of the particles, which are all considaseincoming

with p1 4+ p2+ p3+ ps = 0. In the following we will use the Mandelstam variables

s = (p1+p2)?=(p3+pa)?,
t = (p1+ps)?= P2+ pa)?,
u= (pr+pa)?=(p2+ps)? )

orsj = (pi+ |Oj)2 to express scalar products of the external momenta.

The differential cross section is given by
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where the symboN; denotes the number of colors of SWJ and.# is the matrix element.
Within this work we consider only virtual corrections to tBeell-Yan process. The perturbative
expansion of the corresponding squared matrix elemenvendy

S 4P =N QG Qi €' (A(Ov‘” + (%) ALO | (%s) Cr ACY 4 (%) (%s) Cr ALY 4 ) . (4)

spin
color

whereQq and Q, are the electric charges of the initial state quarks and trad §tate leptons
in units of the elementary charge The symbolsa and as are the fine structure constant and
the strong coupling constant, respectiveBg = (N2 —1)/(2N.) denotes the Casimir operator
of the fundamental representation of $lJ. The dots stand for higher order corrections. Here
and in the following we will write the expansion of any furarti of o and as as f(a,as) =
Y mn(a/m)™(as/m" £M. The well-known leading order resul®9 of Eq. (4) ind = 4—2¢
space-time dimensions reads

ALY — Sﬁz (2 +u®—Se). (5)



The one-loop QCD [18-21] and one-loop QED corrections [I8]known. For completeness
we will give the bare results foh(19 as well as forA(®D) in Appendix A, since they are needed
for the subtraction of the ultraviolet poles through theoremalization procedure as well as for the
identification of the infrared poles. Beyond leading-ordke real corrections need to be taken
into account to obtain a physical cross section.

1. CALCULATION OF THE BARE PROCESS

Depending on the nature of the electromagnetic correctithres QCDx QED corrections to
Drell-Yan production can be broken up into four classescWliaire: initial state corrections, final
state corrections, mixed initial and final state corredjosnd vacuum polarization corrections.

Sample diagrams for each of these four classes are showit.FI
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FIG. 1: Example diagrams which contribute to the two-loogediQCDx QED corrections. The spiral lines

Qal
]

<l
1

06006001

denote gluons, the wavy lines are photons and the straigdg hre fermions which can either be quarks in

the initial state or leptons in the final state.

The initial state electromagnetic corrections consistvad-toop corrections to the quark —
photon vertex. A sample diagram of this class of correctoshown in FIG. 1(a). All of the
diagrams that appear in this portion of the calculation apelogically identical to diagrams that
appear in the two-loop QCD corrections to Drell-Yan protutt By simultaneously computing
the two-loop QCD corrections and verifying the known re$2ft], we obtain a strong check on

this part of the calculation. We also include the interfeeenf the one-loop QCD correction and



the one-loop QED initial state correction. There is but olagchm of each sort.

The final state virtual corrections are quite trivial, sitlee only contributing two-loop diagram
is the one shown in FIG. 1(b), which is just the product of tvm@-doop triangle diagrams. The
virtual corrections to this channel also get a contribufimm the interference of the one-loop
QCD corrections and the one-loop final state QED correctidgsin, there is but one diagram of
each sort.

The mixed initial and final state electromagnetic corrawdiare the most complicated terms in
this calculation and the only ones which involve the kinemeariablest andu in the loop inte-
grals. A sample diagram is shown in FIG. 1(c). Even the ieterice of the one-loop amplitudes is
relatively complicated as the electromagnetic part ingslthe sum of two one-loop box integrals.

The vacuum polarization correction terms are also easyrtgpate as the loops are simple two-
loop propagator integrals, like that shown in FIG. {(dr the product of a one-loop propagator
integral and a one-loop triangle as in FIG. 4)(dThe interference of one-loop amplitudes is again
very simple as it only involves a single vacuum polarizatiimgram interfered with the single
one-loop QCD diagram.

We have performed two independent calculations of the alitorrections and find complete
agreement. The Feynman diagrams are generated with QGR\FIBe symbolic algebra pro-
gram FORM [24] is used to implement the Feynman rules, taferte the two-loop diagrams
with the tree-level contribution and to reduce the result &gt of Feynman integrals to be deter-
mined. The calculation proceeds in two steps. In the firgt atethe loop integrals are mapped
onto a small set of master integrals with the traditiona¢gnation-by-parts (IBP) method [25]
in combination with Laporta’s algorithm [26, 27]. In the sed step these master integrals are
evaluated.

In one calculation, the integrals are reduced to mastegiake using the program RE-
DUZE [28]. In the second calculation, the reduction has lpssformed with a FORM [24, 29, 30]
based implementation which uses the packages Q2E and EXBZB1o identify the different
topologies and to adopt the proper notation. The programNE&ER[33] is used to simplify the
rational functions in the space time dimenscn

We find that at the two-loop level, all integrals can be exgpedsn terms of eight master topolo-
gies which are shown in FIG. 2. All of the needed master iratisgare known analytically in the
literature to sufficiently deep order in tlieexpansion and will be discussed in more detail in Ap-

pendix B. At the end, the reductions and the evaluations @itlster integrals are substituted



back into the FORM program to produce the final result.
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FIG. 2: The master topologies of the two-loop calculatiotiened according to the number of internal lines.
The arrow on the lines denotes the momentum flow. The synkh@edk, are loop momenta. The integral

representation of diagrarfg,) has an additional irreducible scalar prodgkt + ps)? in the numerator

indicated by thex symbol.

IV. THE POLE STRUCTURE OF THE PROCESS
A. Ultraviolet Structure and Renormalization

We have performed renormalization in tN&S scheme. Since we treat all particles as being

massless, we only need to renormalize the couplings. Quupbnstant renormalization is gov-



erned by thg8-functions,

Baep(a, as) = p ae
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Baco = 5 4CA fZCATf Ny — —CF Tt Ny,

RSB = g (MQ+NaQF) (7)

where  is the renormalization scal®, is the number of up-type quarkhly is the number of

down-type quarks ani, is the number of charged leptons, whi)g, Qq andQ, are their electric

charges;3, —3 and—1, respectively. The symb@la = N denotes the Casimir operator of the

adjoint representation of SN) and T = 1/2 is the normalization of the QCD charge of the

fundamental representation. Note that in Egs. (6) and @ stiperscriptsand j in the symbols

BSEJ%) and B(gc% represent the coefficients of and as, respectively, for thei+ j — 1)-loop 3-

functions of QED and QCD. This non-standard notation emghaghat we are expanding in two

independent gauge couplings. The bare and renormalizgalicgs are related by

wheree~ 2.71828 is Euler's number angt ~ 0.577216 is the Euler-Mascheroni constant. Since
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the leading-order contribution to the squared matrix eleme of ordera? and we compute

terms through ordea3as, we need to keep QED renormalization terms proportionas &)



and 3(21[34], while QCD renormalization does not contribute to oesult. The fine-structure
constant can be converted, if needed, from the abdS8escheme to the on-shell definition with a

conversion factor. This conversion is known to four-loogerin QED [35, 36].

B. Infrared Structure

An important check on our calculation is to verify that we @dabtained the correct infrared
structure. Some years ago, Catani [37] proposed a formadigimg the leading poles{*
throughe—2) of two-loop QCD amplitudes. At that time, the! poles were presumed to be
process dependent and therefore unpredictable. Nonss$helieect calculations [38—42] showed
that thes 1 terms seemed to follow a simple pattern based upon the nsmbguarks and gluons
that made up the external legs of the amplitude.

Subsequently, Sterman and Tejeda-Yeomans [43] reforedi@atani’'s observation and identi-
fied the origins of the various terms. They also identifiedtig®m-unknown term, the second-order
correction to the so-called “soft anomalous dimension”ahitprevented the prediction of tige !
terms. Aybat, Dixon and Sterman [44, 45] have since comptiitedwo-loop corrections to the
soft anomalous dimension, permitting the prediction offthienfrared structure of two-loop QCD
amplitudes.

C. Thelnfrared Structure of QCD Amplitudes
For a general 2+ n scattering process,

f1(p1,c1) + f2(p2,C2) = f3(ps3,C3) +- -+ far2(Pnt2, Cnt2), (10)

wheref; represent the flavors of the partopstheir momenta and; their colors, we can write the

amplitude as a vector in the space of color teng@s) ., } as [37, 46, 47]
2 2
‘*%f <pi7 %7 a5<“2)78)> = Z%,L (pl ’ %7 as(U2)7 8) X (CL){Ci} ’ (11)

whereQ is an (arbitrary) overall scale andis the renormalization scale.
In the formulation of Refs. [43-45], a renormalized ampl#umay be factorized into three
functions: the jet function #;, which describes the collinear dynamics of the externatlopar

that participate in the collision; the soft functic&, which describes soft exchanges between



the external partons; and the hard-scattering funciiyh, which describes the short-distance

scattering process

(9% as(1?),6) ) = i (as(k®).8) S (p % as(?), ) |He (pZas(k?) ) (12)

The notation indicates thditl;) is a vector and is a matrix in color space. As with any factor-
ization, there is considerable freedom to move terms abvoot bne function to the others. It is
convenient [44, 45] to define the jet and soft functiong, and;, so that they contain all of the

infrared poles but only contain infrared poles, while aftamed finite terms are absorbed inkdy).

1. The Jet Function

The jet function_¢; is found to be the product of individual jet functiongs. for each of the

external partons,

?),€) = |'| i (as(p?),€) . (13)
le
Each individual jet function is naturally defined in termgioé Sudakov form factor [43],
_ 1/2
Ji(as(i?).€) = sr(as(k?),e) ~ [ 41 (as(u?),¢) | (14)

The all-orders expression for the square root of the Sudékov factor is [48-51]

H* g2

'Ji (Ofs(IJ )7 )_e p{ '52
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+2 ;: d“uz w.(as(uz,as(uz)ﬁ))”-

The functions’, 4 andy; are anomalous dimensions that can be determined from fisabt-0
calculations of the Sudakov form factors for quarks and gbui@2, 52-57]. Note thak; is the

(15)

cusp anomalous dimension av is determined, order by order, froypi. While the# are pure
pole terms, th& contain terms at higher order &

The jet functions 7y, keep only the infrared poles from the logarithm of the formtda. The
expansion of the jet function to second ordeunifis

ln/i(as<“2)78) o (as> [Bizylgl )+ %( )( )}

BB 113 01 . 01 13?2 4%
(B e i) -3t

T 8 £2|4¢g'Ki
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3
GV = 5Cr + QCF (8-0), %" =2Byn- _CAZZ’

02 ~2( 3 2545 E. 13 B 2_09 1.
9~ =C¢ <16 2(2+3Z3)+CFCA<432 52 53 Cr Tt Ng 108+352’

02 _ 403  ~2(10 11, 1 3 1 1
by T = 4BQCD +Ca (27 1252 53 +CaTs Ng 27+ 352 + 2CF Tt Ng,
(17)

Ny is the number of quark flavors arfd = S’ ; 1/k" represents the Riemann zeta-function of
integer argumem. The coefficients of th@-functions are given in Eqgs. (6-7). Even though e

have terms at higher order é, we only keep terms in the expansion that contribute polés 16;.

2. The Soft Function

Like the jet function, the soft function can be defined in terofi eikonal amplitudes and is

determined entirely by the soft anomalous dimension maigjx

s (o o) =pef L [“9re (. (£ 0o )

., lasycon 1o ras\2 01 ~(0) (18)
145 (e g () T8 xTS
B((g%%) as\2_01) , 1 /as\2 (02
—ae () T8 2 () e
In the color-space notation of Refs. [37, 46, 47], the sofiraalous dimension is given by [44, 45]
1 y? 02 Ko
rod_ = Ti~TjIn<—), ro2 - 2rob, (19)
St 2%; ~Sj St 2 S

whereK = Ca (67/18— {») — 10Tt Ng/9 is the same constant that relates the one- and two-loop
cusp anomalous dimensions. Theare the color generators in the representation of pdrton
multiplied by +1, depending on the whether the parton is a particle or amitfgaand whether

it is incoming or outgoing. In particular, outgoing quarksdagluons and incoming anti-quarks
are multiplied by+1, while incoming quarks and gluons and outgoing anti-gsiarke multiplied

by —1. The conservation of color-charge is enforced by the itdefyt Ti = 0. Another useful

identity is thafT; - T; = C;. We note that there has been a great deal of work recentlyderstand
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the infrared structure of both massless and massive QCDitaichgd at two loops and beyond [58—
63], which explains the particularly simple form of the thamp corrections to the cusp and soft

anomalous dimensions.

D. Thelnfrared Structure of QED Amplitudes

It has been found that the same factorization described i(l2§ can be applied to pure QED
amplitudes [42, 64]. The two-loop amplitudes for Bhabhdtscimg and fore" e~ — yy in mass-
less QED were found to obey the factorization formula of Gg2g7] once the proper adjustments
are made to transform the QCD anomalous dimensions into Qiehalous dimensions.

The changes are as follows. The factors of the adjoint reptaion CasimirCy, originate
from the gluon self interactions. As photons have no sebranttionsCa is set to zero. The
fundamental representation Casindl, is replaced by the squared electric charge of the fermion,
Ce— Qiz. The factors offy Ny originate from inserting fermion bubbles into the gluongagators.

In QED, the different types of fermions would be weighted by $quares of their electric charges,
T Ng — NeNy Q2+ NeNg Q3 + N, Q2. In the soft anomalous dimension, the color charge matrices
T; are replaced by the (scalar) electric char@esWith these changes, the anomalous dimensions

for the QED jet function are

10 2.0
yK| 2Q| ) yK| Q| KQED QFB((?ED)7

1032, €2 4 (20) ( 209
—éQeréQf (8—-102), = Qf (E—552+353)+Q ﬁQED< +{>
1,0 2,0 20 3,0
o0 263 o zﬂgEs,
(20)
while the QED contribution to the soft anomalous dimensgn i
2 QED
10 1 H 20 K (1,0) (10
s 2 Q. Qj In( S,) rs™ = > s —BQED . (21)

Using these parameters, one can predict the infrared steuof two-loop QED amplitudes,
where the analog rules as in Eq. (19) apply for the signs. Wimmparing to the results of
Refs. [42, 64], one must account for the fact that those tatioms are in the context of pure

QED, involving only leptons and photons. As the univergaditthe e~ terms had not yet been
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established, the (color diagon#&l}? factors for electrons and photons was quoted as

@_ (3 (251
H — (8 3zz+653)+Nf< ®13%).

20
H)(/Z) = 2_7N1°2 + N;‘ ’

whereN; = N, Q,%. Transforming the results above into the notation of Ref],[@e find that the

H (@ terms may be more generally written as

3 25 3
=0t (52t 00 ) + RS (4 5

2 _ 207,202 (30) 22)
Hy :§<BQ|§D> —4BqgeD>

where the subscript indicates any charged fermion — lepton or quark. With thesdifications,

we find complete agreement with the results of Refs. [42, 64].

E. Thelnfrared Structure of QCDx QED Amplitudes

The leading terms in the infrared structure of QGDQED corrections will come from the
overlap of the one-loop terms for pure QCD and pure QED. Ttrsically QCDx QED terms
will be second-order contributions to the jet and soft fioits. Based upon the way the parameters
were determined for QED, we can make conjectures about tlaengders for QCBx QED. Since
the generators for photons and gluons commute, we should agatheCp terms to zero. We
need to be a little more careful about tRe terms, however. Our approach is to tie theterms
to the coefficients of th@-functions. The reason for this is that when teterm is part of the
leading term in g3-function, it represents the insertion of a fermion bublbl® ia gauge boson
propagator. Because the charge matrix of QCD is traceleedyubble cannot connect a photon
to a gluon and therefore these terms cannot contribute toandeorder mixed correction. When
the N¢ term is part of a second-order term inBafunction, however, it represents a term like
those shown in FIG. 3, which can represent a second-ordexchaiarrection. Examining the two-
loop anomalous dimensions in Egs. (17) and (19), we see hiease¢cond order corrections to
the cusp and soft anomalous dimensions are proportionakaCa (67/18— {o) —10T¢ Ng/9 =
(2/3—02)Ca+ 10/3[3((3%%). Since we have argued that neither non-Abelian nor firséofd
function corrections can contribute to second-order mo@dections, we conclude that there are

no mixed corrections to the cusp and soft anomalous dimessitthis order. That leaves only
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FIG. 3: Mixed second order contributions to the QED and Q&fnctions.

the¥ terms. By the same reasoning as for the cusp and soft anosdiloensions, we set tig
andNg terms to zero in formlngq ), but we predict that th€2 term should be transformed into
Ce Qq. For%(” ), we again drop the non-Abelian and first-orggefunctions, but we predict that
we should keep the second-orgfunction terms to obtai%(l’l) = 2[3&523 and%l’l) = Zﬁgég.
We can thus write combined expressions for the jet and soétions which we claim are valid
through second order in both QCD and QED,
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3 £ 3 209
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gf(071) = §CF - ECF (8—20o),

2 2
%f(ovz) C2 (%— —Zz+353) +CrCa (4_1 _ 5353) BQCD (23%9+ Zz)
G0 _ 23&%23 _CAZZ, 45°?) ZBQCD + (E - 52) CABS?&ZE% + (?2 411( ) Ci.
%( —Cr Q? (E—552+353) ZBQED7 %(171) :2[3((216%),
re” :% G | QiQjln <_—2) rSZFO - KQzEDr(SfO) __BQED 57

(25)
F. Thelnfrared Structure of the Drell-Yan Amplitude

We can now examine our result for the Drell-Yan amplitudede 8 we match the expected
infrared structure. We start from the factorization foreyuEq. (12), and expand both sides in

powers ofa andds,

|.#pv) = oy Soy |Hoy) (26)
= )+ () i)+ () [ ) + () () |6
- )+ (5 (8 b 80 ) )
o (28 ) o5 ) )
() [ A s s A ) )
(9 S29) ) + 520+ <29 W2 |G0Y] .

Because of the trivial color structure of the Drell-Yan aiyule, the soft anomalous dimen-

sion matrix is proportional to the unit matrix and may be teelaas a scalar function. The
squared matrix element of Eq. (4) is related to the decortipasof the amplitude in Eq. (26)
by 3 spn PARCHCH)E ) (Mpy | #py). The values of the jet and soft functions for the

Drell-Yan process are given by

(10) 1 01) _ 1.3
oy = <2$2+48>(Qq+Q4) oy __(2—<£2+4_£)CF’

(171)_ 1 3 9 2 2 1 3 2
/DY _<484+4$3+16$2>CF(Qq—i_QE)—_ 1_6__ZZ+3Z3 CFqu
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We find complete agreement between our result and the expiétared structure presented in
Eq. (28), including the intrinsically QCRQED term in/é\l(’l).

V. RESULTS

As our final result we present the interference of the finitelfsattering terms that appear in
Eq. (27), defined by

a\ 2
2(2) Re[(HGY [HE ) + (H5Y [HE )| = NeQaPetcr BHY, (29)

n

where we performed the renormalization in & scheme as described in Section IVA. The
infrared poles are subtracted dndimensions with the help of Egs. (27-28). We decompose this
mixed QCDx QED two-loop contribution with respect to the charge fastor

= QuQBy "+ ——

Q2B + Bl +NCZQq +ZQ/, o )], (30)

where the sum ovef andd runs over all leptons and quark flavors which are active irctbsed
fermion loop. Each of the five terms corresponds to one of thgses of diagrams shown in
FIG. 1 (a)-(d) and corresponds to a gauge invariant subskagfams in this decomposition. The

individual terms of Eq. (30) are

Bl = 5711— 8—33 + 2—(7) " — 6003+ (—93+ 107 + 48(3) log (,J—Sz>
+ (50_ E'nz) log? (u_52> 12 log? < ) +2log’ (,J—Sz> , (31)

B/ = 128 1—12n2+ 29 o'+ (147 —96) log (u—sz)

+ (50— 1—; ) log? (P) —12lod (u—sz) +2log’ (u—sz) , (32)
( s

155 140
By = oo o TP 1603+



112, /s 8 afs
+ 5 log (P) :—)’Iog (P)’ (33)
1) _ 320 140 , (28 , 104\ (S\ 112 o(s) 8 (s
By = 5~ o7 °+ 9712 3 ) 100 )t log T 5 100 e (34)

2 .2 2
11y  ,5u°—tc . [/-—u t u —u .=
By W =4 L|4(?)_4[§+4?Iog < )| tes
_ /—u\ [8t%2+u? t —u u —t
B3W+t2, L,/ —u\ 3t24ud, /-t s 72412
o () g () a3 (157
19t 43tu+160° oa( =Y _3t=Y g2 (Y
& g S S g S
_ 2 2 _
+ 210 92( ) [ S“|ogz<?”)+2—6” rtut it Iog<?u)}

L

2
— 8t :u log® (Il )Iog 4—53 {2Iog< u)—l}

—u
— )+
S
B 2 a2 _ _
+n2[§t 8u+15t ( ) u+3t logz<?u>]_n4£t u

3 s 15 s
3w+t2  ,/—u\ 2t+2u, 5/-u su—-2t, o (U
- & o9 (?)‘é s 1o (?)‘4 s 1o (?)
t —u 5t2 — y? u
() e () ow, e
X

where Li(2) = Y _1 & is the polylogarithm function and the symhok- u) stands for the same
terms a given before only with the Mandelstam variabiesdt interchanged. As an additional
check of our calculation we have kept the complete depemdehthe gauge parameter in the

gauge boson propagators and have verified their cancellatio

VI. SUMMARY & CONCLUSIONS

We have computed the two-loop virtual corrections to D¥elh production at ordeasa®.
The calculation of these mixed QGIED corrections includes two-loop corrections to the quark
vertex, one-loop corrections to the quark and lepton westi’acuum polarization corrections
to the photon propagator as well as two-loop box diagramaectimg the hadronic and leptonic
states. The computation is accomplished by reducing alirey integrals to a small set of master
integrals. The latter ones are known analytically to sudfitly high order in thee expansion

to allow us to derive an analytical result for the finite aryale. In addition, we use crossing
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symmetry to obtain the result for the two-loop mixed QKQED corrections for deep inelastic
scattering.

We have also shown that the infrared structure of the mixegplitudes follows from the same
universal factorization structure that governs the purdd@Dd QED amplitudes and we have

determined the value of the two-loop mixed anomalous dinoans

Acknowledgments: We would like to thank Andreas Scharf and Doreen Wackerathgeful
discussions. This research was partially supported by th&8.UDepartment of Energy under
Contract No. DE-AC02-98CH10886.

Appendix A: Bare next-to-leading order resultsin terms of master integrals

We present our bare results for the next-to-leading orderqeses in terms of the master inte-
grals and coefficients to all ordersdn For the one-loop QCD and QED corrections we adopt the
decomposition of the squared matrix element as given in&gpa{l quantities are considered as
bare. We find

(0.0)
ALY — A—4 (1-%—25) Bo(s), (A1)

l-¢
Ay = (Q5+Q7) ASY + (Z Q7 +No > Qé) ACO) 253 Bo(s)
6/ q/
4 t—u 4 t—u
+ QqQ [ (10— -- 23) ~UBO(9 + (6— - +25) ~UBhu)
2 9.2
+<2Ms3u)—3esu) Dg(s,u)—(t<—>u)] : (A2)
with the integrals
Bh(s) = (41p?)‘ e ok 2Re[|§1)(s)] and Dj(su) = (4rp?)‘ e ok 2Re[lfl1)(s, u)} , (A3)

wheree ~ 2.71828 is again Euler's number apgl~ 0.577216 is the Euler-Mascheroni constant.
The values of the master integrzh;é) andlfll) are given in Appendix B. In the coefficients of the
master integrals of Egs. (A1-A2), spurious poleg iappear, which arise while solving the linear
system of IBP equations. As a result, one must know the magtgrals which are multiplied

by such spurious poles at higher order in thexpansion. The same situation also occurs in the
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two-loop amplitude. In principle, those spurious poleslddae avoided by choosing an epsilon
finite basis [65]. However, since all necessary master rategire known either in closed form
or to sufficiently high order irg, we retain the standard basis of master integrals, excepihéo
two-loop double box topology which will be discussed in $&tB 2.

Appendix B: Master Integrals

The reduction process relates complicated integrals wahyrerms in the numerators and
denominators to “simpler” integrals with fewer terms in lb@iumerators and denominators. In
general, it is preferred that the master integrals have natos equal to unity, and denominators
which only contain propagators of unit strength, but thisf@rence cannot always be satisfied.

In this calculation, we encounter eighteen two-loop mastegrals. Of these, eight represent
distinct topologies which are shown in FIG. 2; the othergalaed to these eight by relabeling the
external legs. Only one of the distinct topologies has aduicible numerator (or, equivalently, a
doubled propagator in the denominator).

All of the master integrals needed for this calculation amevin in the literature. The double
box integrals, FIG. 2(p and FIG. 2(g) are known as Laurent expansions in the dimensional
regularization parameter The others are all known in closed form and can be readilyprded
using standard Feynman parametrization techniques.

In the following we define the master integrbﬁ,ﬁ with loop moment&; andk, in Minkowski
space, where the superscripindicates the number of loops, the subscpptenotes the number
of propagators and enumerates integrals with the same number of loops and gatmas. For

clarity, we also indicate the Mandelstam variables thakapps arguments.

1. Oneloop master integrals

At one-loop order we have the five master integrkéi]%(s), Iél)(t), Iél)(u), Ifll)(s,t) and

Ifll)(s, u), which are define by

d d
(1 _sm/ﬂi (1) _gyE/dkl 1
I = I = Bl
with
D1=K+ic¢, D, = (ki — p1)?+ie,

D3 = (ki — p1— P2)?+ig, Dg= (ki—p1—p2—p3)+ie€.
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Their values are
M2(1—¢)l(e)

I(s) = ¥ (~9)7* r2_20) (B2)
2eFVE [(1+¢€)M23(—
Iél)(s’t) = st ( r—i(—]_g)_zg() 2 [(—3)782F1 <1, —&1-g¢ 1—|—fs)
+(—t) 2R (1, —&1-¢; 1+ES)} : (B3)

where F; (a,b;¢; 2) = Sio(@)k(b)k/(c)kZ/K! are hypergeometric functionga)n = I'(a +

n)/I (a) is the Pochhammer symbol ahdx) is the gamma function.

2. Two-loop master integrals
a. Three-Line Topologies

There is one distinct three-line topology, shown in Fig.) 2¢ich we Iabeléz)(s) and define

by

d d
2) :gyE/dkldKZ 1
I57(8) =€ i 19/2 j 19/2 D5Dg D7’ (B4)
with
Ds= (ki —p2)?+ie , Dg=(ki—kp)?>+ie , Dy=(ko+p1)’+iec.
Its value is

12 E3M3(—6)T (=14 2¢)
(3 3¢)

1P(s) = ¥ (—9) (B5)

In addition, we also neekf) (t) andléz)(u).

b. Four-Line Topologies

There are four four-line master integralé;z&)(s), Ifl;z%(s), Ifl;z%(t) and Ifl;z%(u) with two distinct

four-line topologies. One is a simple iterated bubble diagrshown in Fig. 2(b), which evaluates
to the square of the expression in Eg. (B2); the other is showiy. 2(c). They are defined by
2)(3) _ ezeVE / ddkl ddkz 1 |(2)(S) _ ezeVE / ddkl ddkz 1

(
21 i79/2 i 792 D D3DgDg’ 42 i 19/2 i n9/2 D5 Dg Dg D1
(B6)

Dg=k5+ie, Dg=(kp—p1—p2)®>+ig, Dio= (ki+p1)>+ie,
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and are given byﬁ(s) = (117(s))2,

2e T(1—26)T%(—€)T(1+¢&)T (14 2¢)

2(1—2¢)r(2—3¢) EB7)

155(s) = ¥ (—9)"

c. Five-line Topologies
There are six five-line master integralé;z%(s,t,u), Ié;zi(u,s,t), Ié;zi(s, u,t), Ié;zi(t,s, u,
Ié;zg(s,t,u) and Ié;zg(s, u,t) with two distinct five-line topologies, which are shown ingF2(d)
and Fig. 2(e). The first topology has a bubble connecting tiyacant corners of a box, the other

five-line topology is a box diagram with a diagonal-line ceating opposite corners. They are
defined by
d d
2 _ sye/dkld‘@ L
'5;1(S’u7t) ¢ i 19/2 i 19/2 D1 D3DgD11 D12’
d d
@ _ st/dkldKZ L
|5;2(s,u,t) ¢ i 719/2 i 19/2 D3DgDg D11 D12’

(B8)

(BY)

with
D11 = (ki +p3)2+ie, Dio=(ko—p2)?+ie,
Their results read

eV [2(—g)M(—1+2
sa(suD) = - s : F£(>1£3£) 2

+ (=92 (14 &)l (1—2¢)oF (1, e l¢; —2) } : (B10)

3_
1P (sut) = % % [(—u)—z‘f <1—2F1 (1, _2611-2¢: —ES))

+ (—s) % (1—2F1 (1, 261 2¢; —E))] . (B11)

[(—u)_zgr(l—e)zﬁ (1, _el-¢ —ES>

d. Six-line Topologies

There is only one six-line master integral, the non-plariangle diagram, shown in Fig. 2(f)

and defined by

d, gd
2) _ $VE/ d%; d%: 1 . _ b N2
6 (9) =€ i n9/2 i nd/2 D1 DgD7D10D12D13’ with Dis={le—la—p)"+1e
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Its result can be expressed with the help of generalized rhggpenetric functions
pFg(ag,...,ap;b1,...,bq;2) = S_o(@)k- - - (@p)k/((b1)k- - (bq)k)zk/k! by

1P(s) = —e¥ (—5) 2251 (14 2¢)
TA—g)r'(1-2e)F(1+¢&)M%(1+2¢) 4r3(1—¢g)r(1-2¢)
eAT2(1—4¢)M(1+4¢) €4 (1—4¢)
r2(1—;)82(r1(1— Zgg<1+£) oFo (L, —2¢, —4e; 1—2¢, 1—3¢; 1)
Ar®(1- Z‘)‘Fél ig Eiig)g)(lJrze)ng(e,e,lJrZe;1+£,1+3£;1)
—%4%(1,1—8,—28,—48;1—28,1—28,1—38; 1) |. (B12)

Note that the closed-form expression given above appeaigfér slightly from that given by
Ref. [66]. However, by rearranging thiefunctions and applying various hypergeometric identi-
ties, one finds that the two expressions are exactly equal.

e. Seven-line Topologies

There are four seven-line master integﬂéf%(s,t), I%(s, u, I%(s,t) andl%(s, u) with two
distinct topologies. One is the double-box topology whdtg@mpagators are of unit strength,
shown in FIG. 2(g). It is defined by

d d
(2) _ 26k / d%; d%:> 1 . _ >

and known as a Laurent expansioreif67]

_Q\—2-2¢
12 (s.u) = _%{_;‘%g iz[u2 15(2}—%{4Li3(—x)—4£Li2(—x)

+ 2Lig (—x) (€2+652)+§€3+3352€—§553} +g£4+366262—8§863€
+ 87(1—4 (Sgyz(—X) —/ S]_yg(-X)) +44 Li4(—X) +4Li3(—X) (Lil(—X) —65)
+ 2Lip(—x) (%2 —20Li1(—x) +2042) +LiZ (—x) (2 +642)

+ 2Lia(0) (4643080 -65) + 0 (¢) } (B14)

with ¢ = log(x), x = u/s and the generalized polylogarithm function,3z) =
(=)™ P-1/(n—1)!/p! f3dt'log" 1 (t") logP (1 —zt) /1.
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There are two equivalent representations for the secorahdeve topology. One is the double-
box with a doubled propagator. The other representationdsuble-box with an irreducible
numerator, shown in FIG. 24y The latter is defined by

d d 2
2 _ 2ok / d%k; dkz (ka+ ps)
|7;2(S7 U) 92 i 19/2 j 19/2 D1D3Ds5DgDgDgD14 ’ (815)
When one uses the integral with the doubled propagatorgetihéction procedure generates a spu-

rious pole ing, meaning that one needs the double-box integrals expandedérs®. When one
instead uses the above double-box with an irreducible natmerthe reduction does not generate
the extra pole, meaning that one only needs to expand thgraieto orde”.

The double-box with an irreducible numerator was first dalad in [68], with the result

9 2 14 4
113(s.u) = eZSVE(—s)225F2(1+£){484—g£— £§2+ [55%28525

4+ 4(2 1605 Lig(—x) +8Lis(—x) —80Lio(—x) - 1673] — ge“— 26,2

- [1365%52524 Lig (—X) =5 [(2+65] Li2 (—x) + [6£2+20¢Li1 (—x)
— 8] Liz(—X) + [8¢—20Liz (—X)] Liz(—X) +20 $2 (—X) — 20/ Sy 2 (—X)

— 28Lig(—X) + [28¢+20Liy (—X)] {3— 144+ O (&) } . (B16)

Appendix C: Deep inelastic scattering

In Section V, we presented the result for the Drell-Yan pssoghere the kinematic invariants
have the propertg > 0 > t, u. In deep inelastic scattering(p1) + ¢~ (pa) — q(p2) + ¢ (p3), the
kinematic invariants are in the region> 0 > s, t. For this case, we present thE&S renormalized
interference of the finite hard-scattering terdg,s) which are defined in complete analogy to the
Drell-Yan case in Section IV F

2(%)2Re[< DIS )HDIS >+< DIS )HDIS >} =NeQGQfe*Cr Y. (C1)

For the quantitlC(:1) we perform the same decomposition as in Eq. (30) with

11 t2+U

Qquq +Qg M +NCZQq +ZQ€, Zé/)

The individual terms read as follows

ay _ 511 13, 134 93— =S
Co” = 7 +3 30714 603+ (—93— 27 +48(s3) log m
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+ (50— g nz) log? (;_S) —12log’ (;_25) +2lod (;_25) , 3

+ (50— g nz) log? <u—5) _121lod (;—25> +2log’ (;—25> , (C4)
(

11y 155 2o 92 —s
112, 5/ —s 8, a3(-—S
() 10(3)
1y 320 20, (4, 104\ (-S\ 112 o(-S\ 8 (=S
Co = =4 27n2+ 9n2 5 ) 1og 2 +-5- log . 5 100 e ,(C6)
cy? = DUt +EGY ), (C7)

with
o = 40 () oo a ()] (3)
() 5l )
- Sus;tzl 2() )- 3t2+u' 2( } 2|09< )[2<t2+”
L \)+§t_unz+3_|og (2]
”'°92( ) [Sow (13]) -2 5 g ([2]) + 50 T

u
+ 855 003 og([3]) -4t " [2'09() DH]
nzt_u[z_S_zlog (19]) og ; 8B o (1))

t 67
n 3t+4uI 3(} ‘)+4

}
: o 2t en( )
+ Soof ) v \>+—|og HEAE)

v 5 ([ e (5 - ow ©

(11) B t—u/ . [—s . [ —s t2+19u2 » [ —S

g ()25 () )

and
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2 —S 4 S
+3 log (F) +3log (f) - 6} : (C9)
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