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We illustrate a technique for fitting lattice QCD correlatto sums of exponentials that is significantly faster
than traditional fitting methods — 10—40 times faster for ithalistic examples we present. Our examples are
drawn from a recent analysis of theéspectrum, and another recent analysis ofEhe 1T semileptonic form
factor. For single correlators, we show how to simplify ttixhal effective-mass analyses.

PACS numbers: 11.15.Ha,12.38.Gc
Most physics results in lattice QCD come from fits of lattice first is simulation data for the correlators, consisting afrite

correlators to sums of exponentials. For example, we study &arlo average§ for eacha, b andt, and a covariance ma-
particular hadron by computing Monte Carlo simulation-esti trix o that specifies both the statistical uncertainties in each

matesGNC (t) of hadronic correlators, average and the correlations between them:
3 (0b(x,t)Ma(0,0)[0), (1) GUC(1) © {Banlt). 0%y (1.1 } 4)
X

with different sourced 5 and sinksl, that create and de- This data contributes

stroy the hadron. The sum over all spatial sixesestricts ) _

the hadrons to states with zero total three-momentum. Sucha  Xwic(&j,0;,Ej) = Zb Z (Gan(t;N) — Gap(t))
correlator can be decomposed into contributions from gnerg tabt’.ab

eigenstatetE;) in QCD [1]: G;b,za/b/ (t,t') (Gap (t';N) — Gy (t')) (5)
N . . L. .
N . _ to thex? function that is minimized by varying parameteys
Gan(t:N) = jZlaJ bj exp(—Ejt) @) bj, andE; in a conventional fit.

The second type of input data consists of Bayesian priors
whereE; is the energy, witlg; > Ej_1, and the amplitudes are for each fit parameter. Complicated multi-correlator, mult
matrix elements, with parameter fits are impossible withcaitpriori estimates for

each fit parameter [2, 3]:
aj = (0" a(0,0)|E;), .,
bj = (0T (0.0)[ ). 3) % =30
S ) ) b’j)rEBj:I:Ubj,
The physics is in the energies and the matrix elements, and pr_ =
these are determined by fitting fomula (2) to the Monte Carlo B =Ej+ 0. (6)

MC . !

da;[r?%?li)n(c?prgr %Zarzlfxbogrsgf:gfm?g Egk(sz) is infinite This information is included in a conventional fit by adding
' : , 2(a- b E) y2—y2 2

but, in practice, we need only retain a finite number of termEXtraterms tof (a),05, Ej): X = Xiac + Xpr where

because the exponentials suppress high-energy states. The

2(a h E.)—
number needed depends upon the precision of the simulation Xor(2j, b, Ej) =

MC it o _ — _
dataGg,”, but it is not uncommon to requié =10 or more N ((aj—7)? (bj—Dbj)? (Ej—FEj)?

terms for good fits to accurate data. The fitting process be- Z o2 = + o2 (7)
comes both cumbersome and time consuming if many corre- =1 g b Ej

lators must be fit simultaneously while using such la\ge In
this paper we introduce a method that can dramatically sim
plify and accelerate such fits.
The key to this new approach lies in how priors are intro- N
duced. Two types of input data are required for these fits. The GQL(t; N) = z aﬁ)rb?rexq_Ejprt)’ ®)
J:

The priors can also be combined to gapriori estimates for
the correlators,

where the means and covariance matrix &3 (t) are com-
* g.p.lepage@cornell.edu puted, using standard error propagation, from the means and
" http://www.physics.gla.ac.uk/HPQCD covariance matrix of the priors (Eqg. (6)).



The cost of a traditional analysis goes up rapidly with the T

number of parameters needed to obtain a good fit. Our new 109F - ]
approach takes advantage of the fact that we are rarely in- N . ]
terested in the values of parameters from lajderms in fit o« 10 ‘e

function (2), even when these terms are needed for a good fit. S 10°F "~.. E
Rather than including them in the fit, we instead incorporate <102k S ]
the largej terms into the Monte Carlo dakeforefitting. This = . . .z.

reduces the number of fit parameters, leading to much faster 10°F \ . 3
fits. 100F No—o-0-0 600es00 — & 0000 E

1 1 1
10! 102 103
time (sec)

We incorporate largg-terms into the Monte Carlo data by
using the priors to generagepriori estimates for these terms
(including the uncertainties from the priors), which werthe
subtract from the Monte Carlo data. This effectively rensove FIG. 1. Fit x2 per degree of freedom for sequential fits of ¥5
the large} terms from the data. The modified data is then fitcorrelators withn=1,2,3... terms in fit function (2). Results are

with a simpler formula that includes only smalterms. plotted versus the cumulative time required for fitting, anelfor fits
More explicitly, we remove terms having< j <N by re- of: a) the unmodified simulation da@{{C t) (red circles and dotted
placingGMC () with (first definition) line); and b) the modified simulation da@C (t;n) (Eq. (13)) (blue
circles and dashed line). The region of good fits is indicégthe
G () = Gl (1) ~AGKtin). (9 bt
where
where
AGE (t;n) =GB (t;N) — GE (t;n) r r r
N AlogGh (t;n) = logGhy (t;N) — logGhy (t; ). (12)
= Z a?rb?rexp(—Ejprt) (10)
j=n+1 Rearranging and exponentiating, this variation gives fiexli

is the j > n part of the fit function. Having removed the propagators that are defined by (second definition)

j >n terms, we fitGMC(t;n) with the simpler fit func- or e

tion, Gy (t;n), rather tharGab(t; N) r GMC(t;n) = GNC(1) w7 (13)
Here we assume thét is sufficiently large thaAng(t; n) Gt N)

and thereforeSNC(t; n) are independent dfl to within their

statistical errors. The covariance matrix fégﬂbc(t?”) is  We will use this second implementation of the marginalaati

obtained by adding the covariance matriceﬁgf(t) and prqcedure throughout the rest of this paper, since we firld tha

AGQ{,(t; n) (that is, adding the errors in quadrature) [4]. it gives good results for values aofthat are two or three times

Removing high} terms from both the fit function and the sr_nall_erthan those from the firstimplementation. Agai_“mf
fit data replaces the original fitting problem—fit ahterm with j>n have been removed, and therefore the modified cor-

functionGap(t; N) to GMC(t) — by a simpler problem that can relator datg is fit with the simpler fit functioﬁiab(_t; n)..
have far fewer fit parameters: fit aterm functionGg(t;n) ~We now illustrate our new method by applying it to QCD
to éaMbC(tin)’ wheren< N. Remarkably, as we showed in [5], s!mulauon data frqm two recent anal_yses. For each analy-
these two problems are equivalent for high statisticsdataeven SIS, we fit a function, “ke(?wag(t?n)* with n terms both to
when n is quite small: that is, fit results (means and stan- Untouched simulation da@,-(t), and to modified simula-
dard deviations) for the low-parameters are the same in both tion dataG}®(t;n), from which j > n terms have been re-
cases. Inthe second case, jhen terms have been “marginal- moved using Eq. (13). We vany, doing sequential fits with
ized,” or, in effect, integrated out of the Bayesian probghi N=1,2,3..., where the best-fit parameter values from one fit
distribution, but in a way that does not affect the analys$is oare used as starting values for the next fit. Sequentialdittin
the j <nterms. Whem< N, the fit parameters that remain With increasingnis a standard approach to complicated multi-
are many fewer than what would be required in a standard fiyarameter correlator fitstis increased until the fitg? stops
and fitting is much faster. changing, at which point enough terms have been include
The new analysis, based on Eq. (9), is only approximatelyo reflect accurately the uncertainties introduced by lgrge
equivalent to the standard analysis—that is, only insogar aterms. Here we examine the best-fit parameters for adoh
the various probability distributions involved can be apgr  investigate the rate at which correct results emerge fras th
mated by Gaussian distributions. As a result very small valProcess. This allows a detailed comparison of our two fitting
ues ofn may not work well. The rapid exponential falloff of Strategies.
the propagators exacerbates this problem here, which stegge  The first data set is a collection of 25 correlators for the
that we replace definition (9) by Y(1S) meson and its radial excitationg(@S), Y{(3S), etc.) [6].
These correlators were made using five different operators f
logGMC (t;n) = logGYC (t) — AlogGh (t;n),  (11)  both sources and sinks. They were fit to formula (2) with pri-
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FIG. 2. Best-fit results from sequential fits of ¥5correlators with

n=123... terms in fit function (2). Results are plotted versus the

cumulative time required for fitting, and are for fits of: apthn- . . -
modified simulation dat@C (t) (red circles and dotted line); and b) quantities we examine below. We $ét= 20 when defining

the modified simulation dat&¥C t; n) (Eq. (13)) (blue circles and i (1) (EQ. (13); this is roughly twice the size it needs to
dashed line). Results are given for mass splitings betwlitarent ~ Pe, but it costs little to maki! large. In general should be
vectorS-states, and for the wave functions at the origin for the we Chosen so that terms with> N are negligible compared with
two states. All results are in lattice units. The gray barfasasthe  statistical errors.
best-fit result from the modified data after convergence. In Fig. 1 we plot thex2 per degree of freedom for each
method versus the time required to get to that value [7]. As
_ _ ) expected, the new algorithm reaches a reasonghith just
ors (in lattice units): a few terms (= 2-3), in 20-30 seconds; theztraditional al-
orithm requiresm= 10-11 to obtain a goog<, and 600—
log(E1) =10g(0.3+0.1) = —1.2+0.3 gOO secon?js. Similar differences are g:‘vid%nt if we look at

log(Ej;1—Ej) =109(0.25+0.125 = ~1.44+0.5 physical quantities extracted from the simulations. In. Rig
aj=01+10 (14)  we show results for the2- 1Smass splitting (in lattice units),
for the 35— 1Smass splitting divided by the2- 1Ssplitting,
except for a local source for which the priors were(lg= and for the Band 5 mesons’ (nonrelativistic) wave func-

log(0.1+0.2) =—2.3+ 2 (local source). These are broad pri- tions at the origin, which come from fit parameteisfor a
ors—more than 100 times broader than the final errors for théocal source. In every case the two algorithms agree on the
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FIG. 4. TheD-meson's effective massi(t) versust computed
from modified simulation dat&MC (t) from which every state other
than the ground state has been removed (using priors). Trg (v
thin) gray band shows the weighted average ofrgli(t)s, taking ac-
count of correlations. The thickness of the band indicdtesuncer-
tainty of the average. Note that the largessshown here correspond
to the middlet range. The error bars grow there becangg(t) be-
comes very sensitive to statistical errors in this regiamegsperiodic
boundary conditions imply that the derivative of the catet’s non-
oscillating part vanishes at the midpoint).

final result, but the new algorithm converges to correctltesu
10-40 times faster.
Our second example is from a recent analysis ofhe

fitting the modified data,

al'f(EPt)

GII\DAC(t)EGgC(t) GpDr(t;N) )

(16)

with only the non-oscillating part of the first term
in Eq. (15)—that is, witha; f (E1,t). This situation is suf-
ficiently simple that fitting is not required. THe mass, for
example, can be obtained by averaging the “effective mass,”

GMC(t+1)+GNC(t—1)
e

Mef(t) = arccosl‘(

over allt, taking account of correlations between differesnt
The effective mass is plotted as a functiontoin Fig. 4.
It is compared with the weighted average of all @(t)s
(gray band), which atf’=1.158411) agrees well with the
best result, 15937), from full multi-term fits (top panel in
Fig. 3).

The first excited state in thB correlator is the opposite-
parity contribution, which accounts for the oscillation
in mere(t). Strong statistical correlations between different
points result in an averagees whose error is more than
7 times smaller than the best error from an individugd(t).
The errors inme(t) whent <16 come almost entirely from
marginalized terms absorbed into the fit data using Eq. (16);
the original Monte Carlo simulation errors are negligible

1T semileptonic form factor [8]. To extract the form factor there.

at four different momenta, this analysis uses a simultasieou

fit of 13 two-point and three-point correlators: apameson

In the absence of marginalization, contributions from ex-
cited states would limit a traditional effective mass asaly

correlator with a pseudoscalar local source and sink; b) fouof this data to values with> 16. With marginalization, all
m-meson correlators, one for each pion momentum of interts are used, except for a small number at very stnatere
est, again with local pseudoscalar sources and sinks; and the fit function is invalid (because of temporal non-logilit

two three-point correlatof® — Jscqa— 7T fOr each of the four

the lattice quark action). Using 28 is possible because we

pion momenta. The fit functions are more complicated for thishave removed the excited states through Eqg. (16). As a result

case. For example, th&-meson correlator is fit by a function:
n
Go(t;n) = Zlaj f(E0) - (-D'af f(E},t)  (15)
=

where f(Ej,t) = exp(—Ejt) + exp(—E;j(T —t)) is periodic

differentme(t)s agree with each other to within their errors:
fitting all 27 values in Fig. 4 to a constant gives an excellent
fit, with a x2 per degree of freedom of 0.6. (The result of the
fitis, by definition, the same as the weighted average regorte
above.)

Our new implementation of effective-mass analyses is sim-

with periodT =64, and the second (oscillating) term is due topler and less ambiguous than traditional analyses becagise w

opposite-parity states in the correlator (a feature ofgstaed-
qguark formalisms like that used in this analysis). The detai
for the other correlators, and the priors are given in [8].

are not limited to largés. More importantly our implemen-
tation also allows us to quantify the contribution to theemc

tainty in the finaimz® due to the excited states: here the priors

Despite the complexity of dealing with both two-point and for non-oscillating terms in Eq. (15) contributedda, those

three-point correlators, this is a simpler fit than ease; but

from oscillating terms contribute.07g,, and the uncertain-

even here we find that marginalizing most of the fit functionties in the Monte Carlo data contribute89oy,, whereay, is

makes the analysis about 30 times faster. We show results the standard deviation

Fig. 3 for theD-meson’s massp and leptonic decay constant
fp, as well as for thé — mr scalar form factorfy(0,0,0) at
zero recoil momentum. All results are in lattice units. Agai

g Such information is essential

for assessing the reliability of the final result, as well as f
planning improvements to the analysis.
In this paper we have shown how to accelerate multi-

the two approaches agree on the results but the new approaekponential fits to multiple hadronic correlators by renmoyi

has correct results even with only a single term=(1) in the
fit functions. For these fits we shit="10 when computing the
modified dateGMC (t;n) (Eq. (13)), which is twice as large as
it needs to be.

contributions due to excited states from both the fit functio
and the simulation data, before fitting. This technique for
marginalizing large parts of the fit function greatly redsitiee
number of fit parameters needed in the realistic examples pre

Some insight into how marginalization works can be gainedsented here, and makes fitting 10—-40 times faster. Marginal-

by focusing just on thé correlator from this analysis and

ization also simplifies effective-mass analyses, and géner
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izes easily to analogous multi-state (generalized eigaaya of the Cambridge High Performance Computing Service as
methods. part of the DIRAC facility jointly funded by STFC, BIS and
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04ER41299, DE-FG02-91ER40690), the NSF (PHY-facilities ofthe USQCD collaboration funded by the Office of
0757868), and the STFC. We used the Darwin Supercomputé&cience of the DOE and at the Ohio Supercomputer Center.

[1] Lattice QCD simulations use Euclidean time and-sib is re- since convergence occurs with many fewer parameters.
placed by—t in the exponentials. Also simulations are for finite [4] Again the covariance matrix foAGg(t;n) is computed using
volumes in space, and therefore all states, including phaldiron standard error propagation —for exampfdx 4 ox) = f & oy
states, have discrete energy eigenvalues. with f ~ f(x) and 0? ~ f/(X)20Z. We have compared this lin-
[2] See G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel,  earized analysis with Monte Carlo evaluationsd@ (from nor-
P. B. Mackenzie, C. Morningstar, H. Trottier, Nucl. Physo®r mal distributions for the priors). We find the Monte Carlouks
Suppl. 106, 12-20 (2002). [hep-1at/0110175]. The formula for  to be both much more expensive and also less robust for corre-
X3 generalizes trivially if there are correlations betweemthi- lators that decay exponentially quickly. Note also thasies-
ors for different parameters. Since the priors are new idptd, sential to retain the off-diagonal elements (correlatjdnsthe
leading to new terms in thye? function, the number of degrees of covariance matrix foAGy(t; n); correlations arise because, for
freedom in the fit is the number of pieces of original Montel@ar example, the prior data used for a parameter is the samelfor al

data plus the number of priors minus the number of fit param-  t values.

eters. Consequently the number of degrees of freedom alwaym For a proof, see the appendix of C. McNeile, C. T. H. Dayies
equals the number of pieces of Monte Carlo data since there is  E. Follana, K. Hornbostel, G. P. Lepage, Phys. 82, 034512

a prior for each fir parameter. This is true however many param  (2010). [arXiv:1004.4285 [hep-lat]].

eters are included, even when the number parameters exceefl§j The simulations used 0.09fm lattices with = 4 sea quarks
the number of data points in the original Monte Carlo data. In (HISQ discretization), and NRQCD dynamics for thejuark.

practice ones adds terms until the fit results (means andatén The gluon configurations were provided by the MILC col-

deviations,)(z. ..) converge. Adding further terms has no effect, laboration. For further details see: R. J. Dowdadt, al.,

but reassures us that systematic errors due to truncatitve 6t [arXiv:1110.6887 [hep-lat]].

function are negligible. [7] The absolute computer times quoted here are obviousljt-of
[3] In practice useful priors are easily found. As exampkes; the tle relevance since they depend upon specific details ofVeaed

extended analyses in: C. T. H. Davigisal. [HPQCD Collabo- and software. What is relevant is the comparison betweeh-met

ration], Phys. Rev. 08, 114507 (2008) [arXiv:0807.1687 [hep- ods.

lat]]; and C. McNeileet al. [HPQCD Collaboration], Phys. Rev. [8] The simulations used 0.12fm lattices with = 3 light sea

D 82, 034512 (2010) [arXiv:1004.4285 [hep-lat]]. Incorrect-pr quarks (ASQTAD discretization), and HISQ relativistic dyn-

ors are immediately evident since tifé per degree of freedom ics for valence quarks. The gluon configurations were prabid

(Fig. 1, for example) does not converge to a reasonable yafue by the MILC collaboration. For further details see (set C2):

order 1 or less) as more fit parameters are included. This-is ap  H. Na, C. T. H. Davies, E. Follana, J. Koponen, G. P. Lepage,
parent much more quickly using the new method presented here J. Shigemitsu, arXiv:1109.1501 [hep-lat].



