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We illustrate a technique for fitting lattice QCD correlators to sums of exponentials that is significantly faster
than traditional fitting methods — 10–40 times faster for therealistic examples we present. Our examples are
drawn from a recent analysis of theϒ spectrum, and another recent analysis of theD→π semileptonic form
factor. For single correlators, we show how to simplify traditional effective-mass analyses.
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Most physics results in lattice QCD come from fits of lattice
correlators to sums of exponentials. For example, we study a
particular hadron by computing Monte Carlo simulation esti-
matesGMC

ab (t) of hadronic correlators,

∑
x
〈0|Γb(x, t)Γa(0,0)|0〉, (1)

with different sourcesΓa and sinksΓb that create and de-
stroy the hadron. The sum over all spatial sitesx restricts
the hadrons to states with zero total three-momentum. Such a
correlator can be decomposed into contributions from energy
eigenstates|E j〉 in QCD [1]:

Gab(t;N) =
N

∑
j=1

a jb j exp(−E jt) (2)

whereE j is the energy, withE j≥E j−1, and the amplitudes are
matrix elements, with

a∗j = 〈0|Γa(0,0)|E j〉,

b j = 〈0|Γb(0,0)|E j〉. (3)

The physics is in the energies and the matrix elements, and
these are determined by fitting fomula (2) to the Monte Carlo
dataGMC

ab (t) for a variety of sources and sinks.
In principle, the number of termsN in Eq. (2) is infinite,

but, in practice, we need only retain a finite number of terms
because the exponentials suppress high-energy states. The
number needed depends upon the precision of the simulation
dataGMC

ab , but it is not uncommon to requireN =10 or more
terms for good fits to accurate data. The fitting process be-
comes both cumbersome and time consuming if many corre-
lators must be fit simultaneously while using such largeNs. In
this paper we introduce a method that can dramatically sim-
plify and accelerate such fits.

The key to this new approach lies in how priors are intro-
duced. Two types of input data are required for these fits. The
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first is simulation data for the correlators, consisting of Monte
Carlo averagesG for eacha, b and t, and a covariance ma-
trix σ2 that specifies both the statistical uncertainties in each
average and the correlations between them:

GMC
ab (t)↔

{

Gab(t),σ2
ab,a′b′(t, t

′)
}

(4)

This data contributes

χ2
MC(a j,b j,E j) = ∑

t,a,b
∑

t′,a′,b′

(

Gab(t;N)−Gab(t)
)

σ−2
ab,a′b′(t, t

′)
(

Ga′b′(t
′;N)−Ga′b′(t

′)
)

(5)

to theχ2 function that is minimized by varying parametersa j,
b j, andE j in a conventional fit.

The second type of input data consists of Bayesian priors
for each fit parameter. Complicated multi-correlator, multi-
parameter fits are impossible withouta priori estimates for
each fit parameter [2, 3]:

apr
j ≡ a j ±σa j ,

bpr
j ≡ b j ±σb j ,

Epr
j ≡ E j ±σE j . (6)

This information is included in a conventional fit by adding
extra terms toχ2(a j,b j,E j): χ2=χ2

MC + χ2
pr where

χ2
pr(a j,b j,E j) =

N

∑
j=1

{

(a j − a j)
2

σ2
a j

+
(b j − b j)

2

σ2
b j

+
(E j −E j)

2

σ2
E j

}

. (7)

The priors can also be combined to givea priori estimates for
the correlators,

Gpr
ab(t;N)≡

N

∑
j=1

apr
j bpr

j exp(−Epr
j t), (8)

where the means and covariance matrix forGpr
ab(t) are com-

puted, using standard error propagation, from the means and
covariance matrix of the priors (Eq. (6)).
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The cost of a traditional analysis goes up rapidly with the
number of parameters needed to obtain a good fit. Our new
approach takes advantage of the fact that we are rarely in-
terested in the values of parameters from large-j terms in fit
function (2), even when these terms are needed for a good fit.
Rather than including them in the fit, we instead incorporate
the large-j terms into the Monte Carlo databefore fitting. This
reduces the number of fit parameters, leading to much faster
fits.

We incorporate large-j terms into the Monte Carlo data by
using the priors to generatea priori estimates for these terms
(including the uncertainties from the priors), which we then
subtract from the Monte Carlo data. This effectively removes
the large-j terms from the data. The modified data is then fit
with a simpler formula that includes only small-j terms.

More explicitly, we remove terms havingn< j≤N by re-
placingGMC

ab (t) with (first definition)

G̃MC
ab (t;n)≡ GMC

ab (t)−∆Gpr
ab(t;n), (9)

where

∆Gpr
ab(t;n)≡ Gpr

ab(t;N)−Gpr
ab(t;n)

=
N

∑
j=n+1

apr
j bpr

j exp(−Epr
j t) (10)

is the j > n part of the fit function. Having removed the
j > n terms, we fit G̃MC

ab (t;n) with the simpler fit func-
tion, Gab(t;n), rather thanGab(t;N).

Here we assume thatN is sufficiently large that∆Gpr
ab(t;n)

and thereforeG̃MC
ab (t;n) are independent ofN to within their

statistical errors. The covariance matrix forG̃MC
ab (t;n) is

obtained by adding the covariance matrices ofGMC
ab (t) and

∆Gpr
ab(t;n) (that is, adding the errors in quadrature) [4].

Removing high-j terms from both the fit function and the
fit data replaces the original fitting problem— fit anN-term
functionGab(t;N) to GMC

ab (t)— by a simpler problem that can
have far fewer fit parameters: fit ann-term functionGab(t;n)
to G̃MC

ab (t;n), wheren<N. Remarkably, as we showed in [5],
these two problems are equivalent for high statistics data even
when n is quite small: that is, fit results (means and stan-
dard deviations) for the low-j parameters are the same in both
cases. In the second case, thej>n terms have been “marginal-
ized,” or, in effect, integrated out of the Bayesian probability
distribution, but in a way that does not affect the analysis of
the j≤ n terms. Whenn≪N, the fit parameters that remain
are many fewer than what would be required in a standard fit,
and fitting is much faster.

The new analysis, based on Eq. (9), is only approximately
equivalent to the standard analysis — that is, only insofar as
the various probability distributions involved can be approxi-
mated by Gaussian distributions. As a result very small val-
ues ofn may not work well. The rapid exponential falloff of
the propagators exacerbates this problem here, which suggests
that we replace definition (9) by

logG̃MC
ab (t;n)≡ logGMC

ab (t)−∆ logGpr
ab(t;n), (11)

FIG. 1. Fit χ2 per degree of freedom for sequential fits of 25ϒ
correlators withn= 1,2,3. . . terms in fit function (2). Results are
plotted versus the cumulative time required for fitting, andare for fits
of: a) the unmodified simulation dataGMC

ab (t) (red circles and dotted
line); and b) the modified simulation datãGMC

ab (t;n) (Eq. (13)) (blue
circles and dashed line). The region of good fits is indicatedby the
gray band.

where

∆ logGpr
ab(t;n)≡ logGpr

ab(t;N)− logGpr
ab(t;n). (12)

Rearranging and exponentiating, this variation gives modified
propagators that are defined by (second definition)

G̃MC
ab (t;n)≡ GMC

ab (t)
Gpr

ab(t;n)

Gpr
ab(t;N)

, (13)

We will use this second implementation of the marginalization
procedure throughout the rest of this paper, since we find that
it gives good results for values ofn that are two or three times
smaller than those from the first implementation. Again, terms
with j>n have been removed, and therefore the modified cor-
relator data is fit with the simpler fit function,Gab(t;n).

We now illustrate our new method by applying it to QCD
simulation data from two recent analyses. For each analy-
sis, we fit a function, likeGab(t;n), with n terms both to
untouched simulation dataGMC

ab (t), and to modified simula-
tion dataG̃MC

ab (t;n), from which j > n terms have been re-
moved using Eq. (13). We varyn, doing sequential fits with
n=1,2,3. . ., where the best-fit parameter values from one fit
are used as starting values for the next fit. Sequential fitting
with increasingn is a standard approach to complicated multi-
parameter correlator fits;n is increased until the fit’sχ2 stops
changing, at which point enough terms have been include
to reflect accurately the uncertainties introduced by large- j
terms. Here we examine the best-fit parameters for eachn to
investigate the rate at which correct results emerge from this
process. This allows a detailed comparison of our two fitting
strategies.

The first data set is a collection of 25 correlators for the
ϒ(1S)meson and its radial excitations (ϒ(2S), ϒ(3S), etc.) [6].
These correlators were made using five different operators for
both sources and sinks. They were fit to formula (2) with pri-
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FIG. 2. Best-fit results from sequential fits of 25ϒ correlators with
n=1,2,3. . . terms in fit function (2). Results are plotted versus the
cumulative time required for fitting, and are for fits of: a) the un-
modified simulation dataGMC

ab (t) (red circles and dotted line); and b)
the modified simulation datãGMC

ab (t;n) (Eq. (13)) (blue circles and
dashed line). Results are given for mass splittings betweendifferent
vectorS-states, and for the wave functions at the origin for the lowest
two states. All results are in lattice units. The gray bands show the
best-fit result from the modified data after convergence.

ors (in lattice units):

log(E1) = log(0.3±0.1) =−1.2±0.3

log(E j+1−E j) = log(0.25±0.125)=−1.4±0.5

a j = 0.1±1.0 (14)

except for a local source for which the priors were log(a j)=
log(0.1±0.2)=−2.3±2 (local source). These are broad pri-
ors — more than 100 times broader than the final errors for the

FIG. 3. Best-fit results from sequential fits of 13 two-point and three-
point correlators forD and π mesons withn = 1,2,3. . . terms in
fit function (2). Results are plotted versus the cumulative time re-
quired for fitting, and are for fits of: a) the unmodified simulation
data (red circles and dotted line); and b) the modified simulation
data (Eq. (13)) (blue circles and dashed line). Results are given for
the D-meson massmD and decay constantfD, and for theD→ π
scalar form factor at zero recoil momentumf0(0,0,0). All results
are in lattice units. The gray bands show the best-fit result from the
modified data after convergence.

quantities we examine below. We setN = 20 when defining
G̃MC

ab (t;n) (Eq. (13)); this is roughly twice the size it needs to
be, but it costs little to makeN large. In generalN should be
chosen so that terms withj>N are negligible compared with
statistical errors.

In Fig. 1 we plot theχ2 per degree of freedom for each
method versus the time required to get to that value [7]. As
expected, the new algorithm reaches a reasonableχ2 with just
a few terms (n= 2–3), in 20–30 seconds; the traditional al-
gorithm requiresn= 10–11 to obtain a goodχ2, and 600–
700 seconds. Similar differences are evident if we look at
physical quantities extracted from the simulations. In Fig. 2
we show results for the 2S−1S mass splitting (in lattice units),
for the 3S−1S mass splitting divided by the 2S−1S splitting,
and for the 1S and 2S mesons’ (nonrelativistic) wave func-
tions at the origin, which come from fit parametersa j for a
local source. In every case the two algorithms agree on the
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FIG. 4. TheD-meson’s effective massmeff(t) versust computed
from modified simulation datãGMC

D (t) from which every state other
than the ground state has been removed (using priors). The (very
thin) gray band shows the weighted average of allmeff(t)s, taking ac-
count of correlations. The thickness of the band indicates the uncer-
tainty of the average. Note that the largestts shown here correspond
to the middlet range. The error bars grow there becausemeff(t) be-
comes very sensitive to statistical errors in this region (since periodic
boundary conditions imply that the derivative of the correlator’s non-
oscillating part vanishes at the midpoint).

final result, but the new algorithm converges to correct results
10–40 times faster.

Our second example is from a recent analysis of theD→
π semileptonic form factor [8]. To extract the form factor
at four different momenta, this analysis uses a simultaneous
fit of 13 two-point and three-point correlators: a) aD-meson
correlator with a pseudoscalar local source and sink; b) four
π-meson correlators, one for each pion momentum of inter-
est, again with local pseudoscalar sources and sinks; and c)
two three-point correlatorsD→Jscalar→π for each of the four
pion momenta. The fit functions are more complicated for this
case. For example, theD-meson correlator is fit by a function:

GD(t;n) =
n

∑
j=1

a j f (E j, t)− (−1)tao
j f (Eo

j , t) (15)

where f (E j , t)≡ exp(−E jt) + exp(−E j(T − t)) is periodic
with periodT =64, and the second (oscillating) term is due to
opposite-parity states in the correlator (a feature of staggered-
quark formalisms like that used in this analysis). The details
for the other correlators, and the priors are given in [8].

Despite the complexity of dealing with both two-point and
three-point correlators, this is a simpler fit than theϒ case; but
even here we find that marginalizing most of the fit function
makes the analysis about 30 times faster. We show results in
Fig. 3 for theD-meson’s massmD and leptonic decay constant
fD, as well as for theD→π scalar form factorf0(0,0,0) at
zero recoil momentum. All results are in lattice units. Again
the two approaches agree on the results but the new approach
has correct results even with only a single term (n=1) in the
fit functions. For these fits we setN=10 when computing the
modified dataG̃MC

ab (t;n) (Eq. (13)), which is twice as large as
it needs to be.

Some insight into how marginalization works can be gained
by focusing just on theD correlator from this analysis and

fitting the modified data,

G̃MC
D (t)≡ GMC

D (t)
apr

1 f (Epr
1 , t)

Gpr
D (t;N)

, (16)

with only the non-oscillating part of the first term
in Eq. (15) — that is, witha1 f (E1, t). This situation is suf-
ficiently simple that fitting is not required. TheD mass, for
example, can be obtained by averaging the “effective mass,”

meff(t)≡ arccosh

(

G̃MC
D (t +1)+ G̃MC

D (t −1)

2G̃MC
D (t)

)

, (17)

over allt, taking account of correlations between differentts.
The effective mass is plotted as a function oft in Fig. 4.
It is compared with the weighted average of all 27meff(t)s
(gray band), which atmavg

eff =1.1584(11) agrees well with the
best result, 1.1593(7), from full multi-term fits (top panel in
Fig. 3).

The first excited state in theD correlator is the opposite-
parity contribution, which accounts for the oscillation
in meff(t). Strong statistical correlations between different
points result in an averagemeff whose error is more than
7 times smaller than the best error from an individualmeff(t).
The errors inmeff(t) whent ≤16 come almost entirely from
marginalized terms absorbed into the fit data using Eq. (16);
the original Monte Carlo simulation errors are negligible
there.

In the absence of marginalization, contributions from ex-
cited states would limit a traditional effective mass analysis
of this data to values witht > 16. With marginalization, all
ts are used, except for a small number at very smallt where
the fit function is invalid (because of temporal non-locality in
the lattice quark action). Using 28ts is possible because we
have removed the excited states through Eq. (16). As a result
differentmeff(t)s agree with each other to within their errors:
fitting all 27 values in Fig. 4 to a constant gives an excellent
fit, with a χ2 per degree of freedom of 0.6. (The result of the
fit is, by definition, the same as the weighted average reported
above.)

Our new implementation of effective-mass analyses is sim-
pler and less ambiguous than traditional analyses because we
are not limited to largets. More importantly our implemen-
tation also allows us to quantify the contribution to the uncer-
tainty in the finalmavg

eff due to the excited states: here the priors
for non-oscillating terms in Eq. (15) contribute 0.44σm, those
from oscillating terms contribute 0.07σm, and the uncertain-
ties in the Monte Carlo data contribute 0.89σm, whereσm is
the standard deviation ofmavg

eff . Such information is essential
for assessing the reliability of the final result, as well as for
planning improvements to the analysis.

In this paper we have shown how to accelerate multi-
exponential fits to multiple hadronic correlators by removing
contributions due to excited states from both the fit function
and the simulation data, before fitting. This technique for
marginalizing large parts of the fit function greatly reduces the
number of fit parameters needed in the realistic examples pre-
sented here, and makes fitting 10–40 times faster. Marginal-
ization also simplifies effective-mass analyses, and general-
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izes easily to analogous multi-state (generalized eigenvalue)
methods.
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