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We report a search for CP violation in the decay 7= — 7~ K2 > 071'0) v, using a dataset of 437
million 7 lepton pairs, corresponding to an integrated luminosity of 476 fb~!, collected with the
BABAR detector at the PEP-II asymmetric energy ete™ storage rings. The CP-violating decay-rate
asymmetry is determined to be (—0.36 +0.23 +0.11)% approximately 2.8 standard deviations from

the Standard Model prediction of (0.36 & 0.01)%.

PACS numbers: 13.35.Dx, 11.30.Er

CP violation has been observed only in the K and
B meson systems. However, Bigi and Sanda [1] predict
that, in the Standard Model (SM), the decay of the 7 lep-
ton to final states containing a K? meson will also have
a non-zero decay-rate asymmetry due to CP violation in
the kaon sector. The decay-rate asymmetry
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is predicted to be (0.33 +0.01) % for decay times compa-
rable to the lifetime 7o of the K9 meson. In arecent pa-
per, Grossman and Nir [2] point out that Sanda and Bigi
did not include the interference between the amplitudes
of intermediate K2 and K? which is as important as the
pure K2 amplitude. Therefore the decay-rate asymme-
try depends on the reconstruction efficiency as a function
of the K9 — ntn~ decay time. If the selection is fully
efficient for decay times that are long compared with the
K9 lifetime, then the predicted decay-rate asymmetry is
almost unchanged relative to the prediction of Bigi and
Sanda [1], due to a sign error [2].

If the measured decay-rate asymmetry shows a signif-
icant deviation from the SM value then this could be



evidence for new physics. No evidence for CP violation
has been found in related studies by BABAR and Belle in
DT — K% decays [3, 4], by the Belle collaboration in a
study of the angular distribution of the decay products in
7= — 7~ K% v, decays [5], or by the CLEO collaboration
[6].

This paper presents a measurement of Ag using 7~ —
7~ K% (>07%) v, and charge conjugate decays. The SM
asymmetry is identical for decays with any number of 7°
mesons. If there is an asymmetry due to new-physics
dynamics, then the impact of including modes with one

or more 7° mesons may be different.

The analysis uses data recorded by the BABAR detec-
tor at the PEP-II asymmetric-energy ete™ collider, op-
erated at center-of-mass (CM) energies of 10.58 GeV and
10.54 GeV at the SLAC National Accelerator Laboratory.
The BABAR detector is described in detail in Ref. [7]. In
particular, charged kaons and pions are differentiated by
ionization (dE/dxz) measurements in the silicon vertex
detector and the drift chamber in combination with an
internally reflecting Cherenkov detector, with identifica-
tion efficiency greater than 90% for pions and kaons with
momenta above 1.5GeV/c in the laboratory frame [8].
The probability of identifying a pion as a charged kaon
is less than 2%. An electromagnetic calorimeter made
of cesium iodide crystals provides energy measurements
for electrons and photons, and an instrumented flux re-
turn detector identifies muons [9]. For momenta above
1GeV/c in the laboratory frame, electrons and muons
are identified with efficiencies of approximately 92% and
70%, respectively. Based on an integrated luminosity
of 476 fb~ !, the data sample contains approximately 875
million 7 leptons.

Simulated event samples are used to estimate the pu-
rity of the data sample. The production of 7 pairs is
simulated with the KK2F Monte Carlo (MC) event gen-
erator [10]. Subsequent decays of the 7 lepton, contin-
uum ¢q events (where ¢ = u, d, s, ¢), and final-state radia-
tive effects are modeled with Tauola [11], JETSET [12],
and PHOTOS [13], respectively. Passage of the particles
through the detector is simulated by Geant4 [14].

The 7 pair is produced back-to-back in the ete™ CM
frame. As a result, the decay products of the two 7 lep-
tons can be separated from each other by dividing the
event into two hemispheres — the “signal” hemisphere
and the “tag” hemisphere — using the event thrust axis
[15]. The event thrust axis is calculated using all charged
particles and all photon candidates in the entire event.
We select events with one prompt track and a K% —
7+ 7~ candidate reconstructed in the signal hemisphere,
and exactly one oppositely charged prompt track in the
tag hemisphere. A prompt track is defined to be a track
with its point of closest approach to the beam spot be-
ing less than 1.5cm in the plane transverse to the e~
beam axis and less than 2.5 cm in the direction of the e~
beam axis. Furthermore, if a pair of tracks is consistent
with coming from a K9 or A decay, or from a ~ conver-
sion after a mass cut and a displaced vertex cut, neither

track can be a prompt track. The components of mo-
mentum transverse to the e~ beam axis for each of these
two prompt tracks must be greater than 0.1 GeV/c in the
laboratory frame. The event is rejected if the prompt
track in the signal hemisphere is identified to be com-
ing from a charged kaon. A K9 candidate is defined as a
pair of oppositely charged pion candidates with invariant
mass between 0.488 and 0.508 GeV/c?; furthermore, the
distance between the beam spot and the 7 7~ vertex
must be at least three times its uncertainty (the 7+ 7~
will be referred to as the “K? candidate daughters”). To
reduce backgrounds from non-7-pair events, we require
that the momentum of the charged particle in the tag
hemisphere be less than 4 GeV/c in the CM frame and be
identified as an electron (e-tag) or a muon (u-tag). To re-
duce backgrounds from Bhabha, "1, and ¢g events, we
require the magnitude of the event thrust to be between
0.92 and 0.99.

Backgrounds from ¢q events are further reduced by re-
jecting events in which the invariant mass M,e. of the
charged particle (assumed to be a pion), the K2 can-
didate, and up to three 7° candidates, all in the signal
hemisphere, is greater than 1.8 GeV/c? (see Fig. 1). If
more than three 7° candidates are reconstructed in the
signal hemisphere, the three with invariant masses clos-
est to the 7 mass [16] are included in the calculation
of Myec and the rest are ignored. The 7° candidates
are constructed from two clusters of energy deposits in
the electromagnetic calorimeter that have no associated
tracks (“neutral clusters”). The energy of each cluster
is required to be greater than 30 MeV in the laboratory
frame, and the invariant mass of the two clusters must
be between 0.115 GeV/c? and 0.150 GeV/c?. The number
of events in the 7= — 7~ K237%, mode is small and
the corresponding invariant mass plot is not included in
Fig. 1.

The imperfect agreement between the Me. distribu-
tions in the data and MC simulation, seen in Fig. 1, is
attributed to strange resonances that are not included
in the simulation. The impact of the modeling of the
7 decay modes in the MC simulation on the decay-rate
asymmetry is found to be small and is included in the
systematic uncertainties.

A likelihood ratio y(7) is used to distinguish 7-pair
events from ¢q events, and a second likelihood ratio
y(K?) is used to reduce the background in the sam-
ple of KY — w7~ candidates. The likelihood ratio
y; (7;), where i refers to 7 or K2, is defined as y;(7;) =
L3(77) /(L3 (7;) +wLb (7)) where w is the background-to-
signal ratio estimated from the MC simulation, £ (£?)
is the likelihood function for signal (background) events,
and &; is the set of variables used for likelihood 7. Each
likelihood function is a product of one-dimensional prob-
ability distribution functions of the variables z; obtained
from the MC simulation. For y(7), the variables #; are
the visible energy (sum of the energies associated with
all neutral calorimeter clusters and tracks in the event),
the number of neutral clusters in the tag hemisphere, the
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FIG. 1: Invariant-mass distributions for the combined e-tag
and p-tag samples. The label in each plot indicates the
reconstructed decay mode (including the charge conjugate
mode). Points with error bars represent data whereas the
histograms represent the simulated sample. The histogram
labeled as “Signal” includes the 7= — 7~ K35 (> 07%) v,
residual 77 — Kng(Z 071'0)7/77 and 7~ — 7 K°K°v.
modes. All selection criteria (including the likelihood ra-
tio requirement), except the invariant mass (Mrec) criterion,
have been applied. The vertical lines and arrows indicate the
Myiec < 1.8 GeV/c2 selection criterion.

number of neutral clusters in the signal hemisphere, the
magnitude of the thrust, and the component of the total
momentum of the event transverse to the e beam axis
(calculated from all tracks and neutral clusters in both
hemispheres). The variables used to construct y(K9) are
the distance from the beam spot to the decay vertex of
the K9 candidate in the plane transverse to the e~ beam
axis, the invariant mass of the K? candidate daughters,
the magnitude of the K momentum, and the cosine of
the polar angle of the KO candidate. The polar angle is
the angle between the K trajectory and the e~ beam
axis. The cosine of the polar angle discriminates low-
angle photon conversions from genuine K9 candidates.
All kinematic quantities used in the construction of the

q_ E T ; T T T T T T T 3
O 10°¢ -
o E —Data E!
g 4L [Jsignal ]
2 we [ bkgd E
g 10 ;E'Eif
Lu E
100
10
..
o o1 o2
) E T T T T T T 0 T T 3
2w y (K E
010t =
10°E -
10°E .
e E
10 E =
1: [ [_:j 1 [_ﬁ 1 1 1 1 7
0 01 02 03 04 05 06 07 08 09 1
y (K

FIG. 2: The likelihood ratio y(7) used to distinguish 7 events
from ¢g events (top plot) and the likelihood ratio y(K?2) used
to select 7 decays with a K2 — 777~ (bottom plot). All se-
lection cuts, except the plotted likelihood ratio requirement,
have been applied. Points with error bars represent data while
histograms correspond to simulated events. The histogram la-
beled as “Signal” includes the 7~ — 7~ K3 (>07°) vy, resid-
ual 77 — KfK(S)(z 07r0)1/T7 and 7~ — 7~ K°K°v; modes.
The vertical lines indicate the selection criteria.

two likelihood ratios, except for thrust, are determined
in the laboratory frame. Events are selected if y(7) > 0.2
and y(KY) > 0.4 (see Fig. 2), in order to minimize the
contamination from background events while maintain-
ing a high selection efficiency.

After all selection criteria are applied, a total of 199064
(140602) candidates are obtained in the e-tag (u-tag)
sample, of which there are 99842 (70369) in the 7~ sam-
ple and 99222 (70233) in the 7" sample.

The sample contains events from two 7 decay modes,
77 = K K%>0r")v, and 7= — 7~ KK v, , that also
have K? mesons in the final state. The decay 7= —
7~ K9KO, satisfies the selection criteria if one of the
neutral kaons decays into 77~ and the other neutral
kaon decays into 27° or appears as a K? meson.

The selected candidate sample also contains a small
background component from 7 decays not containing a
K9 in the final state, as well as continuum qg (u, d, s
and c-quark) events. There is no background from BB
events.

The numbers of background events of each type are
estimated from the MC simulation. The accuracy of
the background estimation is evaluated by measuring
the ratios of data to simulated event yields in the re-
gion y(1) < 0.1 and y(K?) < 0.1. A correction factor is
then applied to the background yield estimated from the
Monte Carlo simulation in this region. The correction



factors are determined to be 0.81+0.03 (0.49+0.03) for
the ¢qg background and 0.9+0.4 (1.0+0.4) for the non-
K9 7 background in the e-tag (u-tag) samples, respec-
tively. The total numbers of background events are then
estimated to be 1393+79 (1120+65) for 7~ decays and
1401+74 (1055+74) for 7+ decays in the e-tag (u-tag)
samples, where all selection criteria (including the re-
quirements on the two likelihood ratios) are applied. The
uncertainties include the statistical uncertainties from
the sizes of the Monte Carlo samples and the uncertain-
ties of the correction factors. The composition of the
sample is given Table 1.

After the subtraction of background composed of ¢g
and non-K ¢ 7 decays, the decay-rate asymmetry is mea-
sured to be (—0.32 £ 0.23)% for the e-tag sample and
(—0.05 + 0.27)% for the p-tag sample, where the errors
are statistical.

TABLE I: Breakdown of the sample after all selection crite-
ria have been applied. The errors of the decay modes with
K9 are dominated by the uncertainties in the branching frac-
tions. The background from other 7 decays and eTe™ — ¢g
background are estimated using the data and MC simulation
samples.

Source Fractions (%)

e-tag p-tag
7 = K2(> 0% v, 787440 78.4+£4.0
T = K K> 0"y, 42403 41403
7 =1 K°K°v, 15.7+3.7 15.9 4 3.7
Other background 1.40 £ 0.06 1.55 £ 0.07

A control sample of 7= — h=h~hT(> 07%) v, (exclud-
ing KY — 777~ decays) in both data and MC simula-
tion, where h~ (k') represents a negatively (positively)
charged hadron, is used to confirm that no significant
decay-rate asymmetry is induced by the BABAR detector
or the selection criteria. The control sample is selected by
requiring that all charged tracks be prompt tracks, which
suppresses K contamination due to its displaced decay
vertex. The asymmetries measured in the simulated and
data control samples agree to within the experimental un-
certainties of the measurements, which are 0.12% for the
e-tag and 0.08% for the u-tag, and include both statisti-
cal and systematic components. These errors are taken
as systematic uncertainties on the signal asymmetry (see
Table II).

Additional studies show no evidence for any charge-
dependent biases in the selection criteria. We find
no decay-rate asymmetry in the MC sample of 7= —
7= K% (>07%) v, decays (no CP violation is modeled in
the simulation) where the error on the decay-rate asym-
metries is 0.14% for the e-tag and 0.17% for the u-tag
events. We vary the selection criteria around their nom-
inal values, and no significant changes in the asymmetry

TABLE II: Summary of systematic uncertainties in the decay-
rate asymmetries.

e-tag p-tag
Detector and selection bias  0.12% 0.08%
Background subtraction 0.05% 0.06%
K°/K° interaction 0.01% 0.01%
Total 0.13% 0.10%

are observed. The decay-rate asymmetry of the back-
ground events was studied by examining the events re-
jected by the likelihood ratio criteria and was found to be
consistent with zero for both data and MC simulation.

A recent paper [17] suggests that the decay-rate asym-
metry will be modified due to the different nuclear-
interaction cross sections of the K° and K° mesons with
the material in the detector. This effect is not included
in the MC simulation. A correction to the asymmetry ac-
counting for this effect is calculated on an event-by-event
basis using the momentum and polar angle of the K9
candidate together with the nuclear-interaction cross sec-
tions for neutral kaons, which are related by isospin sym-
metry to the K= nucleon cross sections [16]. The kaon-
nucleus cross sections are determined by using the kaon-
nucleon cross sections and including a nuclear screening
factor of A%76 where A is the atomic weight [17]. The
correction, which is subtracted from the measured asym-
metry, is found to be (0.07 + 0.01)% for both the e-tag
and the p-tag samples. The error includes the statistical
uncertainty in the MC simulation, the uncertainties in
the kaon-nucleon cross sections [16], and an uncertainty
due to the assumption of isospin invariance. The latter
effect is taken to be 5% by observing that isospin symme-
try in pion-nucleon cross sections holds to within a few
percent. The error on the exponent of the atomic weight
of the nuclear screening factor is 0.003 [17] and its con-
tribution to the uncertainty in the asymmetry correction
is negligible.

The measured decay-rate asymmetries (after correct-
ing for the difference in neutral kaon nuclear interac-
tions) are (—0.39 £ 0.23 + 0.13)% for the e-tag sample
and (—0.12 £ 0.27 £ 0.10)% for the u-tag sample, where
the first error is statistical and the second is system-
atic. The systematic uncertainties of the e-tag and p-tag
results are almost completely uncorrelated. The small
correlations in the systematic uncertainties for the two
samples are ignored when the average is computed. The
weighted average of the two decay-rate asymmetries is
(—=0.27 £ 0.18 4+ 0.08) %.

The asymmetry measured at this stage still includes
other 7 decays with K in the final state. Specifically, the
decay-rate asymmetry is diluted due to 7= — K~ K2 v,
and 7~ — 7~ K°K v, decays. The measured asymmetry
A is related to the signal asymmetry A; and the remain-



ing background asymmetries A; and As by:

J1A1 + foAs + f343
fitfat+f3

( J1— fo )A
it fetfs @

where f1, fo, and f3 are, respectively, the fractions of
™ = 7 K> 0 v, 7 - K K> 0n%)v,, and
7= = 7~ K9K%, in the total selected sample, shown in
Table I. Within the SM, A} = — Ay because the K in
7= = 1~ K9 (>07%) v, is produced via a K°, whereas the
K%in 7= — K~ K2%(>07°)v; is produced via a K°. Fur-
thermore, A3 = 0 in the SM because the asymmetries due
to the K© and K° will cancel each other. Using the rela-
tions between A;, Ao, and A3, we can compare our result
with the theoretical prediction by dividing the measured
decay-rate asymmetry of A = (—0.27 £0.18 £ 0.08)% by
(fi—f2)/(fa+fa+f3) = 0.75+0.04 (the correction is iden-
tical for the e-tag and p-tag samples). The uncertainty
on the correction includes the statistical uncertainty and
uncertainties in the branching fractions. Finally, the
decay-rate asymmetry for the 7= — 7~ K% (> 07%) v,
decay for the combined e-tag and p-tag sample is calcu-
lated to be Ag = (—0.36 £0.23 £0.11)%.

As pointed out by Grossman and Nir, the predicted
decay-rate asymmetry is affected by the K9 — 7fx~
decay time dependence of the event selection efficiency
[2]. Figure 3 shows the relative selection efficiency, de-
fined as the selection efficiency normalized to unity in the
range 0.25 < t/7ro < 1.0. In the 0 < t/7xo < 1 region,
the relative efficiency is parametrized with the function

(1- Ae‘B(t_tO))iz7 where A, B, and t; are constants.
In the 1 < t/TKg < 8 region, the relative efficiency is
parametrized by a second-order polynomial. Both func-
tions are constrained to unity at t/TKg = 1. We use

A:

this parametrization in Eq. (13) of the Grossman and
Nir paper [2] to obtain a multiplicative correction factor
of 1.08 £+ 0.01 for the decay-rate asymmetry, where the
error is due to the uncertainty in the relative selection
efficiency. After applying the correction factor, the SM
decay-rate asymmetry is predicted to be (0.36 £ 0.01)%.

In conclusion, we have performed a search for CP vi-
olation using the 7= — 7~ K2 (> 07°) v, decay mode.
The decay-rate asymmetry is measured for the first time
and is found to be (—0.36 +0.23+0.11)%. The measure-
ment is 2.8 standard deviations from the SM prediction

of (0.36 +0.01)%.
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