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Abstract

There are several instances where quantum anomalies of continuous and discrete
classical symmetries play an important role in fundamental physics. Examples come
from chiral anomalies in the Standard Model of fundamental interactions and grav-
itational anomalies in string theories. Their generic origin is the fact that classical
symmetries may not preserve the domains of quantum operators like the Hamiltonian.
In this work, we show by simple examples that anomalous symmetries can often be
implemented at the expense of working with mixed states having non-zero entropies.
In particular there is the result on color breaking by non-abelian magnetic monopoles.
This anomaly can be rectified by using impure states. We also argue that non-abelian
groups of twisted bundles are always anomalous for pure states sharpening an earlier
argument of Sorkin and Balachandran [3]. This is the case of mapping class groups
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of geons [3] indicating that large diffeos are anomalous for pure states in the presence
of geons. Nevertheless diffeo invariance may be restored by using impure states. This
work concludes with examples of these ideas drawn from molecular physics.

The above approach using impure states is entirely equivalent to restricting all
states to the algebra of observables invariant under the anomalous symmetries. For
anomalous gauge groups such as color, this would mean that we work with observables
singlet under global gauge transformations. For color, this will mean that we work
with color singlets, a reasonable constraint.

1 Introduction

There is perhaps a dominant perception that quantum anomalies of classical symmetries can
occur only in the context of quantum field theories. Typically they arise in the course of
regularizing divergent expressions in quantum fields [1, 2], causing the impression that it is
these divergences that cause anomalies.

It is however known that anomalies can occur in simple quantum mechanical systems
such as a particle on a circle or a rigid rotor. Esteve [4, 5] explained long ago that the
presence or otherwise of anomalies is a problem of domains of quantum operators. Thus
while quantum state vectors span a Hilbert space H, the Hamiltonian H is seldom defined
on all vectors of H. For example, the space H of square-integrable functions on R3 contains
non-differentiable functions ψ, but the Schroedinger Hamiltonian H = − 1

2m
∇2 is not defined

on such ψ. Rather H is defined only on a dense subspace DH of H. If a classical symmetry
g does not preserve DH , gDH 6= DH , then Hg ψ for ψ ∈ DH is an ill-defined expression. In
this case, one says that g is anomalous [4, 5]. See also [6–12].

In the present work, we explore the possibility of overcoming anomalies by using mixed
states. There are excellent reasons for trying to do so, there being classical gauge symmetries
like SU(3) of QCD or large diffeomorphisms (diffeos) of manifolds (see below) which can
become anomalous. Color SU(3) does so in the presence of non-abelian monopoles [13–15],
while “large” diffeos do so for suitable Friedman-Sorkin geon manifolds [16–18]. It is surely
worthwhile to find ways to properly implement these symmetries.

In this paper, we first focus on simple quantum mechanical systems to illustrate how the
use of impure states can often restore the anomalous symmetries. We then discuss color
breaking by non-abelian monopoles. Finally we argue that structure groups of twisted non-
abelian bundles are always anomalous for pure states. This claim is illustrated with examples
from molecular physics, where such groups are not only compact, but discrete as well. In
later work, we will extend these considerations to diffeo anomalies.

While non-abelian structure groups of twisted bundles are always anomalous, abelian
groups also of course can be anomalous. For instance, parity anomaly for a particle on a
circle (discussed in section 2 of this work) and the axial U(1)A anomaly in the Standard
Model are both abelian. The crucial issue is whether the classical symmetry preserves the
domains of appropriate operators like the Hamiltonian. If they do not preserve such domains,
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then they are anomalous. The important feature of non-abelian structure groups of twisted
bundles is that they never preserve the domain of the Hamiltonian. More on this later.

Our use of mixed states is entirely equivalent to restricting the algebra of observables
to those invariant under symmetries. For global symmetries, this can be a restriction, as
there may be no good reason to discard non-invariant observables. But for many gauge
symmetries, this requirement is often already implied by gauge invariance. That is the case
for mapping class groups of manifolds and “symmetries” of molecules. For the global color
group which is emergent from gauge transformations, constraining observables to singlets is
reasonable in view of the hypothesis of color confinement.

In this paper, all examples we work on are those of global anomalies. As a matter of
specificity, most of these examples are of “global” gauge anomalies like the global color group
or “large” diffeos.

We shall see that even though we can overcome the problem of implementing a symmetry,
time evolution still does involve the choice of a domain. In this sense, the theory carries the
memory of the anomaly.

But when the anomaly is for a classical symmetry, a domain and its transform by this
symmetry are equivalent, exactly as in the case of standard spontaneous symmetry breaking.
In quantum field theory, there seems to be an associated Nambu-Goldstone theorem as well.
But now we can show that all this can happen on a spatial manifold with a boundary, and
does not require its infinite volume. We will elaborate on these issues elsewhere.

The present paper is organized as follows: in section 2, we discuss parity and time
reversal for a particle on a circle, this being a very simple example; In section 3, we adapt
this discussion to color breaking; In section 4, we show the generic nature of our results. We
finally conclude with examples from molecular physics.

2 Anomalous Parity and Time Reversal for Particle on

a Circle

2.1 Classical Theory

A point on a circle S1 can be described by eiϕ, with ϕ being real. Its classical equation of
motion assuming it to be free is

d2

dt2
ϕ(t) = 0, (1)

where t labels time.
If S1 is embedded in R2,

S1 = {x = (x1, x2) ∈ R
2 : x21 + x22 = 1}, (2)

then we can relate eiϕ to x by writing

x1 + ix2 = eiϕ. (3)
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The parity transformation P : (x1, x2) 7→ (x1,−x2) takes eiϕ to e−iϕ, that is,

P : eiϕ 7→ e−iϕ. (4)

It is an orientation-reversing diffeomorphism of S1. On the angular variable ϕ ∈ [0, 2π], its
action is P : ϕ 7→ 2π − ϕ. Classically (4) is a symmetry of the equation of motion (1).

The time-reversal transformation T defined by

T : eiϕ(t) 7→ e−iϕ(−t) (5)

is also a classical symmetry.

2.2 Quantum Theory

In quantum theory, the Hamiltonian H from which one can obtain (1) is

H = − 1

R

d2

dϕ2
, (6)

where the constant 1/R has the dimension of energy.
The Hilbert space for a particle on S1 is

H ≡ L2(S1) = {〈χ, ψ〉 :=
∫ 2π

0

dϕ χ̄ψ <∞, for χ, ψ ∈ L2(S1)}. (7)

As usual, 〈ψ, ψ〉 = ‖ψ‖2.
Now, the Hamiltonian H has several different domains for which it is self-adjoint. They

are labeled by the points η = eiθ of S1. The definition of these domains is1

Dη = {ψ ∈ H : ψ(2π) = ηψ(0)}. (8)

The density matrix |ψ〉〈ψ| associated to ψ ∈ Dη is a periodic function of ϕ, since η
cancels out, showing that (6) is appropriate for quantum dynamics on S1.

Another way to see that (8) is good for quantum dynamics on S1 is the following. Let us
consider the algebra C∞(S1) of smooth functions on S1. Then Dη is a module for C∞(S1),
that is, if f ∈ C

∞(S1) and ψ ∈ Dη, then

fψ ∈ Dη. (9)

As S1 can be recovered from C
∞(S1) as a topological space by the Gel’fand-Naimark theorem2

[19], we again see that (8) works out.
All of these remarks go towards solving an old problem of the Quantum Baby described

in detail in [20].

1There are also some differentiability (Sobolev) conditions for ψ in these domains.
2The closure of C

∞(S1) in the sup-norm gives a C
∗-algebra to which we can apply the Gel’fand-Naimark

theorem.
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2.2.1 Parity

Parity P acts on ψ according to

(Pψ)(ϕ) = ψ(2π − ϕ). (10)

Hence, if ψ ∈ Dη, then

(Pψ)(2π) = ψ(0) = η̄ψ(2π) = η̄ (Pψ)(0), (11)

or Pψ ∈ Dη̄, that is,
PDη = Dη̄. (12)

The conclusion is that P is anomalous unless η = η̄ or η = ±1. In terms of θ, the statement
is that P is anomalous unless θ = 0, π mod 2π.

2.2.2 Time Reversal

Since T is an anti-unitary operator,

TDη = Dη̄, (13)

so T as well is broken, unless again η = η̄ or η = ±1.
Note however that PT preserves Dη for all η,

PTDη = Dη. (14)

Recall that in 1 + 1 QED and 3 + 1 QCD, the well-known θ-terms also break P and T ,
unless θ = 0, π mod 2π, while PT is always preserved. This coincidence is not accidental.
It comes from the fact that π1(Q) = Z for their configuration spaces Q [3].

2.2.3 Restoration of P and T

A naive approach to restoration of P and T , which however does not work, is the following.
Consider the case of P . For ψ, χ ∈ Dη, we can declare that the domain of H consists of
vectors of the form ψ + Pχ. Since ψ or χ can be zero, this means that we would like to
declare the linear span D of Dη and PDη as the domain of H .

This approach does not work as D is not a domain for H . An easy way to see this fact
is to check that

〈ψ + Pχ,H(ψ + Pχ)〉 − 〈H(ψ + Pχ), ψ + Pχ〉 (15)

is not zero for generic ψ, χ. So H is not even symmetric on D.
Another, but different, reason to discard such D is to note that

|ψ + Pχ〉〈ψ + Pχ| (16)
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is not a periodic function of S1 for generic ψ, χ. Thus D is not adapted to the quantum
particle problem on S1.

Now, if we do not insist that H is always defined, but only the unitary time evolution
e−itH is, then as this is a bounded operator, it is defined on all of H, an hence also on D.
For this definition of e−itH , we can start with H having domain Dη, and define e−itH on Dη

and then extend it to all of H (see below). However this will not resolve the second difficulty
noted above, as D is still not adapted to an underlying S1. Furthermore, the evolutions
e−itH are different if the starting domain is Dη or Dη̄ (if η 6= η̄), for instance.

Thus such superpositions of vectors to overcome anomalies in P or T do not work.
There is an alternative though. For ψ ∈ Dη, we note that

Ω = |ψ〉〈ψ|+ P |ψ〉〈ψ|P (17)

has positive trace if |ψ〉 is not a zero vector, that is,

TrΩ = 2〈ψ, ψ〉 > 0. (18)

Hence

ω =
Ω

TrΩ
,

Trω = 1, (19)

is a well-defined state on observables. Moreover it is P and T invariant and is continuous on
S1.

If K = K† is a (bounded) observable, its mean value in this state is defined by

ω(K) = TrKω =
1

TrΩ
[〈ψ|K|ψ〉+ 〈ψ|PKP |ψ〉] . (20)

Since
ω(K) = ω(PKP ), (21)

then ω(K) is zero for P -odd K:

ω(K) = 0, if PKP = −K. (22)

If P were not anomalous, so that η = ±1, then ψ ∈ Dη need not be an eigenstate of
P . So |ψ〉〈ψ| may have no definite parity, and P -odd observables K may have non-trivial
expectation values 〈ψ|K|ψ〉.

As for time-evolution, it is important to keep its group property. So we can time-evolve
|ψ〉 by e−itHη or e−itHη̄ to obtain |ψt〉η or |ψt〉η̄. We can then use (20) to calculate the mean
value ofK. As this mean value does depend on η, we still have two physically distinct choices
for time evolution.

Note that P -invariant observables form a subalgebra.
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Our rule (20) for expectation values can actually be derived by restricting ω to P -invariant
operators. Thus if PKP is K, then

〈ψ|PKP |ψ〉 = 〈ψ|K|ψ〉 = 1

2
[〈ψ|PKP |ψ〉+ 〈ψ|K|ψ〉] , (23)

which leads to (20). We have emphasized the significance of this result for gauge theories in
the introduction.

All the above remarks are seen to straightforwardly apply to time reversal T .

2.2.4 Summary

In the presence of P and T anomalies, we can restore them compatibly with time evolution.
We must however work with impure states ω of rank 2. We must work with P -invariant
states and so also P -invariant observables.

For anomalous gauge symmetries like color, this is actually good, as it gives the possibility
of restoring gauge invariance.

2.3 What is an Anomaly?

In the general formulation of quantum theory, it is assumed that any bounded self-adjoint
operator K is an observable. Being bounded, it is defined on all of H. Such K can however
mix domains.

Let us consider for example the unitary operator Uη′ , with η
′ = eiθ

′

, defined by

(Uη′ψ) (ϕ) = ei
θ′

2π
ϕψ(ϕ). (24)

Acting with this operator on Dη, one changes η to η′η, i.e.,

Uη′Dη = Dη′η. (25)

Moreover, since Uη′ is a bounded operator, it is defined on all of H.
Now, the operators

K =
1

2

(

Uη′ + U †
η′

)

, (26)

K ′ =
1

2i

(

Uη′ − U †
η′

)

(27)

are bounded and self-adjoint. Are they observables?
In fact, the parity operator P is bounded and self-adjoint. Is it an observable? If yes, is

its anomaly problem spurious?
A closer examination reveals that in the presence of domain-changing observables, there

is no canonical choice for time evolution. Any choice will fail to commute with the domain-
changing observable. We have already remarked on this point and its relation to spontaneous
symmetry breaking. That is so even if it generates a classical symmetry like P . In the latter
case, we call the classical symmetry anomalous.
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2.3.1 Extension of e−itHη to all of H
We begin by solving the eigenvalue problem

Hηψ
η
n = Enψ

η
n. (28)

The solution is (recalling that η = eiθ and ψη
n ∈ Dη)

ψη
n(ϕ) =

1√
2π
ei(n+

θ
2π

)ϕ, (29)

En =
1

R
(n +

θ

2π
)2, with n ∈ Z. (30)

Now, {ψη
n} is a complete set. So any χ ∈ H, even if it is not in Dη, can be expanded in

the basis {ψη
n}:

χ =
∑

n

anψ
η
n (31)

an = (ψη
n, χ) . (32)

The expansion converges in norm, that is,

lim
N→∞

‖χ−
∑

|n|≤N

anψ
η
n‖ = 0. (33)

The time evolution of χ under e−itHη is

χt = e−itHηχ0 =
∑

|n|≤N

ane
−itEnψη

n, (34)

for a initial χ0 = χ. The R.H.S. converges, since |ane−itEn | = |an|.
But if χt /∈ Dη, term-by-term differentiation of R.H.S. in t leads to a divergent series.
We can illustrate this by considering a periodic χ and η 6= 1. Set

χ(ϕ) = χM(ϕ) =
1

2π
eiMϕ, M ∈ Z. (35)

Then

an =
1

2π

∫ 2π

0

dϕ e−i(n+ θ
2π

)ϕeiMϕ =
1

2π

i

n+ θ
2π

−M

(

e−iθ − 1
)

. (36)

With these an, the series (31) and (34) converge since |an| = O( 1
n2 ) as |n| → ∞:

∑

n

|an|2 <∞. (37)

But term-by-term differentiation of (31) leads to a divergent series since |anEn| = O(|n|)
as n→ ∞.

The conclusion is that time evolution Uη(t) determined by Hη is defined on all H (and is
continuous in t), but is differentiable in t only on vectors in the domainDη of the Hamiltonian
Hη. If a classical symmetry g does not preserve this domain, then gUη(t) − Uη(t)g 6= 0 on
all of H, and we say that g is anomalous.
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2.4 Relation to Lagrangian Approach

In this subsection, we explain how our discussion of anomalies based on domains can be
interpreted in conventional terms. The example of the particle on a circle gives a transparent
model for this demonstration.

Consider the operator

Uη̄ : (Uη̄ψ) (ϕ) = e−i θ
2π

ϕψ(ϕ). (38)

For ψ ∈ Dη, then
Uη̄ψ ∈ D1. (39)

Now, D1 consists of periodic functions and it is invariant under parity. But the new Hamil-
tonian

Hη = Uη̄ H U−1
η̄ =

1

R

(

−i ∂
∂ϕ

+
θ

2π

)2

(40)

is not parity invariant.
Using canonical methods, it is easy to show that the Hamiltonian Hη comes from a

Lagrangian

Lη =
R

2
ϕ̇2 − θ

2π
ϕ̇. (41)

In Lηdt, −(θ/2π)dϕ is a topological term. It is closed, but not exact on S1. It is the
analogue of the Wess-Zumino-Witten term [3] or the topological term in the charge-monopole
Lagrangian [21].

We can also model “covariant” and “consistent” anomalies of quantum field theory in
this model. For this purpose, for clarity, we write −i(θ/2π)dϕ as a connection:

A(ϕ) = ei
θ
2π

ϕd
(

e−i θ
2π

ϕ
)

, (42)

so that

Lηdt =
R

2
ϕ̇2dt− iA(ϕ) (43)

Note that we can allow any fluctuation in A, which is an exact one-form on S1 without
affecting the cohomology class of A. Such fluctuations will not change the domain Dη of the
Hamiltonian. Let us allow such fluctuations now.

For that we write
A = −ia(ϕ)dϕ (44)

and

Lη =
R

2
ϕ̇2 − a(ϕ)ϕ̇. (45)

This Lagrangian defines a model invariant under the “small” gauge transformations

a(ϕ) → a(ϕ) +
∂Λ

∂ϕ
, (46)

Λ(2π) = Λ(0) mod 2π, (47)
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as they change (45) only by a total derivative −dΛ/dt. Furthermore, it preserves the domain
Dη. Hence they preserve the spectrum of the Hamiltonian. (The meaning of the mod 2π
qualification in (47) is that eiΛ(ϕ) defines a U(1)-valued function on S1.).

If a Maxwell term F 2(φ) is introduced for a(φ), the Gauss law reads

∂E(φ)

∂φ
− θ

2π
δ(φ− ϕ) = 0, (48)

where E(φ) is the electric field. This is the analogue of the Gauss law in the presence of a
point charge at z(t) at time t:

∂Ei(x)

∂xi
+ eδ3(x− z(t)) = 0. (49)

The charge Q on S1 is thus given by integrating (48), so that

Q = E(2π)− E(0) =
θ

2π
. (50)

This charge is conserved. But under an anomalous gauge transformation, where the gauge
function Λ does not fulfill (47), θ changes. So it is not invariant under such gauge transfor-
mations. It is thus the analogue of the “consistent” charge. The corresponding “consistent”
but not gauge invariant current

∂E(φ)

∂φ
− θ

2π
δ(φ− ϕ) (51)

happens to be zero here. The corresponding “covariant” gauge invariant current is

∂E(φ)

∂φ
. (52)

3 Non-abelian Monopoles and Breakdown of Color

In ’t Hooft-Polyakov models, magnetic monopoles are associated with twisted G-bundles on
the sphere S2

∞ at ∞. Here G is the remaining gauge symmetry group after the breaking
G(0) → G by a Higgs field Φ. This remaining group G is also known as “global” or “large”
gauge group. Furthermore, S2

∞ refers to a large enough spatial sphere, where Φ can be
approximated by its asymptotic value Φ∞.

In the unitary gauge, where Φ∞ takes a constant value on S2
∞, the G-bundle is described

by a transition function on a small strip θ ∈ [π/2 − ǫ, π/2 + ǫ] around the equator of S2
∞,

where θ is the polar angle. This is called a collar neighborhood Nǫ of the equator in S2
∞.

When θ lies in Nǫ and the azimuthal angle ϕ increases from 0 to 2π, the transition function
τ maps this curve to a non-contractible loop in G.
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It can happen that the values τ(θ, ϕ) taken by τ are not in the center C of G. In that
case gτ(θ, ϕ)g−1 6= τ(θ, ϕ) for all g ∈ G. The group G is then broken.

As examples, consider U(2) and U(3). The second group contains the color group SU(3)
and the electromagnetic U(1), since U(3) = [SU(3)× U(1)]/Z3.

Let us first consider U(2) = (SU(2)× U(1)) /Z2. We work in its two-dimensional (faith-
ful) representation by unitary matrices. Then the choice

τ(θ, ϕ) = e
i
2
σ3ϕe

i
2
ϕ, (53)

where σ3 is the third Pauli matrix, gives a non-contractible loop in U(2), which is not entirely
contained in its center U(1). The homotopy class of this loop generates π1[U(2)] = Z.

A similar discussion applies to U(3) = [SU(3)× U(1)] /Z3. In its three-dimensional
irreducible representation, the diagonal matrix Y = 1

3
(1, 1,−2) is in the Lie algebra u(3) of

U(3). The transition function τ defined by

τ(θ, ϕ) = eiY ϕe−i 2π
3
ϕ (54)

is a non-contractible loop which is not contained in the center of U(3). So, for a generic
g ∈ U(3),

gτ(θ, ϕ)g−1 6= τ(θ, ϕ) (55)

in the entire collar neighborhood around the equator. Thus, global SU(3) color cannot be
implemented.

In [3], it was shown that each such τ characterizes a domain Dτ of say the Dirac Hamil-
tonian HD. Moreover, global SU(3) color becomes anomalous because its action changes Dτ

to Dgτg−1 .
We can now restore color as a symmetry by following the procedure described in the last

section. Let |χ〉τ be a state vector for the transition function τ . This defines its gauge. It is
in the domain Dτ .

Suppose a g ∈ G, it acts on τ by conjugation

(

gτg−1
)

(θ, ϕ) = gτ(θ, ϕ)g−1. (56)

So
gDτ = Dgτg−1 . (57)

Following section 2, we thus consider

Ω =

∫

G

dµ(g) g|χ〉τ τ 〈χ|g† =
∫

G

dµ(g) |χ〉gτg−1 gτg−1〈χ|, (58)

where dµ(g) is the Haar measure on G.
This Ω is a positive G-invariant operator, so that

ω =
Ω

TrΩ
(59)
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is a G-invariant state.
Let Hτ be the Hamiltonian with domain Dτ . On the intersection

⋂

gτg−1, g∈G

Dgτg−1 = D0 (60)

of these domains, the Hamiltonian Hgτg−1 coincide

Hgτg−1 |D0 = Hτ , (61)

for all g ∈ G. Also,
ge−itHτ g−1 = e−itH

gτg−1 . (62)

We now define Ωt at time t by

Ωt =

∫

G

dµ(g)e−itH
gτg−1 |χ〉gτg−1 gτg−1〈χ| eitHgτg−1 , (63)

with Ω0 being Ω. Now, Ωt is positive and G-invariant. It gives the G-invariant state

ωt =
Ωt

TrΩt

. (64)

The state ωt is impure.

3.1 Is Color Confinement a Domain Problem?

Suppose that there is no twisted SU(3)- or more generally twisted G-bundle on spatial
slices, so that state vectors |χ〉, which are color (G−) non-singlets are in the domain of the
Hamiltonian. Suppose though that there is “confinement” in the sense that we observe only
SU(3)-invariant operators K. Such (bounded) operators form an algebra A. Then |χ〉〈χ|
(with 〈χ|χ〉 = 1) restricted to A is in fact an impure state like the one we discussed before.
That is because we can trace over |ψ〉〈ψ| the color degrees of freedom. This point was
emphasized by Akant et al [22].

To see this explicitly, let U(g) be the unitary operator implementing G. Then for K ∈ A,

〈χ|K|χ〉 = 1

V

∫

G

dµ(g)〈χ|U(g)†KU(g)|χ〉, (65)

V =

∫

G

dµ(g), (66)

or

TrK|χ〉〈χ| = TrKω, (67)

ω =
1

V
dµ(g)U(g)|χ〉〈χ|U(g)†. (68)
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Since the Hamiltonian H must be a G-singlet if H is to display confinement, we can
evolve ω for time t in a conventional way,

ωt = e−itHω0e
itH , (69)

with ω0 = ω. The previous formula (64) reduces to (69) when there is no domain problem.
However, we were led to the singlet states ωt of (64) because of domain problems caused

by non-abelian monopoles. Is this a first step towards a proof of confinement?
Discussions of confinement also speculate that colored states have infinite mean energy.

That is also the case here if this conjecture is suitably interpreted. Thus, first consider e−itHτ ,
Hτ being the Hamiltonian with domain Dτ . It can be defined on all H including vectors
|χ〉gτg−1, with gτg−1 ∈ Dgτg−1 6= Dτ . But

i
d

dtgτg−1

〈χ|e−itHτ |χ〉gτg−1|t=0 (70)

diverges.
We can show this by the parity example of section 2, but the result seems to be generic.

Thus from (31),(28), (29) and (36), and also

〈χM |e−itHη |χM〉 =
∑

n

|an|2e−itEn , (71)

it follows that

En =
1

R
(n +

θ

2π
)2 (72)

an =
1

2π

1

n+ θ
2π

−M

(

e−iθ − 1
)

, (73)

showing that (71) is not differentiable in t or that the mean energy 〈χM |Hη|χM〉 is infinite.
This is perhaps a mechanism which contributes to confinement. But for further progress,

we still need non-abelian colored monopoles associated with reasonable length scales. Un-
fortunately, we know of none. GUT monopoles seem too small for our purpose. If the length
scale of quark confinement is 1028cm−1, then it is hard to understand the low energy success
of the quark model.

4 On the Genericity of Gauge Anomalies

Let Ĝ be a gauge group for a quantum system based on a Hamiltonian H . By definition, all
observables, including H , commute classically with Ĝ.

In quantum theory, typically, the identity component Ĝ0 of Ĝ is required to act trivially
on quantum states by virtue of a Gauss law. The group Ĝ/Ĝ0 = G can then act by an
unitary irreducible representation (UIRR) ρ on the quantum states.
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As an example, consider QCD. There, for Ĝ, we can consider G∞(SU(3)), the group of
maps from R

3 to SU(3), which reduce to identity at spatial infinity. Its identity compo-
nent G∞

0 (SU(3)), being generated by Gauss law, acts trivially on quantum states. Now,
G∞(SU(3))/G∞

0 (SU(3)) = π3(SU(3)) = Z. It has UIRR’s ρ ≡ ρθ with ρθ(n) = einθ for
n ∈ Z. The angle θ is fixed in a given QCD theory.

In quantum gravity based on asymptotically flat space-times, the approach of diffeomor-
phisms D∞(M) of the spatial slice M which become asymptotically identity plays a role
similar to G∞(SU(3)). Its identity component D∞

0 (M) acts trivially on quantum states,
while the discrete group D∞(M)/D∞

0 (M) acts by some UIRR ρ on quantum states.
There are examples of a different sort from molecular physics [3]. In the Born-Oppenheimer

approximation, the family of nuclear orientations which serves as the configuration space Q
for rotational excitations is SU(2)/G, where G is a subgroup of SU(2). It may be discrete
giving rise to a Platonic solid [30], U(1) or Z4 ⋉ U(1). If U(1) = {eiθσ3/2, 0 ≤ θ ≤ 4π} and
Z4 = {z = iσ2 : z

4 = e}, then it is generated by 〈eiθσ3/2, iσ2〉.
In time-reversal invariant systems, if the value k0 of momentum k is time-reversal in-

variant, then the sphere {k : |k− k0|2 = 1} can support a Z2-bundle [13–15, 23]. The Z2 is
generated by the square of the time-reversal transformation T . According to Wigner [24],
T 2 is either +1 or −1. T can act on quantum states by either of these two UIRR’s. Since
observables necessarily commute with the square of time-reversal transformation, Z2 is a
gauge group. These bundles occur in discussions of topological insulators [25].

Thus there are plenty of gauge groups G and many are non-abelian.
Let us call the effective gauge group after possible Gauss-law constraints are accounted

for as G. As explained above, it is the group which can act by non-trivial representations ρ
on quantum states.

Now if ρ(g) is the unitary operator representing g ∈ G on quantum states, then ρ also
gives a representation of the entire group algebra CG of G. If

∑

g c(g)g ∈ CG, where c(g) ∈ C,
then its operator is

∑

g c(g)ρ(g). This representation incidentally is a ∗-representation:

∗ :
∑

g

c(g)g →
∑

g

¯c(g)g−1 (74)

on CG goes over to the adjoint operations in the representation

ρ

(

∑

g

¯c(g)g−1

)

=

(

∑

g

c(g)ρ(g)

)†

, (75)

since ρ(g)† = ρ(g−1).
Now all observables must commute with CĜ, the gauge group algebra of Ĝ, and in par-

ticular with CG. That is the meaning of gauge invariance. But if G and hence CG are
non-abelian, only the center C(CG) of CG commutes with every element of CG. If G is
abelian, the C(CG) = CG, but that is not the case if G is non-abelian.
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Thus if G is a finite group, its center has the basis [26]

eα =
∑

g

χα(g)g, (76)

where χα is the character in the irreducible representation ρα. If instead G is a compact Lie
group, its center is spanned by the Casimir invariants. In either of these cases of interest,
C(CG) is an abelian algebra.

Since C(CG) lies in the center of the entire algebra of observables, in a given representation
of the latter, elements of C(CG) have a fixed value. Fixing eα means fixing the irreducible
representation3 while for Lie groups G, we will be fixing its Casimirs.

Thus general considerations fix only the UIRR ρ of CG. The ρ(g) acts on a Hilbert space
H by a unitary representation, so we can choose a complete set spanning H in the form

|σ〉 ⊗ |ψ〉 ≡ |σ, ψ〉, (77)

where
ρ(g)|σ, ψ〉 = |σ′, ψ〉ρ(g)σ′σ, (78)

on denoting the matrix of ρ(g) by the same symbol.
Now, elements of ρ(C(CG)) have exactly the same value on |σ, ψ〉, for every σ ∈ C(CG),

with ρ being irreducible. So C(CG) does not mix different values of σ, nor does any other
observable as it commutes with ρ(G). So we have to “gauge fix” the redundancy in the
multiplicity of of σ if possible.

We are assuming that the dimension of ρ(G) is larger than one, otherwise ρ(CG) is
abelian.

One possibility that may occur is that we can fix the value for σ, and choose a domain
for observables in the span of {|ψ〉}. This may be possible with observables acting just on
|ψ〉. The ψ’s are typically functions on a classical configuration space Q, so that in this case
the quantum vector bundle over Q is trivial. Physical predictions in this case do not depend
on σ.

Instead of working with vector states, we can also work with density matrices

∑

σ

|σ, ψ〉〈σ, ψ|
Tr |σ, ψ〉〈σ, ψ| . (79)

Such states are more like our construction in section 2 and treat all σ democratically. How-
ever, on observables, both approaches are equivalent when the bundle is trivial.

Note also that G acts on (79) by the identity representation4, while if we gauge fix σ, the
G-action changes the gauge, but harmlessly.

3The eα’s after a normalization become orthogonal projectors.
4The co-unit for its Hopf algebra [26].
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When the bundle is twisted, we cannot proceed in this manner. In that case, we cover
Q by contractible open sets Qα,

Q =
⋃

α

Qα. (80)

In each Qα, we choose a section
∑

σ

χ(α)
σ |σ, ψ〉, (81)

where χ
(α)
σ are smooth functions on Qα. In the overlap Qαβ = Qα∩Qβ , we have a transition

function Uαβ , which at q ∈ Qαβ gives an element ρ(g), g ∈ G,

Uαβ ∈ ρ(G), q ∈ Qαβ , (82)

in a self-evident notation. Then the vectors (81) and

∑

σ

χ(β)
σ |σ, ψ〉 (83)

are related by Uαβ over Qαβ :

∑

σ

χ(α)
σ |σ, ψ〉 = Uαβ

∑

σ

χ(β)
σ |σ, ψ〉 on Qαβ . (84)

There are also consistency conditions on Uαβ which lead to Čech cohomology [27, 28].
If there exist Uα’s which are ρ(G)-valued smooth functions on Qα such that

Uαβ = U−1
α Uβ on Qαβ, (85)

then we can reduce Uαβ to the constant function on Qαβ with value 1 by choosing different
sections, namely

Uα

∑

σ

χ(α)
σ |σ, ψ〉 on Qα. (86)

But such Uα may not exist. In that case, the vector bundle is said to be “twisted”.
The choice of sections on Qα is a “gauge choice”. It also goes towards fixing the domain

of the Hamiltonian.
If the vector bundle is twisted, we cannot say that the action of ρ(g) preserves the

transitions functions. As the domain of the Hamiltonian is determined precisely by these
transition functions, we cannot say that ρ(g) preserves the domain. If it does not, we say
that G is anomalous [4, 5].

More generally, there can be a classical symmetry like parity P which is not part of ρ(CG).
If it does not preserve the domain, that is, the transition functions, then this symmetry is
anomalous.

If G is non-abelian, only the elements of G commuting with all Uαβ preserve the domain.
The rest are anomalous.
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In QCD, the global symmetry group SU(3) can be regarded as the group of constant
maps from R

3 to SU(3). Since SU(3) ∩ G∞ = {e}, they are not “gauge transformations”
as per the considerations hitherto. We should really enlarge G∞ to G, which are smooth
maps from R

3 to SU(3) which approach a constant value in SU(3) at infinity (that is, when
|~x| → ∞). In that case SU(3) is part of the gauge group. What we have proved in [13–15] is
that its action changes the transition functions and hence the domain of the Hamiltonian in
the presence of non-abelian monopoles. Hence SU(3) of color is anomalous in the presence
of these monopoles.

We conclude this section by listing examples where twisted bundles with non-abelian
gauge groups occur. A proper investigation of the physics and mathematics of these bundles
from a physical perspective does not exist.

4.1 Examples

4.1.1 From Molecular Physics

As mentioned above, the rotational degrees of freedom of a molecule are described by the
configuration space Q = SU(2)/G, where G is a subgroup of SU(2) [3, 30]. Since SU(2) 6=
Q×G, the principle bundles G→ SU(2) → SU(2)/G are all twisted when G 6= {e}. There
are plenty of molecules with ρ(G) non-abelian.

We will illustrate our general considerations from such Q in the next section.

4.1.2 Parastatistics, Braid Group

The configuration space Q of N identical particles on Rd is

Q = {[q1, ..., qN ] : qi ∈ R
d, qi 6= qj, if i 6= j}, (87)

where [q1, ..., qN ] is an unordered set [3, 31, 32]:

[q1, q2, ..., qN ] = [qs(1), qs(2), ..., qs(N)] (88)

s ∈ SN ,

SN being the permutation group of N particles. It is (88) which enforces the particle identity.
Thus Q consists of N points of Rd of cardinality N .

In quantum theory, for d ≥ 3, the group SN arises as the “gauge” group commuting with
all observables. If ρ(SN ) is abelian, which is the case only for bosons and fermions, there is
no problem in implementing it on vector states. But if ρ(SN ) is non-abelian, gauge fixing in
order to eliminate the redundant vectors in the representation space leads to anomalies.

For d = 2, SN is replaced by the braid group BN [3, 32], allowing the possibility of
fractional statistics. Its non-abelian representations have recently occurred in discussions of
quantum Hall effect at the filling fraction ν = 5/2 [33], topological quantum computing [34]
and the Kitaev model [35]. If ρ(BN ) is non-abelian, it cannot act on properly gauge fixed
quantum states.
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4.1.3 Non-abelian Monopoles Break Color

We have already discussed this issue in section 3 above.

4.1.4 Mapping Class Groups of Geons

The mapping class groups here are the groups D∞/D∞
0 already defined above for the

Friedmann-Sorkin spatial slices supporting topological geons. They are discrete, but are
non-abelian for appropriate slices [16–18]. In these cases, if ρ(D∞/D∞

0 ) is non-abelian, there
might appear quantum diffeo anomalies. We discuss this issue elsewhere [23].

5 On Molecular Configuration Spaces

We will adapt the discussion of [30] regarding quantum theories on Q = SU(2)/G, with G a
subgroup of SU(2) for illustrating our preceding remarks.

Quantization on Q can conveniently start from its universal cover SU(2) and functions on
SU(2). The latter are spanned by the components of rotation matrices Dj

λµ, with j ∈ Z
+/2,

λ, µ ∈ [−j,−j + 1, ..., j], where the scalar product is

〈Dj′

λ′µ′ , D
j
λµ〉 =

∫

s∈SU(2)

dµ(s) D̄j′

λ′µ′(s)D
j
λµ(s), (89)

where dµ(s) is the invariant SU(2) measure (with volume of SU(2) equal to 16π2, say). With
this scalar product, this space of functions on SU(2) generates a Hilbert space.

On functions f on SU(2), there is a left- and a right-action UL,R of SU(2) defined by

(UL(t)f) (s) = f(t−1s), (90)

(UR(t)f) (s) = f(st), (91)

s, t ∈ SU(2).

These actions commute:
UL(s)UR(t) = UR(t)UL(s). (92)

The gauge group G and its group algebra CG act on the right, that is, by the rep-
resentation UR. The observables lie in CUL(G), so that they commute with the gauge
transformations UR(G) and its group algebra CUR(G).

We take UR to be a UIRR. Now,

Dj
λµ(st) = Dj

λµ′(s)D
j
µ′µ(t), (93)

so that to obtain an irreducible action of G, we must restrict the second index to a suitable
subset.

For example if G = ZN = {ei 2πN mσ3 : m = 0, 1, ..., N − 1}, then

Dj
λµ(se

i 2π
N

mσ3) = Dj
λµ(s)e

i 4π
N

mµ (94)
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remembering that µ is associated with eigenvalues for σ3/2. So for µ± 1/2,

ei
2π
N

σ3 → e±i 2π
N . (95)

These two representations may or may not be equivalent depending on N .
For general µ the representations are

ei
2π
N

σ3 → ei
4π
N

µ. (96)

So

µ =
1

2
+
N

2
k, k ∈ Z (97)

also give the representation
ei

2π
N

σ3 → e+i 2π
N . (98)

For this UIRR, then, the wave functions are spanned by

{Dj

λ, 1
2
+N

2
k
: k ∈ Z}. (99)

For specificity, we focus on the UIRR ei2π/N σ3 → ei2π/N . Using (94), we see that a subset
of µ’s, call it {ν}, carry this UIRR. Then the space spanned by {Dj

λρ : ρ ∈ {ν}} is invariant
under observables. We can reduce this further and fix ρ to a particular value ρ0 ∈ {ν} or if
one prefers, consider the span of

∑

cρD
j
λρ for fixed cρ ∈ C.

To present this basis in terms of transition functions, we must cover SU(2)/G by con-
tractible open sets Qα. Then on Qα, there is a global section. That is, for q ∈ Qα, we can
pick an element sα(q) ∈ SU(2) “in the fiber over” q smoothly. More generally, we can choose
a section sα(q)gα(q) ∈ SU(2), with gα(q) ∈ G.

Now suppose that we choose to work with the span of Dj
λρ0

(sα(q)gα(q)) over Qα. Then
the sections over Qα are

Dj
λρ0

(sα(q))UR(gα(q)), (100)

where UR(gα(q)) is a phase.
The first factor here corresponds to |ψ〉 in (78), the second to the factor with σ.
Now consider Uαβ . In Uαβ , sα(q) and sβ(q) can differ only by the action of the group, so

that
sα(q) = sβ(q)gβα(q), (101)

with q ∈ Qα and gβα(q) ∈ G. Hence

Dj
λρ0

(sα(q))UR(gα(q)) = Dj
λρ0

(sβ(q))UR(gβ(q))UR(gβα(q)). (102)

The last factor UR(gβα(q)) regarded as the evaluation at q of a function with values in UR(G)
gives the Uαβ of (84).

In the abelian example, there is no problem of implementing UR(g) for any g ∈ G, as
they preserve the transition functions. Indeed as G is abelian, G ∈ C(CG).

19



But there can still be classical symmetries which can change Uαβ. In particular, parity
P and time-reversal T can do so. In [30], it was shown that P and T are not violated if and
only if

UR(e
i 4π
N

σ3) = ±1. (103)

Otherwise they are violated.
The group ZN occurs as G (called H∗ in [30]) for pyramidal molecules. There are pyra-

midal molecules where (103) is not fulfilled. Their quantum theories violate P and T . But
just like QCD, PT is not anomalous in quantum theories.

The groups D∗
4N , with N ∈ Z, is the gauge group G for “staggered” and “eclipsed”

configurations such as those of ethane [30].
The group D∗

8 has the following elements:

D∗
8 = {±1,±iτi} ⊂ SU(2). (104)

It is the “symmetry group” or the gauge group leaving the shape of the biaxial nematic
invariant.

Reference [30] shows that molecules with N even do not violate P or T .
But D∗

4N are all non-abelian for N ≥ 2. If D∗
4N has K UIRR’s, then the center C(CD∗

4N )
is of dimension K. For a generic UIRR UR, only UR(eα), eα ∈ C(CD∗

4N) and their linear
combinations are well-defined in a quantum theory, and we cannot implement the UIRR’s
UR of D∗

4N .
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